Check for
Updates

Custom High-Performance Vector Code Generation for
Data-Specific Sparse Computations

Marcos Horro®
marcos.horro@udc.es
Universidade da Corufa, CITIC
A Coruiia, Spain

Gabriel Rodriguez
gabriel.rodriguez@udc.es
Universidade da Corufia, CITIC
A Coruna, Spain

Abstract

Sparse computations, such as sparse matrix-dense vector multipli-
cation, are notoriously hard to optimize due to their irregularity and
memory-boundedness. Solutions to improve the performance of
sparse computations have been proposed, ranging from hardware-
based such as gather-scatter instructions, to software ones such
as generalized and dedicated sparse formats, used together with
specialized executor programs for different hardware targets. These
sparse computations are often performed on read-only sparse struc-
tures: while the data themselves are variable, the sparsity structure
itself does not change. Indeed, sparse formats such as CSR have a
typically high cost to insert/remove nonzero elements in the repre-
sentation. The typical use case is to not modify the sparsity during
possibly repeated computations on the same sparse structure.

In this work, we exploit the possibility to generate a specialized
executor program dedicated to the particular sparsity structure
of an input matrix. It creates opportunities to remove indirection
arrays and synthesize regular, vectorizable code for such computa-
tions. But, at the same time, it introduces challenges in code size
and instruction generation, as well as efficient SIMD vectorization.
We present novel techniques and extensive experimental results
to efficiently generate SIMD vector code for data-specific sparse
computations, and study the limits in terms of applicability and
performance of our techniques compared to state-of-practice high-
performance libraries like Inte] MKL.

CCS Concepts

« Software and its engineering — Source code generation; «
Computing methodologies — Vector / streaming algorithms.

*With AMD at the time of publication.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’22, October 8-12, 2022, Chicago, IL, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9868-8/22/10...$15.00
https://doi.org/10.1145/3559009.3569668

160

Louis-Noél Pouchet
pouchet@colostate.edu
Colorado State University
Fort Collins, Colorado, USA

Juan Tourifio
juan.tourino@udc.es
Universidade da Corufia, CITIC
A Coruna, Spain

Keywords
vectorization, data-specific compilation, sparse data structure

ACM Reference Format:

Marcos Horro, Louis-Noél Pouchet, Gabriel Rodriguez, and Juan Tourifo.
2022. Custom High-Performance Vector Code Generation for Data-Specific
Sparse Computations. In International Conference on Parallel Architectures
and Compilation Techniques (PACT °22), October 812, 2022, Chicago, IL, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3559009.3569668

1 Introduction

Sparse data structures, such as sparse matrices, are ubiquitous in
modern computing to represent nonzero-valued regions within a
dense coordinate system. This avoids storing useless zero values,
and bypasses useless computations (e.g., multiplication by zero)
[5, 35]. Sparse tensors, including sparse matrices, are widely used
in physics simulation, graph analytics [45], or may occur after
sparsification of a neural network weight matrix [4, 19].

A typical use case is to create a sparse representation from the set
of nonzero coordinates in a data structure by inspection and com-
pression into multiple arrays, as exemplified with the Compressed
Sparse Row (CSR) format [35]. Such formats are not amenable to
fast insertion/deletion of a nonzero element in the structure: one
or more array reallocations and, more importantly, shifting of all
the data, is typically required. Sparsity at the data structure level is
often immutable, and only the values associated to the nonzero co-
ordinates evolve before another phase of compression into, e.g., CSR
is done again. A generic executor code, applicable on any sparse
matrix of a given format, is typically deployed and optimized for a
particular target [3, 5, 6, 10, 14, 18, 38, 44, 46]. However, this gener-
ality comes at the cost of using indirection arrays, i.e., arrays that
encode the original sparsity structure and that are used to index the
compressed structures, and creating challenges for efficient SIMD
vectorization. The state of practice is typically to select a sparse
format delivering good performance for the considered sparsity
pattern [36], or more simply to rely on a vendor library such as
Intel MKL [40].

In this work, we particularly focus on optimizing sparse-im-
mutable data structures, exploiting data-specific compilation: we
generate code that is specialized (unique) to one sparse structure.
Augustine et al. [4] developed a system for automatically build-
ing sets of regular subcomputations by mining regularly strided
subregions on the irregular data structure, i.e., on a sparse tensor.



PACT °22, October 8-12, 2022, Chicago, IL, USA

for (int i = 0; i < N; ++i) {
yl[il = 0.0;
for(int j = row_ptr[il; j < row_ptr[i + 11; ++j)

y[i] += A[j] * x[cols[jl];
3}

Listing 1: Standard SpMV kernel using CSR format.

However, their work is limited to reconstructing loop-based codes
for sparse structures, without further emphasis on generating spe-
cialized SIMD programs for these particular small-loop computation
patterns. Their approach trades off large indirect accesses for larger
code size using direct accesses only, but does not provide solutions to
generate specialized high-performance multi-core SIMD implemen-
tations for such reconstructed programs. We present the MACVETH
system (Multi-Architectural C-VEcTorizer for HPC applications) to
address this problem. Section 2 details the performance challenges
in optimizing such codes, and overviews MACVETH before details
are presented in Section 3. MACVETH is a Clang-based compiler,
which has been used to generate extensive experimental analysis
in Sec. 4.

MACVETH implements a systematic search of functionally equiv-
alent SIMD implementations of packing and reduction operations,
typically at compiler installation time. It uses an SMT solver ap-
proach to reduce the search space size. We support the fusion of
independent reductions on the same SIMD vector(s) to improve
SIMD occupancy for small reductions, in a fully automated way.
As extensively studied in Section 4, MACVETH consistently im-
proves performance over Intel MKL (single-core and multi-core)
for the 200+ sparse matrices we evaluated from the SuiteSparse
repository [12], with diminishing returns with the sparse matrix
size, indicating the limits of our current techniques. We make the
following contributions:

o We introduce MACVETH, the Multi-Architectural C-VEcTorizer
for HPC applications, for synthesis of high-performance SIMD
implementations of regular strided-access reductions or map
loops, as typically occurring in the reconstruction of sparse
matrices in data-specific compilation [4];

o MACVETH is a Clang-based source-to-source compiler, with
the ability to automatically discover functionally equivalent
ASM implementations, profiling them to build machine-specific
recipes for the compiler to use for SIMDization. It embeds sev-
eral problem-specific optimization strategies, such as the fusion
of independent reductions to improve SIMD vector occupancy;

e We present extensive experimental results on 200+ sparse ma-
trices of less than 20M nonzeros, in single-core and multi-core
for two modern processors (Intel Alder Lake and AMD Zen3)
demonstrating consistently better performance obtained with
MACVETH versus Intel MKL.

2 Data-Specific Compilation of Sparse
Structures

In this work we target the optimization of sparse (tensor) computa-
tions, exemplified with the Sparse Matrix - dense Vector product
(SpMV) kernel using the CSR format shown in Listing 1.

In typical practice, a discrete representation of the set of stored
values (i.e., the matrix sparsity structure) is assumed to be known
a priori. Then, a compressed sparse representation can be built,

161

Horro et al.

void kernel_spmv_fragment_o(float *__restrict A,
float *__restrict x,
float *__restrict y) {

register int io;

for (iQ = 0; i0 <= 1; ++i0Q)
y[1] += A[i@] * x[io];

for (iQ = 0; iQ <= 2; ++i0Q)
y[2]1 += A[i@ + 2] % x[ie];

for (i@ = 0; 10 <= 1; ++i0)
y[3] += A[i0 + 5] % x[ie + 1];

for (iQ = 0; i0 <= 1; ++i0Q)
y[4] += A[ie + 7] x x[ie + 11;

y[51 += A[9] » x[11;

for (i@ = @; i@ <= 1; ++iQ)
y[5]1 += A[ie + 10] = x[2]; 3}

Listing 2: Code generated for matrix JGD_Kocay/Trec5

using a variety of formats trading off memory footprint for the
compressed structure versus ease to produce high-performance
code scanning the nonzero elements of the structure. We note the
cost of modifying the sparsity is typically prohibitive for most
sparse formats (e.g., CSR, COOQ, etc.) as inserting or removing a
nonzero element implies growing/reducing, and then shifting, the
arrays used to index elements. For example, adding one nonzero
element to a CSR representation requires updating A, row_ptr, and
cols. Therefore many practical use cases repeat computations over
the same sparsity pattern, only modifying the fields (i.e., the data
values in the arrays) which are computed on. Generic executors,
as in Listing 1, present the advantage to be sparsity-independent
(the code is the same for any sparse matrix) and therefore generic
[5, 6, 10, 18, 36, 46], but at the cost of using indirection arrays,
limiting the performance.

