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Abstract

Large-area, long-duration power outages are increasingly common in the United States, and cost

the economy billions of dollars each year. Building a strategy to enhance grid resilience requires an

understanding of the optimal mix of preventive and corrective actions, the inefficiencies that arise

when self-interested parties make resilience investment decisions, and the conditions under which

regulators may facilitate the realization of efficient market outcomes. We develop a bi-level model to

examine the mix of preventive and corrective measures that enhances grid resilience to a severe storm.

The model represents a Stackelberg game between a regulated utility (leader) that may harden distri-

bution feeders before a long-duration outage and/or deploy restoration crews after the disruption, and

utility customers with varying preferences for reliable power (followers) who may invest in backup

generators. We show that the regulator’s denial of cost recovery for the utility’s preventive expen-

ditures, coupled with the misalignment between private objectives and social welfare maximization,

yields significant inefficiencies in the resilience investment mix. Allowing cost recovery for a higher

share of the utility’s capital expenditures in preventive measures, extending the time horizon asso-

ciated with damage cost recovery, and adopting a storm restoration compensation mechanism shift

the realized market outcome towards the efficient solution. If about one fifth of preventive resilience

investments is approved by regulators, requiring utilities to pay a compensation of $365 per customer

for a three-day outage (about 7 times the level of compensation currently offered by U.S. utilities)

provides significant incentives towards more efficient preventive resilience investments.

Keywords: Grid resilience, preventive measures, corrective measures, bi-level optimization

models, rate-of-return regulation.
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1 INTRODUCTION

In the context of electricity supply, resilience describes the ability to “withstand and recover rapidly from

disruptions” (United States, & Obama, B., 2013), including widespread, long-duration (WLD) power

interruptions that often stem from extreme weather events (National Academy of Sciences, Engineering,

and Medicine, 2017, 2021). The resilience of a system depends on its vulnerability (i.e., the fraction of

electricity demand that is no longer served after the disturbance) and the speed at which it recovers its

functionality. Translating vulnerability and recovery into metrics that can inform grid resilience planning

and response after a major disturbance is not straightforward (Kwasinski, 2016; Vugrin et al., 2017). As

a result, utilities do not currently have models to select measures that would enhance system resilience at

the lowest cost. In particular, it is unclear how much utilities should allocate towards preventive measures

that reduce vulnerability to long-duration outages (e.g., hardening distribution feeders), corrective actions

that promote faster system recovery when major outages occur (e.g., deployment of restoration crews),

and preventive measures that enhance flexibility to respond or lower the costs of corrective actions (e.g.,

installation of advanced metering infrastructure for faster power restoration).

State regulators in the U.S. currently allow recovery of restoration costs from the ratepayers after a

major disruption, but resist funding preventive measures that may only yield occasional benefits, while

raising costs for ratepayers (Keogh et al., 2013; Edison Electric Institute, 2014; National Academy of

Sciences, Engineering, and Medicine, 2017; Plumer and Penn, 2021). According to a national survey by

the North Carolina Clean Energy Technology Center, out of $15.7 billion in grid improvements under

consideration last year, regulators approved only $3.4 billion, or about one fifth (MacMillan and Englund,

2021). As a result, utilities are reluctant to invest in preventive measures that may reduce costs and

outage impacts from a major disruption, but spend heavily to fix components that failed during the

event (Mukhopadhyay and Hastak, 2016). This approach may not yield the best mix of resilience-

enhancing investments by the utilities. In addition, utility customers may take actions to mitigate losses

associated with power interruptions, for example by investing in backup emergency generators. The

misalignment between the objectives of private parties may contribute to an inefficient societal mix of

resilience-enhancing investments. Going forward, these inefficiencies raise serious concerns due to the

increasing frequency and intensity of severe weather events.
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In this paper, we develop a game-theoretic model to examine the mix of preventive and corrective

measures that enhances grid resilience to a severe storm event. The model represents a bi-level Stackel-

berg game between a regulated utility (leader) and utility customers with varying preferences for reliable

power (followers). The utility makes investments in preventive and corrective resilience-enhancing mea-

sures, while the customers may invest in backup generators that reduce unserved energy during an outage.

A bi-level approach is helpful in the analysis of resilience investment planning for several reasons. First,

a non-cooperative framework is appropriate because private parties that are involved in making resilience

investments have conflicting objectives (profit maximization for the utility, maximization of net benefit

from power consumption for the consumers). Further, preventive resilience investments exhibit features

of public goods in that their costs are certain, localized and borne by the utility, while the associated

benefits are uncertain, diffused broadly across society, and may not accrue over the commercial lifetime

of the project. As a result, inefficiencies may arise when self-interested parties make investment deci-

sions, and utilities may tend to underinvest in resilience (Sanstad et al., 2020). Second, the sequential

nature of the game is aligned with hierarchical decision-making in this setting. Specifically, utilities are

often required to develop multi-year plans to mitigate the impact of major events on customers through

infrastructure storm hardening. Their proposals for preventive investments are assessed in regulatory

proceedings known as rate cases, and resulting decisions affect electric rates, outage probability, damage

costs, and the electricity demand that could be served during the outage. Given the utility’s decisions,

consumers would invest in backup generation around the time of a major disruptive event. Finally, a bi-

level approach allows us to account for potential distortions caused by the rate-making process. Under

rate-of-return regulation, electric rates are set to generate enough revenue to cover utility costs approved

by the regulator, and provide a fair rate of return. Rates based on average cost may not provide appropri-

ate incentives to enable the type of investments that may be needed to enhance grid resilience.

The rest of the paper proceeds as follows. Section 2 discusses the paper contribution to three strands

of the literature. In Section 3, we present a simple analytical model to develop intuition about why

regulated utilities in a rate-of-return regime may not be inclined to overinvest in capital that enhances

grid resilience, as posited by a well-known theory of regulation (Averch and Johnson, 1962). Next,

we present our bi-level optimization model and discuss the solution approach in Section 4. Section 5

presents the data, Section 6 discusses the results, and Section 7 provides concluding remarks.
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2 LITERATURE REVIEW

Thematically, our paper contributes to the literature that seeks to improve risk management for high-

impact, low-frequency events, with a focus on utility spending on resilience-enhancing measures. Method-

ologically, our work builds on economic models that examine the effect of rate-of-return regulation on

the decisions of regulated monopolies, as well as bi-level optimization models in the framework of non-

cooperative game theory.

2.1 Risk management for high-impact, low-frequency events

As noted in Linkov et al. (2014), risk analysis quantifies the expected loss of critical functionality in

a system, based on the characterization of threats, vulnerabilities and consequences of adverse events,

while risk management helps the system prepare and plan for these events. Current risk management

practices in the electric power sector are well-established for several types of threats (e.g., low-intensity

hurricanes and wildlife), but nascent for high-impact, low-frequency events (e.g., severe storms) (Pre-

ston et al., 2016). Within the literature providing insights to policy makers for managing risks from

these events, past work has focused on measuring resilience to identify critical components in the net-

work (Henry and Ramirez-Marquez, 2012), analyze system performance (Zobel, 2014; Kwasinski, 2016)

and quantify community resilience-enhancing interventions (Yu and Baroud, 2019; Logan and Guikema,

2020). In addition, some studies have developed methods for selecting resilience-enhancing projects

(Barker et al., 2013; Baroud et al., 2014; Pant et al., 2014; Bostick et al., 2017), and conducted vul-

nerability assessments of interconnected infrastructures under natural hazards (Poljanšek et al., 2012;

Hernandez-Fajardo and Dueñas-Osorio, 2013; Ouyang and Dueñas-Osorio, 2014; Baroud et al., 2015;

Salman et al., 2015; Fang et al., 2019). Our study is most closely related to the literature that exam-

ines trade-offs between preventive and corrective measures to enhance resilience (MacKenzie and Zobel,

2016; Reilly et al., 2017; Eyer and Rose, 2019).

MacKenzie and Zobel (2016) present an optimization framework to help a decision-maker allocate

resources to lessen the impacts of a disruption (preventive resilience measures) or improve recovery

time (corrective resilience measures). An interesting feature of this analysis is the use of alternate func-

tional forms to describe resource allocation, whose parameters are estimated based on utility data. The
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proposed model is applied to illustrate how an electric utility might spend $1 billion to improve grid

resilience after a hurricane. The authors find that the utility should allocate between 50% and 65% of its

budget to preventive measures, and the rest of the budget to corrective measures.

Reilly et al. (2017) explore how customer decisions to install backup generators affect system-level

hardening and a community’s likelihood of losing power after repeated hurricanes. A distinctive feature

of the study is the combination of power outage forecasting and customer behavioral responses through

an integrated outage prediction and agent-based model. Each agent’s action depends on their experience

during the storm, the experience of their neighbours, and their beliefs. If enough customers lose power or

file a complaint, the utility is required to harden its system, and the number of customers who lose power

in future events is reduced according to the extent of the hardening. From a policy perspective, sensitivity

analysis of the integrated model is useful to show what parameters drive system-wide changes affecting

reliability, and what levers may be perturbed to improve outcomes. However, the modeling framework in

Reilly et al. (2017) is not well suited for providing insights into the optimal mix of resilience-enhancing

measures, and does not consider the effect of the utility’s decisions on retail electricity prices.

