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ABSTRACT: Most climate models still suffer large warm and dry summer biases in the central United States (CUS). As
a solution, we improved cumulus parameterization to represent 1) the lifting effect of small-scale rising motions associated
with Great Plains low-level jets and midtropospheric perturbations by defining the cloud base at the level of condensation,
2) the constraint of the cumulus entrainment rate depending on the boundary layer depth, and 3) the temperature-
dependent cloud-to-rainwater conversion rate. These improvements acted to (i) trigger mesoscale convective systems in
unfavorable environmental conditions to enhance total rainfall amount, (ii) lower cloud base and increase cloud depth to
increase low-level clouds and reduce surface shortwave radiation, (iii) suppress penetrative cumuli from shallow boundary
layers to remedy the overestimation of precipitation frequency, and (iv) increase water detrainment to form sufficient cir-
rus clouds and balanced outgoing longwave radiation. Much of these effects were nonlocal and nonlinear, where more
frequent but weaker convective rainfall led to stronger (and sometimes more frequent) large-scale precipitation remotely.
Together, they produced consistently heavier precipitation and colder temperature with a realistic atmospheric energy
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balance, essentially eliminating the CUS warm and dry biases through robust physical mechanisms.
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1. Introduction

Most climate models have warm and dry summer biases in
the central United States (CUS) that persist after decades of
physics improvements and resolution increases, diminishing
their reliability of climate predictions and scenario projections
in the region [see a comprehensive analysis in the companion
paper Sun and Liang (2023, hereafter referred to as S&L)]. A
recent project for Clouds Above the United States and Errors
at the Surface (CAUSES) was established to search for the
causes of CUS summer warm biases, and a viable solution
(Morcrette et al. 2018; Van Weverberg et al. 2018; Zhang et al.
2018). The project’s existing hypotheses categorized the
warm biases into three major causes: underestimating pre-
cipitation, underestimating low clouds, and misrepresenting
land-atmosphere interactions. Since precipitation has a
cooling effect (Lin et al. 2017), models that underestimate
precipitation may overpredict surface temperature. Most
models underestimate clouds in midlatitudes (Cheruy et al.
2014), which leads to overpredicting surface solar radiation
and hence temperature. Misrepresenting land processes and
interactions with the atmosphere may result in model un-
derestimation of evapotranspiration, which is a leading
cause of the warm-and-dry biases (Mueller and Seneviratne
2014; Ma et al. 2018).
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While these hypotheses are not in full agreement with one
another, they are closely linked by how well models simulate
convective processes. Unskillful cumulus parameterization
may underestimate both precipitation and cloud amounts.
Deficit precipitation leads to a drier surface and smaller
evapotranspiration, causing model overestimation of Bowen
ratio, so more sensible heat flux to the atmosphere (Van
Weverberg et al. 2018). Meanwhile, inadequate clouds lead to
an overestimation of surface downwelling shortwave radiation.
Both effects collaborate to induce summer warm-and-dry
biases in CUS. Furthermore, models rely on a skillful cumulus
scheme to realistically simulate the land-atmosphere coupling
strength (Guo et al. 2006). Taken together, the model repre-
sentation of the convective process is the central argument
connecting the three hypotheses on the warm-and-dry biases.

Current cumulus parameterization schemes still suffer
many difficulties in capturing convection characteristics in
CUS (Liang et al. 2004a; Klein et al. 2006; Qiao and Liang
2015, 2016, 2017; Gao et al. 2017; Sun and Liang 2020a,b).
Two unique summer climate features of CUS may challenge
skillful cumulus parameterization. First, considerable convec-
tion activities can occur in CUS under weak large-scale forc-
ing conditions and even unfavorable environments (Song
et al. 2019). Early observational studies recognized those
weakly forced yet highly impactful convections (e.g., the
northwest-flow severe weather outbreaks) as the preexisting
synoptic circulation for MCSs to occur (Johns 1993; Stensrud
and Fritsch 1994). More recent observations showed that
small-scale upward motions could form in the left exit region
of the Great Plains low-level jets (LLJ) or ahead of subsynoptic-
scale midtropospheric perturbations to overcome existing con-
vective inhibitions (CIN) and hence trigger mesoscale convective
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systems (MCS) in unfavorable environments (Augustine and
Caracena 1994; Moore et al. 2003; Wang et al. 2009, 2011;
Wang and Clark 2010; Marsham et al. 2011; Geerts et al. 2017;
Pokharel et al. 2019; Chasteen et al. 2019; Parish et al. 2020).
These MCSs may be associated with more than half of total
precipitation in CUS (Wang et al. 2009; Feng et al. 2019, 2021;
Hu et al. 2020, 2021). Thus, neglecting the lifting effect of
these subgrid updrafts can cause a cumulus parameteriza-
tion scheme to significantly underpredict convective precipi-
tation in CUS.

Second, cirrus clouds are the most frequent cloud type ob-
served in summer CUS (Kollias et al. 2007). They significantly
reduce outgoing longwave radiation (Hartmann et al. 2001)
and modulate precipitation through diabatic cooling changes
(Muller and O’Gorman 2011). They can form a persistent up-
per cloud ice shield to increase the static stability, which is a
crucial negative feedback suppressing convective activity
(Fowler and Randall 1994). Climate models may underesti-
mate these high-level clouds in summer over CUS (e.g., Joos
et al. 2008; Kay et al. 2012; Evans et al. 2017), although their
bias evaluation was still very limited, lacking regional specifi-
cation or by large observational uncertainty (Zhang et al.
2005; Tselioudis et al. 2021). The underestimation of high thin
clouds may imply that the modeled cirrus lifetime is too short,
preventing them from being advected to have a downstream
effect, or cirrus clouds may also be quickly burned off by
strong absorption of upwelling longwave radiation from be-
low unless they lie above lower cloudy layers (Hartmann et al.
2001). Thus, anvils that coexist with deep convective towers
can be expected to be more effective for changes in diabatic
cooling. In both cases, underestimated cirrus clouds and their
consequences on surface climate may indicate cumulus pa-
rameterization deficiencies.

This study aims to understand and reduce the warm-and-
dry summer biases in CUS through improving the cumulus
parameterization (for deep convection) by incorporating the
two overlooked climate features discussed above. Section 2
articulates the improvements to the cumulus scheme in the re-
gional Climate-Weather Research and Forecasting Model
(CWRF; Liang et al. 2012). Section 3 describes the model ex-
periments, observational data, and analysis methods. Section
4 compares the results of CWRF using the cumulus scheme
with and without the improvements. Section 5 explores the
physics mechanisms for the improved cumulus parameteriza-
tion to reduce the warm-and-dry biases. Section 6 gives the
summary and conclusions.

2. Cumulus parameterization improvements

This study used CWREF (Liang et al. 2012) as the test bed
for improving cumulus parameterization to reduce the dry-
and-warm biases in CUS (see Table 1 for the list of key acro-
nyms). The CWREF has incorporated an ensemble cumulus
parameterization (ECP) based on Grell and Dvénéyi (2002)
with major improvements detailed in Qiao and Liang (2015,
2016, 2017). The ECP has demonstrated reliable performance
over ocean (Qiao and Liang 2016), land (Qiao and Liang
2017), other climate regimes (Liang et al. 2019; Li et al. 2021;

JOURNAL OF CLIMATE

VOLUME 36

TABLE 1. Summary of key acronyms used in this study.