2.1 Reconstruction by Codelets

In order to avoid the use of indirection arrays, Augustine et al.
[4] developed a system for automatically building sets of regular
subcomputations by mining regularly strided subregions on the
irregular data structure, i.e., on a sparse tensor. This approach gen-
erates data-specific code for each input sparse structure, such as in
those included in the SuiteSparse collection [12]. An example of the
output of this system for the input sparse matrix JGD_Kocay/Trec5
is depicted in Listing 2. At compile-time, the nonzero coordinates
are inspected and a code scanning the exact same coordinates is pro-
duced, but without any indirection array. In essence, the nonzero
coordinates stored in row_ptr and cols are replaced by their actual
values in the code generated, making it specialized to this specific
sparsity pattern.

Listing 2 depicts a very simple and intuitive example of code
fragment that is reconstructed using rectangular template shapes
being mined over the full set of nonzero coordinates [4]. This set of
nonzero coordinates (i, j) in the 2D sparse matrix leading to such
code is, for the first loop, ((1,0); (1,1)), then ((2,0);(2,1);(2,2))
for the second loop, etc. Taking into account the A data vector,
where non-zero values are typically stored in contiguous fashion, is
required to emit correct code manipulating the CSR representation.
3D codelets are mined for, for the (i, j, A_pos) coordinates. Precisely
in the example above, we have (1,0, 0); (1,1, 1) for the first loop,
(2,0,2);(2,1,3); (2,2,4) for the second, etc.



Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations

With these coordinates known at compile-time, the above code is
produced by mining for the existence of (hyper-)rectangles contain-
ing regularly strided coordinates (i.e., the values indexing y, x, and
A above) that can be expressed as simple affine functions of loop
iterators [4]. Note that more complex loop shapes may be used to
further compress sparse coordinates by using a geometric approach
to build a Z-polyhedron that fits a given set of points, instead of
mining for the existence of a given shape (¢éTRE) [4]. In this work,
we focus on codelet-based reconstruction, which appears to provide
a good trade-off between code size and eventual performance [4].

2.2 Performance Trade-offs

The simple loop-based codes above present a difficult performance
trade-off to navigate: on the one hand, more specialized code, with
regular loops and no indirection arrays, should be amenable to
high-performance SIMD implementation. On the other hand, the
program remains entirely functionally equivalent to Listing 1 if it is
invoked on the JGD_Kocay/Trec5 sparse matrix, up to a reordering
of the iterations.

In general, even after reordering, it does perform non-consecutive
(scattered) memory accesses, especially along the dense vector x,
following the sparsity pattern of the input matrix. Furthermore,
generated loops typically have a very small trip count, insufficient to
pack a full SIMD vector, and contain numerous short reductions.

Augustine et al. noted several sources of ineffectiveness of these
data-specific codes. First, and most importantly, code size explosion,
as the sparsity information is now encoded in the form of specialized
loop nests. This triggers performance issues related to instruc-
tion cache prefetching (or lack thereof): as code is typically not
reused, for good performance one shall implement a form of soft-
ware prefetching for the code itself [4]. They also relied on existing
auto-vectorizers for the generated code, which limits performance
due to generic cost models and the small size of the loops to op-
timize. Compilers’ auto-vectorizers synthesize machine-specific
assembly code exploiting SIMD units of the target processor. Most
of these techniques are conservative and are only applied if certain
patterns are found in the code, and if a cost model has assessed their
profitability. For instance, GNU GCC and Clang/LLVM use both
Loop-Level Vectorization (LLV) and Superword-Level Parallelism
(SLP) [17, 27, 29].

When accessing scattered (non-consecutive) memory addresses,
gather is a convenient but complex x86 macro-instruction, intro-
duced in AVX2 for loading random data points given a starting
address and a set of indices. This instruction has been reported to
deliver variable latencies [1], depending on the source and destina-
tion operands. Hofmann et al. [20] demonstrate the performance
variability of the gather instruction for the Intel Knights Corner and
Intel Haswell architectures, depending on the number of elements
fetched by the gather instruction from a cache line. A single gather
instruction may be decoded into many micro-operations, a number
that varies depending on the architecture, e.g., in modern AMD
architectures, such as Zen2 and Zen3, gather may be decoded into
more than 30 micro-operations!, depending on the vector width.
Implicitly, this controls the ASM code size (a single gather) while
enabling a complex computation (numerous executed p-operations).

! According to values reported in https://uops.info/table.ntml ([1, 15]).

162

PACT °22, October 8-12, 2022, Chicago, IL, USA

As such, gather can be a good idiom for code-size-aware applications,
but it may not be the best solution in terms of performance when it
comes to throughput. Actually, even though a gather instruction can
save machine code bytes for the L1 instruction cache, it could take
up more space in the pop-cache (or L0 cache) than other solutions
due to its decoding phase. The pop-cache is a specialized cache for
storing pre-decoded micro-operations [37], improving the perfor-
mance in the decoding phase. It is present in modern architectures
and it has a significant impact on performance [9], as it allows the
decoder to idle when reusing micro-operations.

In this work, we tackle the problem of automatically generating
machine-specific SIMD implementations for loop-based codes coming
from the reconstruction of sparse structures as in Listing 2. We specif-
ically focus on codes reconstructed for matrices in the SuiteSparse
collection [12] and deliver a system optimized for SpMV-style com-
putations, generating multi-core (OpenMP) and AVX2/SSE SIMD
implementations of such programs. Combining Augustine et al’s
long-distance rescheduling approach by codelet mining with the spe-
cialized short-distance SIMD optimizer we introduce in this work
leads to a complete, hierarchical scheduling and packing approach to
generate efficient SIMD programs for sparse-immutable computations.

The optimized programs we generate systematically outperform
Augustine et al’s approach [4], as well as Intel MKL and a reference
CSR implementation, as extensively studied in Section 4. In partic-
ular, we present a fully automated synthesizer of ASM-based
“software emulation” of arbitrary gather instructions, with
the aim to improve performance over gather for random
vector packing operations. By profiling a variety of alternate
implementations for the same type of access pattern once at instal-
lation time, machine-specific performance profiles are exploited.
They are deployed in a novel Clang-based packing and SIMD vector
code generation tool for reduction codelets, that is, for small loops
computing reductions (e.g., loops in Listing 2).

Other related work Little prior work focused on exploiting the
sparsity information to emit data-specific codes. EGGS implements
sparsity-specific code generation [39] but does not exploit loop-
based compression of the sparse coordinates [4]. The TACO com-
piler [11, 23] generates format/problem-specific efficient implemen-
tations of sparse tensor operations, which can also lead to very
large binaries, even without data-specific compilation. Sparse for-
mats and associated executors have been proposed with a focus on
SIMD potential [14, 25, 38], including more recent work specifically
targeting better utilization of SIMD units [7, 8, 26, 43]. However, to
the best of our knowledge none exploit the actual sparsity informa-
tion to generate specialized and simplified codes at compile-time,
nor have the ability to substitute a gather instruction by higher-
performing operations for a particular memory load pattern as we
do in the present work.

Numerous prior works on automatic SIMD vectorization are
directly applicable on such reconstructed programs, due to the
simplicity of the loops generated. SLP vectorization may be ap-
plied (e.g., after unrolling) [30, 31] and several techniques for auto-
vectorization of strided accesses have been developed [28, 34],
including problem-specific ones [24]. To the best of our knowl-
edge, while these techniques are applicable off-the-shelf to the



PACT °22, October 8-12, 2022, Chicago, IL, USA

highly regular codes we generate, none is implementing the ran-
dom vector packing strategies we present in Section 3, nor fusion
of reductions for better SIMD occupancy in such an automated
system as MACVETH. The Spiral system illustrates very well the
ability to mine for effective machine-specific SIMD implementa-
tions [16, 24, 33] albeit via an algebraic system to search for equiv-
alent implementations. In contrast, we develop data packing SIMD
recipes that are tuned to the non-regular strided accesses in recon-
structed loops, by first automatically characterizing their perfor-
mance profile on the target machine, avoiding the limitations of
static cost models.

2.3 Overview of MACVETH

In this work we take an aggressive approach to pattern-specific and
data-specific auto-vectorization by developing MACVETH. This
Clang-based source-to-source compilation framework targets the
automatic vectorization of code regions (delimited by pragmas).

We implement vectorization using a SIMD-Intrinsics-style ap-
proach, to facilitate portability to a variety of concrete SIMD ISAs.
We develop platform-aware cost-driven algorithms to efficiently
pack arbitrary operands and operations into SIMD vectors. For this
purpose, we have also developed MRKVS (Mega-Random Kernel Vec-
tor SMT), a tool for generating candidate combinations of instructions
to efficiently pack random elements into vector registers given a con-
crete ISA and a subset of instructions to consider. Equipped with this
model, MACVETH supports vector packing across multiple distinct
loop nests to maximize vector occupancy, in particular when loops
have a very small trip count, targeting operations such as reductions.
These codes may typically be found in sparse tensor computations.