Finally, Eyer and Rose (2019) analyze the tradeoffs between preventive and corrective resilience-

enhancing measures in a framework that includes consumer actions, such as investment in backup gen-

eration. Like MacKenzie and Zobel (2016), Eyer and Rose (2019) assume that a single benevolent social

planner selects the optimal amount of resilience investments for the utility and the consumers. Addi-

tional assumptions (e.g., a Cobb-Douglas form for the damage function) allow for analytical solutions,

but introduce some limitations in the analysis.

Our paper contributes to this strand of the literature by supporting analysis of resilience-enhancing

investment decisions in a framework that accounts for potential distortions due to parties acting in their

self interest and rate-of-return regulation.

2.2 Effect of rate-of-return regulation on the decisions of regulated monopolies

Rate-of-return regulation is the traditional method for regulating distribution utilities in the U.S. electric

power industry (Kassakian et al., 2011). Under this form of regulation, state public utility commissions

determine an allowed rate of return for the regulated firm, as well as the capital on which this return can

be earned (known as the rate base). The allowed profit for the regulated utility is given by the product
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of rate of return and rate base. Given this profit level, the regulatory agency selects prices that result

in the firm earning that profit (Viscusi et al., 2005). Rate-making occurs in proceedings known as rate

cases, which are usually held every few years. Once prices are set, they remain fixed until the next

rate case. By setting utility revenues equal to utility costs (including a return on investment in the rate

base), rate-of-return regulation ensures full cost recovery. However, it creates minimal incentives for cost

efficiency, because any profit gains are taken away by the regulator lowering prices in the next rate case.1

Further, rate-of-return regulation may create perverse incentives to invest in capital beyond the cost-

minimizing level, as shown by Averch and Johnson (1962). Their seminal paper presents an economic

model of the effects of rate-of-return regulation on input choices of a profit-maximizing monopolist.

Under some strong assumptions, they show that the regulated firm would choose too much capital relative

to other inputs because its allowed profit is directly proportional to the rate base. Empirical tests of the

Averch-Johnson (hereafter AJ) predicted bias toward capital intensity have yielded mixed results for the

electric utility industry (Boyes, 1976; Spann, 1974; Courville, 1974; Petersen, 1975). Further, it has been

argued that the AJ theory ignores attributes of real-world regulatory processes (Joskow, 1974; Joskow

and Noll, 1981). As a result, some theoretical models analyze the efficiency of production and market

decisions of regulated utilities in a setting where profits fluctuate within an error band, and regulatory

review is triggered by zero profits (when the utility requests a review to raise the electricity price) or

excessive profits (when customer groups request a review to lower the electricity price) (Burness et al.,

1980; Braeutigam and Quirk, 1984; Teisberg, 1993). Other models using an AJ-type characterization

examine the effect of relaxing model assumptions on the results. For example, Klevorick (1973) and Peles

and Stein (1976) consider the effect of uncertainty, Bailey (1973) and Davis (1973) analyze regulatory

lag, Gollop and Karlson (1978) and Joskow and MacAvoy (1975) discuss fuel adjustment clauses, and

Douglas et al. (2009) account for regulatory cost disallowances on capital.

Our paper contributes to this literature by presenting an economic model of the AJ type to develop

intuition about why regulated utilities in a rate-of-return regime may not be inclined to overinvest in

capital that enhances grid resilience. If these expenses were allowed to become part of the rate base, the

AJ theory would posit overinvestment in preventive measures, which contrasts with empirical evidence

presented in Section 1. We build on the characterization of regulation offered by Douglas et al. (2009),

1As a result, regulatory practices have evolved to provide better incentives for cost reduction through regimes that decouple
a utility’s revenue from its actual costs, such as earnings sharing, price caps and yardstick regulation (Joskow, 2008).
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who add some richness to the basic A-J model by considering regulatory cost disallowances on capital.

Relative to their paper, we consider the effect of the risk of disallowances on the cost of capital of the

regulated firm (i.e., we distinguish between the risk-free cost of capital, and the cost of capital that is

required to compensate for the risk of regulatory cost disallowance). Further, we generalize their results

by showing that overcapitalization bias does not always hold unless strong assumptions are made, and

the regulated firm may underinvest in capital under some conditions.

2.3 Mathematical programs with equilibrium constraints

The Stackelberg model of duopoly (von Stackelberg, 1934) is appropriate for studying non-cooperative

games with sequential moves in which a dominant player (or leader) chooses quantity first, and one or

more subordinate players (or followers) choose their quantity after observing the leader’s decision. The

leader is aware that its actions influence the output choice of the followers, can anticipate their reaction,

and uses this knowledge when selecting its own optimal strategy. The relevant equilibrium concept is the

Stackelberg (subgame perfect Nash) equilibrium, which represents the only Nash equilibrium associated

with the backwards induction outcome of the game (Gibbons, 1992). Stackelberg games are closely

related to bi-level models in which (1) the optimization problem of the leader is presented at the upper

level, (2) the optimization problems of the followers are given at the lower level, and (3) the upper

level problem is constrained by the reaction of the followers. Considering the upper level problem and

replacing the lower level problems by their Karush-Kuhn-Tucker (KKT) optimality conditions in the

constraint set renders a mathematical program with equilibrium constraints (MPEC) (Luo et al., 1996).

The MPEC modeling framework has found wide application in areas like transportation (LeBlanc

and Boyce, 1986; Labbé et al., 1998; Gao et al., 2004; Lawphongpanich and Hearn, 2004; Codina et al.,

2006; Huang et al., 2016; Patriksson, 2008), facility location (Meng et al., 2009), and microbiology

(Burgard et al., 2003; Zomorrodi and Maranas, 2012). In the energy sector, MPECs have been applied

to study strategic behavior in day-ahead and real-time electricity markets (Kamat and Oren, 2004; Yao

et al., 2008), transmission pricing in congested pricing of electric transmission (Hobbs and Kelly, 1992;

Pepermans and Willems, 2005), generation capacity expansion decisions (Murphy and Smeers, 2005;

Kazempour et al., 2011; Wogrin et al., 2011; Baringo and Conejo, 2012; Kazempour et al., 2012), bio-

fuel production (Bard et al., 2000), and the natural gas market (Wolf and Smeers, 1997; Boots et al.,
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2004). Non-cooperative games that model restructured electricity markets over a network of generators

and consumers have also adopted an MPEC structure (Cardell et al., 1997; Hobbs et al., 2000; Ruiz and

Conejo, 2009; Gabriel and Leuthold, 2010). Chen et al. (2006) model the ability of the largest producer

in an electricity market to exercise market power in the electricity and emission allowance markets. The

largest producer plays the role of the Stackelberg leader in the MPEC, while medium-sized firms, the

independent system operator and arbitrager are followers. Daxhelet and Smeers (2007) present MPECs

to study the regulation on cross-border exchanges of electricity in the European Union: regional regula-

tors from different countries (leaders) decide on the allocation of their network costs between generators

and customers in order to maximize their country’s net benefits, subject to the response of the electricity

market (follower). Finally, Stackelberg games have been used to model the interactions between a utility

company and its customers (Hobbs and Nelson, 1992; Maharjan et al., 2013; Yu and Hong, 2016). For

example, Hobbs and Nelson (1992) present a bi-level model to study utility-sponsored energy conser-

vation programs: the utility at the upper level (leader) seeks to maximize social welfare while setting

electric rates and subsidizing energy conservation programs, while customers at the lower level (follow-

ers) maximize their net benefit by consuming electricity and investing in conservation.

Our paper contributes to this strand of the literature by applying bi-level models to utility spending

on resilience-enhancing measures, which has emerged as a central policy concern in recent years, as

highlighted by the Texas electricity crisis in February 2021.

3 ANALYTICAL MODEL

In this section, we present a simple analytical model to develop intuition about why electric utilities

under traditional rate-of-return regulation may not be inclined to overinvest in capital that enhances grid

resilience. As in Averch and Johnson (1962), we consider a monopolist that produces output using two

resources, capital and labor. The firm maximizes profit, subject to a regulatory constraint on the allowed

rate of return on capital sK , and a technological constraint where output is bounded by a production func-

tion F(L,K). The AJ theory posits that, if sK exceeds the (risk-free) cost of capital PK but is below the

rate of return that would be enjoyed by the firm absent regulation, the firm will overinvest in capital stock.