Term Meaning

Co Autoconversion parameter

CcoT Experiment using the temperature-dependent
autoconversion parameterization scheme

CAUSES Clouds Above the United States and Errors at the
Surface

CIN Convective inhibition

CTL Control experiment

CUS Central United States

CWRF Regional Climate-Weather Research and
Forecasting Model

ECP Ensemble cumulus parameterization

JST Experiment using the JS trigger plus the Tokioka
constraint

JS trigger  Jakob and Siebesma (2003) trigger

LCL Lifting condensation level

LFC Level of free convection

LLJ Great Plains low-level jets

LW, Longwave downwelling flux at surface

LW Total longwave cooling (LW, = LW, — LW,, +
OLR)

LW, Longwave upwelling flux at surface

MCS Mesoscale convective systems

NCP New cumulus parameterization

OLR Outgoing longwave radiation

PR Daily mean precipitation amount

SH Sensible heat flux at surface

SW, Shortwave downwelling flux at surface

SWiot Total shortwave cooling
(SW,, =SW, —SW_ +SwW,>?

SW,, Shortwave upwelling flux at surface

Swiea Shortwave upwelling flux at top of the atmosphere

T, 2-m temperature

Jiang et al. 2021), and for extreme precipitation (Qiao and
Liang 2015; Sun and Liang 2020a). The ECP has built-in pa-
rameterization for both deep and shallow convections. This
study used ECP only for deep convection and the parameteri-
zation developed by Park and Bretherton (2009) for shallow
convection.

This study improved the ECP scheme [hereafter referred to
as the new cumulus parameterization (NCP)] by incorporat-
ing three major changes: 1) the convection trigger function,
2) the entrainment rate constraint, and 3) the cloud water
conversion rate. While the specific formulations for these
changes are presented in the online supplemental material,
their rationale and principles are outlined below.

As discussed earlier, LLJs and midtropospheric perturba-
tions can induce subgrid updrafts that overcome the negative
buoyancy barrier of CIN and thus lift parcels to the level of
free convection (LFC), triggering MCS in unfavorable envi-
ronments. Some attempts to parameterize the effect of unre-
solved updrafts were to define the cloud base at the level of
condensation (LCL) (Donner 1993; Hong and Pan 1998). In
particular, Jakob and Siebesma (2003) developed a new par-
cel ascent model-based trigger function that explicitly predicts
the updraft vertical velocity and defines the cloud base at the
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TABLE 2. Observations, resolutions, available years, and their references.

Temporal (years) spatial resolution

Meteorology variable

(mapping method)

Source

Precipitation (hourly)
(conservative)

Precipitation (daily)

2-m temperature

Short- and longwave radiation at surface
and top of atmosphere (clear/all)

Cloud fraction, cloud-top pressure, cloud
optical depth

(conservative)
(linear)
grid (linear)

Height, zonal and meridional winds,
omega, temperature, humidity

Hourly (2002-19) 4-km grid

Daily (1979-2019) 4-km grid

Monthly (1984-2007) 1° X 1° lat-lon grid
Monthly (2002-19) 1° X 1° equal-angle

Monthly (1979-2019) 32-km grid with 29
pressure levels (linear)

NCEP stage IV gauge-adjusted radar-
based data (Lin and Mitchell 2005)

gridMET: Daily surface weather data
(Abatzoglou 2013)

The NASA/GEWEX Surface Radiation
Budget (SRB) (Gupta et al. 1999)

MODIS cloud optical properties: The
Collection 6/6.1 level 2 (Platnick et al.
2015)

NCEP North American Regional
Reanalysis (NARR) (Mesinger et al.
2006)

LCL. (Note that these subgrid parcels or updrafts are repre-
sented as a collective ensemble and parameterized in terms of
resolved quantities.) This function, hereafter referred to as
the JS trigger, was tested with the Tiedtke (1983) cumulus pa-
rameterization that led to an overall improved ECMWF fore-
cast performance (Bechtold et al. 2008).

This study incorporated into ECP the JS trigger, which de-
cides whether a convection occurs and where its cloud base
and top are located (following the implementation by Zhang
and Wang 2017). The original ECP defines the cloud base at
LFC, which is estimated as follows. It first searches upward
for the layer with the maximum moist static energy. If this
layer is higher than 4000 m above the surface, no convection
occurs. Otherwise, it sets the cloud base to this layer for a
deep convection. The cloud top is located at the layer of zero
buoyancy.

The JS trigger uses an entraining plume model to predict
the updraft vertical velocity w, in the convective boundary
layer depending on buoyancy and near-surface perturbations.
It defines the cloud base at the discrete model level closest to
LCL at which w, > 0 and the cloud top at which w,, vanishes.
The first parcel departure level is set at the second layer for
deep convections. At this level, turbulent perturbations pa-
rameterized in terms of surface sensible and latent heat fluxes
are added to the parcel’s temperature and humidity, respec-
tively. A deep convection occurs if the cloud depth is thicker
than 200 hPa. Otherwise, it tests sequentially the parcels
departing from higher levels (below ~500 hPa) with cons-
tant perturbations (0.2 K, 10~* kg kg™ ') until finding deep
convection.

The JS trigger thus assumes that the updraft induced by tur-
bulent perturbations serves as the pseudobuoyancy to over-
come existing CIN, lifting the parcel to penetrate through
LCL and further LFC. In addition, we adopted the constraint
of Tokioka et al. (1988) to prevent deep penetrative convec-
tion if the PBL is too shallow, that is, set w,, = 0 so no convec-
tion occurs if the entrainment rate of environmental air is
smaller than a threshold inverse of the PBL height. While the
PBL height is provided by the CAM PBL scheme (improved
Holtslag and Boville 1993), the entrainment rate is parameter-
ized following Bechtold et al. (2008).

Anvil cirrus clouds typically accompany deep convections.
An essential but often underappreciated parameter in cumu-
lus parameterization is the cloud-to-rainwater conversion rate
Co (Emanuel and Zivkovié-Rothman 1999), which generally
increases with air temperature for the ice phase microphysical
process (Fletcher 1962). Neglecting this dependency tends to
underestimate water detrainment to form sufficient cirrus
clouds (Lim et al. 2014; Han et al. 2017; Goswami et al. 2020).
We adopted the Cy increase with temperature from Han et al.
(2016), except replacing the exponential dependence with a
sigmoid function for a more gradual slope (see appendix A).

