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A B S T R A C T   

Although the Soil and Water Assessment Tool (SWAT) model has been widely used to assess the environmental 
impacts of growing perennial grasses for bioenergy production, its utility is limited by not explicitly accounting 
for shoot and root biomass development. In this study, we integrated the DAYCENT model’s grass growth al
gorithms into SWAT (SWAT–GRASSD) and further modified it by considering the impact of leaf area index (LAI) 
on potential biomass production (SWAT–GRASSM). Based on testing at eight sites in the US Midwest, we found 
that SWAT–GRASSM generally outperformed SWAT and SWAT–GRASSD in simulating switchgrass biomass yield 
and the seasonal development of LAI. Additionally, SWAT–GRASSM can more realistically represent root 
development, which is key for the allocation of accumulated biomass and nutrients between aboveground and 
belowground biomass pools. These improvements are critical for credible assessment of agronomic and envi
ronmental impacts of growing perennial grasses for biomass production.   

Software availability 

Software: Algorithms to represent switchgrass as influenced by 
climate, nutrients, and water. 

Description: Algorithms developed, tested, and presented as part of 
this work. The code is embedded in the SWAT and SWAT-Carbon 
models. 

Developer: Sijal Dangol and Xuesong Zhang. 
Contact address: xuesong.zhang@usda.gov. 
Language: Fortran 95. 
Availability: Freely available at https://sites.google.com/view/swat 

-carbon. 

1. Introduction 

The transition from fossil fuel to carbon-neutral or carbon-negative 
energy sources, such as bioenergy, has been incentivized through pol
icies such as the Renewable Fuel Standard (RFS) established by the U.S. 
Energy Independence and Security Act (EISA) 2007 (Schnepf and 
Yacobucci, 2013; U.S. EPA, 2022). The wide use of grain crops for bio
energy production in the U.S. has raised serious concerns regarding the 
competition between food and fuel and detrimental environmental 

impacts (Lark et al., 2022; Searchinger et al., 2008; Zhang et al., 2010). 
Perennial grasses have been recognized as potential resource to fulfill 
future EISA mandated cellulosic biofuel production, minimize conflicts 
with food production, reduce negative impacts on the environment, and 
mitigate regional climate change (Gelfand et al., 2013; LeDuc et al., 
2017; National Research Council, 2009). In addition to bioenergy pro
duction, perennial grasses like switchgrass and miscanthus can serve as a 
means to sequestrate carbon (Clifton-Brown et al., 2007; Qin et al., 
2012). The extensive root biomass and absence of tillage promote car
bon sequestration in soil (Agostini et al., 2015; Anderson-Teixeira et al., 
2009; Rasse et al., 2005). Although field experiments offer valuable 
insights to understand and quantify the environmental impacts of bio
fuel feedstock production, scaling up the results to regional, national, or 
global scales, requires modeling approaches. Therefore various models 
have been developed and applied to represent the vegetation growth 
processes of perennial grasses like switchgrass, miscanthus, and ener
gycane (Cibin et al., 2016; Gopalakrishnan et al., 2012; He et al., 2022; 
Kiniry et al., 2008; Lee et al., 2012; Miguez et al., 2012). Existing models 
such as Daily CENTURY (DAYCENT), Soil and Water Assessment Tool 
(SWAT), DeNitrification-DeComposition (DNDC), Environmental Policy 
Integrated Climate (EPIC), Decision Support System for Agrotechnology 
Transfer DSSAT), Agricultural Land Management Alternatives with 
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Numerical Assessment Criteria (ALMANAC), and BioCro have been 
tested and applied to estimate productivity and environmental conse
quences associated with cultivation of perennial grasses (Cibin et al., 
2016; Davis et al., 2010; Kantola et al., 2022; Lee et al., 2012; Nocentini 
et al., 2015; Proulx et al., 2022; Sharara et al., 2020; Sinistore et al., 
2015; Trybula et al., 2015). Given that most of those models operate at 
the field and regional scales, SWAT stands out with its unique capabil
ities to provide a thorough evaluation of the impacts on water budget 
and water quality at the watershed scale. However, the poor represen
tation of the perennial crops limits its ability to reproduce biogeo
chemical processes, with potential implications on estimates of 
evapotranspiration fluxes, runoff, and discharge. 

The SWAT plant growth sub-model and parameters have been 
extensively tested for food/feed crops like corn, soybean, wheat, barley, 
etc. (Gassman et al., 2010; Luo et al., 2008; Zhang et al., 2013), while 
few studies (Cibin et al., 2016; Nelson et al., 2006; Ng et al., 2010; 
Trybula et al., 2015) have evaluated its suitability to simulate perennial 
bioenergy crops. Switchgrass shows great potential as a bioenergy crop 
with relatively high productivity and different cultivars already avail
able in the market for optimum allocation across climatic zones (Clif
ton-Brown et al., 2019; Larnaudie et al., 2022; Mehmood et al., 2017). 
Nonetheless, despite previous attempts, the lack of explicit representa
tion of shoot and root growth is a major drawback of the SWAT (Zhang 
et al., 2011). Field observations have shown that root growth, in general, 
is influenced by temperature, moisture, and nutrient availability and 
exhibits large sensitivities to climatic conditions (Sainju et al., 2017). 

In earlier studies involving switchgrass, plant growth parameters 
were parameterized for a lowland cultivar, Alamo, adapted to grow in 
wetter conditions (Trybula et al., 2015). For example, Srinivasan et al. 
(2010) adapted crop growth parameters for Alamo Switchgrass in 
large-scale bioenergy simulations to assess the environmental impacts of 
land use change. Trybula et al. (2015) then parameterized the SWAT 
crop growth parameters for an upland switchgrass cultivar adapted to 
grow in drier conditions, based on experimental field data, and 
improved the model representation of plant growth for perennials. 
Previous studies also parameterized switchgrass (both lowland and up
land cultivars) in the EPIC model to evaluate the environmental impacts 
of cultivating switchgrass for bioenergy production (Egbendewe-
Mondzozo et al., 2011, 2013). Note that SWAT employs a simplified 
vegetation growth sub-model adapted from EPIC (Williams et al., 1989). 
Therefore, the above studies, in general, used a single plant growth 
pattern for all plant types (forest, grass, and annual crops), which lacks 
representation of complex plant phenology, for example, growth of 
different plant compartments (root, shoot, leaf, etc.), carbon and 
nutrient dynamics between above and belowground pools (Luo et al., 
2008). As such, further improvements of the SWAT vegetation growth 
sub-model are needed to characterize the behavior of perennial grass 
growth and provide assessment of hydrologic, nutrient, and carbon cycle 
responses to bioenergy feedstock production. 

This study aims to enhance the SWAT plant growth sub-model to 
improve simulation of biomass production of perennial grass. We inte
grated the grass growth sub-model from DAYCENT into SWAT and 
referred to the new model as the SWAT–GRASS hereafter. The DAYCENT 
grass sub-model can simulate crop development, biomass production, 
and carbon and nutrient allocation to shoot and root as influenced by 
various elements such as climate, nutrient, and water availability 
(Parton et al., 1998). The model has been used to simulate biomass 
production of perennial grasses like switchgrass and miscanthus on the 
field and regional scale (Chen et al., 2021; Davis et al., 2010; Hudiburg 
et al., 2015, 2016). We evaluated the SWAT–GRASS model against the 
observed switchgrass biomass yield at multiple farm sites in Wisconsin, 
Michigan, and Illinois. The sites considered here represent both low and 
high productivity land areas that help assess the potential for sustainable 
bioenergy feedstock production. The improved representation of vege
tation growth provides new features into the SWAT model for studying 
the watershed scale impact of growing perennial bioenergy crops on soil 

organic matter, nutrient uptake, and water quality. The outcomes of this 
study will also be helpful in model development and application for 
different types of perennial grasses to generate more realistic informa
tion for understanding the sustainability issues related to bioenergy 
feedstock production. 

