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Abstract

Optimal fish array hydrodynamics in accelerating phalanx schools are investigated through a
computational framework which combines high fidelity Computational Fluid Dynamics (CFD)
simulations with a gradient free surrogate-based optimization algorithm. Critical parameters relevant
to a phalanx fish school, such as midline kinematics, separation distance and phase synchronization,
are investigated in light of efficient propulsion during an accelerating fish motion. Results show that
the optimal midline kinematics in accelerating phalanx schools resemble those of accelerating solitary
swimmers. The optimal separation distance in a phalanx school for thunniform biologically-inspired
swimmers is shown to be around 2L (where L is the swimmer’s total length). Furthermore, separation
distance is shown to have a stronger effect, ceteris paribus, on the propulsion efficiency of a school
when compared to phase synchronization.

1. Introduction

Fish schools are known to provide hydrodynamic benefits to group members when compared to solitary
swimming [1-3]. Phalanx schools, in particular, have been investigated through different methods which
include self-propelled rigid foils [4], self-propelled flexible foils [ 5], numerical simulations of undulating
swimmers [ 1, 6], and fish tank experiments [7, 8]. Recent investigations suggest that the phalanx group
swimming efficiency is sensitive to the separation distance between swimmers in the school [1, 9, 10], with
varying conclusions reached regarding the most beneficial swimming regime with respect to separation distance.
For example, Hemelrijk’s et al [ 1] investigation of phalanx schools of mullet-shaped fish in steady flow revealed
that the propulsive efficiency of the group is higher than a solitary swimmer as long as the separation distance
within the school remains greater than or equal to one fish length. When the separation distance is smaller than
one fish length, the authors noted that the group’s swimming efficiency decreases below that of a steady solitary
swimmer [1]. Conversely, Li et al [9] notes that phalanx formations of red nose tetra fish have a high average cost
of transport when the separation distance is close to one fish length. Instead, from their simulations, a separation
distance of roughly half a fish length could provide a 2% improvement in the group’s average cost of transport
when compared to a solitary swimmer, assuming steady flow [9]. Another study, using an inviscid model,
showed that tightly packed phalanx schools of rigid airfoils, with roughly halfa chord length of separation
distance, show a 5% improvement in the group steady swimming speed, when compared to a single airfoil [10].
This improvement is accompanied, however, by a 4% increase in the average cost of transport over that ofa
single airfoil. The observed speed-up and a higher cost of transport both decrease as the separation distance
between the airfoils is increased until the system eventually approaches the single airfoil limit [10]. The preferred
separation distance in a school can depend on a range of different factors such as the swimming speed and/or
Reynolds number [8], and the phase difference between swimmers [11]. It remains to be the case, however, that
the group propulsive efficiency of fish schools in general, and for phalanx schools in particular, is directly related
to the separation distance of swimmers within it.

Phase synchronization was likewise found to be important for phalanx schools, where, e.g. red nose tetra fish
showed a preference towards either in-phase or an anti-phase swimming over all other synchronization modes
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[7]. Several computational studies of a swimming fish pair demonstrated an increased stability in synchronized
configurations [6, 9, 12] (either anti-phase or in-phase). Furthermore, Dewey et al [ 13] observed that side-by-
side hydrofoils that oscillate out of phase result in an increased thrust, while in-phase oscillations reduce the total
power input.

A different, but nevertheless important, schooling parameter to consider is the swimmers’ gait [ 14]. Previous
investigations of phalanx schools using undulating flexible fish-shape bodies rely on a fixed kinematic gait based
on empirical data[1, 9, 11], which is often obtained by observing the midline envelope of real fish in steady
swimming [7, 15]. However, an optimized kinematic adjustment could result in improved swimming
performance through schooling mechanisms such as wake capturing [16]. In fact, for swimmers to only
maintain their relative position in a school, kinematic adjustment is required [9]. Additionally, kinematic gaits
based on steady state swimming may not necessarily apply to unsteady swimming. Indeed, accelerating
swimmers have distinctively different hydrodynamic and kinematic behaviour than steady swimmers. For
example, a large survey of over 50 species of real fish revealed that accelerating fish consistently swim with a
higher tail amplitude when compared to steady swimming [17]. Similar studies report that eels and bluegill
sunfish increase both their tail amplitude and undulation frequency during acceleration when compared to
steady swimming [18, 19]. Additionally, investigations of the force field on the body of a robotic tuna-shaped
swimmer revealed that during acceleration thunniform swimmers (such as tuna) generate a significant portion
of forward thrust using their main body and may, consequently, adopt a more anguilliform-like body motion
[20]. While linear acceleration may have been investigated for single swimmers, little is known about the
collective behaviour of accelerating phalanx schools and the associated changes in kinematic motion.
Accelerating collective motions play an important role in many biological functions of fish schools, such as an
escape from predator, and also for the design of efficient maneuvers for autonomous underwater vehicles.

While previous studies looked at the influence of various parameters on schooling performance in isolation,
the goal of the current work is to develop a holistic approach to an analysis of the schooling problem that
considers a variation of affecting parameters simultaneously, rather than consecutively. This will be
accomplished by casting a problem of finding the most beneficial schooling strategy as a formal optimization
problem. A discussion of the advantages of using a formal optimization technique over a priori (nonrandom or
random) sampling can be found in literature [21-23]. In particular, it removes dependence on either an a-priori
user knowledge, or arandom chance, in identifying ‘promising regions’, it provides a guarantee that the effective
configurations were not missed, and it yields critical information regarding the relative gains between different
adaptation strategies. By comparing optimum and sub-optimum configurations, we are able to elucidate on
hydrodynamical aspects of efficient schooling and identify physical mechanisms, via which the efficiency
enhancement can occur in different schools by contrasting, for example, the adaptation strategies that tend to
maximize the useful work (or a group thrust performance) versus minimizing the total work (or the total energy
expenditure by the school). Finally, the developed optimization framework allows us to offer a unique
perspective regarding the link between stability and efficiency in a collective locomotion, a pressing question that
has been demanding answers for quite some time [9, 24, 25].

