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Pursuer Coordination Against a Fast Evader via

Coverage Control
Phillip Rivera, Member, IEEE, Marin Kobilarov, Member, IEEE and Yancy Diaz-Mercado, Member, IEEE

Abstract—Scalable pursuer coordination for reach-avoid games
against a fast evader are developed leveraging coverage control
over manifolds. The maintenance of a manifold, termed defense
surface, prevents the evader and its target from occupying the
same half-space and shown sufficient as a cooperative capture
strategy. Nonlinear control synthesis continually reconfigures the
pursuers to enable a defense surface via coverage. Simulation
results empirically validate that the proposed condition serves as
a surrogate objective for pursuer team coordination.

Index Terms—Cooperative Control, Nonlinear Systems, Game
Theory

I. INTRODUCTION

Reach-Avoid (RA) games are a particular type of pursuit-

evasion game in which one player, the evader, tries to reach

a goal set while actively avoiding other bad sets [19]. The

generalization of this type of dynamic game has applications

ranging from safety in robotics to surveillance and defense

[19]. Differential game theory (DGT) provides the most com-

plete framework for studying pursuit-evasion [8]. However,

optimal solutions relying on Hamilton-Jacobi-Isaacs methods

commonly found in the dynamic game literature are not real-

time enabled and do not scale well, especially when consid-

ering multiple agents in arbitrary dimensions with nonlinear

dynamics. Furthermore, most pursuit-evasion strategies found

in the literature are still limited to either two dimensions or

simple dynamics [4], [5], [18] as well as assume the kinematic

superiority of the pursuer team [1], [6], [14], [16].

The proposed approach, introduced in [12], tackles the

fast-evader problem where pursuer coordination is needed to

successfully trade off kinematic inferiority with numbers. The

design of pursuer strategies is developed under the framework

of swarm control. The objective is the design of local level rules

for a team of pursuers that results in the desired global behavior

(evader capture). This was achieved through the construction

of a sufficient condition for pursuer win, then enforcing its

satisfaction via coverage-control, that has been shown real-time

enabled [17]. Then, tools from the multi-input, multi-output

feedback linearization literature are used to synthesize node-

level coverage control laws for players with control-affine non-
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linear dynamics, which preserve the same exponential tracking

properties as previously proposed coverage control laws [3].

Thus, the advantages of the proposed approach are scalability

to any arbitrary number of agents, generalizability for games

in any dimension, and tracking performance guarantees for a

class of nonlinear systems. This is achieved at the expense of

optimality provided by the DGT framework.

The contributions of this work are: First, a surrogate ob-

jective for pursuer team coordination is provided that relies

on the existence of any boundary separating the evader from

its target set. Second, a coordination strategy that meets the

surrogate objective through the use of coverage-control is

outlined. Lastly, an approach for enforcing coverage-control

on arbitrary dimensions for a class of nonlinear control-affine

agents is provided.

The remainder of this paper is organized as follows. The

RA game definitions along with the sufficient condition for

pursuer win are provided Section II. This section also provides

the coverage-control preliminaries along with the elements of a

pursuer coordination strategy. Section III provides a controller

synthesis strategy for nonlinear plants enforcing coverage-

control dynamics on an arbitrary domain and its tracking

performance analysis. Two realizations of pursuer coordination

strategies and their empirical evaluation are included in Section

IV. Concluding remarks are provided in Section V.

The following notation will be used for the remainder

of the paper. Letter superscripts denote game-related group

membership, where superscript (e) denotes evader, and (i) is

the ith member of the pursuer team. There are N pursuers, and

the pursuer team index is provided by the set N = {1, . . . , N}.

Subscripts are used for elements of a vector or set, where xi

denotes the ith element of vector x. Sets are written in script

font, e.g., A, and the symbol (∂) denotes the set boundary.

II. RA GAMES FOR NONLINEAR SYSTEMS

The considered dynamics for all agents in this work are

provided by the following definition:

Definition II.1 (System Dynamics).