3. Model experiments, observational data, and
analysis methods

This study conducted two 40-yr continuous CWREF integra-
tions from 1 October 1979 to 1 January 2020 at 30-km grid
spacing over the well-tested North American domain, including
the contiguous United States (Liang et al. 2012). The control
simulation (CTL) used the CWRF default physics configura-
tion [see Sun and Liang (2020a) for details], including ECP for
cumulus parameterization. The second simulation (NCP) used
the identical configuration except incorporating into ECP all
the improvements presented in section 2. To understand the
physical mechanisms causing the improved model results, four
additional branch runs were made, each of which was a warm
start from the CTL simulation conditions on 1 May for a
4-month integration that ended on 1 September each year be-
tween 1980 and 2020. One run adopted both the JS trigger and
the Tokioka constraint to determine the combined convection
activation (JST), while the others included separately one of
the two activations and the temperature-dependent autocon-
version parameter Cy (COT). The warm start helped remedy
the complication by soil memory effects to focus on the ECP
changes. All CWREF simulations were driven by lateral bound-
ary conditions derived from the latest European Centre for
Medium-Range Weather Forecasts reanalysis (version 5, here-
after ERAS), with 6-hourly data available at a grid spacing of
0.25° (Hersbach et al. 2020). The analyses below were based on
summer (1 June-31 August) during 1980-2019.
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FIG. 1. Characteristic climate regions (colored boundaries with names) along with the CUS
key area (blue dotted outline enclosing 31°-52°N, 89°-98°W) where the warm-and-dry bias is
most significant as defined in the CAUSES project. The color contour map shows the terrain

height distribution.

Table 2 summarizes the observational data used in this
study, including their source, period, resolution, and mapping
method onto the CWRF 30-km grid. In particular, daily pre-
cipitation and surface air temperature data were from the
high-resolution (4-km) gridded surface meteorological analysis
of Abatzoglou (2013), available from 1979 onward. Other data
include surface downwelling shortwave and longwave radia-
tion fluxes, cloud amounts in categorical bins of pressure and
optical depth, and atmospheric circulation variables (geopo-
tential height, wind, air temperature, and specific humidity).

The major characteristic regions affected by changing ECP
to NCP include CUS defined in the CAUSES project and the
Midwest, North-Central, South, and Southeast typically used
as the key U.S. climate regions. These are illustrated in Fig. 1
along with the terrain distribution and used below to elabo-
rate the result comparison and process understanding.

To facilitate the physical understanding of the results by
various changes to ECP, two decomposition analyses were
performed. First, following Zhang et al. (2018) and Van
Weverberg et al. (2018), the net surface shortwave or longwave
radiation biases were decomposed into contributions from the
surface (shortwave reflection or longwave emission), total cloud,
and integrated water vapor. Comparison of these component
differences helped identify whether the ECP changes reduced
model biases in a physically consistent manner and which key
processes induced these bias reductions. Second, following
Muller and O’Gorman (2011), the precipitation-related latent
heat release was separated into the column-integrated dry static
energy divergence and total diabatic cooling that consists of the

atmospheric net radiative loss minus the gain from surface sensi-
ble heat flux. This separation helped quantify the radiative con-
tribution to the precipitation change associated with the ECP
improvements.

The CWRF has a unique Conjunctive Surface-Subsurface
Process model (CSSP) to realistically capture the detailed ter-
restrial hydrology and land—atmosphere interaction (Dai et al.
2003, 2004; Liang et al. 2005a; Choi et al. 2007, 2013; Choi and
Liang 2010; Yuan and Liang 2011; Liang et al. 2012; Xu et al.
2014; Gan et al. 2015; Ji et al. 2017). This facilitates the present
study to focus on cumulus parameterization improvements, as-
suming that the CSSP coupling well represents the interactions
between surface and convection processes. In addition, CWRF
has implemented the latest satellite Cloud Feedback Model In-
tercomparison Project Observation Simulator Package version 2
(COSP; Bodas-Salcedo et al. 2011; Swales et al. 2018) to simulate
cloud characteristics that are consistent with satellite retrievals.
The COSP allows a direct comparison with satellite observations,
which is needed to evaluate how our proposed ECP changes af-
fect coupling convection, cloud, and radiation processes.

4. Reduction of CUS warm-and-dry biases

Figure 2 compares the 1980-2019 averaged summer biases
in surface air temperature, precipitation, surface downwelling
shortwave radiation, and top-of-the-atmosphere outgoing long-
wave radiation (OLR) between the CWRF using the control
(CTL) and new (NCP) cumulus parameterization. Similar to
the Coupled Model Intercomparison Project (CMIP) result,
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FIG. 2. Summer biases in surface air temperature (°C), precipitation (mm day '), and surface downwelling shortwave and top outgoing
longwave radiation fluxes (W m™~2) simulated by CWRF using the control (CTL) and new (NCP) cumulus parameterization. The temper-
ature and precipitation biases are averaged over the whole integration period (1980-2019), while the radiation bias over a shorter period

(1984-2007) as limited by available observations.

CTL simulated significant warm biases in CUS, most prominent
(>2°C) in the Midwest and North-Central (see Fig. 1 for the
specification of the key climatic regions). It also had warm
biases of ~2°C over the Rocky Mountain regions, resembling

high-resolution CMIP results (Fig. 1 in S&L). In contrast, NCP
largely eliminated the warm biases around CUS, with most areas
reduced to <1°C. The reduction is evident on the NCP — CTL
map concentrated in the Midwest.
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For precipitation, CTL simulated significant dry biases
(=—1 mm day ') in CUS and some areas of the southern
Rocky and the Appalachian Mountains. Meanwhile, it had
wet biases over the Gulf states, most pronounced in south
Texas. NCP mostly eliminated the dry biases over CUS and
the southern Rocky Mountains region. It also largely sup-
pressed the overestimation in the Gulf states, albeit overdone
so in some areas away from the coast. This suppression is
clearly seen on the NCP — CTL map to occur over broad re-
gions across the Southeast, mainly due to the constraint of
Tokioka et al. (1988). As shown in Fig. S1 in the online
supplemental material, this constraint significantly reduced
the number of rainy days over the Great Plains and Southeast,
led to locally less precipitation and drier soil moisture with
deficit water available for surface evaporation, and so caused
a drier and deeper PBL under similar surface sensible heat-
ing, that is, elevated PBL height (Troen and Mahrt 1986).
Remotely, more abundant water vapor was transported
downstream to yield more precipitation in the Midwest and
northern Southeast. On the other hand, NCP slightly en-
hanced the wet biases in the northern states, which may be re-
lated to rainfall overestimation by cloud microphysics
processes. It also produced more excessive precipitation on
many spots in Wyoming and Colorado, mostly along the
windward slope of local terrain peaks east of the Rocky
Mountains. This amplification was mainly due to the JS trig-
ger (Fig. S2). It may suggest that some constraint is needed to
prevent the JS trigger from activating convection too easily
because of local orographic lifting. The role of lower tropo-
spheric perturbations that induce small-scale updrafts to trig-
ger MCS may be overestimated as they are relatively rare on
the windward of the Rocky Mountains (Wang et al. 2009).