Formal optimization studies that aim to identify effective schooling configurations from a hydrodynamic
perspective are absent in the literature, although works devoted to an optimization of a swimming performance
of asolitary swimmer can be noted [14, 23, 26, 27]. Some recent studies also considered the problem of control
to ensure that a swimmer can successfully follow a leader on a specified trajectory [16, 28, 29]. The current work
does not consider the effects of control, but rather is focused on identifying the hydrodynamically-optimum
maintained configurations, which can serve as targets for control strategies. Consequently, in the current study,
the relative position between the swimmers is fixed, a framework employed in many recent studies of fish
schooling[1, 13, 30-33]. While the swimmers are fixed in place, the effects of destabilization by the resulting
fluid forces due to a swimmers’ interaction are implicitly taken into account, as such configurations also tend to
correlate with high total work, which is penalized in the optimization procedure.

We use our previously developed approach that couples an optimization algorithm to high fidelity spectral
CFD simulations [34], to allow for a coupled fish array hydrodynamics to be fully optimized in terms of their
midline kinematics, phase difference and undulation frequency. Three phalanx schools, with varying separation
distances, are presented to highlight changes in optimal behaviour depending on the compactness of a school.
The phalanx setups are also compared to an optimized solitary swimmer to highlight the differences between the
school and single fish performance. The rest of the paper is organized as follows. In section 2, we describe the
physical and numerical modeling of phalanx swimmers and the optimization cases set-up. Section 3 includes the
results of the optimization cases for both solitary and phalanx swimmers. Section 4 contains discussion and
interpretation of the results. Lastly, section 5 presents concluding remarks.
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2. Methods

2.1. Physical model

The schooling model introduced in the current study employs the following assumptions: (1) Fish relative
position in a school is fixed, (2) All fish swim with the same kinematics (albeit different phase angles), (3) Fish
self-propulsion is determined by the average of the fluid forces acting on each swimmer, (4) Fish is synchronized
in pairs, (5) Fish and schooling geometry are assumed to be two-dimensional. While these assumptions
inevitably lose some complexity of realistic fish schools [35-37], they provide a tractable mathematical model to
be used in the current optimization study, which nonetheless keeps the essential physics of the problem as
exemplified by many recent studies of fish schooling hydrodynamics that employed similar assumptions
[1,13,30,31,33,38].

The shape and kinematics of swimmers in the phalanx school is modeled using a two-dimensional
approximation of a thunniform swimmer in the streamwise-lateral plane. The geometrical features of a single
thunniform swimmer are extracted from real fish data [39, 40], which allows us to specify the shape of the
symmetric left and right lateral cross-sectional body curves, yls (x), y: (x), atits static configuration [34, 41]. The
total dimensional length of a swimmer, L, is chosen to be 0.3 m to mimic the length of a soft robotic thunniform
swimmer prototype in the work of [39, 40]. The midline kinematics of each swimmer in the school are described
by the traveling wave equation for thunniform swimmers [42, 43]:

2
o 1) = [Co taX+ Cz(%) ]sin(kx ot 6, )

where y and x are the lateral and streamwise coordinates of the midline points, respectively, ¢ is the time variable,
Lis the fish length, ¢, ¢; and ¢, are the zeroth-order, linear and quadratic wave amplitudes, k is the wave number
associated with the body motion, w is the wave frequency, and ¢ is the phase. Biological investigations suggest
that thunniform swimming can be characterized by the following body wave number relation [44],

k=21,
AL

where ), the body wave length, was measured to be ~1.1. Consequently, we fix Atobe 1.1. To find a deformed
fish position at each time, we first compute the position of the midline from equation (1), and then we
reconstruct the lateral surfaces y/(x, t), y,(x, t) by shifting the cross-sectional segments orthogonal to the midline
while approximately conserving the body volume [34, 45].

Self-propulsion is modeled by considering Newton’s second law of motion for undulating swimmers, while
calculating the corresponding viscous and pressure forces directly from the fully-resolved simulations of the
fluid-body interactions:

L dU® _

5 (E(0)), )

where m is the mass of the fish, U(¢) is the fish forward velocity and (F,(#)) is the streamwise self-propelling force
acting on the swimmers averaged among the school members. This array-averaged force (F,(?)) is defined as

1Y )
(E.(t)) = N,; y%—(ak n)-idT, 3)

where oy is the total fluid stress tensor acting on the surface of the swimmer k, which includes viscous and
pressure contributions, I'; is the curvilinear boundary of the swimmer k, ny is the outer surface normal of the
swimmer k, iis the unit vector in the streamwise direction, and N is the number of swimmers. Only the
contribution of the streamwise force, (F,(#)), i.e. thrust and drag, is considered in the propulsion law of
equation (2), and thereby the swimmer(s) are confined to move in the streamwise direction and do not travel in
the lateral direction. Similar assumptions were made in previous studies of both single and collective swimming
[31, 34, 46]. Taking the propulsion force for each swimmer to be an array-averaged force and restrictingitto a
streamwise direction allows us to keep the streamwise and lateral separation distances, and the direction of
motion, fixed within the array, so that the specified phalanx geometries during a linear accelerating motion
could be studied.

