This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3278794

Pursuer Coordination Against a Fast Evader via
Coverage Control

Phillip Rivera, Member, IEEE, Marin Kobilarov, Member, IEEE and Yancy Diaz-Mercado, Member, IEEE

Abstract—Scalable pursuer coordination for reach-avoid games
against a fast evader are developed leveraging coverage control
over manifolds. The maintenance of a manifold, termed defense
surface, prevents the evader and its target from occupying the
same half-space and shown sufficient as a cooperative capture
strategy. Nonlinear control synthesis continually reconfigures the
pursuers to enable a defense surface via coverage. Simulation
results empirically validate that the proposed condition serves as
a surrogate objective for pursuer team coordination.

Index Terms—Cooperative Control, Nonlinear Systems, Game
Theory

I. INTRODUCTION

Reach-Avoid (RA) games are a particular type of pursuit-
evasion game in which one player, the evader, tries to reach
a goal set while actively avoiding other bad sets [19]. The
generalization of this type of dynamic game has applications
ranging from safety in robotics to surveillance and defense
[19]. Differential game theory (DGT) provides the most com-
plete framework for studying pursuit-evasion [8]. However,
optimal solutions relying on Hamilton-Jacobi-Isaacs methods
commonly found in the dynamic game literature are not real-
time enabled and do not scale well, especially when consid-
ering multiple agents in arbitrary dimensions with nonlinear
dynamics. Furthermore, most pursuit-evasion strategies found
in the literature are still limited to either two dimensions or
simple dynamics [4], [5], [18] as well as assume the kinematic
superiority of the pursuer team [1], [6], [14], [16].

The proposed approach, introduced in [12], tackles the
fast-evader problem where pursuer coordination is needed to
successfully trade off kinematic inferiority with numbers. The
design of pursuer strategies is developed under the framework
of swarm control. The objective is the design of local level rules
for a team of pursuers that results in the desired global behavior
(evader capture). This was achieved through the construction
of a sufficient condition for pursuer win, then enforcing its
satisfaction via coverage-control, that has been shown real-time
enabled [17]. Then, tools from the multi-input, multi-output
feedback linearization literature are used to synthesize node-
level coverage control laws for players with control-affine non-
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linear dynamics, which preserve the same exponential tracking
properties as previously proposed coverage control laws [3].
Thus, the advantages of the proposed approach are scalability
to any arbitrary number of agents, generalizability for games
in any dimension, and tracking performance guarantees for a
class of nonlinear systems. This is achieved at the expense of
optimality provided by the DGT framework.

The contributions of this work are: First, a surrogate ob-
jective for pursuer team coordination is provided that relies
on the existence of any boundary separating the evader from
its target set. Second, a coordination strategy that meets the
surrogate objective through the use of coverage-control is
outlined. Lastly, an approach for enforcing coverage-control
on arbitrary dimensions for a class of nonlinear control-affine
agents is provided.

The remainder of this paper is organized as follows. The
RA game definitions along with the sufficient condition for
pursuer win are provided Section II. This section also provides
the coverage-control preliminaries along with the elements of a
pursuer coordination strategy. Section III provides a controller
synthesis strategy for nonlinear plants enforcing coverage-
control dynamics on an arbitrary domain and its tracking
performance analysis. Two realizations of pursuer coordination
strategies and their empirical evaluation are included in Section
IV. Concluding remarks are provided in Section V.

The following notation will be used for the remainder
of the paper. Letter superscripts denote game-related group
membership, where superscript (e) denotes evader, and (7) is
the i member of the pursuer team. There are N pursuers, and
the pursuer team index is provided by the set A" = {1,..., N}.
Subscripts are used for elements of a vector or set, where x;
denotes the i element of vector x. Sets are written in script
font, e.g., A, and the symbol (9) denotes the set boundary.

II. RA GAMES FOR NONLINEAR SYSTEMS

The considered dynamics for all agents in this work are
provided by the following definition:

Definition II.1 (System Dynamics).

