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Although the Soil and Water Assessment Tool (SWAT) model has been widely used to assess the environmental
impacts of growing perennial grasses for bioenergy production, its utility is limited by not explicitly accounting
for shoot and root biomass development. In this study, we integrated the DAYCENT model’s grass growth al-
gorithms into SWAT (SWAT-GRASSp) and further modified it by considering the impact of leaf area index (LAI)
on potential biomass production (SWAT-GRASS)y;). Based on testing at eight sites in the US Midwest, we found
that SWAT-GRASSy; generally outperformed SWAT and SWAT-GRASSp, in simulating switchgrass biomass yield

SWAT and the seasonal development of LAI. Additionally, SWAT-GRASSy can more realistically represent root

SWAT-GRASS
Switchgrass

development, which is key for the allocation of accumulated biomass and nutrients between aboveground and
belowground biomass pools. These improvements are critical for credible assessment of agronomic and envi-

ronmental impacts of growing perennial grasses for biomass production.

Software availability

Software: Algorithms to represent switchgrass as influenced by
climate, nutrients, and water.

Description: Algorithms developed, tested, and presented as part of
this work. The code is embedded in the SWAT and SWAT-Carbon
models.

Developer: Sijal Dangol and Xuesong Zhang.

Contact address: xuesong.zhang@usda.gov.

Language: Fortran 95.

Availability: Freely available at https://sites.google.com/view/swat
-carbon.

1. Introduction

The transition from fossil fuel to carbon-neutral or carbon-negative
energy sources, such as bioenergy, has been incentivized through pol-
icies such as the Renewable Fuel Standard (RFS) established by the U.S.
Energy Independence and Security Act (EISA) 2007 (Schnepf and
Yacobucci, 2013; U.S. EPA, 2022). The wide use of grain crops for bio-
energy production in the U.S. has raised serious concerns regarding the
competition between food and fuel and detrimental environmental
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impacts (Lark et al., 2022; Searchinger et al., 2008; Zhang et al., 2010).
Perennial grasses have been recognized as potential resource to fulfill
future EISA mandated cellulosic biofuel production, minimize conflicts
with food production, reduce negative impacts on the environment, and
mitigate regional climate change (Gelfand et al., 2013; LeDuc et al.,
2017; National Research Council, 2009). In addition to bioenergy pro-
duction, perennial grasses like switchgrass and miscanthus can serve as a
means to sequestrate carbon (Clifton-Brown et al., 2007; Qin et al.,
2012). The extensive root biomass and absence of tillage promote car-
bon sequestration in soil (Agostini et al., 2015; Anderson-Teixeira et al.,
2009; Rasse et al., 2005). Although field experiments offer valuable
insights to understand and quantify the environmental impacts of bio-
fuel feedstock production, scaling up the results to regional, national, or
global scales, requires modeling approaches. Therefore various models
have been developed and applied to represent the vegetation growth
processes of perennial grasses like switchgrass, miscanthus, and ener-
gycane (Cibin et al., 2016; Gopalakrishnan et al., 2012; He et al., 2022;
Kiniry et al., 2008; Lee et al., 2012; Miguez et al., 2012). Existing models
such as Daily CENTURY (DAYCENT), Soil and Water Assessment Tool
(SWAT), DeN:itrification-DeComposition (DNDC), Environmental Policy
Integrated Climate (EPIC), Decision Support System for Agrotechnology
Transfer DSSAT), Agricultural Land Management Alternatives with
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Numerical Assessment Criteria (ALMANAC), and BioCro have been
tested and applied to estimate productivity and environmental conse-
quences associated with cultivation of perennial grasses (Cibin et al.,
2016; Davis et al., 2010; Kantola et al., 2022; Lee et al., 2012; Nocentini
et al., 2015; Proulx et al., 2022; Sharara et al., 2020; Sinistore et al.,
2015; Trybula et al., 2015). Given that most of those models operate at
the field and regional scales, SWAT stands out with its unique capabil-
ities to provide a thorough evaluation of the impacts on water budget
and water quality at the watershed scale. However, the poor represen-
tation of the perennial crops limits its ability to reproduce biogeo-
chemical processes, with potential implications on estimates of
evapotranspiration fluxes, runoff, and discharge.

The SWAT plant growth sub-model and parameters have been
extensively tested for food/feed crops like corn, soybean, wheat, barley,
etc. (Gassman et al., 2010; Luo et al., 2008; Zhang et al., 2013), while
few studies (Cibin et al., 2016; Nelson et al., 2006; Ng et al., 2010;
Trybula et al., 2015) have evaluated its suitability to simulate perennial
bioenergy crops. Switchgrass shows great potential as a bioenergy crop
with relatively high productivity and different cultivars already avail-
able in the market for optimum allocation across climatic zones (Clif-
ton-Brown et al., 2019; Larnaudie et al., 2022; Mehmood et al., 2017).
Nonetheless, despite previous attempts, the lack of explicit representa-
tion of shoot and root growth is a major drawback of the SWAT (Zhang
etal., 2011). Field observations have shown that root growth, in general,
is influenced by temperature, moisture, and nutrient availability and
exhibits large sensitivities to climatic conditions (Sainju et al., 2017).

In earlier studies involving switchgrass, plant growth parameters
were parameterized for a lowland cultivar, Alamo, adapted to grow in
wetter conditions (Trybula et al., 2015). For example, Srinivasan et al.
(2010) adapted crop growth parameters for Alamo Switchgrass in
large-scale bioenergy simulations to assess the environmental impacts of
land use change. Trybula et al. (2015) then parameterized the SWAT
crop growth parameters for an upland switchgrass cultivar adapted to
grow in drier conditions, based on experimental field data, and
improved the model representation of plant growth for perennials.
Previous studies also parameterized switchgrass (both lowland and up-
land cultivars) in the EPIC model to evaluate the environmental impacts
of cultivating switchgrass for bioenergy production (Egbendewe--
Mondzozo et al., 2011, 2013). Note that SWAT employs a simplified
vegetation growth sub-model adapted from EPIC (Williams et al., 1989).
Therefore, the above studies, in general, used a single plant growth
pattern for all plant types (forest, grass, and annual crops), which lacks
representation of complex plant phenology, for example, growth of
different plant compartments (root, shoot, leaf, etc.), carbon and
nutrient dynamics between above and belowground pools (Luo et al.,
2008). As such, further improvements of the SWAT vegetation growth
sub-model are needed to characterize the behavior of perennial grass
growth and provide assessment of hydrologic, nutrient, and carbon cycle
responses to bioenergy feedstock production.

This study aims to enhance the SWAT plant growth sub-model to
improve simulation of biomass production of perennial grass. We inte-
grated the grass growth sub-model from DAYCENT into SWAT and
referred to the new model as the SWAT-GRASS hereafter. The DAYCENT
grass sub-model can simulate crop development, biomass production,
and carbon and nutrient allocation to shoot and root as influenced by
various elements such as climate, nutrient, and water availability
(Parton et al., 1998). The model has been used to simulate biomass
production of perennial grasses like switchgrass and miscanthus on the
field and regional scale (Chen et al., 2021; Davis et al., 2010; Hudiburg
et al., 2015, 2016). We evaluated the SWAT-GRASS model against the
observed switchgrass biomass yield at multiple farm sites in Wisconsin,
Michigan, and Illinois. The sites considered here represent both low and
high productivity land areas that help assess the potential for sustainable
bioenergy feedstock production. The improved representation of vege-
tation growth provides new features into the SWAT model for studying
the watershed scale impact of growing perennial bioenergy crops on soil
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organic matter, nutrient uptake, and water quality. The outcomes of this
study will also be helpful in model development and application for
different types of perennial grasses to generate more realistic informa-
tion for understanding the sustainability issues related to bioenergy
feedstock production.