2.2.Numerical model

The numerical modeling in the current study follows the method previously developed and validated in [34].
Fluid-body interactions of the modeled swimmer are solved by considering the Arbitrary Lagrangian-Eulerian
(ALE) formulation of the incompressible Navier—Stokes (NS) equation on a moving mesh [34, 47, 48]:

3
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Figure 1. A schematic of the computational domain for (a) Solitary swimmer, (b) Phalanx fish school. ‘S’ stands for symmetry, ‘P’
stands for periodicity in lateral boundary conditions.

p((z—;l 4+ (u—w)- Vu) + Vp = pAu, (4a)

V-u=0, (4b)

where p,u = {u,, u,},p, pand w= {w,, w, } are the fluid density, velocity, pressure, dynamic viscosity and the
mesh velocity, respectively, while the derivative §/6 t represents the ALE derivative. A high-order spectral
element method (SEM) [48, 49] is used to solve the NS equations. In the SEM, a body-fitted element mesh is
constructed, and the solution within each element is represented by tensor-product polynomial functions
defined on a set of Gauss-Lobatto-Legendre (GLL) integration nodes [48, 49].

The Newton’s propulsion law (equation (2)) is advanced implicitly by using the backward Euler scheme as

ur=u"t+ ﬁ<1~3’;>, 5)
m

where 6t is the time step and (Fy) = (F,(¢")) is the propelling force acting on the swimmer(s) in the x direction at
atime ¢". Implicit update is accomplished via fixed-point iteration with Aitken relaxation [50] and typically
converges in 3—4 iterations to a set tolerance of 1 x 10~ *, Implicit treatment of the Newton’s propulsion law is
necessary to avoid the added mass instabilities pertinent to incompressible fluid-structure interaction problems
[51, 52]. Further details regarding the numerical methodology in the context of modeling of self-propelled
biological swimmers are found in [34]. The fluid and fish density are both taken to be 1 x 10> kg/m”’, which
corresponds to a neutrally-buoyant swimmer. Dynamic viscosity of the fluid, s, is setto 1 x 10 >kg/(m - s). The
mass of each swimmer m is specified as 0.8606 kg, which corresponds to the parameters of a soft robotic
thunniform swimmer prototype [40].

The computational domain for the solitary swimmer and for the phalanx school simulations is presented in
figure 1. For the solitary swimmer, the computational domain is a rectangle with dimensions 9.4L x 16L, with
the fish placed in the center of the domain and 1L away from the inlet. To simulate an infinite phalanx array, we
include two fish into the domain separated by the distance SD while accounting for the remaining fish via
periodicity in the lateral direction. The streamwise extent of the phalanx domain is the same as in the solitary
case, leading to a size of 9.4L x 2SD, with the leading edge of the fish array located, again, at 1L from the inlet, see
figure 1. Note that while periodic array simulations are possible with a single swimmer in the domain [53],
inclusion of at least two swimmers is required to study the effect of a phase lag. Thus, in the current setup, we fix
the phase of the left swimmer at ¢» = 0, while the phase ¢ of the right swimmer represents the phase lag. For a
single swimmer, a phase ¢ = 0 is used. Consequently, we specify N = 1 for a single swimmer, and N = 2 for the
school in equation (3).

We set the GLL node count as N, = N,, = 7, leading to the 6th order of the basis interpolating polynomial
functions. Fluid velocity at the fluid-body interface (surfaces y/(x, ©), y,(x, )) is set equal to the velocity of the
moving boundary, which is obtained from differentiating the corresponding equations for y,(x, £), y,(x, t) in time
(See [34] for more details). A self-propulsion is handled by keeping the fish geometrical position fixed while
adjusting the inlet velocity at a time step ¢ " to be equal to the self-propulsion velocity U" obtained from
equation (5). A pressure outflow boundary is used at the outlet. Symmetry conditions are used at the lateral

4
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boundaries for a solitary swimmer, while periodicity conditions are used at the lateral boundaries in the phalanx
schools to simulate an infinite array of swimmers. During the initial phase of the simulations, the fish and the
corresponding SEM mesh are deformed from their static configuration to the one corresponding to a midline
position of equation (1) evaluated at t = 0 as described in [34].

2.3. Optimization
The general optimization problem is stated as

maximize f(z) (6)
subjectto z € R,

where f: R” — Ris the objective function, andz € SN Cis a vector of design parameters. Theset S C R”
contains the n-dimensional search space and the set C C R” contains a set of m > 0 inequality constraints, as
presented in [34, 54]. In the current work, the traveling wave amplitude coefficients, that is {c, ¢1, ¢, }, the
undulation frequency f, and the phase lag ¢ make up the design parameters, z = { ¢, ¢1, ¢, f, ¢ }. For a solitary
swimmer, the design parameter ¢ is omitted. We restrict ourselves to a situation where all swimmers in a phalanx
school have the same kinematics (i.e. amplitude coefficients and undulation frequency), which justifies the
definition of averaged quantities within a school, such as in equation (3).