2. Materials and methods 

2.1. SWAT plant growth sub-model 

The SWAT model utilizes a simplified plant growth sub-model based 
on the EPIC model for all plant types (annual crops, grass, and forest) to 
simulate plant growth based on accumulated heat units (Williams et al., 
1989). The growth sub-model first simulates the potential plant biomass 
production under ideal conditions based on the radiation use efficiency 
coefficient and the intercepted photosynthetically active solar radiation. 
Then, it calculates the actual growth of the plant taking into account the 
influence of temperature, water, nitrogen, phosphorus, and aeration 
stress factors (Neitsch et al., 2011) as described in Appendix A. 

The SWAT model determines the seasonal partitioning of plant 
biomass to root by a static root-shoot ratio (RSR) at the specific plant 
growth stage (Eq. (A.1)). Such simplified assumptions of plant root 
fraction could result in substantial differences in biomass yield of pe
rennials and overall impact on hydrologic processes, water quality, and 
soil organic carbon. For example, the default values of root fraction at 
the planting (rsr1) and maturity (rsr2) are 0.2 and 0.4 respectively. 
Based on this assumption, about 60% of plant biomass would be avail
able as yield at the early growing season and about 80% when harvested 
at the end of the growing season. This method does not consider the 
explicit allocation of accumulated biomass into shoot and root, nor the 
impact of climate conditions on root development. In addition, the 
simple RSR approach does not consider the fact that perennial grasses 
such as switchgrass and miscanthus translocate nutrients to root during 
the late growing season, which the plant remobilizes during the next 
growing season (Ashworth et al., 2017; Massey et al., 2020). Such 
nutrient cycling during different phases of plant growth reduces the 
plant nutrient stress, resulting in high biomass production even in 
low-productivity soil. Furthermore, the plant biomass death during 
senescence and subsequent return to soil is not well simulated in SWAT. 
For perennials, a fraction of biomass (generally 10%) dies off and is 
added to soil organic matter during dormancy in SWAT. However, 
SWAT does not account for the root and shoot biomass death separately 
during the growing season, which affects the soil organic matter 
dynamics. 

2.2. DAYCENT grass growth sub-model 

DAYCENT is a biogeochemical model that simulates the dynamics of 
carbon, nitrogen, phosphorous, and sulfur for grassland, agricultural 
land, forest, and savannas (Del Grosso et al., 2008; Parton et al., 1998). 
The model has separate plant production sub-models for grass/crop, 
forest, and savanna to predict biomass growth. Its grass growth 
sub-model, detailed in Metherell et al. (1993), accounts for the dynamic 
nature of biomass allocation to shoot and root based on plant growth 
stage, climatic conditions, and nutrient availability. DAYCENT also 
simulates shoot and root death and accounts for nutrient translocation 
within the plant. For instance, if water or nutrients are limited, the plant 
response would be to allocate more resources to roots (Davis et al., 2010; 
Kantola et al., 2022). In this study, we incorporated DAYCENT’s grass 
sub-model (see details in Appendix B) into SWAT to create the 
SWAT–GRASSD model. 

2.3. Modifications to potential biomass production 

DAYCENT uses a simplified approach to estimate the leaf area index 
as leaf area ratio (LAR) multiplied by total aboveground biomass. By 
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default, LAR is set to a constant value of 0.01 for all crops/grasses. 
However, LAR has been found to vary spatially (Zhang et al., 2018). The 
SWAT requires LAI to compute rainfall interception by the plant canopy 
and potential evapotranspiration (Neitsch et al., 2011), which subse
quently affects plant water use. The use of a LAR coefficient for LAI 
development in DAYCENT could reduce the performance of the inte
grated model in simulating plant water use and biomass production 
(Zhang et al., 2018). Thus, the calculation of potential biomass pro
duction was further modified to incorporate the influence of seasonally 
varying leaf area on solar radiation intercepted by the perennial grasses. 
For this, an additional scaling factor, laiprod, used in the DAYCENT 
forest sub-model, is introduced in Eq. (B.1). The new equation is as 
follows: 

tgprod = shwave × Tstress × SMstress × Sdlng × CO2cpr × biof × laiprod
(1)  

where, tgprod (g C/m2) is the potential biomass production on a given 
day, shwave is downwelling solar radiation (Lg/day), SMstress is the soil 
moisture effect, Tstress is the temperature effect, Sdlng is the constraint on 
biomass production representing the seedling growth, CO2cpr is the 
effect of CO₂ concentration on biomass production, scenfrac represents 
the loss of biomass due to senescence, and biof is the effect of physical 
obstruction by standing dead biomass. 

laiprod = 1 − exp(−kl × LAI) (2)  

where, kl is light extinction coefficient, and LAI is leaf area index 
calculated by SWAT as: 

LAIi = LAIi−1 + ΔLAIi (3)  

ΔLAIi =
(
frLAImx,i − frLAImx,i−1

)
× LAImx × (1 − exp(5 × (LAIi−1 − LAImx)))

(4)  

where, ΔLAIi is increment of leaf area index on day i, frLAImx,i and 
frLAImx,i−1 are fraction of maximum leaf area index on day i and i-1, LAIi 
and LAIi−1 are leaf area indices on day i and i-1, and LAImx is the 
maximum leaf area index for the plant. 

The introduction of the scale factor laiprod was accompanied by the 
substitution of soil moisture stress (SMstress) in Eq. (B.1) with SWAT 
estimated plant water stress (Stressw). Stressw is proportional to the ratio 
of actual plant water uptake to potential evapotranspiration (Eq. (A.4)), 
which is considered to be a good measure of water stress impact on 
biomass production (Zhang et al., 2018). The newly integrated 
SWAT–GRASS model with these modifications is referred to as 
SWAT–GRASSM. 

2.4. Field experimental sites 

The SWAT and two versions of SWAT–GRASS models were evaluated 
at five Great Lakes Bioenergy Research Center (GLBRC) field sites in 
Michigan and Wisconsin (Escaban, Hancock, Rhinelander, Luxarbor, 
and Lakecity) and three field sites across Illinois (Fairfield, Orr, and 
Dekalb; selected from Arundale et al. (2014)) (referred to as AR sites) 
(Fig. 1). For these sites, biomass yield data for the Cave-in-Rock cultivar 
were available. The average annual precipitation and temperature range 
between 766 and 1044 mm and 6 and 13 ◦C, respectively, across all eight 
field sites (Table 1 and SI Figure S1). In general, switchgrass biomass 
yield was higher in sites with warmer temperatures and higher precip
itation (Hartman et al., 2012; Li et al., 2022). 

2.5. Model setup 

The SWAT and SWAT-GRASS models were setup for watersheds 
(within which the field sites were located) using the geospatial inputs 
listed in Table 2. In SWAT, Hydrologic Response Units (HRUs) are 

generated by the unique combination of land use, soil, and slope within 
a watershed. Here, we use the HRUs collocated with the switchgrass 
field sites and further assign detailed management operations. The field- 
level management operations were scheduled by date, consisting of 
planting, fertilizer application, and harvesting, as detailed by Arundale 
et al. (2014) for the AR sites and by Martinez-Feria and Basso (2020) for 
the GLBRC sites (Table 1). Switchgrass was planted between May and 
June and harvested every subsequent year between October and 
November. The fertilizer application rates were based on Arundale et al. 
(2014) and Martinez-Feria and Basso (2020). For additional information 
on experimental design, see GLBRC data catalog at https://data.sustai 
nability.glbrc.org/datatables and Arundale et al. (2014). The harvest
ing efficiency (HARVEFF) of 0.8 was used based on settings from Ng 
et al. (2010). The upland switchgrass plant growth parameters for SWAT 
were adopted from the study by Cibin et al. (2016). For SWAT–GRASS, 
upland switchgrass growth parameters were adopted from Davis et al. 
(2010). The switchgrass growth parameters used in SWAT and 
SWAT–GRASS are provided in SI Tables S1 and S2, respectively. 