Σ :

{

ẋ = f(x) + g(x)u(t), x ∈ R
n, u ∈ U ⊂ R

m,

y = h(x), y ∈ R
m,

(1)

where x is the state variable, u is the input variable, y is

the output variable, and h(x) is assumed at least C1. It is

further assumed that the dynamics are Lipschitz continuous,

and u(t) ∈ U is a measurable function. The focus of this work

will be on square systems where both y, u ∈ R
m. System (1)

will be referred to as Σ.
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Definition II.8 (Constrained Reachable Set). Given the dynam-

ical system Σ with output y = h(x), the constrained reachable

set is defined as

R(t0,X0,Xf ) = {y ∈ R
p | ẋ = f(x) + g(x)u(t),

h(x(t0)) ∈ X0, h(x(tf )) ∈ Xf , u(t) ∈ U , t ∈ [t0 tf ]}.
(3)

Corollary 1. Assuming a pursuer-defendable defense surface

M(t) exists at a time tm ≤ tf , then the ε-Capture sufficient

condition holds for the RA game in Finite Time given by

{Σ,Re,P, tf}.

Proof. Trivially follows from changing the domain definition

in Proposition (II.2).

Theorem II.3. For an RA Game in Finite Time {Σ,Re,P, tf},

the existence of a defense surface M that is pursuer-defendable

with δ = ε/2 for a time t ∈ [tm, tf ] provides a sufficient

condition for a winning pursuer strategy.

Proof. Verifying the conditions in Proposition II.2 and Corol-

lary 1 leads to the existence of a pursuer-defendible defense

surface for t ∈ [tm ∞) for the RA Game, and t ∈ [tm tf ] for

the RA Game in Finite Time. This implies the evader h(xe(t))
trajectory needs to pass through M for the evader to win. If

it does, this leads to a pursuer achieving ε-Capture as stated

in Lemma II.1. If the evader h(xe(t)) trajectory does not pass

through M, it cannot reach P by tf and loses. Both cases lead

to a winning pursuer strategy.

The significance of the Theorem II.3 is that knowledge of

the actual ui(t) trajectory that leads to ε-Capture or an explicit

construction of the pursuer-defendable defense surface are not

needed for a pursuer winning strategy. Only the existence of

a pursuer-defendable defense surface needs to be verified. The

sufficient condition in Theorem II.3 can be used as a surrogate

design objective for feedback controllers of the pursuer team.

C. Pursuer Coordination for RA Games in Finite Time

The proposed coordination strategy ensures scalability in

satisfying a global objective through the design of local-level

rules. The global objective is to verify the sufficient conditions

in Theorem II.3, that can be reduced to ensuring the existence

of a pursuer-defendable defense surface. From Definition II.6,

this can be interpreted as the pursuer team capture set being

able to cover a defense surface, motivating the use of coverage

control, a framework from the multi-agent robotics community

with demonstrated scalability [17], introduced next.

The proposed coverage approach is based on locational cost

minimization as described in [2]. The performance metric to

be minimized by the the multi-agent team is given by

H(p, t) =

N∑

i=1

∫

Ωi(p,t)

‖q − pi‖2ρ(q, t) dq, (4)

where pi(t) ∈ R
m is the location of the agents on the coverage

domain, and Ωi(p, t) forms a proper partition of the coverage

convex domain Ω(t) ⊂ R
m. It is assumed in this work that

the density function ρ(q, t) = 1, but instead the coverage

domain Ω(t) is of time varying nature [17]. The centers of mass

ci(p, t) =
∫

Ωi(p,t)
qρ(q, t)dq

/ ∫

Ωi(p,t)
ρ(q, t)dq ∈ Ωi(p, t)

provide the optimal coverage configuration of positions pi(t)
within the domain in terms of minimizing (4). Exponential

convergence to this configuration can be achieved for dynamics

ṗ(t) as described in Lemma II.4.

Lemma II.4 (from [17]). For the aggregated location state

p ∈ R
m·N , exponential convergence ‖c(p, t) − p(t)‖ =

e−κt‖c(p, 0)− p(0)‖ can be achieved by

ṗ =

(

I −
∂c(p, t)

∂p

)−1 (

κ (c(p, t)− p) +
∂c(p, t)

∂t

)

, (5)

for some gain κ > 0, as long as p(t) is initialized sufficiently

close to c(p, t).

Remark 3. Previous work has shown how the dynamics in (5)

can be derived analytically in a fully distributed fashion over

one-dimensional domains [12], and distributed approximations

can be obtained over fixed domains [3] and time-varying

domains [17] in any dimension.