MRKVS is our proposed SMT-based model and system for gen-
erating combinations of instructions given an ISA to gather and
pack random memory positions within a vector register. The goal
is to emulate the behavior of a gather instruction, by combining other
available ASM instructions to achieve the same functionality, even-
tually leading to performance trade-offs such as (binary) code size
versus performance. Indeed, gather may be replaced by several
ASM instructions, growing the binary size.

We also develop a platform-specific cost model derived from the
candidates generated by the MRKVS system. This model is built
by accurately micro-benchmarking all these candidates for each
possible case using the MARTA framework [22], an automated
tool for micro-benchmarking and building cost models from data,
and selecting the most promising and profitable candidate for each
platform. This profiling phase is reused across the compilation of
different sparse structures on the same machine, and is typically
done once at installation time.

Our implementation of MACVETH works as a Clang AST-based
source-to-source compiler for vectorizing codes reconstructed from
sparse structures. This compiler is able to vectorize multiple reduc-
tions within the same vector register, and to fuse independent re-
ductions using the same vector operations, and even across multiple
vectors. This solution also includes the platform-aware random
packing combinations described above, for efficiently packing ran-
dom operands in the same vector.

The only input to the system is a concrete C/C++ file with marked
regions to be considered for vectorization. The output is a SIMD

163

Horro et al.

version of that code, if the cost model predicts its profitability;
otherwise it just emits scalar code. For simplicity, we focus in this
paper on x86 architectures with AVX2 only, but the same approach
can be applied to other architectures and ISAs: we develop machine-
independent techniques to produce automatically machine-specific
codes.

3 SIMD Code Synthesis

We now outline our approach for SIMD synthesis of strided codelets,
that is fully implemented in MACVETH. We first generate a collec-
tion of semantically-equivalent micro-programs that pack scalar
operands stored at arbitrary addresses in memory into a contiguous
SSE / AVX vector, for all possible data packing situations (e.g., same
or different cache lines, etc.).

The performance of these implementations is then characterized,
by actual measurement on the host machine, as well as using cost
models such as LLVM-MCA, to find the best performing versions.
This forms a set of SIMD packing code templates for MACVETH, to be
used each time a compilation using MACVETH is to be performed.
For the actual compilation of programs to SIMD with MACVETH,
we operate on a DAG-based representation of the computation,
obtained after fully unrolling loops in the code region to vectorize.
MACVETH packs operands and operations into vector form, tiling
this DAG by instantiating the proper templates and replacing scalar
code by these instantiations in the input program. Similarly SIMD
operations are also generated, following the SIMD operands being
packed. Additional optimizations for performance, such as fusing
two independent and short reductions on the same SIMD vector,
are implemented by MACVETH to improve vector occupancy and
eventual performance.

3.1 Generation of Data Packing Recipes

A major performance problem to address is finding the most ef-
ficient (wall-clock time) machine-specific code to pack randomly
placed operands in memory into a single SIMD vector. This random
vector packing phase can be implemented with a gather instruc-
tion. Our objective is first to create specialized code that emulates
the gather semantics, for every possible situation (i.e., locations of
the scalars to pack) it may be called on. We do so because maximal
performance may be achieved with very different ASM instructions
depending on where the operands to pack are placed in memory. As
operands may be mostly randomly placed in memory after codelet
reconstruction, we must implement a high-performance solution
for each possible packing scheme.

Intuitively, we can define each of the load instructions as a func-
tion that, for a given virtual address p, returns a set of contiguous
positions in memory using a little-endian format: f(p) := {vp—1 =
f(pln—1]),...,00 = f(p[0])}. For instance, _mm_loadu_ps(p) and
_mm_loadu_ss(p) are represented as:

loadu_ps(p) = {v3 = p[3],02 = p[2],v1 = p[1], v = p[0]}
load ss(p) ={v3=0,00=0,01 = 0,9 = p[0]}

Representing swizzle instructions in our approach can be done, e.g.,
for the _mm_shuffle_ps(a,b,m) instruction:



Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations

shuffle_ps(a,b,m) == {v3 = f(b,m[7:6]),va = f(b,m[5 : 4]),
01 = f(a,m[3:2]),0 =f(am[1:0])}
where f(src,c) =src[31+32%c:32x%c]
In this case, the output of this instruction depends on the value

of the mask m, so we must compute all possible mask values (256
different values since the mask width is 8 bits), e.g.,

shuf_000_ps(a,b) := {vs = b[0],v2 = b[0],01 = a[0],vp =
shuf_001_ps(a, b) := {vs = b[0],v2 = b[0],v1 = a[0],0v0 =

alo]}
a[1]}

shuf 255_ps(a, b) := {vs = b[3],v2 = b[3],v1 = a[3],v0 = a[3]}

A packing strategy that needs to be synthesized can be expressed
in a similar notation, e.g. pack_001(al@],al2],b[@],b[1]) :=
{v_3 =al0l, v_2 = al2], v_1 =bl[@], v_0 = b[1]} making the
problem amenable to constraint solving. We look for a combination
of instructions in the set 7 of instructions considered, such that
their composition matches the semantics of the desired Packing
Class, i.e., of the pack_xxx prototype.

Note that the space created by generating all possible combina-
tions of these instructions would grow exponentially and quickly be-
come intractable. Exploring all combinations of memory addresses
and their possible packing candidates for getting the performance-
optimal recipe is an NP-complete problem, so purely brute force
will not scale. On the other hand, it is possible to tackle this issue by
carefully defining the exploration space to traverse, and applying
heuristics to prune the set of candidates to combine in each step as
shown below.

3.2 MRKYVS: Mega-Random Kernel Vector SMT

One of the issues when enumerating all the candidates is the combi-
natorial explosion of the number of variants of a single instruction
according to its masks or control value. So instead of generating and
testing all these possible combinations, a smarter strategy would
be to check whether there is any value that for a combination of
instructions is able to meet the packing conditions, i.e., the packing
of memory points into a vector register in a certain order.

Wegner developed x86-sat [42], a system for building an auto-
generated formal model of x86 Intrinsics by interpreting the pseudo-
code in the official documentation, and transforming it into a valid
model for the Z3 SMT solver [13]. This tool is mainly written in
Python, and it can help assess the equivalence of two different ways
of permuting values, i.e., to find equivalent implementations, or to
find the values of some variables in a formula.

x86-sat works as follows. A set of assertions or conditions describ-
ing the behavior of each instruction according to the documentation
are added to the solver using the Z3 library (a custom parser is used
to automate this process [41]). Next, the check function tests if
those conditions can be satisfied for those variables or instructions
and, in that case, the system also returns a model containing the
values required. This system avoids testing all different control
value combinations for a concrete instruction. The system is also
interesting for performing sanity checks given a set of instructions

164

PACT °22, October 8-12, 2022, Chicago, IL, USA

Algorithm 1: High-level approach of the MRKVS system.

Input: Instructions 7, PackClass Sj, int max_candidates
Result: Set of Candidates
1 candidates = {};

2 max_ins = compute_max_ins(S;);

3 load_ins = prune_load_instructions(S;, 7);

4 for load in load_ins do

5 if check(load, S;) then

// Base case: only a load required,
// no need to explore

6 candidates.append(load);

7 continue;

8 if new_candidate = recursive_search(load, I, S;, max_ins)
then

9 ‘ candidates.append(new_candidate);

if size(candidates) >= max_candidates then
‘ break;

10
11

12 end

3 return candidates;

o

and the conditions to be satisfied, or even for finding bugs in the
documentation. In addition, this system can be easily extended with
any other desirable instruction by just using the same syntax as in
the Intel Intrinsics documentation.

MRKYVS searches the solution space as described in Algorithm 1.
Our approach follows a depth-first fashion, with a limited number of
levels, and where the level is determined by the number of chained
instructions used. This algorithm is a modification of the naive
brute force approach, where the explosion of new combinations is
minimized by applying heuristics to prune the set of new candidates,
ie., new instructions to consider, and the use of the SMT system to
parameterize and check the satisfiability of the chain of instructions.
The system has also a variable stop condition when the number of
candidates found has reached, at least, max_candidates.

We note that candidate instructions are pruned depending on
their type and number in each recursive step, in order to reduce the
node explosion as we create new levels in the exploration space.
These pruning techniques are ad hoc and dependent on the set of
considered ASM instructions, which in our case is a small subset of
the AVX2 ISA. Some of these techniques involve limiting the maxi-
mum number of instructions of a type to consider in a combination,
avoiding the appearance of costly instructions (such as masked
loads or blends) more than once for each candidate, or avoiding the
use of load instructions to load only one element more than twice.

Random vector packing templates format: In order to make these
candidates portable to any memory address, we developed a template-
based format to capture their semantics and be input agnostic. Any
system can then fill any of the candidates generated by MRKVS with
the desired input memory addresses or vector registers for packing
the operands. These templates are in MACVETH Random Tem-
plate format (.mrt). MACVETH leverages these templates to pack
random operands filling the input values with the corresponding
memory addresses from the code.