2. Materials and methods
2.1. SWAT plant growth sub-model

The SWAT model utilizes a simplified plant growth sub-model based
on the EPIC model for all plant types (annual crops, grass, and forest) to
simulate plant growth based on accumulated heat units (Williams et al.,
1989). The growth sub-model first simulates the potential plant biomass
production under ideal conditions based on the radiation use efficiency
coefficient and the intercepted photosynthetically active solar radiation.
Then, it calculates the actual growth of the plant taking into account the
influence of temperature, water, nitrogen, phosphorus, and aeration
stress factors (Neitsch et al., 2011) as described in Appendix A.

The SWAT model determines the seasonal partitioning of plant
biomass to root by a static root-shoot ratio (RSR) at the specific plant
growth stage (Eq. (A.1)). Such simplified assumptions of plant root
fraction could result in substantial differences in biomass yield of pe-
rennials and overall impact on hydrologic processes, water quality, and
soil organic carbon. For example, the default values of root fraction at
the planting (rsr1) and maturity (rsr2) are 0.2 and 0.4 respectively.
Based on this assumption, about 60% of plant biomass would be avail-
able as yield at the early growing season and about 80% when harvested
at the end of the growing season. This method does not consider the
explicit allocation of accumulated biomass into shoot and root, nor the
impact of climate conditions on root development. In addition, the
simple RSR approach does not consider the fact that perennial grasses
such as switchgrass and miscanthus translocate nutrients to root during
the late growing season, which the plant remobilizes during the next
growing season (Ashworth et al., 2017; Massey et al., 2020). Such
nutrient cycling during different phases of plant growth reduces the
plant nutrient stress, resulting in high biomass production even in
low-productivity soil. Furthermore, the plant biomass death during
senescence and subsequent return to soil is not well simulated in SWAT.
For perennials, a fraction of biomass (generally 10%) dies off and is
added to soil organic matter during dormancy in SWAT. However,
SWAT does not account for the root and shoot biomass death separately
during the growing season, which affects the soil organic matter
dynamics.

2.2. DAYCENT grass growth sub-model

DAYCENT is a biogeochemical model that simulates the dynamics of
carbon, nitrogen, phosphorous, and sulfur for grassland, agricultural
land, forest, and savannas (Del Grosso et al., 2008; Parton et al., 1998).
The model has separate plant production sub-models for grass/crop,
forest, and savanna to predict biomass growth. Its grass growth
sub-model, detailed in Metherell et al. (1993), accounts for the dynamic
nature of biomass allocation to shoot and root based on plant growth
stage, climatic conditions, and nutrient availability. DAYCENT also
simulates shoot and root death and accounts for nutrient translocation
within the plant. For instance, if water or nutrients are limited, the plant
response would be to allocate more resources to roots (Davis et al., 2010;
Kantola et al., 2022). In this study, we incorporated DAYCENT’s grass
sub-model (see details in Appendix B) into SWAT to create the
SWAT-GRASSp model.

2.3. Modifications to potential biomass production

DAYCENT uses a simplified approach to estimate the leaf area index
as leaf area ratio (LAR) multiplied by total aboveground biomass. By
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default, LAR is set to a constant value of 0.01 for all crops/grasses.
However, LAR has been found to vary spatially (Zhang et al., 2018). The
SWAT requires LAI to compute rainfall interception by the plant canopy
and potential evapotranspiration (Neitsch et al., 2011), which subse-
quently affects plant water use. The use of a LAR coefficient for LAI
development in DAYCENT could reduce the performance of the inte-
grated model in simulating plant water use and biomass production
(Zhang et al., 2018). Thus, the calculation of potential biomass pro-
duction was further modified to incorporate the influence of seasonally
varying leaf area on solar radiation intercepted by the perennial grasses.
For this, an additional scaling factor, laiprod, used in the DAYCENT
forest sub-model, is introduced in Eq. (B.1). The new equation is as
follows:

tgprod = shwave X Tyyess X SMpress X Sdlng x CO2cpr x biof X laiprod
(€]

where, tgprod (g C/m?) is the potential biomass production on a given
day, shwave is downwelling solar radiation (Lg/day), SMy.ss is the soil
moisture effect, Tyyss is the temperature effect, Sding is the constraint on
biomass production representing the seedling growth, CO2cpr is the
effect of CO2 concentration on biomass production, scenfrac represents
the loss of biomass due to senescence, and biof is the effect of physical
obstruction by standing dead biomass.

laiprod =1 — exp(—k; x LAI) 2

where, k; is light extinction coefficient, and LAI is leaf area index
calculated by SWAT as:

LAL =LAl + ALAL; 3)

ALAL = (erAlmx.i _erAlmx.i—l) X LALy, x (1 —exp(5 x (LAIL-, — LAL,)))
4

where, ALAL is increment of leaf area index on day i, frramxi and
friamxi—1 are fraction of maximum leaf area index on day i and i-1, LAI;
and LAIL_; are leaf area indices on day i and i-1, and LAIL,, is the
maximum leaf area index for the plant.

The introduction of the scale factor laiprod was accompanied by the
substitution of soil moisture stress (SMgyess) in Eq. (B.1) with SWAT
estimated plant water stress (Stress,,). Stress,, is proportional to the ratio
of actual plant water uptake to potential evapotranspiration (Eq. (A.4)),
which is considered to be a good measure of water stress impact on
biomass production (Zhang et al.,, 2018). The newly integrated
SWAT-GRASS model with these modifications is referred to as
SWAT-GRASSy.

2.4. Field experimental sites

The SWAT and two versions of SWAT-GRASS models were evaluated
at five Great Lakes Bioenergy Research Center (GLBRC) field sites in
Michigan and Wisconsin (Escaban, Hancock, Rhinelander, Luxarbor,
and Lakecity) and three field sites across Illinois (Fairfield, Orr, and
Dekalb; selected from Arundale et al. (2014)) (referred to as AR sites)
(Fig. 1). For these sites, biomass yield data for the Cave-in-Rock cultivar
were available. The average annual precipitation and temperature range
between 766 and 1044 mm and 6 and 13 °C, respectively, across all eight
field sites (Table 1 and SI Figure S1). In general, switchgrass biomass
yield was higher in sites with warmer temperatures and higher precip-
itation (Hartman et al., 2012; Li et al., 2022).

2.5. Model setup

The SWAT and SWAT-GRASS models were setup for watersheds
(within which the field sites were located) using the geospatial inputs
listed in Table 2. In SWAT, Hydrologic Response Units (HRUs) are
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Fig. 1. Location of GLBRC and AR field sites.

generated by the unique combination of land use, soil, and slope within
a watershed. Here, we use the HRUs collocated with the switchgrass
field sites and further assign detailed management operations. The field-
level management operations were scheduled by date, consisting of
planting, fertilizer application, and harvesting, as detailed by Arundale
et al. (2014) for the AR sites and by Martinez-Feria and Basso (2020) for
the GLBRC sites (Table 1). Switchgrass was planted between May and
June and harvested every subsequent year between October and
November. The fertilizer application rates were based on Arundale et al.
(2014) and Martinez-Feria and Basso (2020). For additional information
on experimental design, see GLBRC data catalog at https://data.sustai
nability.glbrc.org/datatables and Arundale et al. (2014). The harvest-
ing efficiency (HARVEFF) of 0.8 was used based on settings from Ng
etal. (2010). The upland switchgrass plant growth parameters for SWAT
were adopted from the study by Cibin et al. (2016). For SWAT-GRASS,
upland switchgrass growth parameters were adopted from Davis et al.
(2010). The switchgrass growth parameters used in SWAT and
SWAT-GRASS are provided in SI Tables S1 and S2, respectively.