For surface shortwave radiation, CTL produced substantial
overestimates in the Midwest and Northeast (20-60 W m?2),
with a spatial pattern highly correlated with that of tempera-
ture biases. It had smaller overestimates in the North-Central,
which did not correspond well to the center of warm biases.
Weak correspondences were also simulated in the western
states, especially in the Southwest, where excessive radiation
happened with warm or small temperature biases. NCP essen-
tially eliminated the radiation biases in most areas across
the North-Central, Midwest to Northeast, generally below
10 W m ™2 or within observational uncertainty. As clearly shown
on the NCP — CTL map, the systematic insolation reduction
(by 20-40 W m™?) extended to also cover the entire South to
Southeast. This reduction was somewhat overdone to cause
underestimates (by 10-20 W m™2) in some areas of the
Southeast, coincident with slightly colder biases along the Gulf
coast. It was a combined result of the Tokioka constraint and
COT effect (Fig. S2), increasing total cloud amount (Fig. S3).

For OLR, CTL simulated substantial overestimates across
the southern to central Great Plains and the western part of
the Midwest (15-30 W m™2), indicating that high-level clouds
were significantly underestimated. NCP eliminated the biases
in most areas across the region. As shown on the NCP — CTL
map, the systematic OLR reduction (by 10-30 W m™?)
extended to also cover the entire eastern United States. As
designed, COT significantly increased high-middle clouds (Fig. S3),
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which overcame the large underestimate in CTL and further
reduction by the Tokioka constraint eliminating convection
occurrences from shallow PBL (Fig. S1). The OLR reduction
was overdone to cause underestimates (by 1520 W m™2) in
the South to Southeast coastal regions, coincident with drier
biases.

Figure 3 compares summer composite biases of total pre-
cipitable water and vertically integrated moisture transport
flux when daily precipitation averaged over a key region (i.e.,
the Midwest, North-Central, South, and Southeast) exceeds
its climatological median. Observations showed a southerly
LLJ prevailing over the Great Plains along the western flank
of the Bermuda high. The LLJ and its associated moisture
transport were much stronger in the composites for the
above-median precipitation events in the Midwest and North-
Central than those in the South and Southeast. This is consis-
tent with the observed interannual teleconnection pattern in
which westward extension of the Bermuda high enhances the
Great Plains LLJ that transports more moisture northward to
cause precipitation increases in the Midwest and decreases in
the Gulf states (Zhu and Liang 2013). For all composites,
CTL produced systematically less precipitable water (i.e.,
drier atmosphere) over the Gulf of Mexico, Southeast, and
CUS, while transporting more moisture toward New England
through the channel over the western North Atlantic. NCP
largely eliminated all these regional circulation biases.

Figure S4 compares the latitude—pressure cross-section
composites of specific humidity, and meridional-vertical wind
biases averaged across the longitudinal span of CUS for the
same above-median precipitation events in the four regions.
CTL simulated stronger upward motions over the Gulf of
Mexico and coastal states, driving locally more convective
precipitation while causing remotely larger subsidence over
the central Great Plains. Both effects depleted more moisture
from the column between 800 and 500 hPa, resulted in a drier
lower troposphere across 22°-40°N. Again, NCP largely cor-
rected these regional circulation biases.

Given their critical role in linking CUS warm and dry biases
as revealed from the CWRF NCP sensitivity (Fig. 2), the net
(downwelling minus upwelling) surface shortwave and long-
wave radiation flux biases were decomposed into the contri-
butions from the column (vertically integrated) cloud and
water vapor as well as surface reflection or emission, following
the method of Zhang et al. (2018) and Van Weverberg et al.
(2018). Figure 4 compares these bias compositions between
CTL and NCP, while Fig. S5 shows the NCP minus CTL dif-
ferences in the net fluxes and their relative changes to the ob-
served means. The net shortwave biases were mostly positive
in CTL and about twice the magnitude of the net longwave
biases, which were positive in CUS and eastern coast states
but negative in the western states. NCP significantly reduced
the biases for both shortwave and longwave fluxes over most
areas from the central to eastern states. [Note that the bias re-
duction relative to the observed mean is larger in the long-
wave than shortwave flux (Fig. S5).] Small changes were
simulated in the western states, where the Rocky Mountains
play a dominant role in the prevailing weather patterns.
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FIG. 3. Summer composites of total precipitable water (kg m™~2; color fill), mean sea level pressure (hPa; color contour lines) and verti-
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cally integrated moisture flux (kg m™" s ; vectors) when daily precipitation averaged over a key region (enclosed in a thick black outline)
exceeds its climatological (1980-2019) median. (left) The NARR reference overlaid with sea level pressure (hPa; color contours), and
(center),(right) CWRF CTL and NCP biases from NARR. (top to bottom) Our key composite regions: the Midwest, North-Central,

South, and Southeast.

For shortwave, cloud biases dominated most regions while
water vapor biases play a second important role in eastern
United States. Insufficient low clouds (see below) reflected
less while inadequate water vapor amounts (Fig. 3) absorbed
less, both of which led to more insolation to the surface. The
contribution from surface reflection biases was relatively
small, likely because CWRF incorporates a realistic albedo
parameterization (Liang et al. 2005b), which was not changed
between NCP and CTL. Minor reflection changes might occur
as wetter soil from more precipitation has lower albedo. For
longwave, cloud biases dominated the Rocky Mountains

while water vapor biases played a more important role in
CUS. Insufficient clouds emitted less, causing negative
downwelling radiation biases over the Rockies. In contrast,
inadequate water vapor amounts were identified with positive
radiation biases in CUS and also, albeit weaker, in the Mid-
west and Northeast. This occurred because the water vapor
effect on longwave radiation is considerably stronger when it
is wet than dry—the less frequent wetter conditions may
cause excessive radiation in total even in a drier atmosphere
on average (Van Weverberg et al. 2018). Note that surface
emission biases mainly reflected ground temperature biases,
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FIG. 4. CWRF summer surface net (a) shortwave and (b) longwave radiation (W m™2) biases from SRB observations during 1984-2007,
comparing CTL and NCP. (left to right) Total biases and their contributions to induced column cloud and water vapor as well as surface

reflection or emission biases.

which were closely related to surface air temperature biases
(S&L).

For both shortwave and longwave radiation biases, the
most remarkable improvement by NCP over CTL was the sig-
nificant reduction of cloud underestimates. The NCP — CTL
maps reveal close correspondences of increased low and mid-
high clouds (Fig. S3) with, respectively, decreased surface
downwelling shortwave and top outgoing longwave fluxes
(Fig. 2). Given their importance, cloud biases were further
separated by their top pressures and optical depths. Figure 5
compares these statistics averaged over the four key regions.
CTL underestimated optically thin and thick clouds in both
low and high layers over all regions except for overestimated
thick low clouds in the Southeast. CTL also underestimated
thin but overestimated thick middle clouds over all regions.
Thus, in CTL, insufficient low and high cloud amounts

contributed most to the cloud-induced radiation biases. In the
Midwest, North-Central, and Southeast, NCP systematically
improved both thin and thick low and middle clouds as well
as thick high clouds. Exceptions occurred in the South, where
NCP underestimated thin middle clouds but overestimated
thick low clouds. Therefore, NCP simulated overall more re-
alistic cloud amounts in both vertical distribution and optical
depth to largely reduce surface radiation budget biases and
essentially eliminate CUS warm-and-dry biases.