PACT °22, October 8-12, 2022, Chicago, IL, USA

;; Candidate ©

vmovss xmm2 , DWORD PTR [r12 + 0x40]
vinsertps xmm1, xmm2, DWORD PTR [rcx], 0x14
vinsertps xmm@ , xmm1, DWORD PTR [rdx], 0x68
;; Candidate 1

vblendps xmm1, xmm3, XMMWORD PTR [rsil], 0x@b
vinsertps xmm2, xmml, DWORD PTR [rcx], 0x18
vinsertps xmme , xmm2, DWORD PTR [rdx], 0x28

Listing 3: Example of generated assembly code

3.3 Search Space and its Evaluation

The next step after having built a set of candidate implementations
is to evaluate their performance on the target machine. This stage
is typically performed once on the host machine, at installation
time of MACVETH (or when the system has been modified, such
as when using a different compiler/version).

In this work, we use MRKVS to generate random vector packing
formulas for AVX2 with floats as data type. However the approach
can be easily extended to other ISAs and data types. The output
of the SMT-based system is a set of candidate implementations for
each equivalent functionality (i.e., identical layout in the destination
register from the input registers). Each equivalence class, referred
to as a “packing class”, is defined here by the contiguity of the
memory addresses to pack, vector width and data type.

For example, the compilation of two candidate implementations
for packing three non-contiguous elements is shown in Listing 3. In
the Zen3 processor we experimented with, both choices retire the
same number of micro-operations, and the cycles consumed are on
average the same. Regarding a Cascade Lake processor we experi-
mented with, both candidates also have identical performance in
terms of cycles, but the number of micro-operations retired is lower
for the first candidate. These are the two metrics considered for
building our cost model: in the first place the number of execution
cycles or cycles consumed, and in case of identical performance
(within an error margin due to measurement errors), the number
of micro-operations retired. Results obtained in LLVM-MCA using
MARTA for these candidates confirm the values reported by our
empirical measurements. The recently released uiCA tool [2] also
reports better reciprocal throughput (i.e., cycles per instruction) for
the first candidate.

Once we have chosen the best candidates for each platform and
for each packing class, in order to assess their quality, we compare
their performance with that of the equivalent gather instruction.
According to our measurements, for Intel Cascade Lake, most of the
candidates proposed by our automated system outperform gather
in terms of number of execution cycles. However, for less than
15% of the cases, gather outperforms by 10-15% the latency of
our approach. In contrast, according to LLVM-MCA all candidates
outperform the gather instruction, showing the need for in-situ
measurements. Our cost model is driven by these measurements
and will therefore use the gather instruction for those equivalence
classes where there is no speedup from the candidates generated,
to favor also reducing the final binary size.

165

Horro et al.

__vop2 = _mm256_loadu_ps (&z[0]);
__vopd = _mm256_hadd_ps(__vop@, __vop2);
__mv_1lo128 = _mm256_castps256_ps128(__vop@);
__mv_hi128 = _mm256_extractf128_ps(__vopd, 0Ox1);
__mv_10128 = _mm_add_ps(__mv_10128, __mv_hi128);
__mv_hi128 = _mm_shuffle_ps(__mv_l0128, __mv_lo128,

0b00110001);
__mv_10128 = _mm_add_ps(__mv_10128, __mv_hi128);
tmp@ = tmp@ + __mv_lo128[0];

tmpl = tmpl + __mv_10128[2];
Listing 4: Example of synthesis in MACVETH for the fusion
of two independent reductions of 8 32-bit elements each, in

two different vectors

3.4 Fusion of Independent Reductions

In the middle-end of MACVETH, the packing cost model tries to
maximize the vector occupancy for reductions. MACVETH consid-
ers two forms of fusing independent reductions: using the same
vector register (intra-register), and using multiple vector registers
(inter-register). For the first case, the back-end just performs a par-
tial reduction on the register to be reduced. In the second case, the
compiler uses the same operations to simultaneously compute both
independent reductions. This approach has a limitation: the num-
ber of values in each independent reduction must be the same, and
the values must be placed contiguously. This is why the packing
cost model must pack, typically, a multiple of 2 reductions together.
Following the example, packing 5 reductions on tmp®@ and 3 on
tmp1 cannot be done with the approach proposed here. We have
developed fully automated algorithms to detect opportunities (and
profitability of) packing independent reductions together. For the
sake of space saving we limit to displaying Listing 4 to illustrate
the code we can generate for fusing such reductions.?

3.5 SIMD Code Generation

MACVETH relies on the Clang AST for parsing the input code. In-
stead of lowering this abstraction to LLVM IR, our compiler rewrites
the original code using SIMD directives in an Intrinsics style when-
ever profitable, thanks to the Clang’s LibTooling library, which
supports rewriting the original source code. The high-level picture
of the system’s architecture is depicted in Figure 1. We logically
divide our source-to-source compiler architecture into front-end,
middle-end and back-end.

MACVETH uses different abstraction levels and IRs in order to
facilitate the vectorization process. The input AST is obtained with
Clang. From there, MACVETH generates three-address code in
SSA form, which itself facilitates the creation of a Directed Acyclic
Graph (DAG) for the computation, after unrolling loops as needed.
Typically MACVETH operates on a window of the AST at a time, to
limit the size of the DAG manipulated, especially for large programs.

This DAG structure is suitable for finding patterns in the code
such as reductions and long-distance load sharing opportunities.
The operations and operands in this DAG are packed when possible
to generate vector operations, based on the measured profitability
of the corresponding vector packing recipes. These are generated
in the SIMD back-end. Then, using the Clang framework, the front-
end rewrites the original source code synthesizing the SIMD code
generated in the back-end.

2Full details and all algorithms are available in Chapter 5 of [21]



Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations

[ Clang LibTooling ]
pd AW
C/C++ SIMD
+4
@ b 4){ Clang AST 4’{ %

MACVETH
Front-end

Clang
Rewriter

Front-end and driver |
|: Node —> DAG
Middle-end T
Packing
Cost Model
Back-end call 7
selects
VectorlR
Random Vector
Packing = SIMD!I —
Templates U

Figure 1: High-level diagram of MACVETH’s architecture
showing the different IRs used by the system.

4 Experimental Results

MACVETH was used to vectorize the data-specific programs gen-
erated from the sparse matrix — vector multiplication of the 200
matrices by Augustine et al. [4]3. These are selected from the full
SuiteSparse [12] by applying a sieve process in which matrices are
classified according to the decile they belong to in terms of matrix
size and the percentage of points that are issued as micro-codelets.
This sieve yields 100 categories. Inside each category, k-means
clustering is used to select representative matrices. The number of
representatives per cluster is selected so that the probability density
of the sample matches the original one.

Experiments were executed on an Intel Core 19 12900K (Alder
Lake) with 128 GiB of RAM memory. All runs were repeated 10
times, reporting the best performance achieved for each experi-
ment after removing outliers, identified as those measurements
that deviate more than 3¢ from the mean. The CPU frequency
was fixed at the base of 3.2 GHz to prevent thermal constraints
affecting experimental variability. The data and code segments are
stored into 2 MiB hugepages. The data-specific codes implementing
SpMYV for each selected matrix were synthesized using the DSCG
tool that applies the shape-based mining approach by Augustine
et al. [4] (763 different hyper-rectangular shapes with increasingly
large sizes and strides). Codes were compiled with GCC v11.2.0
with -Ofast -march=alderlake. All vectorization flags were en-
abled when compiling baseline codes. The PolyBench [32] and
MARTA testing harnesses were used for performance measure-
ments. Prefetching of the text segment was included in the linking
process [4]. Other CPUs and compilers were used for sensitivity
studies, detailed in Section 4.7. Using these same basic setup and
running on the 16 logical P-cores of this machine, Intel Linpack re-
ports an average raw performance of 364.2 GFLOPS, with a peak of
499.6 GFLOPS. The memory-bound Intel HPCG benchmark reports
a raw performance for SpMV computations of 5.5 GFLOPS, which
can be used to contextualize our results.

3The full list of matrices used in these experiments can be double-blindly consulted at
https://pastebin.com/kgMABFUQ.

166

PACT 22, October 8-12, 2022, Chicago, IL, USA

#pragma omp for private(j) nowait

for(i = 0; i < N; ++i) {
y[il = 0.9;
for(j = row_ptr[il; j < row_ptr[i+1]; ++j)

y[il += A[j] * x[cols[jl11;
3
Listing 5: CSR executor employed as a baseline throughout
the experimental section. The start of the omp parallel
region is left out of the timed scope, to avoid measuring
thread-creation overheads. OpenMP is disabled for single-
threaded experiments.

4 MACVETH speedup
—— MACVETH GFLOPS
CSR GFLOPS

)
.
GFLOPS (moving avg.)

)
o

102 10° 10° 10° 10° 107
Number of nonzero elements in the matrix

Figure 2: Speedup of TSC-based MACVETH version w.r.t. CSR
(left) and raw performance (right). Log axes.