In the natural grassland ecosystem, the primary source of nitrogen is
wet and dry atmospheric deposition (Del Grosso et al., 2008). The at-
mospheric deposition of nitrogen tends to increase biomass production
in nitrogen-limited watersheds (Fernandez-Martinez et al., 2017; Sulli-
van and Gao, 2016). Given the relevance of atmospheric nitrogen
deposition on biomass production of grass, the wet and dry atmospheric
deposition rates reported by National Atmospheric Deposition Program
(NADP) (NADP, 2022) were used. The total annual wet and dry nitrogen
atmospheric deposition was computed for each site. The SWAT weather
data inputs were obtained from North American Land Data Assimilation
System (NLDAS-2) dataset (Xia et al., 2009). The model simulations for
GLBRC sites and AR sites were conducted from 2013 to 2021 and from
2005 to 2009/2011, respectively.

2.6. Model calibration and validation

We simultaneously calibrate the three models at multiple sites to
ensure parameter generality for testing sites. This approach helps in the
generalization of switchgrass growth parameters for application across
large areas (Zhang et al., 2008). The field-level biomass yield data from
GLBRC field sites (Martinez-Feria and Basso, 2020) and Arundale et al.
(2014) (Table 1) were used to optimize and evaluate the SWAT and
SWAT-GRASS for simulating upland switchgrass biomass yield. The
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Table 1
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Field sites used to calibrate and validate SWAT and SWAT-GRASS plant growth parameters for switchgrass.

Data source Location Latitude, Soil taxonomic class  Data record length ~ Annual Precipitation (mm)  Annual Average Temperature (°C)
Longitude
GLBRC Rhinelander, Wisconsin ~ 45.6656, Sandy loam 2014-2021 808 5.8
—89.2180
Hancock, Wisconsin 44.1129, Sand 2014-2021 838 8.0
—89.5334
*Escabana, Michigan 45.7627, Fine sandy loam 2014-2021 766 6.5
—87.1877
Lake City, Michigan 44.2961, Sand 2014-2021 852 7.8
—85.1996
*Lux Arbor, Michigan 42.4764, loam 2014-2021 933 9.5
—85.4519
Arundale et al. (2014) Fairfield, Illinois 38.95, Silt loam 2006-2009 1044 13.3
—88.96
Dekalb, Illinois 41.85, Silt loam 2006-2011 935 10.2
—88.85
*Orr, Illinois 39.81, Silt loam 2006-2011 973 12.5
—90.82

Note: * indicates the sites that were used for model calibration. The three sites selected here represent the two ends of the gradient from the cooler, drier, and low
productivity areas Escabana and Lux Arbor sites to the warmer, wetter, and high productivity Orr site.

Table 2
Geospatial inputs used for SWAT setup.
Data Resolution Source
Meteorology data 0.125° x NLDAS-2 (Xia et al., 2009)
0.125°
Digital Elevation 90m x 90 m  Shuttle Radar Topography Mission
Model (DEM) (SRTM) (Jarvis et al., 2008)
Land Use 30m x 30 m USDA NASS Cropland Data Layer (2008)
Soil Property 1:24,000 Soil Survey Geographic database

(SSURGO) (USDA-NRCS, 1994)

observed biomass yields from three field sites (Escabana, Orr, and
Luxarbor) were used to calibrate the models. By including these sites, we
aimed to ensure that the optimized model parameters would account for
the variability in temperature, precipitation, and soil productivity.
Sensitivity analysis and calibration of plant growth parameters were
carried out using the Sequential Uncertainty Fitting algorithm version 2
(SUFI-2) procedure in SWAT-CUP (Abbaspour et al., 2015). The
Kling-Gupta efficiency criterion (KGE) (Gupta et al., 2009) was used as
the objective function for model calibration. KGE ranges from -co to 1,
with a higher value of KGE indicating better model performance. We
further evaluated the model performance for simulated yield using
percent bias (PBIAS), correlation coefficient (R), and root mean square
error (RMSE) (Moriasi et al., 2007).

The SWAT plant growth parameters selected for sensitivity analysis
were based on prior studies (Cibin et al., 2016; Ng et al., 2010; Trybula
et al., 2015) and are listed in SI Table S3. The SWAT-GRASS plant
growth parameters selected for the sensitivity analysis were based on
previous studies (Chamberlain et al., 2011; Davis et al., 2010; Lee et al.,
2012) and are listed in SI Table S4. The sensitivity analysis, as described
above for SWAT, was implemented for SWAT-GRASS as well.

To establish confidence in the SWAT-GRASS model and the opti-
mized switchgrass growth parameters, we validated the model simu-
lated yield with independent biomass yield datasets for the remaining
five field sites (Hancock, Rhinelander, Lake City, Fairfield, and Dekalb)
from the GLBRC and AR sites that span across a range of climatic con-
ditions in different geographical regions (Illinois, Michigan, and Wis-
consin) (Fig. 1). We assessed the model prediction uncertainty by
estimating the P-factor and R-factor using SUFI-2. The P-factor quan-
tifies the fraction of observed data that falls within the 95% prediction
uncertainty (95PPU) band, ranging from O to 1. The R-factor is the ratio
between the width of the 95PPU band and the standard deviation of the
observed data, with values ranging from 0 to infinity. The P-factor close
to 1 and the R-factor close to 0 indicates low prediction uncertainty.

3. Results and discussion
3.1. Sensitivity analysis

Tables S3 and S4 list the SWAT and SWAT-GRASS plant growth
parameters used for sensitivity analysis. Using global sensitivity in SUFI-
2, the most sensitive parameters were identified and adjusted through
the calibration process with final optimal values shown in Tables 3 and
4. The SWAT model was found to be sensitive to BIO E, T_ OPT, T_BASE,
RSR2C, LAIMX2, and nutrient fraction parameters for nitrogen at three
stages of plant growth (i.e., PLTNFR1, PLTNFR2, and PLTNFR3) (SI
Figure §2), which is consistent with the sensitivity analysis results from
Trybula et al. (2015). PLTNFR2 was one of the most sensitive parameters
followed by PLTNFR1, which indicates that plant nitrogen cycling had a
major impact on SWAT-simulated switchgrass yield. PLTNFRs control
the amount of nitrogen in plant biomass that subsequently determines
the plant nitrogen demand and plant nutrient stress during plant growth.
BIO_E (radiation use efficiency) determines the daily biomass produc-
tion. LAIMX2 determines the LAI development and affects plant water
demand and photosynthetically active radiation. T OPT and T BASE
affect plant temperature stress and the timing of plant maturity. It is
worth noting that the adjustment of T OPT and T BASE to ca. 20.8 and
9.7 °C from their default values of 25 and 10 °C, respectively, intensified
the crop growth within a narrower temperature range, specifically