This result is derived in Appendix A, under the assumption that there is no regulatory cost disallowance.
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Here, we assume instead that the regulator allows a share φ of the firm’s capital expenditures to be in-

cluded in the rate base, where 0 < φ < 1. This is supported by empirical evidence in our setting (Section

1) and, as noted by Mukhopadhyay and Hastak (2016), is expected to increase the riskiness of the firm’s

capital investments. As a result, the cost of capital would increase to rK , where rK > PK . Let K denote

the quantity of capital input chosen by the firm, L the quantity of labor input, PL the cost of labor, and

rK be the cost of capital that is required to compensate for the risk of regulatory cost disallowance. The

firm maximizes profit, defined as:

R(Y) − rK · K − PL · L (1)

where R(Y) is the revenue function. Assuming that depreciation is zero and the acquisition cost of capital

is equal to 1, as in Averch and Johnson (1962), the regulatory constraint is:

R(Y) − PL · L − sK · φ · K ≤ 0, (λ) (2)

where the allowed rate of return sK only applies to the share of capital expenditures included in the rate

base, φ · K, and λ is the dual variable associated with the constraint. Finally, the technological constraint

is:

Y ≤ F(L,K), (µ) (3)

The Lagrangian function L is given by:

L = [R(Y) − rK · K − PL · L] − λ · [R(Y) − PL · L − sK · φ · K] − µ · [Y − F(L,K)] (4)

and the first order conditions that result from maximizing equation (4) are:

∂L

∂L
= PL · (λ − 1) + µ · FL = 0 (5)

∂L

∂µ
= F(L,K) − Y = 0 (6)
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∂L

∂K
= −rK + λ · sK · φ + µ · FK = 0 (7)

∂L

∂Y
= (1 − λ) · R

′

− µ = 0 (8)

∂L

∂λ
= −R(Y) + PL · L + sK · φ · K = 0 (9)

where FK =
∂F(L,K)
∂K > 0, FL =

∂F(L,K)
∂L > 0 and R′ =

∂R(Y)
∂Y > 0. Next, assume that the firm produces an

output level on the transformation frontier (i.e., Y = F(K, L)), implying that µ > 0. Under the assumption

that sK > PK ,2 it follows that 0 < λ < 1 (Averch and Johnson, 1962). Finally, let G = R(F(K, L)) be

concave to satisfy the second-order condition for maximization: thus, the marginal revenue product of

capital is GK = R
′

· FK , and the marginal revenue product of labor is GL = R
′

· FL. Combining (5) and

(8) we get:

PL · (λ − 1) + (1 − λ) ·GL = 0 (10)

This implies that the firm invests in labor L efficiently, because the marginal cost PL is equal to the

marginal revenue product GL:

PL = GL (11)

Similarly, combining (7) and (8) and using the definition of GK , we have:

−rK + λ · sK · φ + (1 − λ) ·GK = 0 (12)

To examine whether overcapitalization bias holds in the revised model, we consider two cases: sK >

rK > PK or rK > sK > PK .
2Averch and Johnson argue that sK > PK is the interesting case in their static model. If sK < PK , the firm would prefer to

shut down, while if sK = PK the firm would be indifferent between the chosen quantities of capital and labor input.
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Case I: sK > rK > PK

Under the assumption that sK > rK , equation (12) becomes:

−rK + λ · rK · φ + (1 − λ) ·GK < 0 (13)

or equivalently:

(1 − λ) ·GK < (1 − λ · φ) · rK (14)

Note that, while in the basic Averch-Johnson model PK > GK , we cannot conclusively compare rK

and GK here. Further, totally differentiating equation (9) with respect to sK yields:

−GK ·
dK
dsK
−GL ·

dL
dsK

+ PL ·
dL
dsK

+ φ · K + sK · φ ·
dK
dsK

= 0 (15)

and substituting PL = GL in equation (15) we find that:

dK
dsK

=
φ · K

GK − φ · sK
(16)

In the AJ model, the ratio dK/dsK is negative, as shown in Appendix A. In equation (16), the sign of

dK/dsK critically hinges upon the relation between φ · sK and GK . Under the assumption that the post

disallowance rate of return φ · sK exceeds the marginal revenue product of capital GK (as in Douglas et al.

(2009)), the ratio dK/dsK is negative and the Averch-Johnson effect holds. However, this assumption

does not hold in general, and has no empirical support in the context of capital investments that improve

the resilience of the grid. Thus, overcapitalization bias does not hold conclusively under regulatory cost

disallowances on capital, if sK > rK .

Case II: rK > sK > PK

Under the assumption that sK < rK , equation (12) becomes:

−rK + λ · rK · φ + (1 − λ) ·GK > 0 (17)
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or equivalently:

(1 − λ) ·GK > (1 − λ · φ) · rK (18)

Since sK > PK , it follows that 0 < λ < 1. Further, 0 < φ < 1. Hence, unlike Case I, we can infer

that rK < GK . Totally differentiating equation (9) with respect to sK and substituting PL = GL in the

result, we obtain equation (16). Since sK < GK and the denominator of equation (16) is positive, the

ratio dK/dsK is positive. Thus, if the allowed rate of return exceeds the risk-free cost of capital but is

below the cost of capital required to compensate for the risk of regulatory cost disallowance, the firm will

underinvest in capital, yielding a “reverse Averch-Johnson effect” (Graves, 1982; Kolbe et al., 1993).

A comparison of assumptions and insights from the AJ model and the revised model in this section

is presented in Table I. In sum, overcapitalization bias holds conclusively only if φ = 1, as in the

classic Averch-Johnson model. As noted by Mukhopadhyay and Hastak (2016), a regulator’s denial of

cost recovery for part of the firm’s capital expenditures in preventive resilience might be expected to

increase the riskiness of these investments, raising the cost of capital to rK , where rK > PK . Under the

assumption that the allowed rate of return sK exceeds both the risk-free cost of capital PK and rK , we

show that overcapitalization bias does not hold, unless the post disallowance rate of return exceeds the

marginal revenue product of capital. Further, if sK exceeds PK but is below rK , a profit-maximizing firm

has incentives for undercapitalization.

Assumption φ dK
dsK

Model

sK > PK φ = 1 Negative Averch and Johnson (1962)
sK > rK > PK 0 < φ < 1 Indeterminate This paper
rK > sK > PK 0 < φ < 1 Positive This paper

Table I. Insights from the analytical model and comparison with Averch and Johnson (1962)
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4 BI-LEVEL OPTIMIZATION MODEL

4.1 Structure of the model

Our game-theoretic model is cast as a Stackelberg game between a utility regulated based on cost of

service (leader) and utility customers with varying preferences for reliable power (followers). Figure 1

presents an overview of the static optimization model.

Figure 1. MPEC structure

At the upper level, given assumptions on (i) the probability of a long-duration outage, if no preventive

measures are taken (πmax), (ii) the share of preventive expenditures that is likely to be approved for cost

recovery by the regulator (φ), and (iii) the number of years over which recovery of outage damage

costs is allowed (ρ), the utility maximizes expected annual profit subject to three sets of constraints.

First, the outage probability in the system, outage damage costs and corrective resilience investments are

determined as a function of preventive resilience investments. Second, the utility accounts for essential

features of the rate-making process under traditional rate-of-return regulation. Third, the anticipated

reaction of the consumers is given by the Karush-Kuhn-Tucker (KKT) conditions of the lower level

problems. In line with the Stackelberg assumptions, the utility correctly anticipates backup generator
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investment decisions (and the resulting impact on electricity demand to be served during an outage)

in response to changes in the utility’s decisions. This would be possible, given detailed knowledge of

customer load profiles and reasonable estimates for their value of lost load (or VOLL).

At the lower level, given the utility’s storm hardening decisions and the resulting impact on electricity

prices, outage probability and electricity supply during an outage, consumers maximize expected annual

surplus subject to backup generator output limits and an energy balance constraint. In line with the

Stackelberg assumptions, consumers make decisions naively assuming that the utility will not change

the values of its decision variables. We consider two customer classes that place different value on

reliable service: commercial customers j ∈ JH with high VOLL and residential customers j ∈ JL with

low VOLL. There is no interconnection among the lower level models, except through the utility model

in the upper level.

4.2 Formulation

In this section, we present the model formulation, starting from the last stage of the game. A list of sets,

parameters and variables is provided in Appendix B.

4.2.1 Lower level problem

Given the electricity price p, the electricity supplied by the utility during the outage w jot, and the prob-

ability of a long-duration outage πsys, consumer j ∈ J maximizes expected surplus over one year, under

some constraints. Decision variables include investment in a backup generator r j, the unserved energy

due to supply interruptions u jot, and the backup generator usage during the outage v jot. The problem of

consumer j is formulated as follows:

max
r j,u jot ,v jot

πsys ·

∑
o∈O

∑
t∈Tu

(VOLL j − F j) · v jot +
∑
o∈O

∑
t∈T

(VOLL j − p) · w jot −
∑
o∈O

∑
t∈T

VOLL j · u jot


+ (1 − πsys) ·

∑
o∈O

∑
t∈T

(VOLL j − p) · L jot +
∑
n∈N

∑
t∈T

(VOLL j − p) · L jnt − Pc
j · r j, (19)

subject to:

0 ≤ r j ≤ Pmax, j, (λ1
j) (20)
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0 ≤ v jot + w jot ≤ L jot, ∀o ∈ O,∀t ∈ T (λ2
jot) (21)

0 ≤ v jot ≤ r j, ∀o ∈ O,∀t ∈ T (λ3
jot) (22)

v jot = 0, ∀o ∈ O,∀t ∈ Td (µ1
jot) (23)

v jot + w jot + u jot = L jot, ∀o ∈ O,∀t ∈ T (µ2
jot) (24)

u jot ≥ 0, ∀o ∈ O,∀t ∈ T. (25)

In equation (19), the consumer maximizes the expected surplus from power consumption (in $ per

year), which consists of several terms. If the outage does occur on days o ∈ O with probability πsys, the

electric utility may serve all or part of consumer demand. If the utility is unable to supply electricity,

backup generators may operate for a few consecutive hours, but would be unavailable during refueling

breaks. Thus, a backup generator with capacity r j may provide up to v jot during the hours in which it is

available. The first term in the objective represents the expected net benefit from power consumption if

the outage occurs and the backup generator is used to serve load. Net benefit depends on the difference

between the customer value of lost load, or VOLL j, and the marginal cost of power generation for the

backup generator F j. The second term in the objective represents the expected net benefit from power

consumption if the outage occurs and the utility supplies electricity. In this case, net benefit equals the

difference between VOLL j and the electricity price, multiplied by the quantity supplied by the utility.