In the natural grassland ecosystem, the primary source of nitrogen is 
wet and dry atmospheric deposition (Del Grosso et al., 2008). The at
mospheric deposition of nitrogen tends to increase biomass production 
in nitrogen-limited watersheds (Fernández-Martínez et al., 2017; Sulli
van and Gao, 2016). Given the relevance of atmospheric nitrogen 
deposition on biomass production of grass, the wet and dry atmospheric 
deposition rates reported by National Atmospheric Deposition Program 
(NADP) (NADP, 2022) were used. The total annual wet and dry nitrogen 
atmospheric deposition was computed for each site. The SWAT weather 
data inputs were obtained from North American Land Data Assimilation 
System (NLDAS-2) dataset (Xia et al., 2009). The model simulations for 
GLBRC sites and AR sites were conducted from 2013 to 2021 and from 
2005 to 2009/2011, respectively. 

2.6. Model calibration and validation 

We simultaneously calibrate the three models at multiple sites to 
ensure parameter generality for testing sites. This approach helps in the 
generalization of switchgrass growth parameters for application across 
large areas (Zhang et al., 2008). The field-level biomass yield data from 
GLBRC field sites (Martinez-Feria and Basso, 2020) and Arundale et al. 
(2014) (Table 1) were used to optimize and evaluate the SWAT and 
SWAT–GRASS for simulating upland switchgrass biomass yield. The 

Fig. 1. Location of GLBRC and AR field sites.  
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observed biomass yields from three field sites (Escabana, Orr, and 
Luxarbor) were used to calibrate the models. By including these sites, we 
aimed to ensure that the optimized model parameters would account for 
the variability in temperature, precipitation, and soil productivity. 
Sensitivity analysis and calibration of plant growth parameters were 
carried out using the Sequential Uncertainty Fitting algorithm version 2 
(SUFI-2) procedure in SWAT-CUP (Abbaspour et al., 2015). The 
Kling–Gupta efficiency criterion (KGE) (Gupta et al., 2009) was used as 
the objective function for model calibration. KGE ranges from -∞ to 1, 
with a higher value of KGE indicating better model performance. We 
further evaluated the model performance for simulated yield using 
percent bias (PBIAS), correlation coefficient (R), and root mean square 
error (RMSE) (Moriasi et al., 2007). 

The SWAT plant growth parameters selected for sensitivity analysis 
were based on prior studies (Cibin et al., 2016; Ng et al., 2010; Trybula 
et al., 2015) and are listed in SI Table S3. The SWAT–GRASS plant 
growth parameters selected for the sensitivity analysis were based on 
previous studies (Chamberlain et al., 2011; Davis et al., 2010; Lee et al., 
2012) and are listed in SI Table S4. The sensitivity analysis, as described 
above for SWAT, was implemented for SWAT–GRASS as well. 

To establish confidence in the SWAT–GRASS model and the opti
mized switchgrass growth parameters, we validated the model simu
lated yield with independent biomass yield datasets for the remaining 
five field sites (Hancock, Rhinelander, Lake City, Fairfield, and Dekalb) 
from the GLBRC and AR sites that span across a range of climatic con
ditions in different geographical regions (Illinois, Michigan, and Wis
consin) (Fig. 1). We assessed the model prediction uncertainty by 
estimating the P-factor and R-factor using SUFI-2. The P-factor quan
tifies the fraction of observed data that falls within the 95% prediction 
uncertainty (95PPU) band, ranging from 0 to 1. The R-factor is the ratio 
between the width of the 95PPU band and the standard deviation of the 
observed data, with values ranging from 0 to infinity. The P-factor close 
to 1 and the R-factor close to 0 indicates low prediction uncertainty. 

3. Results and discussion 

3.1. Sensitivity analysis 

Tables S3 and S4 list the SWAT and SWAT–GRASS plant growth 
parameters used for sensitivity analysis. Using global sensitivity in SUFI- 
2, the most sensitive parameters were identified and adjusted through 
the calibration process with final optimal values shown in Tables 3 and 
4. The SWAT model was found to be sensitive to BIO_E, T_OPT, T_BASE, 
RSR2C, LAIMX2, and nutrient fraction parameters for nitrogen at three 
stages of plant growth (i.e., PLTNFR1, PLTNFR2, and PLTNFR3) (SI 
Figure S2), which is consistent with the sensitivity analysis results from 
Trybula et al. (2015). PLTNFR2 was one of the most sensitive parameters 
followed by PLTNFR1, which indicates that plant nitrogen cycling had a 
major impact on SWAT-simulated switchgrass yield. PLTNFRs control 
the amount of nitrogen in plant biomass that subsequently determines 
the plant nitrogen demand and plant nutrient stress during plant growth. 
BIO_E (radiation use efficiency) determines the daily biomass produc
tion. LAIMX2 determines the LAI development and affects plant water 
demand and photosynthetically active radiation. T_OPT and T_BASE 
affect plant temperature stress and the timing of plant maturity. It is 
worth noting that the adjustment of T_OPT and T_BASE to ca. 20.8 and 
9.7 ◦C from their default values of 25 and 10 ◦C, respectively, intensified 
the crop growth within a narrower temperature range, specifically 

Table 1 
Field sites used to calibrate and validate SWAT and SWAT–GRASS plant growth parameters for switchgrass.  

Data source Location Latitude, 
Longitude 

Soil taxonomic class Data record length Annual Precipitation (mm) Annual Average Temperature (◦C) 

GLBRC Rhinelander, Wisconsin 45.6656, 
−89.2180 

Sandy loam 2014–2021 808 5.8 

Hancock, Wisconsin 44.1129, 
−89.5334 

Sand 2014–2021 838 8.0 

*Escabana, Michigan 45.7627, 
−87.1877 

Fine sandy loam 2014–2021 766 6.5 

Lake City, Michigan 44.2961, 
−85.1996 

Sand 2014–2021 852 7.8 

*Lux Arbor, Michigan 42.4764, 
−85.4519 

loam 2014–2021 933 9.5 

Arundale et al. (2014) Fairfield, Illinois 38.95, 
−88.96 

Silt loam 2006–2009 1044 13.3 

Dekalb, Illinois 41.85, 
−88.85 

Silt loam 2006–2011 935 10.2 

*Orr, Illinois 39.81, 
−90.82 

Silt loam 2006–2011 973 12.5 

Note: * indicates the sites that were used for model calibration. The three sites selected here represent the two ends of the gradient from the cooler, drier, and low 
productivity areas Escabana and Lux Arbor sites to the warmer, wetter, and high productivity Orr site. 

Table 2 
Geospatial inputs used for SWAT setup.  

Data Resolution Source 

Meteorology data 0.125◦ ×

0.125◦

NLDAS-2 (Xia et al., 2009) 

Digital Elevation 
Model (DEM) 

90 m × 90 m Shuttle Radar Topography Mission 
(SRTM) (Jarvis et al., 2008) 

Land Use 30 m × 30 m USDA NASS Cropland Data Layer (2008) 
Soil Property 1:24,000 Soil Survey Geographic database 

(SSURGO) (USDA-NRCS, 1994)  

Table 3 
Calibrated SWAT plant growth parameters for switchgrass biomass yield.  