Table 3
Calibrated SWAT plant growth parameters for switchgrass biomass yield.
D Parameters  Description Range Fitted
used value
1 r.T OPT The optimal temperature for plant +20% —-17%
growth (°C)
2 r.T BASE Base temperature for plant growth +20% —3%
(9]
3 r.BIOE Radiation use efficiency (biomass/ +40% 33%
energy ratio)
4 r PLTNFR1 Plant nitrogen fraction at emergence +50% 17%
5 r PLTNFR2 Plant nitrogen fraction at 50% +50% 26%
maturity
6 r PLTNFR3 Plant nitrogen fraction at maturity +50% 47%
9 v LAIMX2 Fraction of the leaf area index 0.8 to 0.921
corresponding to the 2nd. point on the ~ 0.95
optimal leaf area development curve
10 v.RSR2C Root fraction at the end of the growing ~ 0.35 to 0.398
season 0.60

Note: Here r and v represent the relative change and replacement of model
parameters by adjusted value.
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Table 4

Calibrated SWAT-GRASS plant growth parameters for switchgrass biomass yield.
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ID  Parameters Description Range Fitted Values
used
SWAT-GRASSp SWAT-GRASSy
1 r.T.OPT optimal temperature for plant growth (°C) +40% —14% 7%
2 r. T BASE base temperature for plant growth (°C) +40% 23% 24%
3 v_.DLAI fraction of growing season when leaf area starts declining 0.8to0 1.2 1.045 1.014
4 v_.LAIMX1 fraction of the max. leaf area index corresponding to the 1st. point on the optimal leaf area development ~ 0.05 to - 0.100
curve 0.10
5 r. FRGRW1 fraction of the plant growing season corresponding to the 1st. point on the optimal leaf area development ~ +20% - 5%
curve
6 r FRGRW2 fraction of the plant growing season corresponding to the 2nd. point on the optimal leaf area +20% - 0.7%
development curve
7 r.ppdf(2) maximum temperature for plant growth (°C) +30% 11% —0.8%
8 r-ppdf(3) left curve shape parameter that controls temperature effect on plant growth +30% 12% 13%
9 r_ppdf(4) right curve shape parameter that controls temperature effect on plant growth +30% 21% —5%
10  vprdx potential aboveground monthly biomass production (g C/m?) 0.5 to 4.0 2.809 2.161
11  vriint root impact intercept that controls the impact of root biomass on nutrient availability 0.4 to 1.0 0.487 0.834
12 v_cfrten(1) maximum fraction of carbon allocated to roots under maximum nutrient stress 0.5to 0.7 0.502 0.630
13 v.cfrten(2) minimum fraction of carbon allocated to roots in the absence of nutrient stress 0.2t0 0.3 0.334 0.357
14 v.cfrtew(1) minimum fraction of carbon allocated to roots under maximum water stress 0.4 to0 0.7 0.618 0.599
15 v_cfrtew(2) minimum fraction of carbon allocated to roots in the absence of water stress 0.2to 0.3 0.355 0.308
16 v.erprtf(1) fraction of N transferred to a vegetation storage pool at death 0.50 to 0.861 0.791
0.95
17  vpramn minimum aboveground C:N ratio with zero biomass 15to 25 - 17.097
(1L,D
18  vpramn minimum aboveground C:N ratio with biomass equal to biomax 40 to 80 74.355 68.158
(1,2)
19  rpramx maximum aboveground C:N ratio with biomass equal to biomax +20% - 13%
(1,2)
20  vprbmn intercept for calculating the minimum C:N ratio for belowground biomass as a linear function of annual 40 to 60 42.239 49.864
(1,1) precipitation
21 vyprbmn slope for calculating the minimum C:N ratio for belowground biomass as a linear function of annual 0.0 to 1.0 - 0.113
(1,2) precipitation
22 r.clsgres late season crop growth restriction factor +20% —-10% —2%
23 r.biomax biomass level above which the minimum and maximum C:E ratios of new shoot increments equal pramn ~ +30% - 1.2%
(:,2) and pramx (:,2) respectively (g biomass/m?)
24 ypltmrf plant mature root fraction 0.8to 1.0 0.955 0.987
25 v_fallrt fall rate (fraction of standing dead which falls each month) 0.005 to 0.009 0.096
0.15

Note: Here r and v represent the relative change and replacement of model parameters by adjusted value.

between T BASE to 2 x T OPT-T BASE. This adjustment resulted in
higher sensitivity of biomass production to temperature stress.

Both SWAT-GRASSp and SWAT-GRASSy; were found to be sensitive
to T_OPT, T_BASE, ppdf(2), ppdf(3), ppdf(4), prdx, riint, cfrtcn(2), crptf
(1), clsgres, pltmrf, and fallrt (SI Figures S3 and S4). The parameters
pramn(1,2) and pramx(1,2) regulate the C:N ratio of aboveground and
belowground biomass. T_OPT and T BASE in conjunction with ppdf(2),
ppdf(3), and ppdf(4) determine the plant’s response to changes in at-
mospheric temperature and control the timing of plant maturity. prdx is
the maximum potential monthly biomass production rate that affects
daily biomass production. cfrtcn(2) affects the biomass allocation to
roots under nitrogen stress. crptf(1) determines the nitrogen trans-
location from the shoot to the root during the late growing season. clsgres
regulates the late-season growth of the plant. pltmrf is the planting
month reduction factor that scales the plant growing from seedlings.
fallrt regulates the rate at which standing dead biomass is transferred to
surface litter. For SWAT-GRASSp, the most sensitive parameter was
fallrt, followed by T BASE, DLAI prdx, T_OPT, crprtf(1), ppdf(2), and
pltmrf (SI Figure S3). Similarly, for SWAT-GRASS);, the most sensitive
parameter was prdx, followed by fallrt, DLAL, T BASE, T OPT, ppdf(2),
and FRGRWI (SI Figure S4).

These results indicate that the parameters regulating the plant ni-
trogen cycle, such as plant nitrogen use efficiency and the impact of
nitrogen stress on biomass production, are critical factors in determining
biomass yield in SWAT. Meanwhile, parameters that regulate the plant
growth response to temperature changes and plant growth processes
during senescence were critical factors for biomass yield in SWAT—
GRASSp and SWAT-GRASS);. Overall, these findings provide insights
into the key parameters that should be considered when predicting

biomass production using SWAT, SWAT-GRASSp, and SWAT-GRASSy
models.

3.2. Model calibration and validation for biomass simulation

3.2.1. Calibration

SWAT, SWAT-GRASSp, and SWAT-GRASS) were able to capture the
variability in biomass yield with R > 0.5 (Fig. 2). The PBIAS was found
to be within +25% and KGE > 0.45 for all three models (Fig. 2), indi-
cating low bias in model performance. These results demonstrate the
ability of all three models to reasonably simulate biomass yield across
the three calibration sites. Among the three models, SWAT achieved the
least bias, while SWAT-GRASSy performed the best in terms of
capturing the variability in observed biomass yield. SWAT-GRASSy
exhibited improved accuracy in simulating the standard deviation of
observed biomass yield across the calibration sites (2.4 Mg/ha vs.
observed standard deviation of 2.9 Mg/ha), while SWAT (2.0 Mg/ha)
and SWAT-GRASSp (2.1 Mg/ha) underestimated variability. SWAT—-
GRASSp performed the least in terms of R, KGE, and RMSE. With the
modifications introduced in SWAT-GRASS);, the SWAT-GRASS) shows
considerable improvement in simulating biomass yield.