The third term in the objective is the expected cost of unserved energy, if the outage occurs and both the

backup generator and the utility are unable to supply electricity: this may occur during refueling breaks

and hours in which backup generator capacity is not sufficient to satisfy demand.

If the outage does not occur on days o ∈ O with probability (1−πsys), the electric utility serves

consumer demand. The fourth term in the objective represents the expected net benefit from power

consumption in this case. Similarly, the net benefit from power consumption during normal operations

(i.e., the fifth term in equation 19) is the difference between the consumer value of lost load and the

regulated electricity price p, multiplied by consumer demand. Finally, the last term in (19) represents the

annualized fixed cost of the backup generator.

In practice, consumers would make binary investment decisions in backup generators that are avail-

able on the market. This introduces computational challenges in a bi-level model, because sufficient
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optimality conditions cannot be derived for problems with discrete variables. Therefore, we assume that

the consumer may invest in any continuous amount r j, but r j is bounded by Pmax, j, the base rating of

a backup generator satisfying the customer’s hourly average consumption (equation (20)). In equation

(21), the sum of backup generator output and power supplied by the utility during the outage cannot ex-

ceed consumer demand. Further, backup generator output cannot exceed capacity (equation (22)), and is

equal to zero during downtime operations (equation (23)). Equation (24) ensures that consumer demand

equals the sum of generator output, power supplied by the utility and unserved energy on the day(s) of

the outage. Finally, unserved energy is non-negative (equation (25)).

Given the upper level decisions, the lower level consumer problems are linear.

4.2.2 Upper level problem

At the upper level, we assume that the probability of a long-duration outage if no preventive measures

are taken, πmax, may be estimated based on historical data. Further, two additional parameters may be

determined based on past rate cases: the share of preventive expenditures that is likely to be approved

for cost recovery by the regulator, and the number of years over which recovery of outage damage costs

is allowed. To enhance resilience to a severe storm the utility may invest in distribution feeder harden-

ing before the storm (preventive measure), deployment of restoration crews after the event (corrective

measure), or a combination of both. The utility’s objective is given by:

max
cru,p,pru,q,w jot ,πsys,

r j,u jot ,v jot

p · q − VC · q − πsys · d(pru) − (Pp
u + OM) · pru, (26)

In equation (26), expected profit (in $ per year) is equal to expected revenue minus expected variable

cost of electricity generation VC ·q, expected damage cost πsys ·d(pru), and hardening cost (Pp
u +OM)·pru.

Note that the investment in corrective measures is part of the damage costs, and is made only if the outage

occurs. The primary decision variable for the utility is pru, the number of distribution feeders to harden.

All other variables (cru, p, q, w jot and πsys) depend on pru, as discussed below.

As shown in Figure 1, the expected profit maximization is subject to three sets of constraints. Equa-
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tions (27)-(31) represent the utility’s internal constraints:

0 ≤ pru ≤ Pmax, (27)

w jot = L jot ·
pru

Pmax
, (28)

πsys = πmax · (1 − K ·
pru

Pmax
), (29)

d(pru) = δ − α · ln(1 +
pru

Pmax
), (30)

cru =
γ · d(pru)
Pc

u · OD
, (31)

Equation (27) limits the number of feeders that may be hardened to Pmax, the ratio between the total

number of customers in the network and the number of customers who are connected to each feeder. In

equation (28), the quantity of electricity supplied by the utility during the outage is directly proportional

to the number of feeders that are hardened. In equation (29), the outage probability πsys depends on

πmax, the probability of a long-duration outage without hardening feeders, and is inversely proportional

to the number of hardened feeders, with sensitivity equal to K. Several functional forms may describe

the relation between damage costs and investment in preventive measures. Following MacKenzie and

Zobel (2016), who find that a logarithmic function provides the best fit to their empirical data, we assume

a logarithmic damage function in equation (30), where δ represents the maximum damage costs incurred

by the utility when there is no investment in preventive resilience-enhancing measures, and α is a positive

scaling factor. Finally, equation (31) defines investment in corrective measures cru as a share of damage

costs.

Equations (32)-(34) describe essential elements of the rate-making process for a utility subject to

rate-of-return regulation:

q = πsys ·
∑
j∈J

∑
o∈O

∑
t∈T

w jot + (1 − πsys) ·
∑
j∈J

∑
o∈O

∑
t∈T

L jot +
∑
j∈J

∑
n∈N

∑
t∈T

L jnt, (32)

rr = RB · ROR + DE + VC · q + πsys · d(pru) · ρ + (Pp
u + OM) · pru · φ, (33)

p =
rr
q
, (34)

In equation (32), annual expected electricity sales by the utility include electricity supply during the
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outage, served consumer demand if the outage does not occur on days o ∈ O, and consumer demand dur-

ing normal operations. The utility’s revenue requirement (i.e., the revenue amount considered necessary

to cover expenses and the allowed rate of return) is defined in equation (33), and consists of five terms.

The first three terms represent the product of the utility’s rate base and the rate of return on shareholders’

investment, the depreciation expenses for existing assets, and the expected variable costs of generation,

respectively. Since damage costs for extreme events are typically recovered over several years (Platsky,

2018), the annual share of damage cost recovery is given by the fourth term in (33). The fifth term in

(33) is the share of hardening investments that the utility expects to recover. Because regulators typically

resist funding preventive activities that may not yield benefits for years, we assume that the regulator

approves cost recovery for a share φ of hardening investments, where 0 ≤ φ ≤ 1. Finally, electricity

retail prices for the regulated utility track its average costs and include a rate of return on shareholders’

investment ROR that is deemed appropriate by the public utility commission. Therefore, in equation (34)

the regulated retail electricity price is obtained as the ratio of the utility’s revenue requirement and its

electricity sales.3

Finally, the upper level problem is subject to a set of lower level problems, as shown in Figure 1.

Since the lower level consumer problems are linear and thus convex, the KKT conditions are necessary

and sufficient optimality conditions (Luenberger, 1973). As a result, each lower level problem can be

replaced by its KKT conditions (35) - (40) and equality conditions (41) - (43), which in turn are included

as additional constraints of the upper level problem:4

0 ≤ Pc
j + λ1

j −
∑
o∈O

∑
t∈T

λ3
jot ⊥ r j ≥ 0, ∀ j ∈ J (35)

0 ≤ πsys · VOLL j + µ2
jot ⊥ u jot ≥ 0, ∀ j ∈ J,∀o ∈ O,∀t ∈ T (36)

0 ≤ −πsys · (VOLL j − F j) + λ2
jot + λ3

jot + µ1
jot + µ2

jot ⊥ v jot ≥ 0, ∀ j ∈ J,∀o ∈ O,∀t ∈ T (37)

0 ≤ Pmax, j − r j ⊥ λ
1
j ≥ 0, ∀ j ∈ J (38)

0 ≤ L jot − v jot − w jot ⊥ λ
2
jot ≥ 0, ∀ j ∈ J,∀o ∈ O,∀t ∈ T (39)

0 ≤ r j − v jot ⊥ λ
3
jot ≥ 0, ∀ j ∈ J,∀o ∈ O,∀t ∈ T (40)

3We abstract from real-world complexities like price differentiation among customer classes and two-part tariffs, and assume
that the same electricity price applies to all end users.

4The KKT conditions of the lower level problems are obtained by applying strong duality, as shown in Appendix C.

19



v jot = 0, ∀ j ∈ J,∀o ∈ O,∀t ∈ Td (41)

µ1
jot = 0, ∀ j ∈ J,∀o ∈ O,∀t ∈ Tu (42)

v jot + w jot + u jot = L jot, ∀ j ∈ J,∀o ∈ O,∀t ∈ T. (43)

This yields a single-level problem (MPEC) given by equation (26), subject to the constraints in (27)-(43).

The problem is non-linear non-convex, due to the inclusion of a logarithmic damage function in (30), the

product of decision variables in the first term of (32), and the KKT conditions of the lower level problem

in (35)-(40).

4.3 Solution approach

Due to its non-linearity, the problem in Section 4.2 cannot be solved using standard MPEC solvers,

like KNITRO. Complementarity conditions in an MPEC may be easily linearized using the Fortuny-

Amat and McCarl method (Fortuny-Amat and McCarl, 1981). In addition, the logarithmic damage

function in (30) may be approximated by a piecewise linear function. However, the product of variables

πsys ·
∑

j∈J
∑

o∈O
∑

t∈T w jot in equation (32) cannot be easily linearized. Hence, we apply the solution

method that involves penalization of the complementarity constraints to transform the MPEC into a non-

linear program (NLP). In this approach, which was proposed by Dirkse et al. (2005) and is a common

solution method for MPECs (Leyffer and Munson, 2010; Gabriel et al., 2013; Ruiz et al., 2014), the KKT

conditions of the lower level problems are removed from the constraints of the upper level problem, and

violations of the complementarity conditions are penalized in the upper level objective function.