The set, Sis given by:

—0.0500L < ¢ < 0.0500L,
—0.1000L < ¢ < 0.8333L,
—0.7333L < o < 0L,
0< f< 3,
0< ¢ <2, @)

with the 5th equation omitted for a solitary swimmer. In order to allow for only physically realizable modes as
deduced from biological data, the following constraint set, C, is imposed [39, 40, 46]:

gI(X) =c+tat+o-— 0.1L <0,
&EX)=—c—aq—6—01L <0,
2
&X) =cy— — — 0.1L <0,
4(52
2
2,(X) =—cy+ — — 0.1L < 0. (8)
4C2
The first two constraints ensure that the tail amplitude does not exceed 0.1 L, while the last two constraints
restrict the maximum body undulation to under 0.1 L.
The group propulsive efficiency, 7, is taken to be the objective function, f(z). The group propulsive efficiency
is defined as the ratio of a collective ‘useful’ energy gained, over the total collective work done by the swimmers
over a certain time period, which can be stated as

Waseful
T](CO) , O f) ¢) = —
‘/vtotal

S (fy @i T U
Zszlj;ZT (§5Fk —(oknp) - vi(x, y, 1) d F)d t

€))

where T'= 1sand vi(x, y, t) is the swimmer’s k surface velocity due to undulation. By describing 7 as the ratio of
Wasetul t0 Wioral, the current optimization problem is regarded as a multi-objective optimization problem with
f(z) being a ‘weighted product’ scalarized utility function [55]. Recall that N = 2 in the current setup for the
phalanx school, and N = 1 for the solitary swimmer. Under N = 1, equation (9) reduces to a traditional
definition of a single swimmer propulsive efficiency found in [17, 34, 56, 57].

A total of four optimization cases are considered to represent three phalanx schools and a solitary swimmer.
The phalanx school cases only differ in respect to the separation distance SD, which is varied between 1L, 2L and
3L, respectively. The optimization cases are solved with a surrogate based optimization (SBO) algorithm that has
been shown to be well suited for constrained engineering problems [34, 54]. 30 data points are chosen to
construct the initial surrogate for all cases using the Latin Hypercube Sampling method [58]. Additionally, the
maximum iteration count ky,,y, and the tolerance termination criterion for the optimization procedure s, [34]
aresetto 1000 and 1 x 1072, respectively.
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Figure 2. Swimmer midline deformation across one period for four optimum propulsive modes: (a) solitary; (b) SD = 1L; (¢) SD = 2L;
and (d) SD = 3L. Deformations of the midline in time are encoded every 1/10th of the period in the different shades of blue from
lightest (t = 0) to darkest (t = 1/3).

Table 1. Optimization results.

Case Evaluations Optimal parameter set Efficiency Tolerance

SD=1L 51 {0.0001L,0.2096L, — 0.1107L, 3, 1.0377} 21.49% 48 x 107"

SD=2L 42 {0.0L,0.2105L, — 0.1107L, 3,0.99957} 22.05% 9.9 x 107*

SD=3L 39 {—0.0001L,0.2104L, — 0.1108L, 2.9998,0.96137} 21.83% 24 x107*

solitary 34 {0.0L,0.2105L, — 0.1107L, 3} 21.73% 4.0 x 107"
3. Results

3.1. Optimization results

Table 1 presents the optimization results for all the cases, which include the number of evaluations, tolerance at
termination, optimal parameters, and efficiency. It can be appreciated that all cases terminated within the
tolerance, with total evaluation counts that are significantly below the maximum iteration count k.. The
number of evaluations ranged from 34 to 51 evaluations, with the first 30 coming from the initial sampling
scheme and 4-21 optimization iterations. The first three parameters related to midline deformations, namely
{co> €1, €2}, are found to be closely similar to that of the optimum solitary swimmer. In other words, all three fish
pair cases report similar optimum kinematics to that of a solitary swimmer (figure 2). These kinematics show no
noticeable head motion, along with growing body undulations to reach a tail amplitude of roughly 0.1L. The
0.1L is the maximum allowable tail amplitude according to the present constraints (equation (8)). Similarly, the
optimum undulation frequency remains close to the upper bound of 3 Hz for the three schools. These results are
in agreement with the postulated high-efficiency adaptations deduced from biological data[17, 59]. The
optimum phase lag parameter, ¢, is shown to be close to 7, which represents an anti-phase lag between
swimmers in an infinite array of a phalanx fish school, consistent with the previous literature [6, 7]. The vorticity

6
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Figure 3. Vorticity (color bar shown in solitary: 1T subfigure) in the wake of the swimmers for the optimum mode in solitary
swimming (top row) and the SD = 1L phalanx school (bottom row) after 1T (left) and 2T (right), respectively (T = 1s).

Table 2. Optimization results for phalanx schools at SD = 2L using 2 and 3 simulated swimmers.

Number of swimmers Evaluations Optimal parameter set Efficiency Tolerance
2 42 {0.0L,0.2105L, — 0.1107L, 3,0.99957} 22.05% 9.9 x 107*
3 74 {0.0062L, 0.1882L, — 0.0945L, 3,1.0583,0} 22.06% 3.8x10°*

field created by the solitary and SD = 1L optimum swimming modes is shown after 1Tand 2T'in figure 3. The
wakes behind optimum swimmers are quite similar to the reverse von Karman street typically associated with
high propulsive swimming efficiency in real fish [60], with no significant interactions noted between the wakes
of swimmers in the phalanx school at this separation.

To assess the sensitivity of the optimization results to a number of simulated swimmers in a periodic
domain, we perform another optimization study for a phalanx school with 3 simulated swimmers at SD = 2L. In
this case, the design vector, z = {cg, &, &, f, ¢, ¢'},is 6th dimensional and accounts for the phase lag of the
third swimmer, ¢’ (both ¢ and ¢’ are taken as the phase difference in relation to the first, or the leftmost,
swimmer). Results of the 3-swimmer optimization case, shown in table 2, do not significantly deviate from its
2-swimmer counterpart, suggesting that the current optimization results are insensitive to the number of
simulated swimmers. In the rest of the paper, we present results from the baseline case that contains 2 swimmers
in the domain.