4.1 Using TSC as a Predictor of Performance

We first explore the performance of the 12900K processor on 2568
recipes generated for packing up to 8 single-precision floating-point
elements into a 256-bit vector register. We micro-benchmark the
performance of each packing recipe, selecting for each packing class
the one which runs the fastest, as measured by the Time Stamp
Counter (TSC), a 64-bit register that counts the number of CPU
cycles since reset. We select 256 packing recipes (corresponding to
the 256 packing classes in a 256-bit vector). MACVETH is then used
to vectorize the data-specific SpMV codes for the 200 matrices in
the experimental set using these recipes. In all cases, the MRKVS-
generated recipes are faster, according to the TSC register values,
than using the generic AVX2 gather instruction. The codes are
executed under cold cache conditions: each SpMV operation is run
once for each performance counter measured, to avoid multiplexing
effects. The cache is flushed between executions using c1flush
instructions, taking special care to flush the entire text segment to
avoid unfair advantages for DSCG and MACVETH codes.

Performance results versus the irregular CSR executor shown
in Listing 5 are detailed in Figure 2. The geometric mean of the
speedups with respect to the CSR and DSCG versions are 1.16 and
1.14, respectively. We find that the speedups obtained by DSCG
with respect to the CSR executor are significantly smaller when
compared to the ones reported by Augustine et al. [4]. The reason
is that newer compilers feature a much more efficient optimization
of the CSR code. While ICC19 vectorized 44% of the total floating-
point operations in these codes, all of them employing 128-bit vector
operations only, the more recent GCC v11.2.0 vectorizes 79% of
them, and 40% of the total operations are executed using 256-bit
vector operations, resulting in a 15% reduction of the total number
of executed instructions.

We also observe that the SLP vectorizer in GCC is not capable
of vectorizing DSCG codes to the same degree as the CSR executor.



PACT °22, October 8-12, 2022, Chicago, IL, USA

Only 49% of the total FLOPs are vectorized, and only 14% of the
total correspond to 256-bit vector operations. This figure is similar
to the one obtained by the older compilers, and appears to suggest
that no relevant improvement in free-code SLP vectorization has
been achieved by more recent compilers.

In contrast, the custom optimization employed by MACVETH
vectorizes 93% of all FLOPs, and 82% of the total is issued using
256-bit vector operations. MACVETH achieves a 3.5x reduction
on the number of executed instructions with respect to CSR,
which represents an additional 1.26x reduction on top of the 2.8x
achieved by data-specific codes compiled by GCC. Note that, in
the CSR version, branch instructions alone account for 12.3% of
the total instruction count. This figure does not include arithmetic
instructions involved in branch computations. While the reduction
in DSCG codes comes mostly from the elimination of control-flow
instructions, the additional reduction provided by MACVETH is
solely due to the improved vectorization.

4.2 Using Instruction Count as a Predictor of
Performance

In order to assess whether the performance obtained by the TSC-
based approach can be improved upon, we carefully analyze the
results of the matrices for which MACVETH performs poorly. One
such matrix is GHS_psdef/apache?, one of the largest ones in the
experimental set, but which includes a high percentage of codelets:
99% of its 9.6 MFLOPs are captured by the DSCG using affine loops,
with an average 9.14 FLOPs per loop. The raw performance in this
case is 0.8 GFLOPS, which corresponds to 1.6x and 1.3x slowdowns
for the MACVETH code with respect to the CSR and DSCG codes,
respectively. The reasons for this slowdown are significant increases
in the number of L3 misses, which are mostly due to code blocks.
In fact, while the size of the CSR code is negligible, the DSCG and
MACVETH codes take up 84 and 110 MB, respectively. Note how
the increase in code size corresponds precisely with the slowdown
obtained by the MACVETH version with respect to the DSCG
version. We observe this effect consistently across the experimental
set, and in fact the Pearson correlation coefficient between speedup
and reduction in code sizes for the DSCG and MACVETH versions
is R* = 0.91.

We revise the methodology for generating MACVETH recipes.
Instead of considering the TSC cycles as the driver of performance,
we choose the best recipe for each packing class as the one which
contains the fewest number of instructions?. Furthermore, in this
second version of the packing recipes we consider the performance
of the native AVX2 gather instruction as well, selecting it when
it results in fewer micro-operations than the recipes generated by
MRKYVS. In total, 129 out of the 255 packing classes are issued as
MRKVS recipes, while the remaining 126 packing classes are issued
using _mm256_1i32gather_ps. We stress that these results have
been generated by micro-benchmarking the Alder Lake architecture,
and will not generalize to others.

Figure 3 shows the speedups obtained for this new MACVETH
version. The new geometric mean speedup relative to the CSR
and DSCG versions is 1.5x, with a geometric mean reduction in the
number of executed instructions of 4.7x and 1.8x, respectively. With

4As measured by the INSTRUCTIONS_RETIRED performance counter in Alder Lake.

167

Horro et al.

sparse_matrix_t M;

mkl_sparse_s_create_csr (&M,

...); // Inspector phase

polybench_start_instruments; // Starts timed scope
mkl_sparse_s_mv(...); // Executor phase
polybench_stop_instruments; // Stops timed scope

Listing 6: MKL executor.

respect to the DSCG version, the number of L2 misses attributable
to code blocks is reduced by 3.6x, and the total L3 misses by 1.7x.
For the particular case of the GHS_psdef/apache?2 matrix, the new
instruction count-based version achieves now a raw performance
of 3.0 GFLOPS, a 3.8x speedup relative to the TSC-based version,
which represents a speedup of 1.2x and 1.5x with respect to the
CSR and DSCG versions, respectively.

MACVETH achieves good results even for matrices with virtu-
ally no operations recognized as codelets. E.g.,Mittelmann/fome13
features an SpMV kernel with 570K FLOPs, out of which 99.8% are
written as scalar operations in DSCG codes. MACVETH manages
to execute 86% of them as vector operations (versus 78% by the CSR
executor and 18% by the GCC-compiled DSCG code), achieving a re-
duction in the number of executed instructions of 4.5x and 1.5x with
respect to the CSR and DSCG versions, respectively, and a speedup
of 2.5x and 1.6x. The raw performance achieved by MACVETH
increases from 1.67 GFLOPS using TSC-based packing recipes to
2.40 GFLOPS using instruction count-based recipes. This exempli-
fies how the performance improvements obtained by MACVETH
are not dependent on the regularity of the sparsity patterns
exhibited by the input matrix.

Note that, when using instruction count-based packing recipes,
MACVETH generates vector code for exactly the same operations
as in Section 4.1, but using packing instructions that reduces exe-
cutable size. We compared the results achieved by the instruction
count-based version with the ones obtained by a version which
only uses _mm256_i32gather_ps for data packing. The version em-
ploying MRKVS recipes achieves a 1.12x geometric mean speedup
with respect to the gather-only version, with a 1.18x reduction in
the number of executed instructions.

4.2.1 Hot cache Finally, we analyze the performance obtained by
these codes under hot cache conditions. For this, we execute the
same SpMV operation 100 times, without flushing the cache after
each repetition. Note that these are the usual experimental condi-
tions when computing tensor operations on batches of data, as in,
e.g., the inference of neural networks. Likewise, these are the ex-
perimental conditions for the Intel HPCG benchmark that provided
the reference performance of 5.5 GFLOPS. As expected, we observe
significantly increased benefits for the DSCG and MACVETH codes
with respect to the CSR baseline, as the main bottleneck for these
codes, i.e., text segment sizes, is now alleviated by the 30 MiB LLC
cache in the 12900K processor. The speedups and raw performance
are detailed in Figure 4. Geometric mean speedups are now 2.0x
and 1.2x with respect to the CSR and DSCG baselines, respectively,
while, as was to be expected, the relationship between the number
of executed instructions among the different code versions remains
identical as under cold cache conditions.



Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations

PACT °22, October 8-12, 2022, Chicago, IL, USA

51 e MACVETH speedup 5.5
4 % MKL speedup 3
—— MACVETH GFLOPS :
3{ == MKL GFLOPS "
- CSR GFLOPS o s 1
5 ° » ° Ze X <, 1
® ° . oo o © o 5
) e % . %( L . ° X o cq%f&o
o & x ° .
© “ 3 @\) ° UU'ﬁ "g X' .)Ww( 1 4 ?O /O «’7\‘0 {{b .Z)‘ —~
Cé”\ x® 0, © %% e x % 38 _° WS 2
S SO T TR LM, &
B P T e SR T P TN P N P (XTI S T BT S e T o gf0l o
=Y X & % X ° £
2 - . 3
) X S
g £
(%) wn
S
0.0l &
[G]
/’, X
R Kex X%
x 0.001
,/, X *
R x % x* x <
Z x X X X x
0.1
10° 10! 102 10° 104 10° 108 107

Number of nonzero elements in the matrix

Figure 3: Speedup of instruction count-based MACVETH w.r.t. CSR and MKL (left) and raw performance (right). Log axes.