To illustrate, consider a simple MPEC with one leader and one follower. The leader makes a decision

x which minimizes its objective function f (x, y), while anticipating the follower’s reaction y. Non-

convexity appears in the complementarity constraint (45), yielding a non-convex feasible set.

min
x,y

f (x, y) (44)

0 ≤ η ⊥ g(x, y) ≥ 0 (45)
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The MPEC is equivalent to the following single-level non-linear optimization problem:

min
x,y

f (x, y) + M · η · g(x, y) (46)

η ≥ 0 (47)

g(x, y) ≥ 0 (48)

where the parameter M in the objective represents a user-defined penalty on the violations of the KKT

conditions of the lower level problem. The KKT conditions η ≥ 0 and g(x, y) ≥ 0 are automatically sat-

isfied by any feasible solution to the non-linear optimization problem. Since the objective is to minimize

equation (46) such that η ≥ 0 and g(x, y) ≥ 0 for a suitable value of M, we would obtain a solution that

satisfies the third condition implied by (45), i.e. η · g(x, y) = 0.

We apply the penalization approach to the MPEC in Section 4.2, and solve the equivalent NLP on

a quad core machine with 16 GB RAM using the CONOPT4 solver in General Algebraic Modeling

System (GAMS) version 28.2.0. The non-linear optimization problem has 1, 314 variables, and we

set the parameter M equal to 1,000. Solution times range from 10.1 to 14.6 seconds, depending on

parameter values. After solving the NLP, we verify that the complementarity conditions hold to ensure

the optimality of the equilibrium solution. It is worth noting that NLP methods aim to find stationary

points or, at best, local optima, rather than global optima. Since NLP solvers can be started from user-

defined starting points in their search for a local optimum, we calculate solutions from several different

starting points and find that the optimum is robust, as discussed in Appendix D1.

5 DATA

Severe storms are typically associated with electric power outages affecting at least 50,000 customers

and lasting for more than one hour (U.S. Department of Energy, 2020a). Since Florida and Texas have

sustained the highest amount of severe storms in recorded history in the United States (NOAA’s Atlantic

Oceanographic and Meteorological Laboratory, 2021), we rely on publicly available data for these states.

Lower level problem: We assume that the regulated utility serves 50,000 customers (88% residen-

tial and 12% commercial, based on the statistics reported by the Florida Public Service Commission
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(2018b)). Each distribution feeder covers 2,500 customers (Baik et al., 2018). Typical hourly load pro-

files by customer type in a representative year in Houston, TX are obtained from the U.S. Department of

Energy (2020b). The direct costs of interruption for a long-duration outage are $2.3/kWh for the residen-

tial customers (Baik et al., 2020) and $25/kWh for the commercial customers (Sullivan and Schellenberg,

2013). Sullivan and Schellenberg (2013) note that adding indirect costs would cause the total cost of the

outage to be between 1.5 and 3 times the direct cost to the customers. Hence, we assume that the VOLL

is equal to the direct costs of interruption by customer type, multiplied by 3. Table II presents the average

hourly electricity consumption and estimated interruption costs by customer type.

Customer Number Average hourly VOLL
type of customers power consumption

(kW) ($/kWh)
j ∈ JH 6,000 8.76 75
j ∈ JL 44,000 1.69 6.9

Table II. Average hourly power consumption and interruption costs by customer type

The characteristics of backup generators are presented in Table III. Among gasoline-fired backup

generators available for sale at the largest U.S. home improvement retailer (Home Depot, 2020a,b), we

select the closest base rating to the average hourly electricity consumption for each customer class. The

annualized cost of each generator type is obtained assuming a 6.265% interest rate (equal to the utility’s

rate of return) and a 3-year lifetime. We consider a fuel cost of $2.63/gallon for the backup generators

and 1-hour refueling breaks.

Customer Rating Full load F j Capital cost Pc
j Refueling breaks

type fuel consumption in a day
(kW) (gal/hr) ($/kWh) ($) ($/kW) (#)

j ∈ JH 10.5 2.08 0.52 1,299 46.51 4
j ∈ JL 3.65 0.68 0.49 364 37.53 4

Table III. Backup generator characteristics by customer type

Upper level problem: The costs of specific resilience-enhancing measures vary significantly based on

utility- and location-specific factors (Edison Electric Institute, 2014; U.S. Department of Energy, 2016).

We do not have access to utility data. As a result, we consider two representative measures for which
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costs are available from the literature: hardening of electric distribution feeders (preventive measure),

and deployment of restoration crews (corrective measure). The maximum number of feeders that may be

hardened by the utility (Pmax) is equal to the number of customers served by the utility (50,000), divided

by the typical number of customers connected to a single distribution feeder (2,500) (Short, 2014). The

capital and O&M costs per feeder in our analysis are from Baik et al. (2018). The utility’s variable cost

of electricity generation is based on a natural gas combined cycle plant with heat rate of 7,627 Btu/kWh

and fuel cost of $3.55/MMBtu (U.S. Energy Information Administration, 2020a,b). Finally, the cost

of deploying restoration crews typically represents between 70% and 85% of the damage costs (North

Carolina Utilities Commission, 2002; Downey, 2018; McNamara, 2019). In equation (31), we set the

share of total damage costs spent on hiring restoration crews (γ) equal to 75%, and the per unit cost of

restoration crews (Pc
u) to $2,000/day.

In order to parameterize πmax in equation (29), we consider the number of outages due to extreme

weather events affecting at least 50,000 customers and lasting for no less than one hour in Texas between

2002 and 2020 (U.S. Department of Energy, 2020a). Out of 89 events, 35 [11] {2} outages lasted less

than 1 day [between 2 to 3 days] {between 19 and 20 days}. This yields an annual probability of 0.021 for

a one-day outage, 0.006 for a three-day outage, and 0.001 for a twenty-day outage. Since Texas utilities

harden only about 1% of their distribution structures (Quanta Technology, 2009), these probabilities

proxy the likelihood of a long-duration outage when the utility does not harden electric distribution

feeders. Thus, we use the probability of a three-day outage to parametrize πmax in our analysis.

A second key parameter in equation (29) is K, which measures the sensitivity of a reduction in the

probability of a long-duration outage to the share of hardened feeders. We parametrize K based on

feeder outage performance statistics for Hurricane Irma provided by Florida Power & Light (2018). In

preparation for that storm, FP&L hardened 859 of its 3,287 distribution feeders, and the outage rate

of hardened feeders was 13% lower than that of non-hardened feeders. Substituting these values into

equation (29), we obtain a baseline value of K equal to 0.5.

Parameterization of the damage cost function d(pru) in equation (30) is challenging due to the lack

of publicly available data on resource allocation towards hardening and recovery activities made by the

utilities for specific disruptive events. Quanta Technology (2009) reports damage data for hurricanes

making landfall between 1999 and 2008, broken down by Texas utility. Entergy Texas was the utility

23



most impacted by Hurricane Rita (Britt, 2017), which caused extensive damage to its distribution system

($373.2 million). This level of damage costs is in line with that reported by AEP Texas, which suffered

the bulk of the damage from Hurricane Harvey in 2017 (North American Electric Reliability Corporation,

2018), and requested recovery of about $380 million in storm-related costs (Walton, 2018). In equation

(30), we scale this cost based on the number of customers in our hypothetical system. Since 391,163

customers in Entergy Texas’ territory were impacted by Hurricane Rita, the distribution-level damage

costs per customer was about $954.1. Assuming 50,000 customers in our system, we set δ to $47,703,900

in our model.

The scaling factor α in equation (30) couples preventive investments made by the utility and dam-

age costs incurred after the disruptive event. Based on FP&L’s storm hardening plan filings, hardened

feeders perform better than non-hardened feeders during severe storms (Florida Power & Light, 2020).

In addition, upon review of the utilities’ storm hardening and preparedness programs, the Florida Public

Service Commission found that hardening reduces the length of outages: for example, hardened feed-

ers required 50% less restoration time than non-hardened feeders after Hurricane Irma (Florida Public

Service Commission, 2018a). As noted above, we set the cost of restoration crews equal to 75% of the

utility’s damage costs. Thus, we assume that these costs would be reduced by 37.5% (=75% × 50%),

if all distribution feeders in the system were hardened (i.e., pru = Pmax). Substituting these values into

equation (30), we obtain a value of α equal to $25,808,317 in the baseline.