The reported optimum efficiency is slightly different for each fish school, where the highest reported
efficiency, n;kL = 22.05%, is found at a separation distance of 2L. The dense school (SD = 1L) and the sparse
school (SD = 3L) report lower optimum efficiencies of UTL = 21.49% and n;kL =21. 83% respectively. In
contrast to a solitary swimmer, we observe that phalanx fish schools with SD = 2L (7]2’ 7 %~ 1.5%)and

s

SD=3L ("“ A = 0.5%) are slightly more efficient, while the SD = 1L school (-— ]‘L US ~ —1.1%) is slightly less

efficient. Whlle the observed increase in efficiency of the most optimal phalanx school is slight (1.5%), the
schooling efficiency depends on a range of factors, which include the Reynolds number [60], the swimmer’s
shape [27], and the undulation frequency [14, 61]. Another important consideration is the definition of
efficiency itself, which varies among the studies. In this work, we consider the propulsive efficiency, which is the
product of the net force and the forward velocity divided by the input power (equation (9)), relevant for the
characterization of acceleration due to propulsion [17]. Nevertheless, when we compare the estimated increase
in the current study with some other efficiency metrics in the literature, we see that the current observed increase
in efficiency does not significantly deviate from previously reported values. For example, [9] use a ‘Cost of

7
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Transport’ (CoT) as a measure of propulsive efficiency during steady swimming and report a 2% improvement
in the CoT of a phalanx school when compared to solitary swimming. The authors of [1], using a modified
version of the Froude efficiency, report an approximately 3% increase of efficiency in steady phalanx schools
when compared to solitary swimming.

3-D stem plots of optimization cases are shown in figure 4. 3-D space is used to represent each data point
according to its respective parameter value and is colored by its respective propulsive efficiency value.
Consequently, multiple stem plots are presented for each case to account for all four and five dimensions for
solitary and school swimming, respectively.

For the phalanx school cases, data points with the highest efficiencies are located within the same region of
the 3-D space in each stem plot. This optimal efficiency region is characterized by a small head motion (¢ &~ 0), a
high frequency (f~ 3 Hz) and a phase lag, ¢ = 7, commonly referred to as anti-phase swimming. In other
words, efficient swimming patterns in all three phalanx schools rarely deviated from the configuration suggested
by their respective optimum mode.

We define the maximum attainable swimming speed at the end of the considered period 2 T'as
Unax = U (t = 2 T). Additionally, we define the time-averaged array-averaged streamwise force F, acting on
the swimmer:

1 i
:_fo (E(t)) d t (10)

to

ST

with ty = 2 T. Table 3 presents hydrodynamic quantities such as W1, Wiotalr Fe> Umaxo and the Reynolds
number at the maximum speed Rey,,y , defined as:

Umax L

v

an

Rea=

where v=1 x 10~ ® (m?/s) is the kinematic viscosity of water.

4. Discussion

4.1. Effects of body kinematics on the propulsive efficiency of a solitary swimmer

The optimum undulation of a solitary thunniform swimmer, shown in figure 2, differs slightly from the reported
midline kinematics for non-accelerated solitary thunniform swimmers [62, 63]. While in both cases there is no
significant head motion, the case presented here shows growing body and tail undulations, while thunniform
swimmers in steady motion maintain a relatively straight body and only use their tail for propulsion [63, 64]. The
differences are attributed to the effect of acceleration. Indeed, most previous studies [62—66] focus on steady
thunniform swimming, with unsteady swimming trends gaining traction only recently. For example, one
previous study investigated the acceleration of a solitary thunniform swimmer from rest [20]. Investigation of
the pressure forces around a solitary accelerating robotic tuna suggests that the posterior main body generates a
significant portion of forward thrust as adjacent fluid is pushed backwards. This mechanism is similar to drag-
based propulsion mechanisms found in anguilliform swimming and in low-Reynolds number swimming

[67, 68], and hence the study suggests that thunniform swimmers may adopt an anguilliform-like motion as they
accelerate from rest, as being more efficient in low speeds. Indeed, current optimization results are in line with
this trend, with the optimal point falling in an optimum region in the ¢y — ¢; — ¢, space which is characterized by
large posterior body and tail undulations (see figure 2). A stronger head yaw was also attributed to acceleration in
the studies of anguilliform and carangiform species [ 17—19]. However, in the studies of accelerating tuna fish,
while the increased head amplitude was also observed, it did not appear to generate thrust [20]. It is possible that
astronger head motion during acceleration is not directly driven by efficiency, but by other physiological
considerations (for example, it might be easier to produce a high tail amplitude while also moving a head due to
muscular constraints), a point that needs to be investigated in the future.

4.2. Effects of body kinematics on the propulsive efficiency of phalanx schools

To understand the similarity in the optimum body kinematics between all three phalanx schools and the solitary
swimmer, the main energy saving mechanisms in phalanx fish schools are discussed, namely: channeling and
pulsating jet effects. When swimmers in a phalanx school are within close laterally proximity to one another, an
area of augmented flow develops between them. This augmented flow arises as a result of each swimmer
generating a velocity field in its swimming direction due to the no-slip condition. Since the augmented velocity
field imparts momentum in the swimming direction, swimmers need less thrust force to reach a specific
swimming speed [53]. This is typically referred to as the channeling effect [69] and can be observed in fish
schools which range from phalanx [8] to rectangular [53] and diamond [38] schools. When swimmers in a
phalanx school swim with an anti-phase motion, counter rotating vortices are shed by the two neighbors in each
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Figure 4. 3-D stem plots of the four dimensions for a solitary swimmer (first row) and five dimensions for phalanx schools with
SD = 1L (second row), SD = 2L (third row) and SD = 3L (fourth row).