At the individual site level, the performance metrics of the three
models vary across the field sites (Fig. 3). For example, both SWAT—-
GRASSp and SWAT-GRASS) outperformed SWAT in simulating biomass
yield for Escabana in terms of R and KGE. Likewise, at Lux Arbor,
SWAT-GRASSp performed modestly better in terms of KGE, while
SWAT-GRASS)y; exhibited substantial improvement in terms of both R
and KGE compared to SWAT. On the other hand, at Orr, SWAT-GRASSp
performed poorly than SWAT in terms of KGE, RMSE, and PBIAS, and
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Fig. 2. Scatter plots of SWAT, SWAT-GRASSp, and SWAT-GRASS); simulated and observed annual dry weight biomass yield for all calibration sites.
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Fig. 3. Scatter plots of SWAT, SWAT-GRASSp, and SWAT-GRASSy simulated and observed annual dry weight biomass yield for individual calibration field sites.

simulated biomass yield substantially worse than SWAT-GRASSy, outperform the other two models in terms of all metrics and at all sites,
which still had lower KGE and RMSE than SWAT. In general, the cali- indicating that each of these three models has their own strengths and
bration results show that none of the three models can consistently weaknesses. This result also demonstrates that the plant growth
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processes are complex, and it is difficult to identify a single optimum
algorithm.

3.2.2. Validation

Across the five validation sites, SWAT, SWAT-GRASSp, and
SWAT-GRASS)y; simulated average annual biomass yields of 8.9, 7.7,
and 7.8 Mg/ha, respectively, compared to the observed value of 7.1 Mg/
ha. SWAT performed satisfactorily with a KGE of 0.37 and a PBIAS of
—25.77%. In comparison, SWAT-GRASS, achieved a higher KGE (0.46)
and reduced PBIAS (—8.67%) and RMSE (0.45) compared to SWAT.
SWAT-GRASS); modestly outperformed SWAT-GRASSp, with an R of
0.55, RMSE of 0.44, and a KGE of 0.47 (Fig. 4). We found that the model
performance was substantially influenced by the underestimation of two
instances of high yields (16 Mg/ha) observed at Fairfield in 2007 and
2008. Assuming these points as outliers, SWAT-GRASS); achieved a
substantial improvement in the simulation of biomass yield compared to
both SWAT and SWAT-GRASSp in terms of R (0.58 vs 0.42 and 0.51),
RMSE (0.42 vs 0.53 and 0.44), and KGE (0.54 vs 0.28 and 0.48),
respectively.

Fig. 5 compares the observed and simulated biomass yield at each
validation field site and demonstrates that model performance varied
considerably across validation field sites (Hancock, Rhinelander, Lake
City, Fairfield, and Dekalb) and between the models during validation.
The observed mean dry weight biomass yield varies considerably across
the field sites, ranging from 3.6 to 13.8 Mg/ha. In general, the three
models simulated mean biomass yield well at Rhinelander, Lake City,
and Fairfield, but showed large bias at Hancock and Dekalb (Table S5).
The varied performance of the models across different sites could be
caused by the accuracy of observed yield data and other input data, such
as soil properties and management practices.

Across the five validation sites, SWAT-GRASSy; provided compara-
ble or improved performance when compared to SWAT and SWAT--
GRASSp, in terms of R and KGE, across the validation sites (Fig. 5). For
most sites, both SWAT-GRASSp and SWAT-GRASS)y; demonstrate good
performance as indicated by R and KGE values, except for Fairfield and
Hancock. It is also worth noting that SWAT-GRASSy achieved compa-
rable PBIAS compared with SWAT and SWAT-GRASSp, at Rhinelander,
and Fairfield, and lower PBIAS at Hancock, Lake City, and Dekalb.
Meanwhile, SWAT achieved lower RMSE at Lake City and Fairfield
compared with SWAT-GRASSp and SWAT-GRASSy;. Similar to the
calibration results, although none of the three models can outperform
the other two in terms of all metrics and at all sites, SWAT-GRASSy
provided the best overall performance.

3.2.3. Uncertainty analysis

We calculated the P-factor and R-factor for biomass yield at the eight
field sites using the final calibrated parameter ranges. The values of P-
factor and R-factor are listed in SI Table S6. The P-factor ranged from
0.13 to 0.63, 0.38 to 0.67, and 0.38 to 0.83 for SWAT, SWAT-GRASSp,

SWAT SWAT-GRASSp

R=0.57, KGE=0.37
PBIAS=-25.77, RMSE=0.49

Simulated Yield (Mg/ha)
5

— y=0.35x +6.41
"""" 1:1 line
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5 10 15 5
Observed Yield (Mg/ha)

R=0.53, KGE=0.46
PBIAS=-8.67, RMSE=0.45

Observed Yield (Mg/ha)

Environmental Modelling and Software 170 (2023) 105834

and SWAT-GRASS);, respectively. The R-factor ranged from 0.62 to
1.11, 0.97 to 2.18, and 1.73 to 3.10 for SWAT, SWAT-GRASSp, and
SWAT-GRASSy,, respectively. In general, SWAT-GRASS); and SWAT--
GRASSp obtained P-factor values closer to 1 (or the fraction of obser-
vations covered in the 95% confidence interval) than SWAT. Notably,
the changes made in SWAT-GRASS)y helped it obtain slightly greater P-
factor and R-factor values than SWAT-GRASSp. These results indicate
that the modification of crop growth made the model to better represent
the uncertainties associated with switchgrass yield prediction.

3.3. Assessment of model simulated leaf area index

LAI is an important plant parameter for all three models for simu-
lating plant growth. As measured LAI data for the field sites were not
available, we used regression-estimated LAI to qualitatively assess the
model ability to accurately represent LAI dynamics. We compared the
seasonal development of LAI simulated by SWAT, SWAT-GRASSp, and
SWAT-GRASS); against the regression-estimated seasonal LAI for up-
land switchgrass by Madakadze et al. (1998), hereafter referred to as
CTRL (Fig. 6). The regression model is based on LAI data measured until
the late summer months. Therefore, to ensure consistency, we qualita-
tively evaluate the simulated LAI values only up to August.

SWAT and SWAT-GRASSp exhibited earlier and more rapid LAI
development than the CTRL data, while SWAT-GRASS); simulates lower
and gradual LAI development from mid-spring months that matches well
with CTRL. The broad temperature ranges for SWAT-GRASSp within
which biomass production can take place, allow for plant growth in
early spring that contribute to early LAI development. In contrast, the
relatively high T_BASE and narrow temperature range for plant growth
(T BASE = 12.4, ppdf(2) = 49.6, and ppdf(4) = 2.39) in SWAT-GRASSy
limited plant growth in cooler early spring months. All three models
simulate a rapid increase in LAI during the early summer months before
reaching its peak value in July, in alignment with the CTRL data. Also,
all three models simulate a gradual decline from July to August. Among
the three models, SWAT-GRASSy; overall better represented the sea-
sonal dynamics of LAL specifically in spring and early summer. This is
likely a reason explaining the overall better performance of
SWAT-GRASSy.