.. &= f(z)+g(@)u(t), r e R", ue U CR™, W
|y =h(2), yeR™,

where x is the state variable, u is the input variable, y is
the output variable, and h(z) is assumed at least C1. It is
further assumed that the dynamics are Lipschitz continuous,
and u(t) € U is a measurable function. The focus of this work
will be on square systems where both y,u € R™. System (1)
will be referred to as X.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 31,2023 at 16:57:30 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Gontrol. This is the author's version which has not been fully edited and
content may change prior to final publication. Gitation information: DOI 10.1109/TAC.2023.3278794

A common type of nonlinear dynamics of class X is given
by a unicycle dynamics with bounded controls and position
output. For this case, x € R3, z1, x5 are position states, x3 is
the angular orientation state, u € R?, u; is linear velocity, us
is angular velocity, 4 C R?, and the dynamics X are given by

0 cos(zg) O -
fiw)= 0 . gla) |sinCas) 0, wta) = 7] @
0 0 1

Next, the specific class of pursuit-evasion game considered in
this work is introduced, along with conditions for pursuer win.

A. RA Games

Definition I1.2 (s-Capture). Consider pursuers and evaders
with dynamics of class %, and output function h(zx). e-Capture
is defined as min;enr ||h(z'(t)) — h(z(1))|| < e

Definition I1.3 (RA Game [19]). Consider a team of N
pursuers and a single evader, all with dynamics of class X. The
RA Game is defined by the tuple {3, D, P}. ¥ corresponds to
the nonlinear dynamic’s class (1). D C RP is a compact game
domain such that h(x) € D. P C RP is a compact target
set for the evader. The evader only wins if h(z®) € P while
avoiding -Capture.

Remark 1. Note that the RA Game evolves over the output of
the dynamical system X. These outputs can be defined over a
domain of any dimension.

In what follows, a sufficient condition for s—Capture is
provided through domain partitioning. Throughout this section,
the reader is referred to Fig. 1 for conceptual clarity.

The minimum time to reach a ¢-ball around the point m € D
for the dynamical system 3 is defined as the solution to the
problem T'(m, 8, ¥) = mint, s.t. ||A(z(t)) —m| < § given X.

Definition I1.4 (Capture Set). Given a pursuer with dynamics
and output (X', y*), and an evader with dynamics and output
(3¢, y°), the pursuer capture set is given by Vi = {y C
RP | T(y,d,%%) = T(y, 8, %°)}. A capture set for the pursuer
team is defined as Vs := ;¢ nr Vi

Definition II.5 (Defense Surface). For the RA Game
{3, D, P}, a defense surface M(t) at time t is defined as a
boundary that partitions the game domain D into two nonover-
lapping sets Dy oy, i.e, D = Dy UDy and Dy N Dy = M,
such that P C Dy and PND; = 0.

Definition I1.6 (Pursuer Defendable). Consider a pursuer team
capture set V5. A defense surface M(t) is pursuer-defendable
if 3, such that ¥t € [t,,, o), M C Vs, and h(z°(t,,)) €
D;s.

The following lemma states that if an evader trajectory
crosses the defense surface at a time when it is pursuer-
defendable, then there is at least one pursuer who can get
within § of that location at the same time.

Lemma II.1. Recalling t,, from Definition 11.6, for a pursuer-
defendable surface M(t), at a time t. > t,,, if Im € M(t.)
s.t. [[h(z€(te)) —ml|| = 0, then Ji € N and Fu'(t) t € [tm o0),
st ||R(zt(te)) — h(z®(Le))|| < 24.

Fig. 1. Set Relationships for RA Games in Finite Time. The red circle
corresponds to the position of the evader, the blue triangles the position of
the pursuers. The shaded red region corresponds to the evader’s constrained
reachable set /R ¢, the shaded blue region correspond to the pursuers’ capture
set, and the thick blue line is a pursuer-defendable defense surface M.