ID Parameters Description Range 
used 

Fitted 
value 

1 r_T_OPT The optimal temperature for plant 
growth (◦C) 

±20% −17% 

2 r_T_BASE Base temperature for plant growth 
(◦C) 

±20% −3% 

3 r_BIO_E Radiation use efficiency (biomass/ 
energy ratio) 

±40% 33% 

4 r_PLTNFR1 Plant nitrogen fraction at emergence ±50% 17% 
5 r_PLTNFR2 Plant nitrogen fraction at 50% 

maturity 
±50% 26% 

6 r_PLTNFR3 Plant nitrogen fraction at maturity ±50% 47% 
9 v_LAIMX2 Fraction of the leaf area index 

corresponding to the 2nd. point on the 
optimal leaf area development curve 

0.8 to 
0.95 

0.921 

10 v_RSR2C Root fraction at the end of the growing 
season 

0.35 to 
0.60 

0.398 

Note: Here r and v represent the relative change and replacement of model 
parameters by adjusted value. 
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between T_BASE to 2 × T_OPT-T_BASE. This adjustment resulted in 
higher sensitivity of biomass production to temperature stress. 

Both SWAT–GRASSD and SWAT–GRASSM were found to be sensitive 
to T_OPT, T_BASE, ppdf(2), ppdf(3), ppdf(4), prdx, riint, cfrtcn(2), crptf 
(1), clsgres, pltmrf, and fallrt (SI Figures S3 and S4). The parameters 
pramn(1,2) and pramx(1,2) regulate the C:N ratio of aboveground and 
belowground biomass. T_OPT and T_BASE in conjunction with ppdf(2), 
ppdf(3), and ppdf(4) determine the plant’s response to changes in at
mospheric temperature and control the timing of plant maturity. prdx is 
the maximum potential monthly biomass production rate that affects 
daily biomass production. cfrtcn(2) affects the biomass allocation to 
roots under nitrogen stress. crptf(1) determines the nitrogen trans
location from the shoot to the root during the late growing season. clsgres 
regulates the late-season growth of the plant. pltmrf is the planting 
month reduction factor that scales the plant growing from seedlings. 
fallrt regulates the rate at which standing dead biomass is transferred to 
surface litter. For SWAT–GRASSD, the most sensitive parameter was 
fallrt, followed by T_BASE, DLAI, prdx, T_OPT, crprtf(1), ppdf(2), and 
pltmrf (SI Figure S3). Similarly, for SWAT–GRASSM, the most sensitive 
parameter was prdx, followed by fallrt, DLAI, T_BASE, T_OPT, ppdf(2), 
and FRGRW1 (SI Figure S4). 

These results indicate that the parameters regulating the plant ni
trogen cycle, such as plant nitrogen use efficiency and the impact of 
nitrogen stress on biomass production, are critical factors in determining 
biomass yield in SWAT. Meanwhile, parameters that regulate the plant 
growth response to temperature changes and plant growth processes 
during senescence were critical factors for biomass yield in SWAT–
GRASSD and SWAT–GRASSM. Overall, these findings provide insights 
into the key parameters that should be considered when predicting 

biomass production using SWAT, SWAT–GRASSD, and SWAT–GRASSM 
models. 

3.2. Model calibration and validation for biomass simulation 

3.2.1. Calibration 
SWAT, SWAT–GRASSD, and SWAT–GRASSM were able to capture the 

variability in biomass yield with R ≥ 0.5 (Fig. 2). The PBIAS was found 
to be within ±25% and KGE ≥ 0.45 for all three models (Fig. 2), indi
cating low bias in model performance. These results demonstrate the 
ability of all three models to reasonably simulate biomass yield across 
the three calibration sites. Among the three models, SWAT achieved the 
least bias, while SWAT–GRASSM performed the best in terms of 
capturing the variability in observed biomass yield. SWAT–GRASSM 
exhibited improved accuracy in simulating the standard deviation of 
observed biomass yield across the calibration sites (2.4 Mg/ha vs. 
observed standard deviation of 2.9 Mg/ha), while SWAT (2.0 Mg/ha) 
and SWAT–GRASSD (2.1 Mg/ha) underestimated variability. SWAT–
GRASSD performed the least in terms of R, KGE, and RMSE. With the 
modifications introduced in SWAT–GRASSM, the SWAT–GRASSM shows 
considerable improvement in simulating biomass yield. 

At the individual site level, the performance metrics of the three 
models vary across the field sites (Fig. 3). For example, both SWAT–
GRASSD and SWAT–GRASSM outperformed SWAT in simulating biomass 
yield for Escabana in terms of R and KGE. Likewise, at Lux Arbor, 
SWAT–GRASSD performed modestly better in terms of KGE, while 
SWAT–GRASSM exhibited substantial improvement in terms of both R 
and KGE compared to SWAT. On the other hand, at Orr, SWAT–GRASSD 
performed poorly than SWAT in terms of KGE, RMSE, and PBIAS, and 

Table 4 
Calibrated SWAT–GRASS plant growth parameters for switchgrass biomass yield.  

ID Parameters Description Range 
used 

Fitted Values 

SWAT–GRASSD SWAT–GRASSM 

1 r_T_OPT optimal temperature for plant growth (◦C) ±40% −14% 7% 
2 r_T_BASE base temperature for plant growth (◦C) ±40% 23% 24% 
3 v_DLAI fraction of growing season when leaf area starts declining 0.8 to 1.2 1.045 1.014 
4 v_LAIMX1 fraction of the max. leaf area index corresponding to the 1st. point on the optimal leaf area development 

curve 
0.05 to 
0.10 

– 0.100 

5 r_FRGRW1 fraction of the plant growing season corresponding to the 1st. point on the optimal leaf area development 
curve 

±20% – 5% 

6 r_FRGRW2 fraction of the plant growing season corresponding to the 2nd. point on the optimal leaf area 
development curve 

±20% – 0.7% 

7 r_ppdf(2) maximum temperature for plant growth (◦C) ±30% 11% −0.8% 
8 r_ppdf(3) left curve shape parameter that controls temperature effect on plant growth ±30% 12% 13% 
9 r_ppdf(4) right curve shape parameter that controls temperature effect on plant growth ±30% 21% −5% 
10 v_prdx potential aboveground monthly biomass production (g C/m2) 0.5 to 4.0 2.809 2.161 
11 v_riint root impact intercept that controls the impact of root biomass on nutrient availability 0.4 to 1.0 0.487 0.834 
12 v_cfrtcn(1) maximum fraction of carbon allocated to roots under maximum nutrient stress 0.5 to 0.7 0.502 0.630 
13 v_cfrtcn(2) minimum fraction of carbon allocated to roots in the absence of nutrient stress 0.2 to 0.3 0.334 0.357 
14 v_cfrtcw(1) minimum fraction of carbon allocated to roots under maximum water stress 0.4 to 0.7 0.618 0.599 
15 v_cfrtcw(2) minimum fraction of carbon allocated to roots in the absence of water stress 0.2 to 0.3 0.355 0.308 
16 v_crprtf(1) fraction of N transferred to a vegetation storage pool at death 0.50 to 

0.95 
0.861 0.791 

17 v_pramn 
(1,1) 

minimum aboveground C:N ratio with zero biomass 15 to 25 – 17.097 

18 v_pramn 
(1,2) 

minimum aboveground C:N ratio with biomass equal to biomax 40 to 80 74.355 68.158 

19 r_pramx 
(1,2) 

maximum aboveground C:N ratio with biomass equal to biomax ±20% – 13% 

20 v_prbmn 
(1,1) 

intercept for calculating the minimum C:N ratio for belowground biomass as a linear function of annual 
precipitation 

40 to 60 42.239 49.864 

21 v_prbmn 
(1,2) 

slope for calculating the minimum C:N ratio for belowground biomass as a linear function of annual 
precipitation 