6 RESULTS

We simulate alternative scenarios to satisfy the annual electric power demand of the system, varying

based on φ, ρ, and utility compensation to customers for extended outages. Table IV presents the sce-

narios, which are labeled using a combination of numbers and letters. Numbers 1-5 indicate changes

in the value of φ, which ranges from 0 to 1 in increments of 0.25. Letters a-b indicate changes in the

value of ρ (0.1 or 0.2). Finally, the subscript p indicates that the regulated utility is subject to a storm

restoration incentive mechanism, and must pay compensation to customers in proportion to the amount

of unserved energy during the outage. Annual results for a scenario are obtained by solving the model

for 8,760 hours in a year.
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Scenario φ ρ Penalty for Section
unserved energy

1a 0 0.2 7 6.1

2a 0.25 0.2 7
 6.2.1

3a 0.5 0.2 7

4a 0.75 0.2 7

5a 1 0.2 7

1b 0 0.1 7


6.2.2
2b 0.25 0.1 7

3b 0.5 0.1 7

4b 0.75 0.1 7

5b 1 0.1 7

1ap 0 0.2 3
}

6.2.3
2ap 0.25 0.2 3

Table IV. Scenarios

6.1 Baseline

Table V presents the parameter values in our baseline (Scenario 1a). We consider an outage duration of

three days occurring from August 2 to August 4.5 Since as noted above regulators typically resist funding

preventive resilience measures, we assume that cost recovery of hardening investments is not allowed in

the baseline (φ = 0). Further, the utility expects that outage damage cost recovery is spread out over a

five-year period (ρ = 0.2).

Tables VI and VII present the baseline results from the MPEC. The utility does not invest in preven-

tive resilience measures; as a result, the probability of a three-day outage equals πmax and the damage

cost is at its highest level ($47,703,900). The residential consumers do not invest in backup genera-

tion due to their low VOLL. In contrast, commercial customers, who may invest in up to 10.5 kW of

backup generation, choose a 6.824 kW generator, incurring an annual cost of $3,155,520 if the outage

occurs. This consists of a certain annualized investment cost of $1,904,157, and fuel costs to operate the

generators that are only incurred in the event of an outage ($1,251,363). The occasional benefits to the

5According to NOAA, the official hurricane season for the Atlantic Basin is from June 1 to November 30, with a peak from
mid August to late October (National Hurricane Center and Central Pacific Hurricane Center, 2021). Within this time frame,
the three-day peak demand in our data is on August 2-4. Thus, we assume that the utility plans for a worst case outage occurring
on this peak demand period.
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Parameter Value Source
DE 80,000,000 [$ per year] assumed
OD 3 [days] assumed
OM 5,000 [$ per year] O&M cost from Baik et al. (2018)
Pmax 20 [feeders] based on Baik et al. (2018)
Pc

u 2,000 [$ per person per day] Arcos (2021)
Pp

u 8,907 [$ per year] capital cost from Baik et al. (2018),
assuming 3% interest rate and 20 year lifetime

RB 70,170,036 [$] assumed
ROR 6.3 [%] Florida Public Service Commission (2018b)
VC 0.027 [$/kWh] based on U.S. Energy Information Administration (2020b)

and U.S. Energy Information Administration (2020a)
α 25,808,317 [$] assumed
γ 0.75 based on North Carolina Utilities Commission (2002),

McNamara (2019)
δ 47,703,900 [$] based on Quanta Technology (2009)

πmax 0.006 U.S. Department of Energy (2020a)
ρ 0.2 assumed
φ 0 assumed

Table V. Utility problem parameters (Baseline)

commercial customers in the event of an outage would be substantial ($359,032,735), and equal to the

sum of the benefits from power consumption if backup generation is used to serve load ($178,890,686)

and the avoided damage costs ($180,142,049).6 Finally, the retail electricity price is about 10% higher

if the outage occurs, because the damage costs incurred by the utility roll through to the ratepayers. Ap-

pendix sections D2-D4 test the robustness of the baseline results to alternate parameter values, including

outage duration and beliefs about outage probability.

We compare the equilibrium results from the MPEC to the first best solution from a social planner

problem (SPP). Recall that in the MPEC the utility and its customers act non-cooperatively and without

coordination (i.e., each party maximizes their private objective). In the SPP, the utility acts instead as a

benevolent social planner that chooses the mix of individual and system-level resilience measures that

maximizes economic efficiency. Thus, the utility maximizes net expected social benefits, subject to own

constraints and consumer constraints. The SPP is solved using the same parameter values in Table V,

6The benefits from power consumption are obtained by dividing the expected net benefit from backup generation (m in Table
VI) by πsys. The avoided damage costs are the difference between the damage costs without investing in backup generation and
the actual customer damage costs (i.e., the product of VOLL and cumulative unserved energy).
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Scenario 1a Scenario 1a
MPEC Social planner

problem (SPP)

Utility
Preventive resilience:
· hardened feeders (% of max) 0 (0%) 20 (100%)
· annual cost ($) 0 278,140
Corrective resilience, if the outage occurs:
· restoration crews (% of max) 5,963 (100%) 3,727 (63%)
· annual cost ($) 35,777,925 22,361,203
Damage cost, if the outage occurs ($) 47,703,900 29,814,937
Avoided restoration cost, if the outage occurs ($) 0 13,416,722

Residential customers
Backup generation:
· kW per customer (% of max) 0 (0%) 0
· total kW in the system 0 0
· annual cost, if the outage occurs ($) 0 0
Damage cost, if the outage occurs ($) 48,612,891 0

Commercial customers
Backup generation:
· kW per customer (% of max) 6.824 (65%) 0
· total kW in the system 40,941 0
· annual cost, if the outage occurs ($) 3,155,520 0
Damage cost, if the outage occurs ($) 253,733,892 0

System
Outage probability 0.006 0.003
Electricity price, if the outage occurs ($/kWh) 0.113 0.108
Electricity price, if the outage does not occur ($/kWh) 0.103 0.103

Notes: The annual cost of preventive resilience includes the annualized cost of feeder hardening and the annual O&M

cost of the feeders. The avoided restoration cost is the difference between the restoration cost without hardening and

the actual restoration cost. The annual cost of backup generation includes the annualized cost of investment and the

operating cost, if the outage occurs. Customer damage costs are the product of VOLL and cumulative unserved energy.

Table VI. Resilience investments, costs, outage probability and prices (Baseline)

and yields the efficient mix of preventive, corrective and consumer resilience investments that would be

achieved under perfect coordination in the game. Results are presented in Tables VI and VII. In contrast

to the MPEC, the utility hardens the maximum number of feeders in the SPP. This has three effects. First,

if the three-day outage occurs, the utility’s damage costs are reduced by about 38%, relative to the MPEC.

27



Scenario 1a Scenario 1a
MPEC Social planner

(SPP - MPEC)
problem (SPP)

Utility
· Expected revenue (a) 114,562,394 114,521,985 −40, 409
· Expected generation cost (b) 30,104,178 30,106,438 2, 260
· Expected damage cost (c) 310,315 96,973 −213, 342
· Preventive resilience investment cost (d) 0 278,140 278,140
Expected net benefit to the utility (e = a-b-c-d) 84,147,901 84,040,434 −107, 467

Residential customers
Aug 2-4, outage occurs with probability πsys

· Expected net benefit from backup generation (f ) 0 0 0
· Expected net benefit from utility generation (g) 0 155,754 155,754
· Expected cost of unserved energy (h) 316,228 0 −316, 228
Aug 2-4, outage does not occur with probability (1-πsys)
· Expected net benefit from utility generation (i) 47,575,469 47,731,531 156,062
Rest of the year
· Expected net benefit from power consumption (j) 4,382,247,468 4,382,275,884 28,416
· Annualized backup generator investment costs (k) 0 0 0
Expected net benefit to residential customers

4,429,506,709 4,430,163,169 656,460
(l = f+g-h+i+j-k)

Commercial customers
Aug 2-4, outage occurs with probability πsys

· Expected net benefit from backup generation (m) 1,163,689 0 −1, 163, 689
· Expected net benefit from utility generation (n) 0 1,409,250 1,409,250
· Expected cost of unserved energy (o) 1,650,546 0 −1, 650, 546
Aug 2-4, outage does not occur with probability (1-πsys)
· Expected net benefit from utility generation (p) 430,461,387 431,870,890 1,409,503
Rest of the year
· Expected net benefit from power consumption (q) 34,033,046,573 34,033,066,599 20,026
· Annualized backup generator investment costs (r) 1,904,157 0 −1, 904, 157
Expected net benefit to commercial customers

34,461,116,946 34,466,346,739 5,229,793
(s = m+n-o+p+q-r)

System
Expected net benefit to all parties (t = e+l+s) 38,974,771,556 38,980,550,342 5,778,786

Notes: (a)-(d), (f)-(k) and (m)-(r) represent terms in the objective function of the utility, residential customers and commercial customers,

respectively. All values are in $.

Table VII. Benefits and costs (Baseline)
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Hence the utility incurs a certain cost of $4,000,000 (given by the sum of capital investment and O&M

costs over 20 years for the feeders), and $29,814,937 in damage costs if the outage occurs. In contrast

the utility’s damage costs amount to $47,703,900, absent investment in preventive resilience. Second,

feeder hardening reduces system vulnerability to a three-day outage, whose probability decreases by

about 50%. Third, the investment in a preventive resilience measure reduces unserved energy in the

system by 10.43 GWh relative to the MPEC, since the utility can supply electricity to all customers

even during the outage. In particular, unserved energy for the commercial customers in the event of an

outage decreases from 3.39 GWh in the MPEC to 0 GWh in the SPP. Recall that outage probability and

electricity supply by the utility during the outage represent upper level decisions, which are taken as

exogenous in the consumer problems. Given the reduction in outage probability and the lack of unserved

energy, commercial customers do not invest in backup generation in the SPP.