An important question is how NCP changed (from CTL)
the frequency and intensity between convective (parameter-
ized) and large-scale (resolved) precipitation events. As
shown in Fig. S3, NCP significantly increased convective rainy
days over two major clusters. One cluster extended across the
Great Plains and the neighboring western states, where more
frequent deep convections (starting from high elevations)
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F1G. 5. CWRF summer cloud amount biases from MODIS averaged 2002-19 in each bin of
joint pressure (vertical) and optical depth (horizontal) over the four key regions, comparing
biases (denoted by a prime) of (left) CTL and (center) NCP as well as (right) relative differences
of their absolute biases (%; [NCP’| minus [CTL’| over the observed mean of MODIS). The actual
bias value (X100) is listed with a warmer (cooler) color for a larger overestimation (underestima-
tion). A cooler (warmer) color for the relative difference indicates improvement (deterioration).

produced more cirrus clouds to mostly eliminate the OLR overes-
timates in CTL, with little effect on surface shortwave radiation.
Another cluster extended across the Midwest and Southeast,
where more deep convections (starting from low elevations) pro-
duced more low-midlevel clouds to significantly reduce both sur-
face insolation and OLR overestimates in CTL. Meanwhile, more
frequent triggering of convections removed instability energy and
water vapor (by rainout) more quickly so to reduce convective
rainfall intensity, especially in the downstream regions (such as
eastern Great Plains). On the other hand, weaker convective pre-
cipitation allowed the air to be more saturated and hence in-
creased large-scale rainy days, especially in the downstream
regions of the two clusters. For the same reason, large-scale rain-
fall intensity was generally enhanced over most regions.

5. Physical mechanisms on the CWREF bias reduction

This section explores the physical mechanisms through which
NCP eliminated the warm and dry biases in CUS. The previous

section compared the results from the three major changes to the
ECP cumulus parameterization (CTL)—the Tokioka constraint,
the JS trigger, and COT autoconversion—separately as well as
their total effects (NCP). We showed that the resulting tempera-
ture and precipitation changes had complex relationships with
cloud, radiation, and other fields. The effects were neither local
nor linear. It is thus challenging to gain physical insights from local
and isolated comparisons. Below we performed two decomposi-
tion analyses to address the issues from the surface radiation bud-
get and atmospheric diabatic cooling perspectives in the coupled
climate system. Since the Tokioka constraint was built directly
into the JS trigger as an additional limiting condition for convec-
tion to occur and produced some compensating results, we fo-
cused on their combined effects (JST).

a. Effects of the JS trigger and Tokioka constraint

Figure 6 compares the composite vertical profiles (cloud
fraction and base/top pressure frequency, convective tempera-
ture, and water vapor tendencies) and relative differences due
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FIG. 6. Summer composite JST minus CTL changes over the four key regions (Midwest, North-Central, South, Southeast) separated by
(a)—(e) colors and (f)—(i) titles. (a)-(e) The changes in the vertical profiles of the (a) cloud-base and (b) cloud-top pressure frequency, the
convective (c) temperature (°C day ') and (d) water vapor (g kg~ ' day ') tendency, and (e) the cloud fraction (%). (f)—(i) The relative
changes in the cumulus characteristic terms (F'/F), where the prime denotes for the change, and F for any feature among cloud pressure
depth (D), cloud-base mass flux (m,), downdraft mass flux (m,), and & = m /my,.

to incorporating the JS trigger plus the Tokioka constraint
(i-e., JST minus CTL). The composite was done on all grids
over each of the four key regions when convections took
place. The JST simulated systematically much lower cloud ba-
ses than CTL (Fig. 6a and Fig. S6), mainly because the JS trig-
ger defines the cloud base at LCL that is generally lower than
LFC. The CTL used LFC, which caused a systematic overesti-
mation of cloud-base heights. Besides, the CTL cloud-base
frequency had a pronounced zigzag distribution, while the
JST profile was quite smooth (Fig. S6). This is because CTL
using the default ECP located the cloud base simply at the
discrete model level of LFC, while JST adopting the JS trigger
located that at the closest model level to the exact pressure of
LCL (Jakob and Siebesma 2003).

The composite analysis also shows that JST simulated sys-
tematically higher cloud tops than CTL (Fig. 6b). Thus, on av-
erage, coincident with a lower cloud base was a deeper cloud
depth in the Midwest, North-Central, and South, albeit a
slightly shallower depth in the Southeast (Fig. 6i). A cloud-
base change may have important consequences on other cu-
mulus characteristics, such as the downdraft mass flux (m,)
that determines convective effects on large-scale environ-
ments (Grell et al. 1994). To the first-order approximation
(see appendix B for the derivation), the relative change in m,
can be estimated by the negative relative change in cloud
pressure depth (D) and in the downdraft over (updraft)

cloud-base mass flux ratio (e), mj/m,~—D,/D,+ &le
[Eq. (B5)], where x’ denotes the change in y. In addition, the
relative change in cloud-base mass flux is approximately in
proportion to the negative relative change in cloud depth,
my/m, « —D'/D [Eq. (B4)]. These approximations explain the
composite analysis finding that in most regions a deeper con-
vection [first term in Eq. (B5)] was identified with a weaker
cloud-base mass flux [Eq. (B4)] hence a weaker downdraft,
while in the Southeast the relative reduction of the mass flux
ratio [second term in Eq. (B5)] dominated that of downdraft.
This ratio reduction resulted from less in-cloud condensation
by a thinner cloud and higher precipitation efficiency accom-
panying a lower cloud base (see the supplemental material for
details). Overall, the above mechanism explains why the JS
trigger, defining the cloud base at LCL rather than the higher
level LFC, systematically simulated weaker downdrafts in all
four regions. The reduced downdrafts caused weaker convective
drying and warming in the mid- to upper layers (Figs. 6¢,d), and
consequently resulted in more low- to midlevel clouds (Fig. 6e),
which reduced CTL cloud and radiation biases (Figs. 4 and 5).
The North-Central differs from other three regions in that
its mass flux ratio (¢) was enhanced by JST, causing a weaker
reduction in the downdraft than updraft. It was also identified
with a much wider peak of the cloud-base frequency between
850 and 650 hPa than other regions, each with a distinct nar-
row peak around 900 hPa. The changes in the North-Central
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—SW,) and longwave (LW,, —LW,) radiation,
and their total

and the negative precipitation latent heat release (PR - £). They are averaged during 1980-2019 over all grids with
convections in the four key regions. The right y axis shows the equivalent precipitation units (mm day '), positive
downward (e.g., JST simulated more precipitation in the Midwest). Black lines represent the 95% confidence interval

estimated by the bootstrapping method of Linnet (2000) with 1000 resamples. (b) The meaning of each term.

were more evident for the increased midlevel clouds, but rela-
tively small in the low- and high-level clouds. In contrast, the
Midwest, South, and Southeast were all evident with signifi-
cantly increased low and reduced high clouds. This contrast is
likely because the precipitable water is much less abundant in
the North-Central, inadequate to support deep convections.
Therefore, it was not the cloud-induced shortwave biases, but
the water vapor induced longwave biases, that dominated the
warm biases in the North-Central (Figs. 2 and 4).