MACVETH speedup
—— MACVETH GFLOPS
CSR GFLOPS

>
2
GFLOPS (moving avg.)

2

10° 10* 10 10701
Number of nonzero elements in the matrix

Figure 4: Hot cache speedup of MACVETH w.r.t. CSR (left)
and raw performance (right). Log axes.

4.3 Intel Math Kernel Library

While the previous results are informative of the performance
of the DSCG codes compiled with MACVETH with respect to a
default CSR executor, the current state-of-practice standard is to
employ the Intel Math Kernel Library (MKL) [40], a C++-based
library designed to enable HPC. In particular, MKL provides a set of
SparseBLAS routines, including SpMV. We used Intel MKL v2022.0.2
in our experiments. The SparseBLAS part of the library works in an
inspector-executor fashion. The inspection part was left out of the
timed scope to ensure fair comparisons. The MKL code employed
in these experiments, linked against the single-threaded MKL li-
braries, is detailed in Listing 6. Multithreaded results are presented
in Section 4.4.

Since only 12 out of 200 matrices in the original set had code
sizes above the LLC size of 30 MiB, we added 30 matrices in between
10M and 20M nonzeros. These new matrices were selected using
the same original notion of fairly sampling the SuiteSparse domain
according to matrix sizes and regularity of their sparsity structure.

Figure 3 details the results obtained in these experiments. MKL
achieves a geometric mean speedup of 0.8x with respect to the CSR
executor, i.e., a slowdown. This is due to significant initialization
overhead of the executor function, which is not offset until matrix

168

Table 1: GFLOPS for each SpMV version. Columns labeled
“> X” are geometric means restricted to matrices with more
than X nonzeros.

. Performance (GFLOPS
Cache Version >1 >10K >1M ( > 10M ) Peak
CSR 1.43 2.15 2.27 2.39 5.26
% DSCG 1.42 2.03 2.00 2.07 4.55
Q MKL 1.15 2.56 3.07 3.29 5.31
MACVETH 2.16 3.41 3.30 3.37 7.91
CSR 2.55 2.70 2.48 2.50 6.80
B DSCG 3.81 3.45 2.29 2.12 11.48
T MKL 3.29 3.81 3.33 3.31 7.13
MACVETH | 4.91 5.27 3.92 3.53 17.48

sizes are significantly large, approximately above 10K nonzeros. If
we consider only that subset, then MKL achieves a geometric mean
speedup of 1.19x. The speedup of the MACVETH codes with respect
to this subset is 1.33x. Generally speaking, in single-threaded exe-
cutions MACVETH keeps a significant lead over MKL for matrices
below 2M nonzeros. After that point, it depends on the particular
characteristics of each input matrix, with MACVETH leading by a
geometric mean speedup of just 1.02x, being faster in 27 out of 47
matrices. The performance of each version for a particular matrix
depends on how the complex execution trade-offs play off for a
given matrix size and sparsity structure. MACVETH achieves a re-
duction of 6.07x in the number of instructions executed, while MKL
features a better execution schedule that incurs 1.33x less L2 misses
and 1.50x less L3 misses than the CSR version. Table 1 summarizes
raw performance in single-threaded executions for each experimen-
tal version, including the larger matrices and performance under
hot cache conditions, measured in a similar way as in Section 4.2.

We ran additional experiments comparing the deprecated MKL
(dMKL) version to the newer inspector-executor MKL (ieMKL).
For the cold cache setup, we found dMKL to be, on average, 1.51x
slower than ieMKL. In our tests, dMKL is slower for 100% of the
matrices. It executes 16.8% less instructions, and presents roughly
the same number of L2 and L3 misses, although it reduces the



PACT 22, October 8-12, 2022, Chicago, IL, USA

—— MACVETH

GFLOPS (moving avg.)

01 10° 10°
Number of nonzero elements in the matrix

Figure 5: Hot cache multithreaded performance. Each of the
four series represents the speedup for 1/2/4/8 threads. Higher
thread count yields higher performance. Log axes.

number of D1 misses by 1.7x. It executes 1.7x more scalar floating
point operations, but it issues 60.8% of the total FLOPs using 256-bit
vector instructions, something that the ieMKL version never does
(it uses 128-bit vector ops for 82.2% of the total FLOPs, and scalar
ops for the rest).

As for the hot cache setup, dMKL is still 1.06x slower on aver-
age, but in this case it is faster than ieMKL for 41 matrices. The
average speedup for these 41 matrices is 1.12x. The general stats
are similar to the ones presented above for cold cache. When we
restrict ourselves to the 41 matrices for which dMKL is faster, the
reduction in the number of instructions reaches 2.1x. The increase
in scalar operations is reduced to 1.57x. The share of FLOPs that
is issued using 256-bit vector ops reaches 85.4%. In order to keep
plots simple, the figures in this section include only results for the
newer, better performing, inspector-executor MKL version.

4.4 Multithreaded Results

We parallelize codes using OpenMP in order to evaluate the scaling
of the speedups observed for single-threaded versions of these
codes. We target the hot cache setup, with 100 repetitions of the
multiplication kernel, in order to ensure that computations are
substantial enough to benefit from parallelization. The CSR baseline
is parallelized by performing a static block distribution of the sparse
matrix rows among the different threads, as seen in Listing 5°. The
DSCG and MACVETH codes are parallelized by dividing the number
of FLOPs fairly among the different threads. Note that neither
approach guarantees fair schedules: heterogeneous distribution of
nonzeros among the matrix rows will cause load imbalance between
different threads of the CSR executor. Similarly, for the DSCG and
MACVETH codes the number of FLOPs does not drive performance,
which depends essentially on the access patterns performed by each
thread, determining the vectorization recipes and size of its code
block. We observe a difference of 1% between the average standard
deviations in both parallelization approaches, highlighting that
the experimental setup is fair. MKL schedules computations across
threads according to the inspection phase.

We observe noticeable performance differences between the
parallel codes executed with one thread and the single-threaded
versions. In the CSR case, this difference is due to GCC disabling

SWe empirically observed the dynamic distribution to be slightly less performant for
our experimental set.

169

Horro et al.

Table 2: Performance of multithreaded codes, hot cache.

. Performance (GFLOPS)
Threads | Version |, _j;x 1M  >10M Peak
CSR 2.01 2.05 1.87 1.82 3.65
1 DSCG 2.94 3.29 2.23 2.10 10.86
MKL 0.65 2.03 2.87 2.98 5.79
MACVETH 3.87 5.00 3.79 3.47 16.40
CSR 2.82 3.61 3.25 3.08 7.07
2 DSCG 4.35 6.10 3.93 3.56 18.49
MKL 0.81 2.87 4.79 4.79 8.21
MACVETH | 5.25 8.61 6.44 5.70 30.07
CSR 4.08 6.30 5.40 4.60 13.64
4 DSCG 5.80 9.96 5.16 3.97 38.63
MKL 1.00 3.89 7.64 6.99 15.68
MACVETH 6.87 13.88 9.17 6.81 58.78
CSR 5.11 9.67 7.81 5.74 26.47
8 DSCG 6.57 14.32 6.48 4.40 65.83
MKL 1.12 4.66 10.67 8.62 26.37
MACVETH 7.75 19.14 1231 7.82 100.87
CSR 4.54 10.59 9.12 6.16 32.95
16 DSCG 524 1337 6.82 4.58 66.45
MKL 1.13 4.84 11.83 9.10 34.49
MACVETH 6.42 18.17 12.51 7.85 105.60

vectorization of the irregular loop when compiling with -fopenmp.®
The number of LLC misses increases by 1.07x, and the executed
instructions by 1.21x. As for MKL, there is a 1.06x overhead incurred
by the parallel version, driven by a 1.15x increase in the LLC misses.
Besides these, all code versions perform significantly worse for
smaller matrices due to the overhead of spawning the threads.

We execute the experimental set using 1, 2, 4, 8, and 16 threads,
pinned to different physical performance cores in the processor
except for the case of 16 threads, where each of the 16 physical
cores is assigned 2 threads (one per logical core). Figure 5 and Ta-
ble 2 show the multithreaded results. Series for 16 threads were
removed from the figure to improve readability, as the speedup
across the entire experimental set was 1x for MKL, and below 1x
(a slowdown) for the CSR, DSCG and MACVETH versions, but
are included in Table 2. The MACVETH version scales the best
for matrix sizes below 8M nonzeros. From that point on, the best
performance is offered either by MACVETH or MKL depending on
the particular trade-offs of each input matrix regarding instruction
count and memory performance. The best geometric mean speedup
is offered by MKL using 4 or more threads. However, MACVETH is
the superior choice for many of the largest matrices in the experi-
mental set, e.g., MACVETH achieves a 1.66x speedup versus MKL
using 16 threads for Mazaheri/bundle_adj, the largest matrix in
the experimental set with 20.2M nonzeros, while it presents a 0.77x
speedup (a slowdown) for DIMACS10/hugetric@0010, the second
largest matrix with 19.8M nonzeros. The reason for the reduced
scaling in the DSCG and MACVETH versions for some matrices
appears to be the need for very aggressive code prefetching to feed
instructions to the processor front-end. When using 16 threads the
memory is not capable of providing code at the rate necessary to
keep the front-end running.