The link between the sufficient conditions for a winning pur-

suer strategy outlined in Theorem II.3 and coverage control can

be made explicit from the following topological observation.

Based on Definition II.6, conditions for a potentially simply

connected (i.e., no holes) defense surface M to be pursuer-

defendable are for the pursuer team capture set Yδ to also

be simply connected while sufficiently spanning the domain.

By sufficiently spanning the domain, it is meant that the a

boundary that partitions the game domain needs to exists inside

Yδ . In what follows, this topological observation is leveraged

to provide necessary conditions for the existence of a pursuer-

defendable defense surface.

First, we provide two lemmas used in the construction of

the next proposition.

Lemma II.5. Let us consider the projection operator

ProjΩ(y) = argminp∈Ω ‖p−y‖, where Ω ⊂ R
m is a compact

convex set. We further assume Ω is a convex polytope that can

be written in the form Ap+ b ≥ 0, where rank(A) = m. Then,

a necessary condition for a set A to be simply connected is

for the image ProjΩ(A) to be simply connected.

Proof. First, note that the minimization of the projection

operator is equivalent to minimizing f(p) = 1
2‖p− y‖2 that is

strongly convex; thus, a solution always exists and is unique.

Now, the solution follows from the constrained optimization

problem L = 1
2‖p − y‖2 + λ⊤(Ap + b). The solution to this

problem (p⋆, λ⋆), yields
[

∂
∂p

L(p⋆, λ⋆)
∂
∂λ

L(p⋆, λ⋆)

]

= 0.

Differentiating this expression with respect to y, yields

[
∂2

∂p2L
∂

∂p∂λ
L

∂
∂p∂λ

L 0

][
dp⋆

dy
dλ⋆

dy

]

+

[
∂

∂p∂y
L

∂
∂λ∂y

L

]

= 0.

Note that the matrix constitutes the KKT conditions for a

strongly convex, affine optimization problem; thus it is invert-

ible [10, Section 15.1]. This implies the solution (p⋆, λ⋆) is

differentiable with respect to y, which means it is continuous

[11, Proposition 4.7.2]. Now that we have established the
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projection operator is well defined and continuous, from [11,

Th 4.2.1] we have that the image of a path-connected set

through a continuous function is path-connected. The claim

follows.

Lemma II.6. Consider sets A,B ∈ X and a continuous

mapping f : X → Y. Then, f(A) ∪ f(B) = f(A ∪ B).

The following motivates the use of coverage control to

enable the existence of a pursuer-defendable defense surface.

Proposition II.7. Consider the locational cost (4), and the

individual pursuer capture set provided by Yi
δ . Assume the

coverage domain Ω(t) is a convex defense surface. If ∃tm
such that ∀t ∈ [tm tf ] the partitions Ωi(p, t) = ProjΩ(Y

i
δ),

then ProjΩ(Y
i
δ) satisfies the necessary conditions to be simply

connected.

Proof. From the theorem statement, we have
⋃

i∈N Ωi(p, t) =⋃

i∈N ProjΩ(Y
i
δ), from Lemma II.6,

⋃

i∈N ProjΩ(Y
i
δ) =

ProjΩ
(⋃

i∈N Yi
δ

)
; thus, Ω(t) = ProjΩ(Yδ). Furthermore,

given Ωi(p, t) constitute a proper partition of the domain, Ω(t)
is simply connected. The claim follows from Lemma II.5.

The significance of Proposition II.7 is that through coverage

we can enable the topological conditions to make a defense

surface be pursuer-defendable. Based on this proposition, the

elements comprising the proposed coordination strategy are

provided for the pursuer team.

Definition II.9 (Coordination Strategy). For an RA Game in

Finite Time {Σ,Re,P, tf}, a pursuer coordination strategy is

given by the tuple {Ω, φ, pd}, where

• Ω(t) : R≥0 → Re ⊂ R
m is an defense surface that will

serve as the coverage domain.

• φ(x, t) : Rn×R≥0 → Ω is an output map from a pursuer

state to the coordination domain Ω.

• pid(t) : R≥0 → Ω is the desired output dynamics of xi on

the domain Ω.