Figure 2 compares the annualized investment cost in resilience measures, while Figure 3 shows the

annual investment and operation cost in resilience measures, if the three-day outage occurs. Note that

corrective measures after the outage represent the largest share of the resilience mix in both the MPEC

and SPP, but the annual costs are about 40% lower in the SPP.

Figure 2. Investment in resilience measures (Baseline)

Although from a societal perspective it would be beneficial for the utility to invest in preventive re-

silience measures, the misalignment between social welfare maximization and private objectives, coupled

29



Figure 3. Resilience mix, if the outage occurs (Baseline)

with the regulator’s denial of cost recovery for the utility’s capital expenditures, results in an inefficient

market outcome. Next, we examine conditions under which regulators may facilitate the realization of

efficient market outcomes.

6.2 Sensitivity analyses

6.2.1 Share of preventive resilience investments that is approved for cost recovery

Our baseline results consider a scenario where the regulator does not approve cost recovery for hardening

investments made by the utility (φ = 0). In this section, we examine changes in resilience mix that result

from increasing the share of preventive expenditures that is approved for cost recovery by the regulator.

Figure 4 shows the resilience investments made by the utility and the commercial customers (as a

share of maximum investment) for increasing values of φ in Scenarios 1a-5a. To provide some context,

on a national basis the value of φ is about one fifth or 0.2, as discussed in Section 1. In states like

Arkansas, regulators are reluctant to approve major grid upgrades that would enhance resilience after a

potential disaster, but raise costs for ratepayers in the near term (MacMillan and Englund, 2021). On

the other end of the spectrum, regulators in Florida are more likely to allow cost recovery for preventive

resilience measures (Dean, 2021).
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Figure 4. Resilience investments and outage probability (Scenarios 1a-5a)

Residential customers never invest in backup generation, hence they are not plotted on the graph. The

utility invests more in preventive resilience measures for higher values of φ. As a result, the vulnerability

of the system to the long-duration outage and restoration costs after the outage decrease, and commercial

customers no longer invest in backup generation.
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Scenario 1a Scenario 2a Scenario 3a Scenario 4a Scenario 5a
φ 0 0.25 0.5 0.75 1

Utility
Preventive resilience:
· hardened feeders (% of max) 0 (0%) 4.415 (22%) 14.142 (71%) 20 (100%) 20 (100%)
· annual cost ($) 0 61,404 196,679 278,140 278,140
Corrective resilience, if the outage occurs:
· restoration crews (% of max) 5,963 (100%) 5,320 (89%) 4,238 (71%) 3,729 (63%) 3,729 (63%)
· annual cost ($) 35,777,925 31,916,784 25,426,031 22,361,203 22,361,203
Damage cost, if the outage occurs ($) 47,703,900 42,555,712 33,901,375 29,814,937 29,814,937
Avoided restoration cost, if the outage occurs ($) 0 3,861,141 10,351,894 13,416,721 13,416,721

Residential customers
Backup generation:
· kW per customer (% of max) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
· total kW in the system 0 0 0 0 0
· annual cost ($) 0 0 0 0 0
Damage cost, if the outage occurs ($) 48,612,891 37,880,856 14,237,623 0 0

Commercial customers
Backup generation:
· kW per customer (% of max) 6.824 (65%) 4.697 (45%) 0 (0%) 0 (0%) 0 (0%)
· total kW in the system 40,941 28,182 0 0 0
· annual cost ($) 3,155,520 2,186,014 0 0 0
Damage cost, if the outage occurs ($) 253,733,892 212,091,218 127,072,512 0 0

System
Outage probability 0.006 0.006 0.004 0.003 0.003
Electricity price, if the outage occurs ($/kWh) 0.113 0.111 0.110 0.109 0.109
Electricity price, if the outage does not occur ($/kWh) 0.103 0.103 0.103 0.103 0.103
Annual cost of resilience measures ($) 38,933,445 34,164,201.477 25,622,710 22,639,343 22,639,343
Damage cost, if the outage occurs ($) 350,050,683 292,527,786 175,211,509 29,814,937 29,814,937
Expected net benefit to all parties ($) 38,974,771,556 38,976,410,364 38,979,398,197 38,980,550,342 38,980,550,342

Notes: The annual cost of preventive resilience includes the annualized cost of feeder hardening and the annual O&M cost of the feeders. The avoided restoration cost is the difference between the resto-

ration cost without hardening. and the actual restoration cost. The annual cost of backup generation includes the annualized of investment and the operating cost, if the outage occurs. Customer damage

costs are the product of VOLL and cumulative unserved energy.

Table VIII. Resilience investments, costs, outage probability and prices (Scenarios 1a-5a)
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Scenario φ Expected Expected Expected Expected Expected
net benefit net benefit net benefit net benefit net benefit

to the utility to residential to commercial to all to all
($) customers ($) customers ($) customers ($) parties ($)

1a 0 84,147,901 4,429,506,709 34,461,116,946 38,890,623,655 38,974,771,556

Change relative to Scenario 1a

2a 0.25 +5,184 +192,226 +1,441,398 +1,633,624 +1,638,808
3a 0.5 +35,865 +473,923 +4,116,853 +4,590,776 +4,626,641
4a 0.75 +101,138 +534,186 +5,143,462 +5,677,648 +5,778,786
5a 1 +170,673 +493,428 +5,114,685 +5,608,113 +5,778,786

Table IX. Expected net benefits to all parties (Scenarios 2a-5a), relative to Scenario 1a

Table VIII presents the detailed MPEC results for increasing values of φ, while Table IX shows the

change in expected net benefits to the parties for Scenarios 2a-5a, relative to the baseline. Scenarios 4a

(φ = 0.75) and 5a (φ = 1) exhibit the highest expected net benefits to all parties, but the distribution

of benefits differs in the two cases. Joint customer benefits are highest in Scenario 4a, as the utility’s

preventive resilience investments reduce the system’s outage probability by 50%, but customers have to

bear only 75% of the preventive resilience costs incurred by the utility. On the other hand, the utility

obtains the highest benefit when it recovers all of its incurred preventive resilience costs in Scenario 5a

(φ = 1). Note that, while all parties benefit from an increase in φ, the utility prefers Scenario 5a (where

it is allowed to fully recover the cost of hardening investments), while the customers prefer Scenario 4a

(where the utility is only allowed to recover 75% of its hardening investments, yielding a lower increase

in electricity rates). In sum, allowing cost recovery for a higher share of the utility’s capital expenditures

in preventive measures shifts the MPEC solution towards the first best solution from the SPP, enhancing

system resilience despite lack of coordination among the parties.

6.2.2 Damage cost recovery period

Our baseline results assume that the recovery of outage damage costs is spread out over a five-year

period (ρ = 0.2). Increasing the damage cost recovery period may affect the utility’s resilience mix.

Naturally, the utility would prefer a short cost recovery period. Thus, if cost recovery was spread out
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over a period longer than five years, the utility would seek to reduce damage costs, investing more in

preventive resilience measures. In this section, we examine the utility’s resilience investment decisions

under increasing values of φ and a damage cost recovery period of 10 years (Scenarios 1b-5b).

Figure 5. Resilience investments and outage probability (Scenarios 1b-5b)

Figure 5 presents the resilience investments made by the utility and the commercial customers (as

a share of maximum investment). To analyze the changes in the utility’s resilience investments that are

solely due to the change in the cost recovery period, we compare results for the same value of φ in

Figures 4 and 5. For example, the utility makes no preventive resilience investment in Scenario 1a, but

hardens about 4% of the feeders in Scenario 1b. The utility invests more in preventive resilience when

the time period over which damage costs can be recouped is extended. However, for a given value of φ,

the utility is worse off (i.e., its expected profit is lower) if ρ = 0.1 than if ρ = 0.2, while customers are

better off. To illustrate, consider the change in benefits in Scenario 1b relative to the baseline, shown in

Table X. Although expected damage cost is reduced due to feeder hardening, expected revenues for the

utility also decrease because a value of ρ equal to 0.1 yields lower annual expected damage costs in the

revenue requirement, and thus a lower expected electricity price. In addition, the utility now incurs a cost

for hardening feeders, but is not allowed to recover the cost through the rate-making process (φ = 0).

The combination of these effects makes the utility worse off in Scenario 1b, relative to the baseline. In

contrast, due to the lower electricity price customers are better off when the time period associated with

damage cost recovery increases. Similar insights may be drawn by comparing expected net benefits to

the parties for the same (higher than zero) value of φ, but different values of ρ. In sum, increasing the time
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horizon associated with damage cost recovery incentivizes the utility to invest in preventive measures,

shifting the MPEC solution towards the first best solution. Although total net benefit increases, the utility

is worse off when the time period over which damage costs can be recouped is extended, while consumers

are better off.

Scenario φ ρ Expected Expected Expected Expected Expected
net benefit net benefit net benefit net benefit net benefit

to the utility to residential to commercial to all to all
($) customers ($) customers ($) customers ($) parties ($)

1a 0 0.2 84,147,901 4,429,506,709 34,461,116,946 38,890,623,655 38,974,771,556

Change relative to Scenario 1a

1b 0 0.1 −30,763 +59,374 +307,405 +366,779 +336,016

Table X. Expected net benefits to all parties (Scenario 1b), relative to Scenario 1a

6.2.3 Utility compensation to customers for extended outages

Electric utilities across the U.S. typically do not offer any monetary compensation to their customers

for long-duration outages. However, tying the utility’s performance to losses incurred by the customers

may provide incentives towards more efficient resilience investments. In this section, we examine the

utility’s resilience investment decisions under increasing values of φ and varying levels of customer

compensation for long-duration outages.