Proof. By the definition of the pursuer-defendable defense
surface, 3i € N such that m ¢ yg’. By the definition of
the Capture Set Y%, this implies Ju’(t) for ¢t € [t,, o0)
such that ||A(z'(t.)) — m| < 4. Thus, if at t, = t,,
[[h(z¢(t.)) — m||, by the pursuer-defendable property of the
defense surface that would imply || (x?(t.)) —h(z¢(t.))|| < 4.
If || (2 (tm ) — B (2% (t))]] > 26, then for t > t,, there exists
a u'(t) such that ||h(z'(t.)) — h(z¢(t.))| < 28 by the triangle
inequality. |

Proposition I1.2 (¢-Capture Sufficient Condition). For an RA
Game {3, D, P}, assume at a time ., there exists a defense
surface M that is pursuer-defendable with 6 = /2. Then,
for any trajectory of the evader h(x°(t)), t > tp, for which
h(z¢(t)) € P, Ji € N and Ju'(t) that leads to e-Capture.

Proof. Given the dynamics 3¢ are Lipschitz continuous and
h(ze(t)) € P, by the definition of the defense surface M (%),
3t. > t,, such that A(z°(t.)) N M(t.) = m. Applying Lemma
IL.1 leads to the existence of ¢ € N for which u'(t) for ¢ > t,,
leads to ||h(x'(te)) — h(zc(te))|| <26 =¢. O

Remark 2. Proposition 11.2 is consistent with pursuer coordi-
nation strategies that aim at encircling an evader [4].

It has been shown that it is not possible to achieve point
capture using a team of pursuers with inferior kinematic
capability than the evader on open domains [7]. However, by
imposing a maximum time on the game, we can construct a
bounded set of the evader’s output while reaching the target set.
This avails teams of pursuers, with inferior kinematic capability
than the evader, to satisfy the conditions in Proposition II.2.

B. RA Games in Finite Time

Definition I1.7 (RA Game in Finite Time). The RA Game in
Finite Time is defined as the RA Game {X,D,P,ts} in which
the evader only wins if it reaches a desired target set P before
a predefined final time ;.
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Definition ILI.8 (Constrained Reachable Set). Given the dynam-
ical system 3 with output y = h(x), the constrained reachable
set is defined as

R(to, Xo, Xy) ={y € R” [ & = f(z) + g(z)u(?),

h(x(t())) S )((),h(l’(lff)) S Xf,u(t) € L{,t € [t() tf]}
Corollary 1. Assuming a pursuer-defendable defense surface
M(t) exists at a time t,, < ty, then the e-Capture sufficient

condition holds for the RA game in Finite Time given by
{E,R¢,P,ts}.

3)

Proof. Trivially follows from changing the domain definition
in Proposition (I1.2). O]

Theorem IL3. For an RA Game in Finite Time {3, R°, P, ty},
the existence of a defense surface M that is pursuer-defendable
with § = ¢/2 for a time t € [t,,, ty| provides a sufficient
condition for a winning pursuer strategy.

Proof. Verifying the conditions in Proposition 1.2 and Corol-
lary 1 leads to the existence of a pursuer-defendible defense
surface for t € [t,,, o) for the RA Game, and ¢ € [t,, tf] for
the RA Game in Finite Time. This implies the evader h(z¢(t))
trajectory needs to pass through M for the evader to win. If
it does, this leads to a pursuer achieving e-Capture as stated
in Lemma IL.1. If the evader h(z¢(¢)) trajectory does not pass
through M, it cannot reach P by t; and loses. Both cases lead
to a winning pursuer strategy. O

The significance of the Theorem II.3 is that knowledge of
the actual u*(t) trajectory that leads to e-Capture or an explicit
construction of the pursuer-defendable defense surface are not
needed for a pursuer winning strategy. Only the existence of
a pursuer-defendable defense surface needs to be verified. The
sufficient condition in Theorem II.3 can be used as a surrogate
design objective for feedback controllers of the pursuer team.

C. Pursuer Coordination for RA Games in Finite Time

The proposed coordination strategy ensures scalability in
satisfying a global objective through the design of local-level
rules. The global objective is to verify the sufficient conditions
in Theorem II.3, that can be reduced to ensuring the existence
of a pursuer-defendable defense surface. From Definition I1.6,
this can be interpreted as the pursuer team capture set being
able to cover a defense surface, motivating the use of coverage
control, a framework from the multi-agent robotics community
with demonstrated scalability [17], introduced next.