In what follows, Section III characterizes conditions for

which square nonlinear systems can maintain the exponential

tracking performance of the controller in (5) given output maps

φ(xi, t). Since Proposition II.7 only provides necessary condi-

tion for maintaining capture set overlap, Section IV empirically

analyzes the performance of two coordination strategy real-

izations {Σ,Re,P, tf} for an increasing number of pursuers

under suitably selected metrics. It is shown how performance

monotonically improves with the number of pursuers, and

how the strategy that better satisfies the conditions outlined

in Theorem II.3 leads to the best capture performance.

III. COORDINATION TRACKING PERFORMANCE

In this section, we show how tools from MIMO feedback

linearization can be used to enforce coverage dynamics on a

manifold by a team of agents with nonlinear dynamics in the

form of (1) while retaining exponential tracking of the coverage

dynamics on the coordination domain. Output tracking is used

to synthesize nonlinear controllers, which enforces the first-

order coverage control dynamics on manifold Ω(t) as provided

in Lemma II.4. This problem is addressed using the framework

of MIMO feedback linearization as presented in [15]. Let us

define the Lie derivative of a function h(x) with respect to

f(x) as Lfh := ∂h
∂x

f . For a system of the form (1), define

the relative degree γ as the number of differentiations of the

output mapping y = h(x) required until LgL
γ−1
f h(x) 6= 0,

where L2
fh = Lf (Lfh). In the MIMO case, define the total

relative degree γT as the sum of the relative degrees for all

outputs γT =
∑p

j=1 γj , where p is the dimensionality of the

output map. For the remainder of this section, assume there

exists a C1 output mapping y = φ(x, t) : Rn × [t0 tf ] → Ω(t),
where Ω(t) is an arbitrary coverage manifold. Note that for the

ith agent, we wish to enforce φ(xi, t) = pid(t).
Using the notation x(n) = dn

dtn
x(t), the output mapping for

a single agent

y =
[
φ1(x, t) · · · φm(x, t)

]⊤
,

y
(γj)
j = L

γj

f φj(x, t) + φ
(γj)
j (x, t)

+

m∑

k=1

LgkL
γj−1
f φj(x, t)uk,

(6)

where γj is the relative degree for output j. Repeating this

procedure for all outputs, we have






y(γ1)

...

y(γm)




 =







Lγ1

f φ1(x, t) + φ
(γ1)
1 (x, t)

...

Lγm

f φm(x, t) + φ
(γm)
m (x, t)







︸ ︷︷ ︸

L(x,t)

+E(x)u,

where E(x) ∈ R
m×m and whose elements are obtained from

the differentiation in (6). The first-order nature of the coverage

control law in Lemma II.4 implies γT ≥ m. Thus, two

strategies will be provided for the cases where γT = m and

γT > m. Next, let us denote yd ∈ R
m as the desired output

signal, and fφ(yd, t) as the desired dynamics given by (5).

First, assume γT = m, and the decoupling matrix E(x)
in (6) is invertible. Then, for the desired first-order dynamics

ẏd = fφ(yd, t), an output tracking controller is given by

u(x, t) = E(x)−1(fφ(φ, t)− L(x, t)), (7)

where γj = 1, ∀j ∈ {1, . . . ,m}. This follows from direct

substitution of (7) in (6), which yields ẏ = fφ(y, t).
In the case where the total relative degree γT > m, sepa-

ration of timescale can be leveraged to synthesize a tracking

controller that does not require higher order derivatives of the

desired output dynamics. Assume system (1) can be partitioned

into states x = [x1 x2]
⊤ so that it has the structure

ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2) + g(x)u(t),

y = φ(x1, t),

(8)

with the first derivative of the output given by

ẏ = Lf1φ(x1, t) +
∂

∂t
φ(x1, t) = h(x1, x2, t). (9)

Proposition III.1. For system (8) with output derivative (9),

assume g(x) is invertible, and that there exists a mapping x2 =
r(x1, t) s.t. Lf1φ(x1, t)+

∂
∂t
φ(x1, t) = h(x1, r(x1, t), t), where
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h(x1, r(x1, t), t) = fφ(φ(x1, t), t),

u(x, t) = g(x)−1 [κ̄(r(x1, t)− x2)− f2(x1, x2)] . (10)

Then, if κ̄ ≫ 1, system (8) tracks the desired output dynamics

ẏd = fφ(yd, t) with tracking error y(t)− yd(t) ≤ O(1/κ̄).