Figure 7 compares the atmospheric diabatic cooling composi-
tions associated with the latent heat released due to precipitation
changes when switching the CTL to JST parameterization. Fol-
lowing Muller and O’Gorman (2011), the decomposition links
the changes in precipitation with cloud radiative forcing from an
energetic perspective (ignoring the energy exchange outside the
analysis region). The JST simulated large precipitation increases
from CTL in the Midwest, North-Central, and South, but small

reductions in the Southeast. On average, the surface sensible
heat reduction (more diabatic cooling) contributed the most to
support more precipitation latent heat release, while the surface
longwave emission reduction (again more diabatic cooling)
played a secondary role. In all cases, the atmospheric total (sur-
face downwelling minus top upwelling, i.e., SW, in Fig. 7) short-
wave adiabatic cooling changed little between JST and CTL,
while the surface insolation reduction (SW,) was canceled by the
atmospheric top reflection (SW'*). As explained earlier, JST
simulated more low- to midlevel clouds, which initially reduced
the surface insolation and ground skin temperature. Overall
Fig. 7 implies the decrease in SH plus the decrease in LW ap-
proximated the increase in heat release due to precipitation.
Physically, a cooler ground produced less sensible heat and long-
wave emission, both of which provided stronger diabatic cooling
to balance more condensation heating and consequently in-
creased precipitation (Eltahir 1998). S&L offered a more detailed
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TABLE 3. The variance of the JST minus CTL changes in
precipitation (PR) and temperature (73) that can be explained by
the key diabatic cooling terms (LW, + SH, SW, PR) and a
combined regression (SW,, PR). It is shown as the coefficient of
determinant R* using 40 data samples and identified as statistically
significant at the confidence level of 95% (*) or 99% (**).

Region
North-

Variable Midwest Central South  Southeast
PR LW, + SH 0.62%#* 0.42%%  0.80%* 0.67%*
T, SW, 0.15% 0.41%%  0.47%* 0.48%:

PR 0.45%: 0.31%%  (.72%* 0.48%:

Regression 0.45%%* 0.50%*  0.75%* 0.54%*%*

(SW,, PR)

physical explanation on how diabatic cooling differences affect
precipitation biases.

One exception was in the Southeast, where a large increase
in the diabatic cooling from less surface sensible heat and
longwave emission accompanied a small reduction in precipi-
tation (Fig. 7). The long-term average may mask important
relationships as complicated by other feedbacks. Hence, a lin-
ear regression was made between the composite changes in
precipitation and the sum of two dominant diabatic cooling
terms, that is, surface sensible heat plus longwave emission,
from all individual years (Table 3). Strong positive correlations
occurred in the Midwest, South, and Southeast, where the sur-
face diabatic cooling changes explained the precipitation inter-
annual differences between JST and CTL by, respectively,
62%, 80%, and 67% of the total variance. Now, the North-
Central became exceptional, with the variance explained by
only 42%. As discussed earlier, the North-Central is unique
with more evident increases in mid- rather than low-level
clouds. Together with terrain-induced precipitation anomalies,
these bias characteristics may indicate different feedback
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mechanisms in North-Central. On the other hand, the re-
gression intercepts in the South and Southeast were much
larger, indicating an important systematic contribution from
the dry-static energy flux divergence missed in the long-
term average. Nevertheless, through interactions with land
surface processes, low- to midlevel cloud increases induced
by deeper convections significantly reduced the warm and
dry biases and strongly controlled precipitation interannual
variations.

Interannual temperature differences between JST and CTL
in the four regions (Midwest, North-Central, South, South-
east) were correlated with those of both surface insolation
(positive) and precipitation (negative), respectively explaining
(15%, 41%, 47%, 48%) and (45%, 31%, 72%, 48%) of the
total variance. Notice the relatively small correlation with
insolation in the Midwest and with precipitation in the North-
Central. In all four regions, a simple linear regression with
both insolation and precipitation led to overall larger correla-
tions, explaining most of the 7, variance (45%, 50%, 75%,
54%). Thus, the JST induced insolation reduction and pre-
cipitation increase collaborated to significantly diminish the
regional warm biases. The key mechanisms and physical
processes underlying this bias reduction were elaborated
in S&L.

b. Effects of the temperature-dependent autoconversion

Figure 6 shows that JST reduced high-level clouds from
CTL, which is not beneficial to overestimation of OLR in
CTL (Fig. S2). This motivated improving cirrus clouds associ-
ated with deep convections to counter back the JST-caused
OLR errors. Figure 8 compares the composite vertical profiles
(convective water vapor and temperature tendencies, cloud
fraction) between COT and CTL. Overall changes from CTL to
COT were similar for all fields among the four regions. Most no-
tably, COT simulated a wetter tendency (up to 0.5 g kg~ ' day™!)
in the upper troposphere between 300 and 150 hPa. Our

Temperature Water vapor
Temperature [°C] tendency [°C day~!] tendency [g kg day~!] Cloud fraction[%]
hPa
200+ —+ —+ -+
400+ / —+ > —+ -+
600 —— —+ —+ -+
—— Midwest
800 —— — —— Northcentral -1 -
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(a) —— Southeast (b) } (c) (d)
1000 ——— — | | | —1— —t—
-0.50-0.25 0.00 0.25 0.50 -1.0 -05 0.0 0.5-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 00 25 50 75

FIG. 8. Summer composite vertical profiles change (COT minus CTL) over the four key regions. (a) Temperature (°C), the convective

tendency in (b) temperature (°C day ') and (c) water vapor (g kg~
anvil cirrus occurs.

day™!), and (d) cloud fraction (%). The shaded area indicates where
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FIG. 9. As in Fig. 7a, but for COT minus CTL changes.

derivation in appendix A (A10) explains this positive anomaly
in water vapor tendency was due to the vertical gradient of C,.
A higher moisture tendency led to more cirrus clouds with less
OLR, which caused a temperature decrease above the cloud
and increase below. Thus, the environmental temperature
change is a direct effect from the water vapor tendency pertur-
bation. The enhanced vertical temperature gradient near the
tropopause (~200 hPa) reduced the upper tropospheric con-
vective warming—an indirect effect of the water vapor ten-
dency change. More cirrus led to larger warming at a higher
altitude than near the surface and hence enhanced the column
stability. Those extra water vapor near the tropopause sub-
sided to further increase midlevel clouds.

As an additional benefit, COT produced a convective cold top,
a prevalent mesoscale phenomenon observed in midlatitude
summer (Fritsch and Brown 1982). To simulate this cold top in a
Boussinesq model, the hydrostatic pressure perturbation created
by the low-troposphere cumulus warming must be balanced by
the pressure perturbation above (Holloway and Neelin 2007).
Apparently, the CTL result shows that this balance is not war-
ranted in a nonhydrostatic model. Instead, the indirect effect
from the diabatic cooling due to cumulus turrets (anvil cirrus)
offers a viable explanation. Both JST (Fig. 6) and COT (Fig. 8)
captured this convective cold top.