4.5 Analysis and Code-Generation Performance

The code generation toolchain used in these experiments includes
three phases: i) matrix inspection and DSCG code generation; ii)

®1t is not possible to turn vectorization on again using ivdep or other pragmas.



Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations

MACVETH source-to-source optimization; and iii) GCC compila-
tion and linking. The current version of i) is implemented in C in a
single-threaded fashion. MACVETH is implemented in C++, and
can be run in parallel on different files. For many small matrices,
the entire process can be run in seconds. For the largest matrices
these times increase to a few minutes. Generally speaking, the codes
in the “sweet spot” single-threaded performance region close to
the peak of 5.5 GFLOPS, with sizes around 10M nonzeros, can be
processed and compiled in 5 to 10 minutes. For codes around 1M
nonzeros the processing time is around 1 minute. Processing time
scales mostly linearly with the number of nonzeros, with constant
terms that depend on the regularity of the matrix structure.

The time to directly compile the DSCG codes, using autovector-
ization as implemented in GCC, is roughly equivalent to the time
to run source-to-source optimization using MACVETH and then
compiling the result using GCC. Since the MACVETH-generated
code generates mainly intrinsics and assembly code, the final com-
pilation step is much faster than when deploying autovectorization.

4.6 Code Statistics

We statistically analyzed the MACVETH-generated codes to extract
information about how the scalar operations are being vectorized in
terms of the usage of MACVETH recipes vs. generic AVX2 gathers.

The entire set of matrices on which we experiment contains
approximately 554M nonzeros. Out of these, 16M operations are is-
sued using scalar instructions in the MACVETH codes, which leaves
roughly 538M nonzeros to be processed using vector operations.
The MACVETH codes also contain 46M vector FMAs (1M in 128-bit
mode and 45M in 256-bit mode), and 25M vector MULs (1M in
128-bit mode and 24M in 256-bit mode). The remaining operations
are swizzles, casts, gather-like operations (whether implemented
through gathers or through custom recipes), and reductions through
adds and horizontal adds, but do not perform basic matrix-vector
computation. As such, the 71M combined vector FMAs and MULs
perform an average 7.6 useful scalar multiplications each.

In order to feed these multiplication operations, the code emits
151M gather-like operations, i.e., each FMA or MUL fuses together
an average 2.1 independent reductions. Out of these 151M gather-
like operations, 97M (64%) are issued through custom recipes dis-
covered by microbenchmarking using MRKVS and MARTA, while
the remaining 54M are executed through gathers, and more pre-
cisely through _mm256_1i32gather_ps(). Considering that, out of
the 255 packing recipes considered by MACVETH, only 129 (50.5%)
are statically issued through custom recipes, this means that the
targeted packing classes are the ones which most frequently appear
in the experimental set.

4.7 Sensitivity Analysis
The results presented in the previous section depend on architec-
tural and software factors. For instance, the LLC cache size deter-
mines how well the hot cache results will scale with matrix size.
Similarly, the speedup of MACVETH with respect to the CSR ex-
ecutor and the DSCG versions depends on how well the compiler
vectorizes irregular (CSR) and fully-unrolled (DSCG) codes.

In order to assess the impact of our architectural and compiler
choices in the previous results, we experimented on an AMD Ryzen9

170

PACT °22, October 8-12, 2022, Chicago, IL, USA

Table 3: Performance on Zen3, hot cache.

. Performance (GFLOPS
Cache | Version |, o0 iy ( > 10M ) Peak
CSR 2.02 2.13 1.98 2.04 4.10
k] DSCG 2.68 2.36 1.89 1.77 9.92
T MKL 3.04 3.56 3.15 3.10 6.80
MACVETH | 3.16 3.32 2.67 2.37 10.76

5950X (Zen3 architecture), and we introduced Clang v13.0.1 and ICC
v2022.0.1 as alternate compilers. Note that MACVETH optimization
on the Zen3 machine required re-evaluating the MRKVS-generated
recipes to find again which packing classes benefit from using
ad-hoc recipes instead of the AVX2 gather instruction.

There is no significant performance difference (below 5%) for
the CSR, MKL, and DSCG versions of the single-threaded kernels
when compiled with ICC versus GCC. The reason appears to be less
efficient AVX2 code produced from the MACVETH-generated in-
trinsics. Whereas the GCC version generated 4.8%, 9.1%, and 86.1%
of vector operations as scalars, 128-bit, and 256-bit vector opera-
tions, respectively, the ICC version changes this mix to 6.6%, 4.4%,
and 89%. In this process, it generates 1.14x more instructions, and
consequently 1.13x more LLC misses. When using ICC, MACVETH
still improves versus CSR (1.35x), DSCG (1.40x) and MKL (1.06x).
The Clang-generated MACVETH codes perform identically to the
ones generated by ICC, with a negligible performance difference
under 1%. DSCG codes, however, present a 1.27x slowdown, derived
from a 1.40x increase in the number of floating-point operations due
to a less aggressive vectorization, and consequent 1.14x increase
in the number of total instructions executed, together with a 1.28x
increase in LLC misses.

Performance on the Zen3 machine is lower than on Alder Lake
in our experiments, for all code versions. Note that, in fact, the
reference Intel HPCG benchmark reports a raw SpMV performance
of 4.3 GFLOPS in Zen3, versus 5.5 GFLOPS in Alder Lake. The
geometric mean speedup of MACVETH with respect to the CSR
and DSCG versions is 1.37x and 1.33x, respectively. The same trade-
offs involving number of instructions and memory performance can
be observed for the larger matrices. The raw performance results
for this architecture are provided in Table 3. Besides the weaker raw
performance across the board, we observe decreased scaling of the
benefits of the DSCG and MACVETH versions for large matrices.
The fundamental factor appears to be the processor front-end: the
Zen3 legacy decoder is 4-wide, versus the 5-wide one in Alder Lake.
This factor impacts data-specific codes the hardest: being fully
unrolled, explicit codes, they cannot take advantage of the more
efficient p-instruction caches in both architectures, from which 6
instructions can be decoded per cycle. The smaller CSR and MKL
kernels benefit from this improved issue rate.

5 Concluding Remarks

Optimizing sparse-immutable data structures by exploiting data-
specific compilation trades off large data size and indirect accesses
for larger code size but using only direct accesses. We presented
the MACVETH system (Multi-Architectural C-VEcTorizer for HPC
applications) to address the synthesis of high-performance SIMD
implementations for such regular strided-access reduction or map



PACT °22, October 8-12, 2022, Chicago, IL, USA

loops. Experimental results on 230 sparse matrices demonstrate the
performance benefits, and limitations, achieved with MACVETH
versus Intel MKL on modern multi-core processors.

Acknowledgments

This work was funded by the Ministry of Science and Innovation of Spain
(ref. PID2019-104184RB-100/AEI/10.13039/501100011033), by the Ministry
of Education of Spain under Grant FPU16/00816, by Xunta de Galicia and
FEDER funds of the EU (CITIC - Centro de Investigacién de Galicia accredita-
tion 2019-2022, ref. ED431G 2019/01; Consolidation Program of Competitive
Reference Groups, ref. ED431C 2021/30), and by the U.S. National Science
Foundation under Awards CCF-1750399 and CCF-2009020.

References

(1]

[2

[

[3

=

i~
fla

(5]
(6]

(7

=

(8

=

[9

=

A. Abel and J. Reineke. 2019. uops.info: Characterizing Latency, Throughput,
and Port Usage of Instructions on Intel Microarchitectures. In Intl. Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS.
Providence, RI, USA, 673-686.

A. Abel and J. Reineke. 2022. uiCA: Accurate Throughput Prediction of Ba-
sic Blocks on Recent Intel Microarchitectures. In Proceedings of the 36th ACM
International Conference on Supercomputing, ICS. Virtual Event, USA, 33:1-33:14.
A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and P. Sadayappan. 2014.
Fast Sparse Matrix-vector Multiplication on GPUs for Graph Applications. In Intl.
Conference for High Performance Computing, Networking, Storage and Analysis,
SC. New Orleans, LA, USA, 781-792.

T. Augustine, J. Sarma, L.-N. Pouchet, and G. Rodriguez. 2019. Generating
piecewise-regular code from irregular structures. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDIL.
625-639.

N. Bell and M. Garland. 2008. Efficient Sparse Matrix-Vector Multiplication on
CUDA. NVIDIA Technical Report NVR-2008-004. NVIDIA Corporation.

N. Bell and M. Garland. 2009. Implementing Sparse Matrix-Vector Multipli-
cation on Throughput-Oriented Processors. In ACM/IEEE Conference on High
Performance Computing, SC. Portland, OR, USA.