Proof. This follows by applying Tikhonov’s theorem of sin-

gular perturbation [9] on the singularly perturbed system

ẏ = Lf1φ(x1, t) + ∂
∂t
φ(x1, t), ẋ1 = f1(x1, x2), εẋ2 =

(r(x1, t) − x2), with output solution trajectory y(t, ε), where

ε = 1/κ̄. Because φ(x1, t) is C1,
(
Lf1φ(x1, t),

∂
∂t
φ(x1, t)

)

are continuous, the reduced problem ˙̄y = fφ(ȳ, t), ˙̄x1 =
f1(x̄1, r(x̄1, t)) yields the desired output tracking trajectory

ȳ(t). Defining the boundary layer variable ξ := x2 − r(x1, t),
and scaled time τ := t/ε, the boundary layer problem
dξ
dτ

= κ̄ [r(x1, t)− (ξ + r(x1, t))] = −κ̄ξ, has the origin as

an exponentially stable equilibrium point uniformly in (t, x1).
Thus, the solution y(t, ε) − ȳ(t) = O(ε) by Theorem 11.1 in

[9].

Corollary 2. The coverage dynamics for the controller in

Proposition III.1 exponentially converges to a ball of radius

O((1/κ̄)2) with convergence rate κ for κ̄ ≫ 1.

Proof. The desired configuration dynamics have convergence
rate of ‖c(ȳ, t)− ȳ(t)‖ ≤ e−κt‖c(ȳ, 0)− ȳ(0)‖ by Lemma II.4.

It follows that ‖c(ȳ, t)− ȳ(t)‖2 =
∑N

i=1 ‖ci(ȳ, t)− ȳi(t)‖
2 ≤

e−2κt‖c(ȳ, 0) − ȳ(0)‖2. From Proposition III.1, the output
trajectories of the real system yi(t) track the desired dynamics
ȳi(t) by yi(t)− ȳi(t) = O(ε) for ε := 1/κ̄. It now follows that

N
∑

i=1

‖ci(y, t)− yi(t)‖
2 =

N
∑

i=1

‖ci(y, t)− ȳi(t)−O(ε)‖2

≤

N
∑

i=1

[‖ci(y, t)− ȳi(t)‖+ ‖O(ε)‖]2

≤

N
∑

i=1

[

‖ci(y, t)− ȳi(t)‖
2 + ‖ci(y, t)− ȳi(t)‖O(ε) +O

(

ε
2
)]

≤ e
−2κt‖c(ȳ, 0)− ȳ(0)‖2+Ne

−κt‖c(ȳ, 0)− ȳ(0)‖O(ε)+O(ε2)

≤ αe
−κt +O(ε2),

where α = ‖c(ȳ, 0)− ȳ(0)‖2 +N‖c(ȳ, 0)− ȳ(0)‖O(ε).

For a coordination strategy {Ω, φ, pd}, we can conclude

that for square systems, if the total relative degree γT = m,

exponential tracking of the desired output dynamics pid(t) can

be achieved by (7). If the total relative degree γT > m,

exponential tracking of the desired output dynamics pid(t) can

be achieved by (10) as shown in Corollary 2.

IV. COORDINATION STRATEGY EVALUATION

We now provide two coordination strategies (called Type-

I and Type-II) for RA Games in Finite Time. The objective

of this section is to quantify the performance of the proposed

coordination strategies, and to show that the best performance

is attained by the strategy that best satisfies the conditions of

Theorem II.3.

The Type-I coordination strategy consists of selecting a

pursuer-defendable defense surface as the coordination domain,

and the projection of the heading direction as the output map.

The Type-II coordination strategy consists of selecting a line

segment that is a defense surface as the coordination domain,

and the projection of the center of the pursuers capture sets

as the output map. Expressions for the output mapping φ(x)
and the pursuer inputs ui

2(t) ∀i ∈ N for the Type-I and

Type-II coordination strategies can be found in [13]. A pure-

pursuit strategy (optimal pursuit strategy when capture time is

minimized [8]) where each agent tracks an instantaneous angle

r(x) = tan−1
(

xi
2
−xe

2

xi
1
−xe

1

)

with a control law, ui
2 = κ(r(x)−xi

3)

was also implemented as an uncoordinated approach to ensure

performance improvements with increasing number of pursuers

is not due to spatial diversity, but rather coordination.