Figure 9 compares the atmospheric diabatic cooling composi-
tions associated with the latent heat released due to precipita-
tion changes when switching the CTL to COT parameterization.
In all four regions, COT produced systematically more cirrus
clouds and so reduced OLR. On average, this OLR reduction
dominated the total diabatic cooling change to allow less con-
densation heating and thus slightly less precipitation (with large
uncertainty), which is consistent with the enhanced tropospheric
stability (Fig. 8b). Both surface sensible heat increase and net
shortwave radiation decrease were much smaller, while surface
upwelling and atmospheric downwelling emission changes can-
celed each other. Hence, a linear regression was made between
the interannual composite changes in precipitation and OLR
(Table 4). Negative correlations were significant in the Midwest,

but became weaker in the North-Central, South, and Southeast
where the OLR changes explained the precipitation interannual
differences between COT and CTL by, respectively, 44%, 12%,
22%, and 24% of the total variance. These relationships agreed
with observations that correlations between OLR and precipita-
tion were positive for the annual cycle but negative for interan-
nual anomalies, depicting the relative roles of surface
temperature and deep convection in the extratropics (Xie and
Arkin 1998). On the other hand, the COT induced insolation
and precipitation changes still dominated surface temperature
interannual differences, jointly explaining 54%, 53%, 82%, and
37% of the total variance.

Figure 10 summarizes the major physical processes and un-
derlying mechanisms that explain how the new cumulus pa-
rameterization incorporating JST and COT reduced the
summer warm-and-dry biases in CUS. First, the JS trigger de-
fines the cloud base at LCL, which reduces the cloud-base
height and increases its depth. A deeper cloud reduces the
mass flux at its base and so weakens its downdraft [Eq. (BS)],
which decreases the convective drying and warming in the
low- to midtroposphere and subsequently increases low to
midlevel clouds (Fig. 6). Hence, less solar insolation reaches
the surface so to cool the ground, which reduces sensible heat
and longwave emission. This reduced surface forcing enhan-
ces the atmospheric diabatic cooling, which is associated with
more condensation heating from heavier precipitation (Fig. 7).

TABLE 4. As in Table 3, but for COT minus CTL changes.

Region
North-
Variable Midwest Central South  Southeast
PR OLR 0.447%* 0.12* 0.227%* 0.24%
T, PR 0.50%* 0.42%%  0.68%* 0.20%*
Regression 0.54%*%* 0.53**  0.82%* 0.37%%*
(SW,, PR)
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Second, the Tokioka entrainment constraint prevents pene-
trative convection when the PBL is too shallow, which re-
duces the number of rainy days and total precipitation over
warm oceans and coasts (Fig. 2 and Fig. S1). Third, the temper-
ature dependence (and so vertical gradient) of the cloud-to-
rainwater conversion rate produces a wetter upper troposphere
and so more cirrus clouds (Fig. 8), which reduce OLR and thus
the diabatic cooling to allow less condensation heating from
lighter precipitation (Fig. 9). In all cases, any reduced insolation
and/or increased precipitation result in a colder surface air tem-
perature, although the strength of the responses depends on
regions due to other feedbacks. S&L further elaborated the
key feedback pathways involving both temperature and precipi-
tation biases among CMIP models.

The CTL largely underestimated both low- and high-level
clouds to cause substantial compensating errors between too
much surface warming and too much OLR cooling (Fig. 2). On
the other hand, JST simulated sufficient low-level clouds to sig-
nificantly reduce the warm and dry biases in CUS. However, it
still produced inadequate high-level clouds, breaking CTL’s er-
ror compensation, to overestimate precipitation and OLR in
broad regions around CUS (Fig. S2). Meanwhile, COT systemati-
cally increased cirrus clouds and so reduced OLR. Together
NCP (JST + COT), through the robust physical mechanisms out-
lined above (Fig. 10), essentially eliminated the biases in CUS.

6. Summary and conclusions

This study aimed to use CWREF incorporating cumulus pa-
rameterization improvements to understand and reduce the
long-lasting warm and dry summer biases in CUS that are
common to global and regional climate models. The bias attri-
bution and reduction are challenging because of the complex
nonlinear land-atmosphere coupling feedbacks. To disentan-
gle the complexity, we considered two unique summer climate
features prevailing in CUS: convective activities under weak
large-scale forcing conditions and cirrus clouds, both of which
are associated with cumulus parameterization. We thus incor-
porated into CWRF ECP 1) the trigger function of Jakob and
Siebesma (2003) to represent the lifting effect of small-scale
rising motions associated with LLJ activities and midtropo-
spheric perturbations to overcome CIN for MCS to occur in
unfavorable environments, 2) the entrainment constraint of
Tokioka et al. (1988) to prevent deep convection in case of
shallow PBL to remedy the overestimation of precipitation
frequency, and 3) the temperature-dependent cloud-to-
rainwater conversion rate modified from Han et al. (2016) to
increase water detrainment to form sufficient cirrus clouds.
To facilitate the physical understanding, we conducted CWRF
19802019 simulations driven by ERAS and decomposition
analyses of the resulted surface radiation budget (Zhang et al.
2018; Van Weverberg et al. 2018) and precipitation heat



1 APRIL 2023

budget (Muller and O’Gorman 2011). We found that the new
ECP produced overall more realistic cloud amounts in both
vertical distribution and optical depth, especially increased
low- and high-level clouds, to largely reduce biases in the
surface radiation budget and OLR, and through the robust
physical mechanisms (Fig. 10) essentially eliminate CUS
warm-and-dry biases.

Significant summer bias reductions from the new ECP also
occurred in other key regions, including the Midwest, South-
east, Northeast, and the southern and eastern U.S. coastal
oceans. In some regions and other seasons, a large room exists
for further model improvements. In particular, pronounced
biases in the western United States throughout the year involve
different processes and need more detailed investigation. Never-
theless, the bias identification and process diagnosis procedures
established in this study offer a practical guidance to detect the
critical formulation deficiencies and understand the underlying
physical mechanisms. For each region, it is vital to first identify
the bias characteristics and their governing climate processes,
and then detect the key model formulation deficiencies in repre-
senting these observed processes. Only after the signals are diag-
nosed and the processes understood can one develop and
institute viable solutions to eliminate the regional biases in a
physically consistent manner. Some of the findings from this
study were applied in our companion paper S&L to identify the
model deficiencies that may likely explain CUS warm and dry
biases among CMIP models. We confirmed that the models
defining the cloud base at LCL rather than LFC reduce the
warm-and-dry biases and that the regional temperature and
precipitation biases among all models are more generally ex-
plained by errors in surface shortwave insolation, longwave
emission, and sensible heat. These results will be beneficial to
seeking specific solutions based on individual models.