The proposed coverage approach is based on locational cost
minimization as described in [2]. The performance metric to
be minimized by the the multi-agent team is given by

N
H(p,t) = Z/ lla —p'lI*p(g, 1) da. )
i—1 7 Q(pst)
where p’(t) € R™ is the location of the agents on the coverage
domain, and Q?(p,t) forms a proper partition of the coverage
convex domain () C R™. It is assumed in this work that
the density function p(g,t) = 1, but instead the coverage
domain () is of time varying nature [17]. The centers of mass

t) = foipna(et)da/ Joi, o pla.t)da € Q(p,t)

provide the optimal coverage configuration of positions p’(t)
within the domain in terms of minimizing (4). Exponential
convergence to this configuration can be achieved for dynamics
p(t) as described in Lemma I1.4.

Lemma I1.4 (from [17]). For the aggregated location state
p € R™N exponential convergence |c(p,t) — p(t)|]| =
e "|le(p, 0) — p(0)|| can be achieved by

= (1-20) " (st 220),

for some gain > 0, as long as p(t) is initialized sufficiently
close to ¢(p,t).

Remark 3. Previous work has shown how the dynamics in (5)
can be derived analytically in a fully distributed fashion over
one-dimensional domains [12], and distributed approximations
can be obtained over fixed domains [3] and time-varying
domains [17] in any dimension.

The link between the sufficient conditions for a winning pur-
suer strategy outlined in Theorem I1.3 and coverage control can
be made explicit from the following topological observation.
Based on Definition I1.6, conditions for a potentially simply
connected (i.e., no holes) defense surface M to be pursuer-
defendable are for the pursuer team capture set )s to also
be simply connected while sufficiently spanning the domain.
By sufficiently spanning the domain, it is meant that the a
boundary that partitions the game domain needs to exists inside
Ys. In what follows, this topological observation is leveraged
to provide necessary conditions for the existence of a pursuer-
defendable defense surface.

First, we provide two lemmas used in the construction of
the next proposition.

Lemma IL5. Let us consider the projection operator
Projo(y) = argmin,cq, [|[p—yl|, where Q@ C R™ is a compact
convex set. We further assume ) is a convex polytope that can
be written in the form Ap+b > 0, where rank(A) = m. Then,
a necessary condition for a set A to be simply connected is
for the image Projq(A) to be simply connected.

Proof. First, note that the minimization of the projection
operator is equivalent to minimizing f(p) = 1||p — y||? that is
strongly convex; thus, a solution always exists and is unique.
Now, the solution follows from the constrained optimization
problem £ = 1|p — y||> + AT (Ap + b). The solution to this
problem (p*, \*), yields

e o

Differentiating this expression with respect to y, yields

22 2 dp* )
652 L OpOA L dy 4 Opdy L =0
L 0 d\* o) L .
OpOX dy OAOy

Note that the matrix constitutes the KKT conditions for a
strongly convex, affine optimization problem; thus it is invert-
ible [10, Section 15.1]. This implies the solution (p*, \*) is
differentiable with respect to y, which means it is continuous
[11, Proposition 4.7.2]. Now that we have established the
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projection operator is well defined and continuous, from [11,
Th 4.2.1] we have that the image of a path-connected set
through a continuous function is path-connected. The claim
follows. O

Lemma I1.6. Consider sets A,B € X and a continuous
mapping [ : X — Y. Then, f(A)U f(B) = f(AUB).

The following motivates the use of coverage control to
enable the existence of a pursuer-defendable defense surface.

Proposition I1.7. Consider the locational cost (4), and the
individual pursuer capture set provided by yg. Assume the
coverage domain (t) is a convex defense surface. If 3t,,
such that 't € [t,, tf] the partitions Q' (p,t) = Projo(V}),
then Projo (V%) satisfies the necessary conditions to be simply
connected.

Proof. From the theorem statement, we have | J;. - Qi(p, 1) =
Uien Proja(Ys), from Lemma IL6, |J;o\ Proja(Y;) =
Projo (Usen Yi): thus, Q(t) = Projo(Ys). Furthermore,
given €;(p, t) constitute a proper partition of the domain, (¢)
is simply connected. The claim follows from Lemma IL.5. [

The significance of Proposition II.7 is that through coverage
we can enable the topological conditions to make a defense
surface be pursuer-defendable. Based on this proposition, the
elements comprising the proposed coordination strategy are
provided for the pursuer team.