0.0 to 1.0 – 0.113 

22 r_clsgres late season crop growth restriction factor ±20% −10% −2% 
23 r_biomax biomass level above which the minimum and maximum C:E ratios of new shoot increments equal pramn 

(:,2) and pramx (:,2) respectively (g biomass/m2) 
±30% – 1.2% 

24 v_pltmrf plant mature root fraction 0.8 to 1.0 0.955 0.987 
25 v_fallrt fall rate (fraction of standing dead which falls each month) 0.005 to 

0.15 
0.009 0.096 

Note: Here r and v represent the relative change and replacement of model parameters by adjusted value. 
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simulated biomass yield substantially worse than SWAT–GRASSM, 
which still had lower KGE and RMSE than SWAT. In general, the cali
bration results show that none of the three models can consistently 

outperform the other two models in terms of all metrics and at all sites, 
indicating that each of these three models has their own strengths and 
weaknesses. This result also demonstrates that the plant growth 

Fig. 2. Scatter plots of SWAT, SWAT–GRASSD, and SWAT–GRASSM simulated and observed annual dry weight biomass yield for all calibration sites.  

Fig. 3. Scatter plots of SWAT, SWAT–GRASSD, and SWAT–GRASSM simulated and observed annual dry weight biomass yield for individual calibration field sites.  
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processes are complex, and it is difficult to identify a single optimum 
algorithm. 

3.2.2. Validation 
Across the five validation sites, SWAT, SWAT–GRASSD, and 

SWAT–GRASSM simulated average annual biomass yields of 8.9, 7.7, 
and 7.8 Mg/ha, respectively, compared to the observed value of 7.1 Mg/ 
ha. SWAT performed satisfactorily with a KGE of 0.37 and a PBIAS of 
−25.77%. In comparison, SWAT–GRASSD achieved a higher KGE (0.46) 
and reduced PBIAS (−8.67%) and RMSE (0.45) compared to SWAT. 
SWAT–GRASSM modestly outperformed SWAT–GRASSD, with an R of 
0.55, RMSE of 0.44, and a KGE of 0.47 (Fig. 4). We found that the model 
performance was substantially influenced by the underestimation of two 
instances of high yields (16 Mg/ha) observed at Fairfield in 2007 and 
2008. Assuming these points as outliers, SWAT–GRASSM achieved a 
substantial improvement in the simulation of biomass yield compared to 
both SWAT and SWAT–GRASSD in terms of R (0.58 vs 0.42 and 0.51), 
RMSE (0.42 vs 0.53 and 0.44), and KGE (0.54 vs 0.28 and 0.48), 
respectively. 

Fig. 5 compares the observed and simulated biomass yield at each 
validation field site and demonstrates that model performance varied 
considerably across validation field sites (Hancock, Rhinelander, Lake 
City, Fairfield, and Dekalb) and between the models during validation. 
The observed mean dry weight biomass yield varies considerably across 
the field sites, ranging from 3.6 to 13.8 Mg/ha. In general, the three 
models simulated mean biomass yield well at Rhinelander, Lake City, 
and Fairfield, but showed large bias at Hancock and Dekalb (Table S5). 
The varied performance of the models across different sites could be 
caused by the accuracy of observed yield data and other input data, such 
as soil properties and management practices. 

Across the five validation sites, SWAT–GRASSM provided compara
ble or improved performance when compared to SWAT and SWAT–
GRASSD in terms of R and KGE, across the validation sites (Fig. 5). For 
most sites, both SWAT–GRASSD and SWAT–GRASSM demonstrate good 
performance as indicated by R and KGE values, except for Fairfield and 
Hancock. It is also worth noting that SWAT–GRASSM achieved compa
rable PBIAS compared with SWAT and SWAT–GRASSD at Rhinelander, 
and Fairfield, and lower PBIAS at Hancock, Lake City, and Dekalb. 
Meanwhile, SWAT achieved lower RMSE at Lake City and Fairfield 
compared with SWAT–GRASSD and SWAT-GRASSM. Similar to the 
calibration results, although none of the three models can outperform 
the other two in terms of all metrics and at all sites, SWAT–GRASSM 
provided the best overall performance. 

3.2.3. Uncertainty analysis 
We calculated the P-factor and R-factor for biomass yield at the eight 

field sites using the final calibrated parameter ranges. The values of P- 
factor and R-factor are listed in SI Table S6. The P-factor ranged from 
0.13 to 0.63, 0.38 to 0.67, and 0.38 to 0.83 for SWAT, SWAT–GRASSD, 

and SWAT–GRASSM, respectively. The R-factor ranged from 0.62 to 
1.11, 0.97 to 2.18, and 1.73 to 3.10 for SWAT, SWAT–GRASSD, and 
SWAT–GRASSM, respectively. In general, SWAT–GRASSM and SWAT–
GRASSD obtained P-factor values closer to 1 (or the fraction of obser
vations covered in the 95% confidence interval) than SWAT. Notably, 
the changes made in SWAT–GRASSM helped it obtain slightly greater P- 
factor and R-factor values than SWAT–GRASSD. These results indicate 
that the modification of crop growth made the model to better represent 
the uncertainties associated with switchgrass yield prediction. 

3.3. Assessment of model simulated leaf area index 

LAI is an important plant parameter for all three models for simu
lating plant growth. As measured LAI data for the field sites were not 
available, we used regression-estimated LAI to qualitatively assess the 
model ability to accurately represent LAI dynamics. We compared the 
seasonal development of LAI simulated by SWAT, SWAT–GRASSD, and 
SWAT–GRASSM against the regression-estimated seasonal LAI for up
land switchgrass by Madakadze et al. (1998), hereafter referred to as 
CTRL (Fig. 6). The regression model is based on LAI data measured until 
the late summer months. Therefore, to ensure consistency, we qualita
tively evaluate the simulated LAI values only up to August. 

SWAT and SWAT–GRASSD exhibited earlier and more rapid LAI 
development than the CTRL data, while SWAT–GRASSM simulates lower 
and gradual LAI development from mid-spring months that matches well 
with CTRL. The broad temperature ranges for SWAT–GRASSD within 
which biomass production can take place, allow for plant growth in 
early spring that contribute to early LAI development. In contrast, the 
relatively high T_BASE and narrow temperature range for plant growth 
(T_BASE = 12.4, ppdf(2) = 49.6, and ppdf(4) = 2.39) in SWAT–GRASSM 
limited plant growth in cooler early spring months. All three models 
simulate a rapid increase in LAI during the early summer months before 
reaching its peak value in July, in alignment with the CTRL data. Also, 
all three models simulate a gradual decline from July to August. Among 
the three models, SWAT–GRASSM overall better represented the sea
sonal dynamics of LAI, specifically in spring and early summer. This is 
likely a reason explaining the overall better performance of 
SWAT–GRASSM. 

3.4. Assessment of model simulated root to shoot ratio 

Fig. 7 compares the simulated RSR across all sites for October. As 
described in Appendix A, SWAT calculates RSR as a function of potential 
heat unit (PHU), which resulted in a nearly constant RSR (0.66–0.67) at 
harvest. In contrast, SWAT–GRASSD and SWAT–GRASSM simulated RSR 
with much higher variability, ranging from 0.55 to 0.90 and 0.62 to 
1.05, respectively. The high RSR variability in SWAT–GRASSD and 
SWAT–GRASSM results from the impacts of temperature, water, and 
nutrient on the biomass allocation between root and shoot, which 

Fig. 4. SWAT, SWAT–GRASSD, and SWAT–GRASSM simulated annual dry weight biomass yield for all validation sites.  
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differed among the sites. In general, SWAT–GRASSD and SWAT–GRASSM 
allocate a high proportion of biomass to roots in warmer and wetter 
locations (i.e., AR sites). Specifically, the RSR value is high for Fairfield, 
Orr, and Dekalb, which receive high annual precipitation (>934 mm). 