An important question is whether NCP improved precipita-
tion diurnal cycle simulation. Figures S7 and S8 compare ob-
served and CWREF simulated summer rainfall diurnal cycle in
the eastward propagation for the 36°-42°N averaged amount
and the geographical distribution of the phase or timing, re-
spectively. The NCP showed noticeable improvement over
CTL with an enhanced amplitude of the nocturnal precipita-
tion across the Great Plains to Midwest, whereas the phase
changed insignificantly. Improving the precipitation diurnal
cycle warrants further investigation from both cumulus pa-
rameterization and convection-permitting modeling perspec-
tives (Liang et al. 2004b; Gao et al. 2017).
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APPENDIX A

Derivation of the Temperature-Dependent Cloud-to-Rain
Autoconversion Effect

Following Grell et al. (1994),

[8he(z)] _ 0h,(2) (- o)+ [8hu(z) 3 ahd(z)]
o 0z 0T E 0z %oz ™
(A1)

aq,(z)| _ 9q,(z) B aq,(z)  9q,(z)
[ ot ]cu - 9z mb(l 8) * l 0z € (;jz me ’
(A2)
h,(2) = h,(z,) + h(z), (A3)
q,(z) = q,(z,) + q,(2), (A4)

T (2)] _ [oh,(z) 9q,(z)

CP[ ot } B [ ot } - LC[ ot e (A3)

where ¢, h, and T are, respectively, moisture, moist static en-
ergy, and temperature, all depending on altitude (z). Sub-
script “cu” denotes the cumulus effect, e is an environmental
variable, s is a source or sink, u is an updraft thermal, d is a
downdraft, and b is cloud base. Other terms are as follows:
my, is the mass flux at the cloud base, C, is the specific heat
at a constant pressure, L. the latent heat of condensation,
and ¢ the mass flux ratio. Following Grell et al. (1994),

4, = —Comya, (A6)
where ¢; is the cloud liquid water content and C, the
cloud-to-rainwater conversion rate. Let us focus on the
upper troposphere, where changing C, produced the larg-
est difference in water vapor tendency (Fig. 8). Since the
upper troposphere is above the downdraft originating
level, all x, terms are zeros. Substituting (A6) into (A4)
and then (A2) yields

%@2+%®

az b 9z my(1 = &)

%mg = Cy(2)

)] -2

(A7)

In the COT experiment, C, decreases with temperature,
which is described as a sigmoid function,

for T(z) < T,

. (A8)
for T(z) > T,

a
Colz) = {1 + exp {-[b + T(2)]}
a
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where @ = 0.002 m ' and b = 39 — T, K are tunable pa-
rameters, and Ty = 273.15 K is the freezing point. In the
upper troposphere 7(z) < Ty, the ratio between first and
second terms on the right side of Eq. (A7) is

BCO(z) 2 —4 aTe(z)
9z a1, 1+ O] oz
ag(z) , dg,(2)
Go(z) alz m alz
B aTe(z) Q
e A
~ — % o« O-&|cOT)>1. (A9
34,2) 0 (T) (A9)
0z Z

The above uses 1 + ¢?* 7@ ~ 1 and another scale approxi-

mation. Thus, we can neglect the second term in Eq. (A7).
Assuming that the long-term mean environmental forcing
remains approximately the same [the third term in Eq. (A7)
is canceled], COT replacing C00 (prescribed Cy, dCy/dz = 0)
leads to

0] | e | G
at  leulcor 9 leulcoo o .
_ ae T aT () am. (A10)

[l +eT@bp oz O

Therefore, the vertical gradient of C(z) [first term in Eq. (A7)]
rather than its local value [second term in Eq. (A7)] dominates
the COT minus CO0 difference in the cumulus effect on the
environment water vapor tendency. As shown in Fig. S9, the
magnitude of C affects precipitation and temperature through
its coefficient a [Eq. (AS8)]. Reducing a by a factor of 5
decreased OLR by 1025 W m™? and precipitation by
0.5-1.0 mm day ™! in the Southeast, whereas increasing it by
the same factor produced little effect. This factor change is ex-
treme of the a’s range, and in both extreme cases surface tem-
perature changed insignificantly. In addition, the amplitude
{ae~T:@=b/[1 + ¢~ T@~5]%} in (A10) shows a “bumper” shape,
which explains the profile of the water vapor tendency differ-
ence (Fig. 8).

Substituting Eqs. (Al) and (A2) into (AS), dropping
downdraft terms as before, and using the moist static en-
ergy h = C,T + gz + L.q yield

aT,(z)| m, @ B B B B B
[Tr L = F: &{[hu h,(1—-¢]-L.lg, —q,(1—2l}
m, 9
= C—Z i[Tu - T,(1 - &) (A11)

Thus, the contribution to [07,(z)/0t]., from the vertical gradi-
ent of water vapor cancels that of the moist static energy.
That is, the new C, scheme does not directly affect the tem-
perature tendency through water vapor terms. Rather, the
new scheme increases cirrus clouds, causing stronger radiative
cooling above and warming below them, and hence enhances
the large-scale temperature gradient near the tropopause. Fi-
nally, the new C, scheme reduced the cumulus temperature
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tendency through the environmental temperature gradient in
Eq. (Al1).

APPENDIX B
Approximation of the Cloud Depth and Downdraft
Mass-Flux Perturbation Relationship

Under the convective quasi equilibrium (Arakawa and
Schubert 1974),

(aA) (aA) (aA)
o~ =% +(&) .
9t Jiotal at Jis at Jcu

where the cloud-work function (A) change due to the large-
scale forcing (subscript LS) is balanced by that due to cu-
mulus activities (subscript CU). Applying the chain rule
and assuming initial mass flux at cloud base (m;) is near
Zero,

(%) f_(%) _(2A) dmy (04} m,
ot LS at CcU 8mb cu dt amh cu At ’

(B2)

(B1)

Taking the linear approximation of Lord (1982), A =~ AND,
where D denotes for the cumulus cloud depth and Ay the
fitting coefficient. Assuming D changes mostly with m,, the
large-scale forcing (LSF) during a time period At is

LSF = (%) At = f(ﬂ) m, ~—A
LS cu

o o, my, = dIn(m,)

N dm,
A

~——N 4p.

LSF (B3)

Following Yano et al. (2000), the long-term mean environmen-
tal forcing is approximated as constant. For a small perturba-
tion, Eq. (B3) yields m;/m, ~—A, D’/LSF. Taking the scale
approximation O(A ,/LSF) ~ O[A /(A D)] = 1/D leads to

’

A Ay D’ D' my D
D~ — oL — = 2 ot —— |
m, LSF D m, D

(B4)

Following Grell et al. (1994), the convective downdraft mass
flux is proportional to the updraft base mass flux, m,; = ¢ - m,
or In(m,) — In(¢) = In(my). For a small perturbation,

m:j 8, ’ 3

), D g
= b+
m;, & m, m, D &

’
~M

(BS)

Thus, under the same large-scale forcing, the relative change
in downdraft mass flux is proportional to that in the mass
flux ratio minus that in the cloud depth, that is, a deeper
cloud led to less downdraft.
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