Definition I1.9 (Coordination Strategy). For an RA Game in
Finite Time {3, R¢,P,ts}, a pursuer coordination strategy is
given by the tuple {Q, ¢, pq}, where
o Q) : Rsg — R® C R™ is an defense surface that will
serve as the coverage domain.
o &(x,t) : R" xR — Q is an output map from a pursuer
state to the coordination domain ).
o piy(t) : Rsg — Q is the desired output dynamics of z* on
the domain ().

In what follows, Section III characterizes conditions for
which square nonlinear systems can maintain the exponential
tracking performance of the controller in (5) given output maps
¢(x*,t). Since Proposition 1.7 only provides necessary condi-
tion for maintaining capture set overlap, Section IV empirically
analyzes the performance of two coordination strategy real-
izations {3, R¢,P,ts} for an increasing number of pursuers
under suitably selected metrics. It is shown how performance
monotonically improves with the number of pursuers, and
how the strategy that better satisfies the conditions outlined
in Theorem IL.3 leads to the best capture performance.

III. COORDINATION TRACKING PERFORMANCE

In this section, we show how tools from MIMO feedback
linearization can be used to enforce coverage dynamics on a
manifold by a team of agents with nonlinear dynamics in the
form of (1) while retaining exponential tracking of the coverage
dynamics on the coordination domain. Output tracking is used
to synthesize nonlinear controllers, which enforces the first-
order coverage control dynamics on manifold §2(¢) as provided
in Lemma I1.4. This problem is addressed using the framework

of MIMO feedback linearization as presented in [15]. Let us
define the Lie derivative of a function h(x) with respect to
f(x) as Lyh = %f. For a system of the form (1), define
the relative degree ~ as the number of differentiations of the
output mapping y = h(z) required until LgL'}_lh(x) # 0,
where L?h = Ly(Lsh). In the MIMO case, define the total
relative degree yr as the sum of the relative degrees for all
outputs yr = Z?:l vj» where p is the dimensionality of the
output map. For the remainder of this section, assume there
exists a C! output mapping y = ¢(z,t) : R" x [t tf] — Q(2),
where €(t) is an arbitrary coverage manifold. Note that for the
ith agent, we wish to enforce ¢(x%,t) = pi(t).

Using the notation z(™) = C%x(t), the output mapping for
a single agent

+

y= [Cbl (.17, t) ¢m(x7 t)] )
yy 7 = LY 6w, t) + 0177 (1)

+ Z L, L}” _1gz5j (z, t)ug,
k=1

(6)

where v; is the relative degree for output j. Repeating this
procedure for all outputs, we have

LY ¢ (@, t) + ¢ (2, 8)
= : +E(x)u,
LY 6 (,1) + 6417 (2, 1)

L(z,t)

y('Yl)

)

where E(xz) € R™*™ and whose elements are obtained from
the differentiation in (6). The first-order nature of the coverage
control law in Lemma IL.4 implies v > m. Thus, two
strategies will be provided for the cases where v = m and
yr > m. Next, let us denote y4 € R™ as the desired output
signal, and f4(yq,t) as the desired dynamics given by (5).

First, assume v = m, and the decoupling matrix F(z)
in (6) is invertible. Then, for the desired first-order dynamics
¥a = f4(ya,t), an output tracking controller is given by

u(e,t) = E(x)"' (fo(0,t) — L(x,1)), (7

where v; = 1, Vj € {1,...,m}. This follows from direct
substitution of (7) in (6), which yields y = fy(y, ).

In the case where the total relative degree vy > m, sepa-
ration of timescale can be leveraged to synthesize a tracking
controller that does not require higher order derivatives of the
desired output dynamics. Assume system (1) can be partitioned
into states x = [z1 2] so that it has the structure

iy = fi(w1, 22),
&y = fa(x1,22) + g(z)ult), )
Yy = ¢(£L’1,t),

with the first derivative of the output given by
. 0
y:Lfl(Zs(l'l,t)—F&(ﬁ(l‘ht) :h(xlax%t) (9)

Proposition IIL.1. For system (8) with output derivative (9),
assume g(x) is invertible, and that there exists a mapping xo =
T(‘Th t) S.L. Lfl d)('rh t)+%¢(:€17 t) = h(’rla T(Ilv t)? t)’ where
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h(mlar(xla )7 ) fqb((,b(l'l, )7t)7
u(z,t) = g(a) " [R(r(x1,t) — x2) — fa(z1,22)].