Table 3. Hydrodynamic quantities of optimum swimmers.

Case Wuseful (m]) ‘/Vtotal (m]) E (N) Umax(m/s) Remax

SD=1L 184.11 856.67 0.28139 0.65205 1.96 x 10°
SD=2L 183.69 833.97 0.28108 0.65127 1.95 x 10°
SD=3L 181.78 832.64 0.27961 0.64779 1.94 x 10°
solitary 181.19 833.68 0.27916 0.64899 1.95 x 10°
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half period. These counter rotating vortices combine to form dipoles, producing a pulsating jet behind the
swimmers [5]. While in phase swimmers can similarly benefit from the pulsating jet affect, anti-phase swimmers
produce higher thrust by creating a more compact jet [5]. Therefore, it can be observed that swimming with a
higher undulation frequency will enhance both energy saving mechanisms, since higher undulation frequency
will result in faster flow around each swimmer [20] as well as a higher intensity pulsating jet in their wake.
Similarly, high body and tail amplitudes result in faster flow and larger vortices, inducing faster propulsion [34].
Itis then of no surprise that the optimal midline kinematics in an accelerating phalanx school exhibit similar
behaviour to that of a solitary swimmer, achieving a maximized tail displacement as well as an undulation
frequency.

4.3. Effects of separation distance on the propulsive efficiency of phalanx schools

Figure 5 shows plots of the optimal propulsive efficiency of each fish school optimization case as a function of the
separation distance within a school (Subplot 5(a)). Additionally, the two quantities related to the useful and total
work, namely W spg and Wiy, are included to investigate what is driving the changes in efficiency across
different separation distances. As previously noted, the optimal efficiency of a phalanx school in the current
study peaks at a separation distance of 2L with a value 0f 22.05%, which amounts to a 1.5% increase over the
solitary swimmer optimum. This increase is largely driven by a higher useful work quantity

Wosetlyr, = Wosetl ., 1.4%. The relative change in total work is Wiotatos, — Wty 0.03%, which is an order of

Wusefuls totalg

magnitude lower than the relative change in W s.g,. Since the optimum mode uses an anti-phase gait, the
increased W, could likely be attributed to the presence of a pulsating jet behind the swimmers. The presence
of a pulsating jet behind the swimmers would increase their time-averaged streamwise force, F (as seen in

table 3), and consequently contribute to more work in the swimming direction or Ws.g,. Indeed, Wi e i
shown to increase with a decreasing separation distance across the three schools which all employ the same
midline and phase kinematics, and is above solitary for all cases. This trend suggests that the increase in Wgegy is
directly related to thrust enhancing mechanisms, such as the pulsating jet and channeling effects, in the phalanx
school.

While the school with a SD = 1L results in the highest Wy, its propulsive efficiency is the lowest, even
when compared to a solitary swimmer. This happens because Wi, similarly increases to reach the highest value
between all phalanx schools and the solitary swimmer. Since the direction of swimming and the separation
distance is fixed within each school (in a sense that the swimmers are not free to drift apart under the influence of
fluid forces), swimmers in a school would have to exert additional effort, if needed, to maintain the same fixed
distance during swimming. While this may not present a challenge at more sparse schools, such as SD = 2L and
SD = 3L, this can result in an increased Wi, in dense schools (SD < 1L). Indeed, the challenge of dense phalanx
schools has been investigated in previous studies. For example, Hemerijk et al observed a deteriorated steady
group swimming efficiency, when compared to solitary swimming, for simulated mullets in phalanx schools
with SD < 1L [1]. The authors comment: ‘This is probably due to an increased resistance (on average per fish) of
the phalanx to oncoming flow due to close proximity of lateral neighbours’. Gazolla et al [6] performed
simulations, using a vortex particle method, of multiple phalanx schools consisting of pairs of 2-D self-propelled
anguilliform swimmers. In these simulations, where swimmers were free to move in both streamwise and lateral
directions and only their undulation was fixed, the pairs in a phalanx school diverged after 8 periods. In a bigger
phalanx school (consisting of 5 members), the swimmers diverged at an earlier time of 6 periods [6]. Both these
studies suggest that swimming in an infinite phalanx school requires active adjustment and added effort to
maintain a fixed separation distance, or at the least cohesion, within a school. Inviscid models of rigid wings in
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Figure 6. Optimum efficiency, W e and Wi, as a function of phase lag and separation distance within an infinite phalanx school.

steady flow similarly suggest that while densely packed phalanx schools (SD = 0.66L) show an 5% increase in the
swimming speed over a solitary swimmer (similar qualitative trends can be observed for Uy, in table 3), the
associated cost of transport increases by 4% [10]. Highly compact schools (SD < 1L) could not be simulated here
due to computational constraints of the body-fitted CFD methodology. Nonetheless, they represent an
important and potentially beneficial case for fish schooling, and they will be included into optimization studies
in our future work.

Finally, the most sparse school (SD = 3L) displayed similar propulsive trends to the solitary swimmer, where
the 7, Wgeru1 and Wi, quantities remained relatively unchanged. This is unsurprising, since all the
hydrodynamic quantities are expected to approach the solitary swimmer limit with increasing separation
distance within a school [10]. The presented optimization cases at different separation distances suggest the
presence of three schooling regimes of accelerating phalanx thunniform swimmers:

(i) SD < 1L: higher thrust, higher Wys.q, but higher Wi, in a phalanx school can be achieved compared to
solitary swimming. Consequently, propulsive efficiency could suffer in a dense school.