The RA Game in Finite Time for N ∈ {2, 3, 4} was

implemented in simulation enforcing unicycle dynamics (2)

on all players. It was assumed ‖u1‖ = 2‖ui
1‖, max ‖ue

2‖ =
max ‖ui

2‖, where ‖ui
1‖ = 0.1, ‖ui

2‖ ≤ 2π ∀t, i ∈ N . The final

time of the engagement was varied from tf ∈ {230, 265, 300}.

The evader is initialized at x-position xe
1 = −10, and random y-

position xe
2 ∼ Ud(−5, 5), where Ud is the uniform distribution.

The evader employs random maneuvers while trying to reach

a rectangular target set P with dimensions 1× 10, and center

(10, 0). Pursuers were initialized at equidistant locations inside

P , at random locations inside P , and at random locations

outside P . Results are provided for 100 runs under each initial

location assumption, for each pursuit strategy, and for each

considered final time.

Two performance metrics were considered: miss distance

mini∈N ,t∈[t0,tf ] ‖y
i(t) − ye(t)‖ and a defense surface index.

The defense surface index is defined as 1
∆t

∑tf
t=tm

I(t), where

tm is the first time the defense surface is pursuer defendable,

tf is the final time of the engagement, ∆t = tf−tm is the span

of time the defense surface should be defended. I(t) ∈ {0, 1}
is an indicator function that has a value of 1 if the defense

surface is pursuer-defendable, 0 if it is not, and t was discretely

sampled in post-processing. This metric quantifies the ability of

the coordination strategy to maintain the existence of a pursuer-

defendable defense surface.

The simulation results under the aforementioned metrics

are summarized in Fig. 2. For all simulation both the worst

case and median miss distance improve under coordination

(Type-I & II) over pure-pursuit, and the results were proven

statistically significant under a matched-pair t-test with worst

case p-value < 4× 10−2. The miss distance is monotonically

reduced with increasing number of pursuers in all scenarios.

Coordination also lead to an improvement in the worst case,

median, and lower quantile defense surface index for agents

initialized inside the domain. For agents initialized outside

the domain, the worst case index was zero for all considered

pursuer strategies, but the median and lower quantile were

improved under coordination.

The Type-II coordination strategy provides the highest me-

dian defense surface index. This is consistent with the Type-II

coordination strategy also achieving the smallest miss distance

over uncoordinated approaches. Also note that the Type-II

median defense surface index monotonically increases with

the number of pursuers, and leads to the most wins for an

ε−Capture distance ε = 0.3. This validates the design objec-

tive for this approach that aims at improving the conditions for

the existence of a pursuer-defendable defense as prescribed in
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Fig. 2. Miss distance (first row), defense surface index (second row), and
number of pursuer wins (third row) for increasing final time values (Solid
line) tf = 230[s], (Dotted line) tf = 265[s], (Dashed line) tf = 300[s].
The box correspond to the 25 and 75 percentile range of the data, whiskers
extend to the minimum and maximum values while the dots represent outliers.
The horizontal line inside each box represents median value. Pursuer initial
location is the same column-wise and stated in the title of each plot.

Proposition II.7.

V. CONCLUSION

A class of scalable pursuer coordination strategies was

introduced for RA Games in Finite Time. A sufficient con-

dition for a pursuer team win was developed. It relies on the

existence of a defense surface that partitions the game domain,

separating the evader from the target set, and ensures pursuers

can always reach the surface (pursuer defendability). One of

the main contributions of this work is the notion that only

the existence of the defense surface is needed, the defense

surface does not need to be explicitly constructed. Pursuer

coordination strategies that rely on coverage control, from the

multi-agent literature, are proposed to preserve the existence

of such surface given its ease of extendability to any arbitrary

pursuer team size. Two coordination strategies are presented

and evaluated through simulation for a single evader with

twice the maximum speed as any player in the pursuer team.

Both coordination strategies lead to increase in time a pursuer-

defendable defense surface existed in the game (called defense

surface index), and higher number of wins over the pure-

pursuit strategy. The coordination strategy with the highest

defense surface index led to the closest capture distances

and most number of pursuer wins. Thus, we conclude the

presented analysis empirically validates the sufficient condition

for pursuer team win against a fast evader introduced in this

work.
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