H. Bian, J. Huang, R. Dong, L. Liu, and X. Wang. 2020. CSR2: a new format for
SIMD-accelerated SpMV. In 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing, CCGRID. Melbourne, Australia, 350-359.

X. Chen, P. Xie, L. Chi, J. Liu, and C. Gong. 2018. An efficient SIMD compression
format for sparse matrix-vector multiplication. Concurrency and Computation:
Practice and Experience 30, 23 (2018), e4800:1-10.

Chips and Cheese. 2021. How Zen 2’s Op Cache Affects Performance. [Accessed:
01-03-2022].

[10] JW. Choi, A. Singh, and RW. Vuduc. 2010. Model-Driven Autotuning of Sparse

[11]

[12]
[13]

[14]

[15

[16]

[17]
[18]

[19]

Matrix-Vector Multiply on GPUs. In 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP. Bangalore, India, 115-126.

S. Chou, F. Kjolstad, and S. Amarasinghe. 2018. Format abstraction for sparse
tensor algebra compilers. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 123.

T. A. Davis and Y. Hu. 2011. The University of Florida Sparse Matrix Collection.
ACM Trans. Math. Software 38 (2011), 1-25. Issue 1.

L. de Moura and N. Bjerner. 2008. Z3: An efficient SMT solver. In IntL. Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS.
337-340.

E.F. D’Azevedo, M.R. Fahey, and RT. Mills. 2005. Vectorized Sparse Matrix Multi-
ply for Compressed Row Storage Format. In Intl. Conference on Computational
Science, ICCS. Atlanta, GA, USA, 99-106.

A.Fog. [n.d.]. 4 Instruction Tables. Lists of Instruction Latencies, Throughputs
and Micro-Operation Breakdowns for Intel, AMD, and VIA CPUs. [Accessed:
01-03-2022].

F. Franchetti, Y. Voronenko, P. A. Milder, S. Chellappa, M. R. Telgarsky, H. Shen,
P.D’Alberto, F. de Mesmay, J. C. Hoe, J. MF Moura, et al. 2008. Domain-specific li-
brary generation for parallel software and hardware platforms. In Intl. Symposium
on Parallel and Distributed Processing, IPDPS. 1-5.

GNU GCC. [n.d.]. Auto-Vectorization in GCC: Using the Vectorizer. [Accessed:
01-03-2022].

J. Godwin, J. Holewinski, and P. Sadayappan. 2012. High-performance Sparse
Matrix-vector Multiplication on GPUs for Structured Grid Computations. In 5th
Annual Workshop on General Purpose Processing with Graphics Processing Units,
GPGPU. London, UK, 47-56.

T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste. 2021. Sparsity in
Deep Learning: Pruning and growth for efficient inference and training in neural
networks. Journal of Machine Learning Research 22, 241 (2021), 1-124.

171

[20]

[21

[22]

[23

[24

[25]

[26]

[27
[28

[29

[30

31

[32]

[33

[34

[35
[36

[37]

[38

[39

[40

[41]

[42
[43

[44

[45

[46

Horro et al.

J. Hofmann, J. Treibig, G. Hager, and G. Wellein. 2014. Comparing the Perfor-
mance of Different x86 SIMD Instruction Sets for a Medical Imaging Application
on Modern Multi- and Manycore Chips. In Proceedings of the Workshop on Pro-
gramming Models for SIMD/Vector Processing, WPMVP. Orlando, Florida, USA,
57-64.

M. Horro. 2022. Manycore Architectures and SIMD Optimizations for High Perfor-
mance Computing. Ph.D. Dissertation. Universidade da Coruiia, Spain.

M. Horro, L.-N. Pouchet, G. Rodriguez, and J. Tourifio. 2022. MARTA: Multi-
configuration Assembly pRofiler and Toolkit for performance Analysis. In IEEE
International Symposium on Performance Analysis of Systems and Software, ISPASS.
Singapore, 79-89.

F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe. 2017. The tensor
algebra compiler. Proceedings of the ACM on Programming Languages 1, OOPSLA
(2017), 77:1-29.

M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P Sadayappan. 2013.
When polyhedral transformations meet SIMD code generation. In Proceedings
of the 34th ACM SIGPLAN conference on Programming Language Design and
Implementation, PLDI 127-138.

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop. 2014. A unified
sparse matrix data format for efficient general sparse matrix-vector multiplica-
tion on modern processors with wide SIMD units. SIAM Journal on Scientific
Computing 36, 5 (2014), C401-C423.

Y. Li, P. Xie, X. Chen, J. Liu, B. Yang, S. Li, C. Gong, X. Gan, and H. Xu. 2020.
VBSF: a new storage format for SIMD Sparse Matrix—Vector multiplication on
modern processors. The Journal of Supercomputing 76, 3 (2020), 2063-2081.
LLVM. [n.d.]. Auto-Vectorization in LLVM. [Accessed: 01-03-2022].

D. Nuzman, L. Rosen, and A. Zaks. 2006. Auto-vectorization of interleaved data
for SIMD. ACM SIGPLAN Notices 41, 6 (2006), 132-143.

A. Pohl, B. Cosenza, and B. Juurlink. 2019. Portable Cost Modeling for Auto-
Vectorizers. In Proceedings of the 27th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, MASCOTS.
Rennes, France, 359-369.

V. Porpodas. 2017. Supergraph-SLP auto-vectorization. In 26th International
Conference on Parallel Architectures and Compilation Techniques, PACT. 330-342.
V. Porpodas, R. CO Rocha, and L. FW Goes. 2018. Look-ahead SLP: Auto-
vectorization in the presence of commutative operations. In Proceedings of the
Intl. Symposium on Code Generation and Optimization, CGO. 163-174.

L.-N. Pouchet. 2011. PolyBench: The Polyhedral Benchmarking suite, version
PolyBench/C 4.2.1. http://polybench.sf.net. Last accessed: May 2017.

M. Puschel, J. MF Moura, J. R Johnson, D. Padua, M. M Veloso, B. W Singer, J.
Xiong, F. Franchetti, A. Gacic, Y. Voronenko, et al. 2005. SPIRAL: Code generation
for DSP transforms. Proc. [EEE 93, 2 (2005), 232-275.

I Rosen, D. Nuzman, and A. Zaks. 2007. Loop-aware SLP in GCC. In GCC
Developers Summit.

Y. Saad. 1990. SPARSKIT: A basic tool kit for sparse matrix computations. (1990).
N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P. Sadayappan. 2015.
Automatic selection of sparse matrix representation on GPUs. In Proceedings of
the 29th ACM on Intl. Conference on Supercomputing, SC. 99—-108.

B. Solomon, A. Mendelson, D. Orenstien, Y. Almog, and R. Ronen. 2001. Micro-
Operation Cache: A Power Aware Frontend for Variable Instruction Length ISA.
In Proceedings of the Intl. Symposium on Low Power Electronics and Design, ISLPED.
Huntington Beach, CA, USA, 4-9.

W.T. Tang, R. Zhao, M. Lu, Y. Liang, H.P. Huynh, X. Li, and R.S.M. Goh. 2015.
Optimizing and Auto-tuning Scale-free Sparse Matrix-vector Multiplication on
Intel Xeon Phi. In 13th Annual IEEE/ACM Intl. Symposium on Code Generation
and Optimization, CGO. San Francisco, CA, USA, 136-145.

X. Tang, T. Schneider, S. Kamil, A. Panda, J. Li, and D. Panozzo. 2020. EGGS:
Sparsity-Specific Code Generation. In Computer Graphics Forum, Vol. 39. Wiley
Online Library, 209-219.

E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang. 2014. Intel
Math Kernel Library. In High-Performance Computing on the Intel Xeon Phi.
Springer, 167-188.

Z. Wegner. [n.d.]. SPRDPL: Simple Python Recursive-Descent Parsing Library.
[Accessed: 01-03-2022].

Z. Wegner. [n.d.]. x86-sat. [Accessed: 01-03-2022].

B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang. 2018. Cvr: Efficient
vectorization of spmv on x86 processors. In Proceedings of the 2018 International
Symposium on Code Generation and Optimization, CGO. Vésendorf / Vienna,
Austria, 149-162,

S.Yan, C.Li, Y. Zhang, and H. Zhou. 2014. yaSpMV: Yet Another SpMV Framework
on GPUs. In 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP. ACM, Orlando, FL, USA, 107-118.

C.Yang, A.Bulug, and J. D Owens. 2022. GraphBLAST: A high-performance linear
algebra-based graph framework on the GPU. ACM Transactions on Mathematical
Software, TOMS 48, 1 (2022), 1-51.

X. Yang, S. Parthasarathy, and P. Sadayappan. 2011. Fast Sparse Matrix-vector
Multiplication on GPUs: Implications for Graph Mining. Proc. VLDB Endow. 4, 4
(2011), 231-242.