3.4. Assessment of model simulated root to shoot ratio

Fig. 7 compares the simulated RSR across all sites for October. As
described in Appendix A, SWAT calculates RSR as a function of potential
heat unit (PHU), which resulted in a nearly constant RSR (0.66-0.67) at
harvest. In contrast, SWAT-GRASSp and SWAT-GRASSy; simulated RSR
with much higher variability, ranging from 0.55 to 0.90 and 0.62 to
1.05, respectively. The high RSR variability in SWAT-GRASSp and
SWAT-GRASS); results from the impacts of temperature, water, and
nutrient on the biomass allocation between root and shoot, which

SWAT-GRASSy

R=0.55, KGE=0.47
PBIAS=-9.64, RMSE=0.44

y=0.39 x + 4.91 — y=0.41x+4.86
"""" 1:1 line ° == g {2
yield e yield
10 15 5 10 15

Observed Yield (Mg/ha)

Fig. 4. SWAT, SWAT-GRASSp, and SWAT-GRASS)y; simulated annual dry weight biomass yield for all validation sites.
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Fig. 6. Comparison of SWAT, SWAT-GRASSp, and SWAT-GRASS), simulated
LAI with regression model fitted LAI (Madakadze et al., 1998), where shading
represents 95% confidence limits.

differed among the sites. In general, SWAT-GRASSp and SWAT-GRASSy,
allocate a high proportion of biomass to roots in warmer and wetter
locations (i.e., AR sites). Specifically, the RSR value is high for Fairfield,
Orr, and Dekalb, which receive high annual precipitation (>934 mm).

The RSR values fall well within the broad range of values (0.19-3.07)
reported in previous observation-based studies (Frank et al., 2004; Jung
and Lal, 2011; Sainju et al., 2017; Wayman et al., 2014; Zan et al., 2001).
The RSR simulated with the three models in this study is somewhat
similar to the RSR reported by Wayman et al. (2014), 0.88-0.95, in
Nebraska and Pennsylvania where mean annual precipitation ranged
between 700 and 1120 mm, and by Zan et al. (2001), which reported

Fig. 7. Comparison of SWAT, SWAT-GRASSp, and SWAT-GRASSy; simulated
site averaged mean root-to-shoot ratio (RSR) for October. The color gradient
represents the average annual temperature for each site.

RSR in the lower range of 0.4-0.7 in Quebec, Canada, with a mean air
temperature of 6.5 °C and an annual precipitation of 1062 mm. It is also
worth noting that other studies reported contrary findings. For example,
Jung and Lal (2011), reported the RSR of 0.19-0.56 in Ohio which is
smaller than the RSR estimated in this study. Sainju et al. (2017) re-
ported high RSR in the range of 1.39-3.07 in Montana, which received
low annual precipitation of 271-453 mm. These findings highlight that
the variability of biomass allocation is not only influenced by climate
conditions but also by nutrient and water management. Nonetheless, the
observed RSR values are highly variable, therefore the constant RSR
simulated by SWAT is not realistic. The observational data also
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corroborate that both SWAT-GRASSp and SWAT-GRASS); can represent
the effects of climate on root and shoot development.

3.5. Assessment of model simulated hydrological process and nitrogen
cycle

We evaluated the impact of the differences in biomass production
and LAI development as simulated by SWAT, SWAT-GRASSp, and
SWAT-GRASS)y; on both hydrological processes and the nitrogen cycle.
In general, the seasonal cycle of surface runoff, evapotranspiration, soil
moisture content, and groundwater percolation simulated by SWAT,
SWAT-GRASSp, and SWAT-GRASS)y; were similar (SI Figure S5), with
small variations arising from the differences in biomass production and
LAI development (Fig. 6). In contrast, we found substantial differences
in the seasonal plant nitrogen uptake and total soil nitrate content
simulated by the models, particularly during the early growing season
(SI Figure S6). SWAT and SWAT-GRASSp simulated high plant nitrogen
uptake during the early growing season (Figure S6a) as reflected by the
early LAI development (Fig. 6). Meanwhile, SWAT-GRASS); exhibited
lower nitrogen uptake during this period, leading to an increase in soil
nitrate content (Figure S6b).

3.6. Strengths, limitations, and future directions of the SWAT-GRASS
model

This study integrated and modified the DAYCENT grass sub-model
into SWAT to improve the representation of biomass production,
biomass allocation, and nutrient content of perennial grasses, using
switchgrass as an example. SWAT considers climate conditions and
nutrient availability in biomass production but does not fully account for
their influence on root and shoot biomass allocation. While SWAT can
satisfactorily simulate the biomass yield, it fails to simulate the high
variability observed in root biomass allocation under different climatic
conditions. This limits SWAT’s ability to provide a credible under-
standing of the complex interactions between climate conditions, bio-
energy feedstock production, and soil biogeochemistry. The
SWAT-GRASSp, which incorporates the DAYCENT grass sub-model into
SWAT, addresses this limitation but falls short in certain aspects. For
example, SWAT-GRASSp does not explicitly account for the influence of
canopy leaf area on the interception of incident solar radiation and
biomass production, resulting in early plant growth and overestimation
of biomass allocation and LAI in the early growing season. The intro-
duction of an additional scaling factor that incorporates the influence of
LAI dynamics in the SWAT-GRASS) provides an improved estimation of
biomass yield and LAI development.

Although none of the three models examined here can consistently
outperform the others in terms of all metrics, the results show that the
overall performance of SWAT-GRASS); is comparable to or better than
SWAT and SWAT-GRASSp, in simulating switchgrass biomass yield, in
terms of R, KGE, and PBIAS for most cases. The improved performance of
SWAT-GRASSy in investigating the suitability of perennial grass such as
switchgrass for biomass production, which in conjunction with other
capabilities within SWAT (e.g., water quantity and quality) (Arnold
et al., 1998; Neitsch et al., 2011) and SWAT-Carbon (e.g., soil organic
carbon and riverine carbon fluxes) (Liang et al., 2022; Qi et al., 2020;
Zhang, 2018) makes it a powerful tool to study environmental impacts of
using perennial grasses at the regional scale.

Note that, despite the more comprehensive algorithms in the two
SWAT-GRASS models that can better represent the aboveground and
belowground biomass development as influenced by climate, nutrients,
and water, multiple aspects of the new models could be further
improved, such as the representation of processes related to the inter-
ception of solar radiation, and the development of roots in the soil col-
umn. The current model assumes the root depth of the perennial plant to
be equal to 3 m or to span the entire depth of the soil column for the
entire growing period. The root depth and distribution could affect plant
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water and nutrient uptake, as well as the distribution of soil organic
matter. In addition, unlike SWAT, the two SWAT-GRASS models do not
consider the influence of vapor pressure deficit on radiation use effi-
ciency and subsequently impact biomass production. Therefore, further
work is deserved to improve these processes in SWAT-GRASS to better
simulate plant growth and biomass production of perennial grass.

Additionally, several parameters used by the two SWAT-GRASS
models, such as the fraction of nutrients allocated to the root during
the late growing season, vary at different ages of perennial plants. The
current modification assumes that these parameters remain static
throughout the lifespan of the plant. This approach could result in un-
certainties regarding the model’s ability to simulate nutrient uptake
from soil and nutrient allocation to different plant parts. Also, compre-
hensive data to evaluate the model capability of representing the
development of LAI, aboveground biomass, and belowground biomass
were rarely available. Therefore, more comprehensive model assess-
ment awaits future research.