Then, if K > 1, system (8) tracks the desired output dynamics
a = fo(ya,t) with tracking error y(t) — yq(t) < O(1/R).

Proof. This follows by applying Tikhonov’s theorem of sin-
gular perturbation [9] on the singularly perturbed system
y = Lpd(x1,t) + Zo(a1,t), &1 = fi(z1,22), edo =
(r(x1,t) — xo), with output solution trajectory y(t €), where
e = 1/k. Because ¢(x1,t) is C1, (Lfl(,b(ozl, ),dtgb(xl, t))
are continuous, the reduced problem y = fy(y,t), 1 =
f1(Z1,7(Z1,t)) yields the desired output trackmg trajectory
g(t). Defining the boundary layer variable £ := x5 — (1, t),
and scaled time 7 := t/e, the boundary layer problem
% = Rlr(xz1,t) — (E+r(z1,t))] = —FRE, has the origin as
an exponentially stable equilibrium point uniformly in (¢, z1).
Thus, the solution y(¢,¢) — g(t) = O(e) by Theorem 11.1 in
[9]. O

(10)

Corollary 2. The coverage dynamics for the controller in
Proposition Ill.1 exponentially converges to a ball of radius
O((1/k)?) with convergence rate k for k > 1.

Proof. The desired configuration dynamics have convergence

rate of (g, t) — (1) < e~ (7, 0) — §(0)]| by Lemma 114
N - _

It follows that [[c(7,t) — 5(t)[* = 32;5, llei(@,t) — % (1)1 <

e~>"*lc(g,0) — (0)||*. From Proposition IIL1, the output

trajectorles of the real system y;(t) track the desired dynamics
7i(t) by yi(t) —:(t) = O(e) for € := 1/E. It now follows that

Z ey, t) Z llea(y, 1) — g(t) —

lllei(y, t) = 7: ()| + 1O 1)*

o(e)|?

Mz

1

<
Il

2+ [lei(y, £) — 7 ()]|0(e) + O (¢2)]

7(0)10(e)+0(e?)

M=

iy, t) — galt

e *|e(y,0) —
ae”" + 0(?),

.
Il

7(0)|*+Ne™"|lc(y,0) —

VAN

G(0)I* + Nlle(7,0) —

For a coordination strategy {2, $,pq}, we can conclude
that for square systems, if the total relative degree v = m,
exponential tracking of the desired output dynamics p}(¢) can
be achieved by (7). If the total relative degree vy > m,
exponential tracking of the desired output dynamics pj(t) can
be achieved by (10) as shown in Corollary 2.

where o = ||c¢(7,0) — 7(0)[[O(e). O

IV. COORDINATION STRATEGY EVALUATION

We now provide two coordination strategies (called Type-
I and Type-II) for RA Games in Finite Time. The objective
of this section is to quantify the performance of the proposed
coordination strategies, and to show that the best performance
is attained by the strategy that best satisfies the conditions of
Theorem I1.3.

The Type-I coordination strategy consists of selecting a
pursuer-defendable defense surface as the coordination domain,
and the projection of the heading direction as the output map.
The Type-II coordination strategy consists of selecting a line

segment that is a defense surface as the coordination domain,
and the projection of the center of the pursuers capture sets
as the output map. Expressions for the output mapping ¢(z)
and the pursuer inputs ub(t) Vi € N for the Type-I and
Type-II coordination strategies can be found in [13]. A pure-
pursuit strategy (optimal pursuit strategy when capture time is
minimized [8]) where each agent tracks an instantaneous angle
r(xr) = tan™! (%
was also impleméntea as an uncoordinated approach to ensure
performance improvements with increasing number of pursuers
is not due to spatial diversity, but rather coordination.