(i1)SD =2 2L: improved thrust, improved W g, and relatively constant Wi,,; compared to solitary swimming.
Highest gains in efficiency, when compared to a solitary swimmer, as the school benefits from energy saving
mechanisms without providing additional work to maintain its position.

(iii)

SD > 3L:relatively constant thrust, Wysesu, Wiora and 17 as compared to solitary swimming as the school begins

to approach the solitary swimmer limit.

4.4. Effects of phase synchronization on the propulsive efficiency of a phalanx school

To isolate the effects of phase synchronization, we compare the optimal point, in each case, to two other points
where all other kinematics { ¢y, ¢1, ¢, f} are fixed to optimum values and the phase is changed to 0 and 0.5,
respectively, as shown in figure 6 (note that the phase angles larger than 7 would result in repeated efficiency
points due to symmetry). Between all three schools, anti-phase motion (¢ = ¢* ~ 7) consistently shows the best
swimming efficiency, with the in-phase motion (¢ = 0) being second best and the ¢ = 0.57 being the worst. This
is in line with previous studies which investigated phase synchronization behaviour in steady swimming of self-
propelled foils. For example, Raspa, Godoy-Diana and Thiria [4] showed that in-phase motion (resulting in
asymmetric flow) leads to higher transverse velocity fluctuations, when compared to a motion which results in
symmetric flow (arising from anti-phase swimming). As a result, for a given momentum input, the anti-phase
motion generated more thrust. A similar study with flexible foils showed that while in-phase motion did benefit
swimmers from the pulsating jet effect, it resulted in a wake where the average propulsive jet was more laterally
spread, when compared to the wake of an anti-phase motion, and thus did not contribute efficiently to
propulsion [5]. This effect was also observed for pairs of real fish in steady swimming [ 7] where there was a slight
preference for anti-phase motion over in-phase. Additionally, a preference of anti-phase and in-phase motion
over an intermediate phase lag (such as ¢ = 0.57) has been previously shown in steady swimming simulations of
tetra fish [9].

Inthe SD = 2L and SD = 3L schools, the most efficient phase lag does not necessarily result in high Wiz,
indeed it is the lowest for ¢ = ¢*, when compared to other ¢ values. Instead, the most efficient phase lag reduces
the Wiy, for the school. This is in agreement with the results of Dewey et al [ 13] who observed that for hydrofoils
oscillating side by side, an increased efficiency could be attained either by an increase in thrust (as in in-phase
oscillations), or by reduction in a total power input (as in anti-phase oscillations). Accordingly, a phase lag of
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Table 4. Net streamwise and lateral forces of optimum and sub-optimum swimmers.

Case ARj|y(N) AFjly(N) AFlo.sz(N) AR (N AFly(N) AFo.57(N)
SD=1L 0.0409 -5.78 x 10 —0.368 1.171 —0.005 0.861
SD=2L 4.00 x 107* 5.64 x 107* —0.115 0.951 0.002 0.699
SD=3L —0.006 ~7.944 x 107° —0.067 0.911 0.001 0.657

¢ = 0.57 results in the highest Wi, for all the cases, perhaps due to a complete lack of synchronization and thus
even more chaotic flow conditions detrimental for stability. Alternatively, the most efficient phase in the

SD = 1L school results in the highest W, .., while keeping relatively low Wyq,. This is likely due to phase
synchronization effects playing a larger role in dense schools, when compared to sparse schools, and can be
further explored in a future study.

Finally, we observe that the relative ranking of efficiency based on separation distance within a school does
not change regardless of phase lag, with the most preferable distance remaining SD = 2L. Furthermore, it can be
seen that higher efficiency gains can be attained by varying the separation distance rather than the phase angle in
the school. This suggests that the separation distance within a phalanx school plays a larger role in the schooling
efficiency than phase synchronization, for the parameters explored in this study.

4.5. Analysis of swimming stability using differences in the net streamwise and lateral forces

The swimming stability of phalanx swimmers is analyzed by calculating the differences in the net streamwise and
lateral forces between swimmers in each phalanx school, a similar process to [9]. We define the difference in the
time-averaged net streamwise force, AFH, as

— 1 Iy
AR = —f R@®) — R()dt, (12)
to 0
where F,(t) and Fx(#) are the propulsive (streamwise) forces on the left and right swimmers, defined as

() = 515F —(oeny) -idT, (13)

k

whereiis the unit vector in the streamwise direction, and k = 1,2 correspond to the left and right swimmers,
respectively. Similarly, we define the difference in the time-averaged net lateral force, AF,, as

_ 1 to
AF, = —f F(t), — Fy(t) d t, (14)
to Jo
where F;(¢) | and F,(f), are the lateral forces on the left and right swimmers, given as
Rt = ¢ ~(@ng-jdr, (1)
k

and j being the unit vector in the lateral direction. Table 4 includes AFjjand AF, for the optimum phalanx
swimmers denoted by the phase angle ¢™ at SD = 1L, 2L, 3L, as well as the corresponding values for the same
kinematics but a phase lag of ¢ = 0 and ¢ = 0.57. Using the first row of table 4 as an example: AFj| is the net
streamwise force in the optimum school when SD = 1L, while AFMO(N) is the net streamwise force fora SD = 1L
school employing the same optimum body kinematics but with no phase lag between swimmers.