Collectively, the integration and modification of the new grass sub-
model, which accounts for water, temperature, and nutrient stress on
biomass production and allocation to plant shoot and roots, can provide
reasonable (i.e. similar or better) simulation of biomass yield compared
to SWAT. Particularly the SWAT-GRASS)y; holds promise in simulating
LAI and root and shoot development under diverse climate and man-
agement conditions more realistically. These new capabilities make it a
promising tool to support future studies that examine the potential of
switchgrass and other perennial grasses for biomass production and
their subsequent environmental impacts and benefits. We share the new
model https://sites.google.com/view/swat-carbon to facilitate future
efforts to apply and further enhance the model developed in this study.

4. Conclusion

We integrated and modified the DAYCENT grass growth module into
the SWAT model to improve the simulation of biomass production for
perennial grasses, using switchgrass as a test example. In addition to
using the default algorithms in DAYCENT (SWAT-GRASSp), we also
revised the calculation of potential biomass production (SWAT—
GRASS)) to incorporate the effect of LAI dynamics. Overall, the model
improvement includes four major aspects: (1) process-based biomass
allocation to root and shoot that accounts for the influence of the
nutrient and water stress, such that more biomass is allocated to the root
with an increase in stress; (2) process-based algorithms for plant nutrient
demand and uptake during the growing period, and nutrient trans-
location during senescence; (3) biomass loss as surface litter/residue to
the soil during plant growth and senescence; (4) scaling of potential
biomass production by LAI to represent the seasonal changes in the
interception of solar radiation by the plant.

All three models (i.e., SWAT, SWAT-GRASSp, and SWAT-GRASSy)
were evaluated at eight field sites (with diverse climatic conditions) in
Wisconsin, Michigan, and Illinois for biomass yield simulation. Both
SWAT-GRASSp and SWAT-GRASS); satisfactorily simulated observed
yields, and their performance metrics were comparable to or better than
those of SWAT at the evaluation sites. Particularly, SWAT-GRASSp and
SWAT-GRASS); can explicitly simulate root and shoot growth as influ-
enced by climate, nutrient, and water conditions, thereby providing
more realistic estimation of the allocation of accumulated biomass and
nutrients between aboveground and belowground biomass pools. This
feature is critical for reliable estimates of the role of root in nutrient and
carbon cycling. Notably, SWAT-GRASSy in general outperformed
SWAT-GRASSp, in terms of both biomass yield and seasonal LAI devel-
opment. Overall, incorporating DAYCENT’s grass module into SWAT
added important capabilities to the model for credible assessment of
agronomic and environmental impacts of growing perennial grasses for
biomass production. The new integrated SWAT-GRASS)y; model is a
public domain model to support future efforts in sustainable bioenergy
production.
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Appendix A. The SWAT model’s grass growth processes
A.1 Biomass allocation

The SWAT vegetation growth sub-model simulates biomass production of the entire plant as a single entity and utilizes empirical relationships to
partition above and belowground biomass using the parameter plant root fraction (RF). The temporal evolution of RF is calculated in SWAT as a
function of potential heat unit accumulation (PHU) and user-defined plant-specific root fraction at the planting (rsr1) and maturity (rsr2) of the
growing season of plant growth (Neitsch et al., 2011).

RF =rsry — (rsry — rsry) x PHU (A.1)
The plant root fraction is then used to calculate the aboveground biomass as

aboveground biomass = (1 — RF) X total plant biomass (A.2)

A.2 Plant growth constraints

SWAT incorporates multiple stress factors to limit plant biomass production. SWAT calculates temperature, water, nitrogen, and phosphorus stress
at a scale of 0-1 (0 representing the maximum stress and 1 indicating no stress) (Neitsch et al., 2011). The most limiting factor among the four plant
stress is then used to adjust the potential biomass production.
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Where, Tq,(°C) is the average air temperature, Toy(°C) is the optimum temperature for plant growth, Ty (°C) is the base temperature for plant
growth, Wocnanp (mm H20/day) is the actual plant water uptake, E; (mm Hy0/day) is the maximum plant transpiration, ¢y is the scaling factor for
nutrient E = N, P (nitrogen, N and phosphorous, P), biog (kg E/ha) is the amount of nutrient E in plant biomass, and biog qy; (kg E/ha) is the optimal
amount of nutrient E in plant biomass, and Stressr, Stressy, and Stressg_y p (unitless) are temperature, water, and nutrient stress respectively.
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A.3 Plant nutrient demand

In the SWAT model, the daily nutrient uptake by plant is calculated as a function of the difference between plant actual nutrient content and plant
optimal nutrient content, and soil nutrient availability. The plant-specific parameters for nutrient fraction parameters for each nutrient (nitrogen and
phosphorous) which characterizes the optimal contents of nutrients in the plant at three growth stages (emergence, 50% maturity, and maturity).
Nutrient fraction parameters for nitrogen (PLTNFR) and phosphorus (PLTPFR) are defined at the three growth stages and used to calculate the plant
optimal nutrient content at different stages of plant growth. Furthermore, SWAT uses two plant-specific parameters, the fraction of nitrogen (CPNYLD)
and phosphorus (CPPYLD) in aboveground biomass at harvest, to calculate the amount of nutrients removed during harvest operation that subse-
quently affects the nutrients added to soil from harvest residue.

Appendix B. The DAYCENT model’s grass growth processes
B.1 Potential biomass production

Incoming solar radiation is provided as an input to the vegetation growth sub-model for estimating the potential biomass production. The potential
plant biomass production is calculated as a function of a plant-specific maximum monthly biomass production and scaled by six terms (values between
0 and 1) that represent the effects of climatic conditions and plant phenology, respectively. DAYCENT uses the multiplication of stress factors under
the assumption that the interactions of multiple stress factors limit plant biomass production (Del Grosso et al., 2008).

tgprod = shwave X prdx X Tyyess X SMyess X Sdlng x CO2cpr X scenfrac x biof (B.1)

where, tgprod (g ¢/m?) is the potential biomass production on a given day, shwave is downwelling solar radiation (Lg/day), SMy.ss (unitless) is the soil
moisture effect calculated as a function of relative soil water content fraction, Tgyess (unitless) is the temperature effect, Sding (unitless) is the constraint
on biomass production representing the seedling growth, CO2cpr (unitless) is the effect of CO2 concentration on biomass production, scenfrac rep-
resents the loss of biomass due to senescence, and biof (unitless) is the effect of physical obstruction by standing dead biomass.

Xp (I;;Z;Eii X (l — frac”/’df (4))> X (fmd”’df (3)) if frac >0

0 if frac<O0

(B.2)

Ttress =

. ppdf(2) — Tavg
o B.3
Jrac ppdf(2) — ppdf(1) ®3

where, Tavg is the average air temperature (°C), ppdf(1) is the minimum temperature for plant growth (°C), ppdf(2) is the optimum temperature for
plant growth (°C), ppdf(3) is the left shape coefficient of the function curve of temperature effect on growth, and ppdf(4) is the right shape coefficient of
the function curve of temperature effect on growth

10 - if PET > 0.01
SM s = 4 (1.0 +exp(9.0  (wscoeff (1) — cwstress))) (B.4)

0.01 if PET < 0.01

where, wscoeff(1) (unitless) is the relative water content required for 50% of maximum production and cwstress (unitless) is the relative water content
of the wettest soil layer.