The RSR values fall well within the broad range of values (0.19–3.07) 
reported in previous observation-based studies (Frank et al., 2004; Jung 
and Lal, 2011; Sainju et al., 2017; Wayman et al., 2014; Zan et al., 2001). 
The RSR simulated with the three models in this study is somewhat 
similar to the RSR reported by Wayman et al. (2014), 0.88–0.95, in 
Nebraska and Pennsylvania where mean annual precipitation ranged 
between 700 and 1120 mm, and by Zan et al. (2001), which reported 

RSR in the lower range of 0.4–0.7 in Quebec, Canada, with a mean air 
temperature of 6.5 ◦C and an annual precipitation of 1062 mm. It is also 
worth noting that other studies reported contrary findings. For example, 
Jung and Lal (2011), reported the RSR of 0.19–0.56 in Ohio which is 
smaller than the RSR estimated in this study. Sainju et al. (2017) re
ported high RSR in the range of 1.39–3.07 in Montana, which received 
low annual precipitation of 271–453 mm. These findings highlight that 
the variability of biomass allocation is not only influenced by climate 
conditions but also by nutrient and water management. Nonetheless, the 
observed RSR values are highly variable, therefore the constant RSR 
simulated by SWAT is not realistic. The observational data also 

Fig. 5. SWAT, SWAT–GRASSD, and SWAT–GRASSM simulated annual dry weight biomass yield for individual validation field sites.  

Fig. 6. Comparison of SWAT, SWAT–GRASSD, and SWAT–GRASSM simulated 
LAI with regression model fitted LAI (Madakadze et al., 1998), where shading 
represents 95% confidence limits. 

Fig. 7. Comparison of SWAT, SWAT–GRASSD, and SWAT–GRASSM simulated 
site averaged mean root-to-shoot ratio (RSR) for October. The color gradient 
represents the average annual temperature for each site. 
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corroborate that both SWAT–GRASSD and SWAT–GRASSM can represent 
the effects of climate on root and shoot development. 

3.5. Assessment of model simulated hydrological process and nitrogen 
cycle 

We evaluated the impact of the differences in biomass production 
and LAI development as simulated by SWAT, SWAT–GRASSD, and 
SWAT–GRASSM on both hydrological processes and the nitrogen cycle. 
In general, the seasonal cycle of surface runoff, evapotranspiration, soil 
moisture content, and groundwater percolation simulated by SWAT, 
SWAT–GRASSD, and SWAT–GRASSM were similar (SI Figure S5), with 
small variations arising from the differences in biomass production and 
LAI development (Fig. 6). In contrast, we found substantial differences 
in the seasonal plant nitrogen uptake and total soil nitrate content 
simulated by the models, particularly during the early growing season 
(SI Figure S6). SWAT and SWAT–GRASSD simulated high plant nitrogen 
uptake during the early growing season (Figure S6a) as reflected by the 
early LAI development (Fig. 6). Meanwhile, SWAT–GRASSM exhibited 
lower nitrogen uptake during this period, leading to an increase in soil 
nitrate content (Figure S6b). 

3.6. Strengths, limitations, and future directions of the SWAT-GRASS 
model 

This study integrated and modified the DAYCENT grass sub-model 
into SWAT to improve the representation of biomass production, 
biomass allocation, and nutrient content of perennial grasses, using 
switchgrass as an example. SWAT considers climate conditions and 
nutrient availability in biomass production but does not fully account for 
their influence on root and shoot biomass allocation. While SWAT can 
satisfactorily simulate the biomass yield, it fails to simulate the high 
variability observed in root biomass allocation under different climatic 
conditions. This limits SWAT’s ability to provide a credible under
standing of the complex interactions between climate conditions, bio
energy feedstock production, and soil biogeochemistry. The 
SWAT–GRASSD, which incorporates the DAYCENT grass sub-model into 
SWAT, addresses this limitation but falls short in certain aspects. For 
example, SWAT–GRASSD does not explicitly account for the influence of 
canopy leaf area on the interception of incident solar radiation and 
biomass production, resulting in early plant growth and overestimation 
of biomass allocation and LAI in the early growing season. The intro
duction of an additional scaling factor that incorporates the influence of 
LAI dynamics in the SWAT–GRASSM provides an improved estimation of 
biomass yield and LAI development. 

Although none of the three models examined here can consistently 
outperform the others in terms of all metrics, the results show that the 
overall performance of SWAT–GRASSM is comparable to or better than 
SWAT and SWAT–GRASSD in simulating switchgrass biomass yield, in 
terms of R, KGE, and PBIAS for most cases. The improved performance of 
SWAT–GRASSM in investigating the suitability of perennial grass such as 
switchgrass for biomass production, which in conjunction with other 
capabilities within SWAT (e.g., water quantity and quality) (Arnold 
et al., 1998; Neitsch et al., 2011) and SWAT-Carbon (e.g., soil organic 
carbon and riverine carbon fluxes) (Liang et al., 2022; Qi et al., 2020; 
Zhang, 2018) makes it a powerful tool to study environmental impacts of 
using perennial grasses at the regional scale. 

Note that, despite the more comprehensive algorithms in the two 
SWAT–GRASS models that can better represent the aboveground and 
belowground biomass development as influenced by climate, nutrients, 
and water, multiple aspects of the new models could be further 
improved, such as the representation of processes related to the inter
ception of solar radiation, and the development of roots in the soil col
umn. The current model assumes the root depth of the perennial plant to 
be equal to 3 m or to span the entire depth of the soil column for the 
entire growing period. The root depth and distribution could affect plant 

water and nutrient uptake, as well as the distribution of soil organic 
matter. In addition, unlike SWAT, the two SWAT–GRASS models do not 
consider the influence of vapor pressure deficit on radiation use effi
ciency and subsequently impact biomass production. Therefore, further 
work is deserved to improve these processes in SWAT–GRASS to better 
simulate plant growth and biomass production of perennial grass. 

Additionally, several parameters used by the two SWAT-GRASS 
models, such as the fraction of nutrients allocated to the root during 
the late growing season, vary at different ages of perennial plants. The 
current modification assumes that these parameters remain static 
throughout the lifespan of the plant. This approach could result in un
certainties regarding the model’s ability to simulate nutrient uptake 
from soil and nutrient allocation to different plant parts. Also, compre
hensive data to evaluate the model capability of representing the 
development of LAI, aboveground biomass, and belowground biomass 
were rarely available. Therefore, more comprehensive model assess
ment awaits future research. 

Collectively, the integration and modification of the new grass sub- 
model, which accounts for water, temperature, and nutrient stress on 
biomass production and allocation to plant shoot and roots, can provide 
reasonable (i.e. similar or better) simulation of biomass yield compared 
to SWAT. Particularly the SWAT–GRASSM holds promise in simulating 
LAI and root and shoot development under diverse climate and man
agement conditions more realistically. These new capabilities make it a 
promising tool to support future studies that examine the potential of 
switchgrass and other perennial grasses for biomass production and 
their subsequent environmental impacts and benefits. We share the new 
model https://sites.google.com/view/swat-carbon to facilitate future 
efforts to apply and further enhance the model developed in this study. 