We observe that the optimal school with the smallest separation distance (SD = 1L) experiences the largest
magnitude of the difference in the net streamwise force or AFj| . This still remains to be the case when the phase
lag is not optimal, as observed through AFj|y and AFj|y 55, suggesting that swimmers in a compact phalanx
school, such as the SD = 1L school, are more likely to swim past each other due to an imbalance in the net
streamwise force. Conversely, the optimal school at SD = 2L has a slightly lower magnitude of AFj|+ when
compared to both optimal SD = 1L and SD = 3L schools. In other words, the most efficient phalanx school, at
SD = 2L, is able to maintain cohesion effectively, at least in the streamwise direction.

Nevertheless, larger differences in the lateral force of all optimal schools, as captured by AF| |5, suggest that
optimal phalanx swimmers would have to direct part of their swimming effort to maintain cohesion in the
lateral direction. As one would expect, the magnitude of AF, is observed to decrease with the separation
distance within a phalanx school. For example, the largest observed AF| |, at an optimum school with SD = 1L,
is almost 1.25 times larger than of the school with SD = 2L. The difference in AF, | as a function of SD levels off
as the separation distance increases, with little change observed in AF Ll gt between SD = 2L and SD = 3L.Itis
worthy to note that AF, generally shows a strong dependence on the phase lag, ¢. The largest observed
magnitudes of AF, typically occur during anti-phase motion, with the lowest values occurring during in-phase
motion. As in-phase motions also result in a low total work, this suggests an existence of a correlation between
stability and the total work.
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Figure 7. Correlation between stability, efficiency, useful work and total work using the data from SD = 2L case. Top row: net
streamwise forces, bottom row: net lateral forces. Correlation coefficient R is included within each image.

To further verify this hypothesis, in figure 7 we present the correlations between the force difference (in both
the streamwise and lateral directions) and the efficiency, useful work, and total work taken from the
optimization data of SD = 2L case. First, we see that the streamwise force difference is, indeed, significantly
lower than the lateral force difference. Additionally, the net streamwise force does not seem to correlate with
either of the considered parameters influencing swimming efficiency, although higher values of streamwise
instability typically occur for low-efficiency cases. Lateral force difference, on the other hand, correlates the most
significantly with the total work (correlation coefficient R = 0.70), as predicted. Correlation with useful work is
lower, but not insignificant (R = 0.58). We see that high-thrust producing configurations (high useful work) do
typically result in higher lateral net forces (as occurs, for example, during anti-phase swimming as previously
discussed). This results in a net positive correlation between the lateral force difference and efficiency (albeit with
arelatively low R = 0.50). We remark, however, that the configurations with the highest lateral force differences
occur at low efficiencies, the same trend was observed for the streamwise forces.

A strong correlation between stability and total work suggests a relation between stability and energy savings
in fish schools, i.e. hydrodynamically stable positions also require a low energy input to maintain. As alow
energy input does not necessarily translate into a high thrust and thus a high efficiency, this trend points to an
existence of a trade-off between efficient and stable formations of phalanx schools considering variables such as
kinematic gaits and phase synchronization.

5. Conclusions

This paper presents an optimization study of accelerating phalanx fish schools considering the midline
kinematics, frequency and phase synchronization as optimization parameters, while varying the separation
distance within the school to investigate the effect of a school density. A formal optimization procedure allows
for a consistent and efficient exploration of the parameter space with the guaranteed convergence to optimum at
aspecified tolerance. To the authors” knowledge, optimization studies of hydrodynamic interactions in
accelerating fish schools have not yet appeared in the literature. The main conclusions of the study can be
summarized in the following: (1) An optimum kinematics in a school does not deviate significantly from the
optimum kinematics of a solitary swimmer; (2) In-phase and anti-phase motions both show higher efficiency
than the phase lag values in between, with the highest efficiency achieved by an anti-phase motion; (3) A
separation distance within the school has a profound effect on efficiency: efficiency is decreased in dense schools
due to a higher total work required to maintain cohesion, it peaks at an optimum separation distance of about
SD == 2L, and it gradually approaches the efficiency of a solitary swimmer at higher separations. An important
conclusion of the current study is that a separation distance has a more profound effect on efficiency than a phase
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synchronization; in fact, higher efficiency gains can be attained by varying the separation distance rather than the
phase angle in the school; (4) Stability of schooling patterns correlates favorably with the total energy input
(hydrodynamically stable positions require low energy input), but not necessarily with efficiency
(hydrodynamically stable positions are not necessarily the most efficient), which suggests an existence of trade-
off between stable and efficient formations. These insights can be useful for design and control of autonomous
bioinspired robotic swarms during acceleration and maneuvers. The presented optimization framework, even
with fixed swimmers’ positions, partially takes into account the destabilizing effects caused by a difference
between the fluid forces acting on the swimmers by penalizing the total work and thus driving the unstable
modes away from the optimum solution. However, it does not consider the changes in the background flow that
could be incurred were the swimmers allowed to decelerate, accelerate, or diverge from each other. Future work
will explore the effects of fully-decoupled motile fish schools on optimum efficiency, and the influence of three-
dimensional effects.

We remark that the conclusions of any optimization study are highly sensitive to a definition of the objective
function. For example, if one were to choose to maximize the efficiency while minimizing the total work, instead
of maximizing the useful work while minimizing the total work, as considered in the current study, the results
could be different. Additionally, the current work does not consider a metabolic energy input of fish required to
sustain a given kinematic gait [70—72], which would require coupling of neuromechanical and fluid-structure
interaction models of fish, and could be explored in future studies.
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