SWC, — WP,)

B.5
FC, — WP, (B.5)

cwstres = max(

where, SWC;, WP;, and FC; are, respectively, the soil water content (cm H30), soil water content at wilting point (cm H30), and soil water content at
field capacity (cm H30) of soil layer L

(co2ipr — 1)

2epr=1+4 LT~ )
CO2epr=1+ 1072.0)

co2
[ x log 10(%) (B.6)

where, co2ipr (unitless) is the plant production ratio when atmospheric CO= concentration is doubled, co2 is atmospheric CO2 concentration (ppmv).

(1 — pltmrf)

MIN | 1.0, pltmrf + aglive x
Sfulcan

) when PHU < 0.25

Sding = (B.7)

1 when PHU > 0.25

where, pltmrf (unitless) is the reduction factor to limit the seedling growth, aglivc is aboveground live carbon (g C/m?), and fulcan is aboveground live
carbon full canopy cover (g C/m?)
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li li

bioprd + 0.75 x (1 — bioprd) x ZE2¢ i 98IV o

bioc bioc
li li
biof = { bioprd +0.75 x (1 — bioprd) + 0.25 x (1 — bioprd) x | 282 1) i 1 <8< (B.8)
bioc bioc
biof =1 i 98¢5 5
bioc
bioc
joprd—1 — —22¢___ B.

bioprd biok5 + bioc (B.9)

stdcis + 0.1 X $0Lysq(surfuce)
bioc= 14 0.1 if stdcis + 0.1 X $0l,sq(surface) < 0 (B.10)
pmxbio if stdcis + 0.1 X $0l,sq(surface) > pmxbio

where, biok5 is (standing dead+10% surface litter) carbon at which production is reduced to half maximum due to physical obstruction by dead
material (g C/m?), pmxbio is the maximum standing dead biomass +10% surface litter carbon for calculation of the potential negative effect of physical
obstruction by standing dead and surface litter on biomass production (g G/m?), stdcis is standing dead carbon (g C/m?), sol,sq (surface) is plant residue
carbon in surface soil layer (g C/m?). For compatibility with SWAT, biomass production ceases when the accumulated potential heat unit exceeds 1 (i.
e. plant maturity).

B.2 Actual biomass production and allocation

The plant-specific parameters are used to estimate the RF (unitless) to allocate the potential biomass production to the different plant compart-
ments (aboveground and belowground). The optimum RF is calculated as a function of four plant-specific parameters (cfrtcn(1), cfrtcn(2), cfrtcw(1),
cfrtew(2)), that represents the maximum and minimum fraction of carbon allocated to root under nutrient and water stress.

RF = (cfrtew(1) + cfrtew(2) + cfrten(1) + cfrten(2)) /4.0 (B.11)

The calculated optimum RF is then used to partition the potential plant biomass into aboveground and belowground components. In addition, the
optimum RF is used to compute the plant nutrient demand taking into account the impact of root biomass (rtimp) on the availability of nutrients from
the soil.

The nutrient uptake by the aboveground and belowground biomass is dependent on the availability of nutrients and nutrient content of the plant
which is further constrained between plant-specific upper and lower nutrient limits set for both plant compartments. To adjust for changes in nutrient
content as the plant ages, the limits of the nutrient content of aboveground biomass are calculated as a function of aboveground biomass. Meanwhile,
the limits of the nutrient content of belowground biomass are calculated as a function of annual precipitation. The most limiting nutrient is then used
to scale the potential biomass production and calculate the actual biomass production and corresponding nutrient concentration and nutrient uptake.
A linear relationship is then used to estimate the impact of water and nutrient limitations on the allocation of actual biomass between shoot and root.
The water limitation is calculated as a function of soil moisture effect on potential production and plant-specific parameter cftrcw. The nutrient
limitation is calculated as a function of nutrient stress and plant-specific parameter cftrcn. The most limiting factor between the water and nutrient
limitation is used to determine the actual fraction of biomass allocated to the root. This approach incorporates the plant’s response to water and
nutrient stress such that more allocation of biomass to the root takes place when water and nutrient stress increases.

Sfracrec = max(h2oeff , ntreff (iel)) (B.12)
h2oeff = (cftrew(2) — cftrew(1)) X (SMyess — 1) + cfrtew(2) (B.13)
ntreff (iel) = (cftren(2) — cftren(1)) x (% - 1) + cfrten(2) (B.14)

where, iel represents nutrients nitrogen or phosphorous, totale(iel) is the nutrient iel (nitrogen or phosphorous) available for biomass production (g E/
mz), and demand(iel) is plant demand of nutrient iel for optimum biomass production (g E/m2).
The potential aboveground and belowground biomass is then calculated as

bgprod =tgprod * fracrc (B.15)
agprod = tgprod — bgprod (B.16)

where, tgprod is total plant biomass (g/m?), agprod is aboveground biomass (g/m?), and bgprod is belowground biomass (g/m?). The belowground
biomass is further categorized into juvenile and mature roots.

B.3 Shoot and root die-off

Unlike SWAT, the death of shoot and root is simulated in the growing season. The shoot and root death are determined by soil moisture, soil
temperature, and plant-specific maximum senescence parameters. Root death takes place when the soil temperature is greater than 2 °C. In senescence
months (i.e., when PHU > Fraction of growing season when leaf area starts declining, DLAI) shoot death rate is set to a fixed plant-specific fraction
fsdeth(2). The dead shoot biomass (standing dead) is transferred to the surface soil layer (0-10 cm) as the plant residue at the plant-specific fall rate
(fallrt). Meanwhile, the dead root biomass is distributed to different soil layers based on the depth distribution of roots in the soil column following the
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approach used by SWAT during plant kill operations. During dormancy, SWAT assumes 10% of plant biomass is returned to the surface soil layer as
plant residue, which is adopted in the new sub-model.
B.4 Plant nutrient storage

The DAYCENT grass sub-model simulates the nutrient flow for the nutrient storage pool in addition to the nutrient flow for each plant
compartment. A fraction of nutrients from aboveground biomass which is converted to standing dead material is transferred to the nutrient storage
pool during the growing season. In addition, a fraction of nutrient uptake by the plant from the soil during the late growing season is allocated to the
nutrient storage pool. The nutrients accumulated in the storage pool are remobilized by the plant during the early growth phase such that plants use
nutrients in the storage pool before utilizing soil nutrients for biomass production.

Nutrient uptake from the internal plant storage pool by each plant compartment is calculated as

| uptakeorage il X €utfapove % (1.0 — clsgres) if PHU > 0.8
up[akeﬂbv\'c’ B { uptake:mmgr,iel X eufabove lf PHU < 0.8 (B'l7)
uptakepeio, = uptakesorage it X €Ufpeiow (B.18)
Nutrient flow into the internal plant storage pool is calculated as.

Step 1. Obtained from the conversion of aboveground live biomass to standing dead

storage(iel) = fdeth x aglive(iel) x crprif (iel) (B.19)
Step 2. Obtained from soil nutrient uptake during the late growing season

storage(iel) = uptakepijer X eUfapove X clsgres if PHU > 0.8 (B.20)

where, uptake, i is the plant uptake of nutrient iel from soil (g E/m?), uptakegorage el is plant uptake of nutrient iel from the internal storage pool (g E/
m?), fdeth is the death rate of shoots to standing dead, aglive(iel) is the concentration of nutrient iel in the plant (g E/m?), clsgres is late growing season
restriction factor (0-1), crprtf(ieD is the fraction of nutrient iel translocated from aboveground biomass at death, eufgpy. is the fraction of nutrient
uptake from aboveground biomass, and eufy,y is the fraction of nutrient uptake from belowground biomass.
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