4. Conclusion 

We integrated and modified the DAYCENT grass growth module into 
the SWAT model to improve the simulation of biomass production for 
perennial grasses, using switchgrass as a test example. In addition to 
using the default algorithms in DAYCENT (SWAT–GRASSD), we also 
revised the calculation of potential biomass production (SWAT–
GRASSM) to incorporate the effect of LAI dynamics. Overall, the model 
improvement includes four major aspects: (1) process-based biomass 
allocation to root and shoot that accounts for the influence of the 
nutrient and water stress, such that more biomass is allocated to the root 
with an increase in stress; (2) process-based algorithms for plant nutrient 
demand and uptake during the growing period, and nutrient trans
location during senescence; (3) biomass loss as surface litter/residue to 
the soil during plant growth and senescence; (4) scaling of potential 
biomass production by LAI to represent the seasonal changes in the 
interception of solar radiation by the plant. 

All three models (i.e., SWAT, SWAT–GRASSD, and SWAT–GRASSM) 
were evaluated at eight field sites (with diverse climatic conditions) in 
Wisconsin, Michigan, and Illinois for biomass yield simulation. Both 
SWAT–GRASSD and SWAT–GRASSM satisfactorily simulated observed 
yields, and their performance metrics were comparable to or better than 
those of SWAT at the evaluation sites. Particularly, SWAT–GRASSD and 
SWAT–GRASSM can explicitly simulate root and shoot growth as influ
enced by climate, nutrient, and water conditions, thereby providing 
more realistic estimation of the allocation of accumulated biomass and 
nutrients between aboveground and belowground biomass pools. This 
feature is critical for reliable estimates of the role of root in nutrient and 
carbon cycling. Notably, SWAT–GRASSM in general outperformed 
SWAT–GRASSD in terms of both biomass yield and seasonal LAI devel
opment. Overall, incorporating DAYCENT’s grass module into SWAT 
added important capabilities to the model for credible assessment of 
agronomic and environmental impacts of growing perennial grasses for 
biomass production. The new integrated SWAT–GRASSM model is a 
public domain model to support future efforts in sustainable bioenergy 
production. 
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Appendix A. The SWAT model’s grass growth processes 

A.1 Biomass allocation 

The SWAT vegetation growth sub-model simulates biomass production of the entire plant as a single entity and utilizes empirical relationships to 
partition above and belowground biomass using the parameter plant root fraction (RF). The temporal evolution of RF is calculated in SWAT as a 
function of potential heat unit accumulation (PHU) and user-defined plant-specific root fraction at the planting (rsr1) and maturity (rsr2) of the 
growing season of plant growth (Neitsch et al., 2011). 

RF = rsr1 − (rsr1 − rsr2) × PHU (A.1) 

The plant root fraction is then used to calculate the aboveground biomass as 

aboveground biomass = (1 − RF) × total plant biomass (A.2)  

A.2 Plant growth constraints 

SWAT incorporates multiple stress factors to limit plant biomass production. SWAT calculates temperature, water, nitrogen, and phosphorus stress 
at a scale of 0–1 (0 representing the maximum stress and 1 indicating no stress) (Neitsch et al., 2011). The most limiting factor among the four plant 
stress is then used to adjust the potential biomass production. 

StressT =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 when Tavg ≤ Tbase

1 − exp

[
−0.1054

(
Topt − Tavg

)2

(
Tavg − Tbase

)2

]

when Tbase ≤ Tavg ≤ Topt

1 − exp

[
−0.1054

(
Topt − Tavg

)2

(
2Topt − Tavg − Tbase

)2

]

when Topt ≤ Tavg ≤ 2Topt − Tbase

(A3)  

StressW = 1 −
Wactualup

Et
(A.4)  

StressE = 1 −
φE

φE + exp(3.535 − 0.2597φE)
(A.5)  

φE = 200
(

bioE

bioE,opt
− 0.5

)

(A.6)  

Where, Tavg(
◦C) is the average air temperature, Topt(

◦C) is the optimum temperature for plant growth, Tbase (◦C) is the base temperature for plant 
growth, Wactualup (mm H2O/day) is the actual plant water uptake, Et (mm H2O/day) is the maximum plant transpiration, φE is the scaling factor for 
nutrient E = N, P (nitrogen, N and phosphorous, P), bioE (kg E/ha) is the amount of nutrient E in plant biomass, and bioE,opt (kg E/ha) is the optimal 
amount of nutrient E in plant biomass, and StressT, StressW, and StressE=N,P (unitless) are temperature, water, and nutrient stress respectively. 
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A.3 Plant nutrient demand 

In the SWAT model, the daily nutrient uptake by plant is calculated as a function of the difference between plant actual nutrient content and plant 
optimal nutrient content, and soil nutrient availability. The plant-specific parameters for nutrient fraction parameters for each nutrient (nitrogen and 
phosphorous) which characterizes the optimal contents of nutrients in the plant at three growth stages (emergence, 50% maturity, and maturity). 
Nutrient fraction parameters for nitrogen (PLTNFR) and phosphorus (PLTPFR) are defined at the three growth stages and used to calculate the plant 
optimal nutrient content at different stages of plant growth. Furthermore, SWAT uses two plant-specific parameters, the fraction of nitrogen (CPNYLD) 
and phosphorus (CPPYLD) in aboveground biomass at harvest, to calculate the amount of nutrients removed during harvest operation that subse
quently affects the nutrients added to soil from harvest residue. 

Appendix B. The DAYCENT model’s grass growth processes 

B.1 Potential biomass production 

Incoming solar radiation is provided as an input to the vegetation growth sub-model for estimating the potential biomass production. The potential 
plant biomass production is calculated as a function of a plant-specific maximum monthly biomass production and scaled by six terms (values between 
0 and 1) that represent the effects of climatic conditions and plant phenology, respectively. DAYCENT uses the multiplication of stress factors under 
the assumption that the interactions of multiple stress factors limit plant biomass production (Del Grosso et al., 2008). 

tgprod = shwave × prdx × Tstress × SMstress × Sdlng × CO2cpr × scenfrac × biof (B.1)  

where, tgprod (g C/m2) is the potential biomass production on a given day, shwave is downwelling solar radiation (Lg/day), SMstress (unitless) is the soil 
moisture effect calculated as a function of relative soil water content fraction, Tstress (unitless) is the temperature effect, Sdlng (unitless) is the constraint 
on biomass production representing the seedling growth, CO2cpr (unitless) is the effect of CO₂ concentration on biomass production, scenfrac rep
resents the loss of biomass due to senescence, and biof (unitless) is the effect of physical obstruction by standing dead biomass. 

Tstress =

⎧
⎪⎨

⎪⎩

exp
(

ppdf (3)

ppdf (4)
×

(
1 − fracppdf (4)

)
)

×
(
fracppdf (3)

)
if frac > 0

0 if frac ≤ 0
(B.2)  

frac =
ppdf (2) − Tavg

ppdf (2) − ppdf (1)
(B.3)  

where, Tavg is the average air temperature (◦C), ppdf(1) is the minimum temperature for plant growth (◦C), ppdf(2) is the optimum temperature for 
plant growth (◦C), ppdf(3) is the left shape coefficient of the function curve of temperature effect on growth, and ppdf(4) is the right shape coefficient of 
the function curve of temperature effect on growth 

SMstress =

⎧
⎪⎨

⎪⎩

1.0
(1.0 + exp(9.0 ∗ (wscoeff (1) − cwstress)))

if PET ≥ 0.01

0.01 if PET < 0.01
(B.4)  

where, wscoeff(1) (unitless) is the relative water content required for 50% of maximum production and cwstress (unitless) is the relative water content 
of the wettest soil layer. 

cwstres = max
(

SWCl − WPl

FCl − WPl

)

(B.5)  

where, SWCl, WPl, and FCl are, respectively, the soil water content (cm H2O), soil water content at wilting point (cm H2O), and soil water content at 
field capacity (cm H2O) of soil layer l. 