The analysis considers two real-world incentive mechanisms as benchmarks. First, Pacific Gas &

Electric (PGE) is one of the few electric utilities in the U.S. offering some monetary compensation

to their customers for electricity outages lasting more than 48 hours. Compensation for a three-day

outage (i.e., the duration in our baseline) ranges from $25 to $50 per customer (Pacific Gas & Electric,

2021). Given an average hourly residential load of 1.69 kW (Table II), $50 per customer for a three-day

outage would translate to $0.411/kWh. As a second benchmark, we consider the incentive mechanism

adopted by Ofgem, Great Britain’s independent energy regulator. Electric utilities are required to offer

compensation to their customers for long-duration outages, starting from £70 for an outage lasting 24

hours (Office of gas and electricity markets, 2021). If the outage lasts for more than 24 hours, the
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customer is paid an extra compensation of £70 for each additional 12 hours of power outage, up to a

maximum compensation of £700. For a three-day outage, this compensation scheme would translate to

£350 or $465 per customer, using a conversion rate of 1.33 for sterling pounds to U.S. dollars. This

is equivalent to a per unit compensation of $3.825/kWh, which is more than 9 times the compensation

offered by PGE.

We examine the effect of varying levels of monetary compensation for long-duration outages on

the resilience investment decisions of the regulated utility. In line with current practice at Ofgem, we

assume that the utility equally compensates residential and commercial customers. Let Θ be a penalty

for unserved energy (in $/kWh) paid by the utility to the customers. In the objective of the lower level

problem (equation 19),
∑

o∈O
∑

t∈T VOLL j · u jot is replaced by
∑

o∈O
∑

t∈T (VOLL j −Θ) · u jot. Further, the

term πsys ·Θ ·
∑

j∈J
∑

o∈O
∑

t∈T u jot is subtracted from in the objective of the upper level problem (equation

26). The constraints of the upper level problem are identical to those in Section 4.2.2, except for the

revised KKT condition associated with u jot.

Table XI shows the resilience investment mix for values of Θ ranging from 0 to $5/kWh in increments

of $1/kWh. In addition, we consider the values of $0.411/kWh and $3.825/kWh referenced above. All

other parameters are identical to Scenario 1a. We also present a similar comparison for a share of cost

recovery for preventive measures that is close to the national average in the U.S. (φ = 0.25 in Table

XII). Except for the penalty level, other parameters in Table XII are identical to Scenario 2a. The

compensation per customer (in $) represents the average compensation a residential customer would

receive for a three-day outage, given the average hourly power consumption in our system.7

The resilience mix shifts towards the first best solution from the SPP, as the penalty for unserved

energy increases. Note that, for φ = 0.25, a low penalty like the one offered by PGE would significantly

increase preventive resilience investments and avoid backup generation generation. Further, a penalty of

$3/kWh (slightly below the minimum compensation required by Ofgem, and about 7 times the compen-

sation offered by PGE) would drive the utility towards efficient resilience investment decisions. In sum,

given regulatory reluctance to approve cost recovery for preventive resilience investments, adopting an

incentive mechanism requiring compensation of at least $3/kWh for a three-day outage incentivizes the

utility to invest in preventive measures, shifting the MPEC solution towards the first best solution.

7For example, for a three-day outage at a penalty of $1/kWh, the residential customer would receive an average compensa-
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Penalty for Compensation Hardened Restoration Commercial customer
unserved per customer feeders crews backup generation

energy ($/kWh) ($) (% of max) (% of max) investment kW
Θ (% of max)

0 0 0 (0%) 5,963 (100%) 6.824 (65%)
0.411 50 1.591 (8%) 5,716 (96%) 6.209 (59%)

1 122 5.822 (29%) 5,139 (86%) 4.273 (41%)
2 243 13.657 (68%) 4,284 (72%) 0 (0%)
3 365 17.532 (88%) 3,932 (66%) 0 (0%)

3.825 465 19.635 (98%) 3,756 (63%) 0 (0%)
4 487 19.997 (100%) 3,727 (63%) 0 (0%)
5 608 20 (100%) 3,727 (63%) 0 (0%)

Table XI. Resilience investment mix in Scenario 1ap

Penalty for Compensation Hardened Restoration Commercial customer
unserved per customer feeders crews backup generation

energy ($/kWh) ($) (% of max) (% of max) investment kW
Θ (% of max)

0 0 4.415 (22%) 5,319 (89%) 4.697 (45%)
0.411 50 8.816 (44%) 4,785 (80%) 0 (0%)

1 122 13.794 (69%) 4,271 (72%) 0 (0%)
2 243 18.893 (94%) 3,817 (64%) 0 (0%)
3 365 20 (100%) 3,727 (63%) 0 (0%)

3.825 465 20 (100%) 3,727 (63%) 0 (0%)
4 487 20 (100%) 3,727 (63%) 0 (0%)
5 608 20 (100%) 3,727 (63%) 0 (0%)

Table XII. Resilience investment mix in Scenario 2ap

7 CONCLUSIONS

Severe weather events, such as hurricanes, are the leading source of large-scale outages in the United

States. Since these events disrupt lives and cost the economy billions of dollars, enhancing the resilience

of the nation’s electric power transmission and distribution system is a priority. However, because quan-

tifying resilience is difficult, utilities do not have robust methods to allocate resources to measures that

reduce vulnerability or improve recovery time in order to minimize expected outage costs. Further, state

tion of $1/kWh × 40.56 kWh × 3 days = $122.
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regulators resist funding preventive measures that may only yield occasional benefits, while associated

certain costs would be passed along to the ratepayers and increase electricity prices. As a result, utili-

ties tend to spend heavily in corrective measures, as recovery of restoration costs from the ratepayers is

generally allowed. Utility spending on resilience-enhancing measures has emerged as a central policy

concern in recent years, as highlighted by the Texas electricity crisis in February 2021. In this paper,

we present a simple analytical model to develop intuition about why electric utilities under traditional

rate-of-return regulation may not be inclined to overinvest in capital that enhances grid resilience, in

line with empirical evidence. This serves as a foundation for building a more detailed bi-level model to

examine the mix of preventive and corrective measures that enhances grid resilience to a severe storm

event. The bi-level model represents a Stackelberg game between a regulated utility (leader) that may

harden distribution feeders before a long-duration outage and/or deploy restoration crews after the dis-

ruption, and utility customers with varying preferences for reliable power (followers) who may invest

in backup generators. Unlike earlier work, we support analysis of resilience-enhancing investment deci-

sions in a framework that accounts for potential distortions due to parties acting in their self interest and

rate-of-return regulation. Our main findings can be summarized as follows.

First, the misalignment between social welfare maximization and private objectives, coupled with

the regulator’s denial of cost recovery for the utility’s capital expenditures, yields an inefficient mix of

resilience investments in the MPEC. This inefficient outcome is characterized by lack of investment in

preventive measures by the utility and heavy reliance on backup generation by utility customers. If the

outage occurs, utility damage costs are about 60% higher than in the first best solution under perfect

coordination of the parties (i.e., the SPP benchmark). In addition, residential and commercial customers

incur a substantial cost of unserved energy (about $300 million) in the MPEC, but no cost in the SPP.

These distortions relative to the efficient benchmark raise serious concerns, as climate change is expected

to increase the frequency and intensity of severe weather events.

Second, state regulators may promote more efficient resilience investments by the utility in several

ways. Allowing cost recovery for a higher share of the utility’s capital expenditures in preventive mea-

sures, increasing the time horizon associated with damage cost recovery, and adopting a storm restoration

compensation mechanism incentivize the utility to invest in preventive measures, shifting the realized

market outcome towards the efficient solution. In particular, on a national basis, about one fifth of pre-
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ventive resilience investments is approved for cost recovery by state regulators in the U.S.. In this setting,

we find that requiring utilities to pay compensation to customers of at least $3/kWh (equivalent to $365

to an average residential customer for a three-day outage, and about 7 times the level of compensa-

tion currently offered by U.S. utilities) provides significant incentives towards more efficient preventive

resilience investments.

Our analysis has some limitations. The static optimization setup provides a snapshot of a repre-

sentative year in the utility planning process. As a result, it may not adequately capture the long-term

impacts of investment decisions, which span a multi-year time horizon. Further, we assume that all re-

source allocation decisions are made before the disruption; in fact, decisions to speed up recovery time

are taken after the disruption and must be adapted based on factors like event intensity, possibly resulting

in higher restoration costs than expected ex ante (and considered in our analysis). Finally, data limita-

tions preclude the development of a version of our model in which the utility may determine the specific

preventive and corrective measures to take, based on their cost effectiveness. Despite these limitations,

our study provides meaningful insights to determine the optimal resource allocation to preventive and

corrective resilience-enhancing measures, explore the inefficiencies that may arise in practice when self-

interested parties make resilience investment decisions, and examine conditions under which regulators

may facilitate the realization of efficient market outcomes.
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