The RA Game in Finite Time for N € {2,3,4} was
implemented in simulation enforcing unicycle dynamics (2)
on all players. It was assumed ||uy|| = 2||ut|, max||u§| =
max |lub||, where |[u}| = 0.1, ||Jub|| < 27 Vt,i € N. The final
time of the engagement was varied from ¢; € {230, 265, 300}.
The evader is initialized at x-position z§{ = —10, and random y-
position z§ ~ Ug(—5,5), where Uy is the uniform distribution.
The evader employs random maneuvers while trying to reach
a rectangular target set P with dimensions 1 x 10, and center
(10, 0). Pursuers were initialized at equidistant locations inside
P, at random locations inside P, and at random locations
outside P. Results are provided for 100 runs under each initial
location assumption, for each pursuit strategy, and for each
considered final time.

Two performance metrics were considered: miss distance
min; ez efto,t,) 19°(t) — y¢(t)]| and a defense surface index.
The defense surface index is defined as =, Zifz . 1(t), where
t,, is the first time the defense surface is pursuer defendable,
ty is the final time of the engagement, At = ¢y —t,, is the span
of time the defense surface should be defended. I(t) € {0,1}
is an indicator function that has a value of 1 if the defense
surface is pursuer-defendable, O if it is not, and ¢ was discretely
sampled in post-processing. This metric quantifies the ability of
the coordination strategy to maintain the existence of a pursuer-
defendable defense surface.

The simulation results under the aforementioned metrics
are summarized in Fig. 2. For all simulation both the worst
case and median miss distance improve under coordination
(Type-1 & II) over pure-pursuit, and the results were proven
statistically significant under a matched-pair t-test with worst
case p-value < 4 x 1072. The miss distance is monotonically
reduced with increasing number of pursuers in all scenarios.
Coordination also lead to an improvement in the worst case,
median, and lower quantile defense surface index for agents
initialized inside the domain. For agents initialized outside
the domain, the worst case index was zero for all considered
pursuer strategies, but the median and lower quantile were
improved under coordination.

The Type-II coordination strategy provides the highest me-
dian defense surface index. This is consistent with the Type-II
coordination strategy also achieving the smallest miss distance
over uncoordinated approaches. Also note that the Type-II
median defense surface index monotonically increases with
the number of pursuers, and leads to the most wins for an
e—Capture distance ¢ = 0.3. This validates the design objec-
tive for this approach that aims at improving the conditions for
the existence of a pursuer-defendable defense as prescribed in

) with a control law, ud = k(r(z) —z%)
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Fig. 2. Miss distance (first row), defense surface index (second row), and
number of pursuer wins (third row) for increasing final time values (Solid
line) ty = 230[s], (Dotted line) ty = 265[s], (Dashed line) ty = 300[s].
The box correspond to the 25 and 75 percentile range of the data, whiskers
extend to the minimum and maximum values while the dots represent outliers.
The horizontal line inside each box represents median value. Pursuer initial
location is the same column-wise and stated in the title of each plot.

Proposition I1.7.

V. CONCLUSION

A class of scalable pursuer coordination strategies was
introduced for RA Games in Finite Time. A sufficient con-
dition for a pursuer team win was developed. It relies on the
existence of a defense surface that partitions the game domain,
separating the evader from the target set, and ensures pursuers
can always reach the surface (pursuer defendability). One of
the main contributions of this work is the notion that only
the existence of the defense surface is needed, the defense
surface does not need to be explicitly constructed. Pursuer
coordination strategies that rely on coverage control, from the
multi-agent literature, are proposed to preserve the existence
of such surface given its ease of extendability to any arbitrary
pursuer team size. Two coordination strategies are presented
and evaluated through simulation for a single evader with
twice the maximum speed as any player in the pursuer team.
Both coordination strategies lead to increase in time a pursuer-
defendable defense surface existed in the game (called defense
surface index), and higher number of wins over the pure-
pursuit strategy. The coordination strategy with the highest
defense surface index led to the closest capture distances

and most number of pursuer wins. Thus, we conclude the
presented analysis empirically validates the sufficient condition
for pursuer team win against a fast evader introduced in this
work.
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