CO2cpr = 1 +
(co2ipr − 1)

log 10(2.0)
l × log 10

(
co2
330

)

(B.6)  

where, co2ipr (unitless) is the plant production ratio when atmospheric CO₂ concentration is doubled, co2 is atmospheric CO₂ concentration (ppmv). 

Sdlng =

⎧
⎪⎨

⎪⎩

MIN
(

1.0, pltmrf + aglivc ×
(1 − pltmrf )

fulcan

)

when PHU < 0.25

1 when PHU ≥ 0.25
(B.7)  

where, pltmrf (unitless) is the reduction factor to limit the seedling growth, aglivc is aboveground live carbon (g C/m2), and fulcan is aboveground live 
carbon full canopy cover (g C/m2) 
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biof =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

bioprd + 0.75 × (1 − bioprd) ×
aglivc
bioc

if
aglivc
bioc

≤ 1

bioprd + 0.75 × (1 − bioprd) + 0.25 × (1 − bioprd) ×

(
aglivc
bioc

− 1
)

if 1 <
aglivc
bioc

≤ 2

biof = 1 if
aglivc
bioc

> 2

(B.8)  

bioprd = 1 −
bioc

biok5 + bioc
(B.9)  

bioc =

⎧
⎨

⎩

stdcis + 0.1 × solrsd(surface)

0.1 if stdcis + 0.1 × solrsd(surface) ≤ 0
pmxbio if stdcis + 0.1 × solrsd(surface) > pmxbio

(B.10)  

where, biok5 is (standing dead+10% surface litter) carbon at which production is reduced to half maximum due to physical obstruction by dead 
material (g C/m2), pmxbio is the maximum standing dead biomass +10% surface litter carbon for calculation of the potential negative effect of physical 
obstruction by standing dead and surface litter on biomass production (g C/m2), stdcis is standing dead carbon (g C/m2), solrsd (surface) is plant residue 
carbon in surface soil layer (g C/m2). For compatibility with SWAT, biomass production ceases when the accumulated potential heat unit exceeds 1 (i. 
e. plant maturity). 

B.2 Actual biomass production and allocation 

The plant-specific parameters are used to estimate the RF (unitless) to allocate the potential biomass production to the different plant compart
ments (aboveground and belowground). The optimum RF is calculated as a function of four plant-specific parameters (cfrtcn(1), cfrtcn(2), cfrtcw(1), 
cfrtcw(2)), that represents the maximum and minimum fraction of carbon allocated to root under nutrient and water stress. 

RF = (cfrtcw(1) + cfrtcw(2) + cfrtcn(1) + cfrtcn(2))/4.0 (B.11) 

The calculated optimum RF is then used to partition the potential plant biomass into aboveground and belowground components. In addition, the 
optimum RF is used to compute the plant nutrient demand taking into account the impact of root biomass (rtimp) on the availability of nutrients from 
the soil. 

The nutrient uptake by the aboveground and belowground biomass is dependent on the availability of nutrients and nutrient content of the plant 
which is further constrained between plant-specific upper and lower nutrient limits set for both plant compartments. To adjust for changes in nutrient 
content as the plant ages, the limits of the nutrient content of aboveground biomass are calculated as a function of aboveground biomass. Meanwhile, 
the limits of the nutrient content of belowground biomass are calculated as a function of annual precipitation. The most limiting nutrient is then used 
to scale the potential biomass production and calculate the actual biomass production and corresponding nutrient concentration and nutrient uptake. 
A linear relationship is then used to estimate the impact of water and nutrient limitations on the allocation of actual biomass between shoot and root. 
The water limitation is calculated as a function of soil moisture effect on potential production and plant-specific parameter cftrcw. The nutrient 
limitation is calculated as a function of nutrient stress and plant-specific parameter cftrcn. The most limiting factor between the water and nutrient 
limitation is used to determine the actual fraction of biomass allocated to the root. This approach incorporates the plant’s response to water and 
nutrient stress such that more allocation of biomass to the root takes place when water and nutrient stress increases. 

fracrc = max(h2oeff , ntreff (iel)) (B.12)  

h2oeff = (cftrcw(2) − cftrcw(1)) × (SMstress − 1) + cfrtcw(2) (B.13)  

ntreff (iel) = (cftrcn(2) − cftrcn(1)) ×

(
totale(iel)

demand(iel)
− 1

)

+ cfrtcn(2) (B.14)  

where, iel represents nutrients nitrogen or phosphorous, totale(iel) is the nutrient iel (nitrogen or phosphorous) available for biomass production (g E/ 
m2), and demand(iel) is plant demand of nutrient iel for optimum biomass production (g E/m2). 

The potential aboveground and belowground biomass is then calculated as 

bgprod = tgprod ∗ fracrc (B.15)  

agprod = tgprod – bgprod (B.16)  

where, tgprod is total plant biomass (g/m2), agprod is aboveground biomass (g/m2), and bgprod is belowground biomass (g/m2). The belowground 
biomass is further categorized into juvenile and mature roots. 

B.3 Shoot and root die-off 

Unlike SWAT, the death of shoot and root is simulated in the growing season. The shoot and root death are determined by soil moisture, soil 
temperature, and plant-specific maximum senescence parameters. Root death takes place when the soil temperature is greater than 2 ◦C. In senescence 
months (i.e., when PHU > Fraction of growing season when leaf area starts declining, DLAI) shoot death rate is set to a fixed plant-specific fraction 
fsdeth(2). The dead shoot biomass (standing dead) is transferred to the surface soil layer (0–10 cm) as the plant residue at the plant-specific fall rate 
(fallrt). Meanwhile, the dead root biomass is distributed to different soil layers based on the depth distribution of roots in the soil column following the 
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approach used by SWAT during plant kill operations. During dormancy, SWAT assumes 10% of plant biomass is returned to the surface soil layer as 
plant residue, which is adopted in the new sub-model. 
B.4 Plant nutrient storage 

The DAYCENT grass sub-model simulates the nutrient flow for the nutrient storage pool in addition to the nutrient flow for each plant 
compartment. A fraction of nutrients from aboveground biomass which is converted to standing dead material is transferred to the nutrient storage 
pool during the growing season. In addition, a fraction of nutrient uptake by the plant from the soil during the late growing season is allocated to the 
nutrient storage pool. The nutrients accumulated in the storage pool are remobilized by the plant during the early growth phase such that plants use 
nutrients in the storage pool before utilizing soil nutrients for biomass production. 

Nutrient uptake from the internal plant storage pool by each plant compartment is calculated as 

uptakeabove =

{
uptakestorage,iel × eufabove × (1.0 − clsgres) if PHU > 0.8
uptakestorage,iel × eufabove if PHU ≤ 0.8 (B.17)  

uptakebelow = uptakestorage,iel × eufbelow (B.18) 

Nutrient flow into the internal plant storage pool is calculated as. 

Step 1. Obtained from the conversion of aboveground live biomass to standing dead 

storage(iel) = fdeth × aglive(iel) × crprtf (iel) (B.19)   

Step 2. Obtained from soil nutrient uptake during the late growing season 

storage(iel) = uptakesoil,iel × eufabove × clsgres if PHU > 0.8 (B.20)  

where, uptakesoil,iel is the plant uptake of nutrient iel from soil (g E/m2), uptakestorage,iel is plant uptake of nutrient iel from the internal storage pool (g E/ 
m2), fdeth is the death rate of shoots to standing dead, aglive(iel) is the concentration of nutrient iel in the plant (g E/m2), clsgres is late growing season 
restriction factor (0–1), crprtf(iel) is the fraction of nutrient iel translocated from aboveground biomass at death, eufabove is the fraction of nutrient 
uptake from aboveground biomass, and eufbelow is the fraction of nutrient uptake from belowground biomass. 
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