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Abstract—Approaches for stochastic nonlinear model predictive
control (SNMPC) typically make restrictive assumptions about
the system dynamics and rely on approximations to characterize
the evolution of the underlying uncertainty distributions. For this
reason, they are often unable to capture more complex distributions
(e.g., non-Gaussian or multi-modal) and cannot provide accurate
guarantees of performance. In this letter, we present a sampling-
based SNMPC approach that leverages recently derived sample
complexity bounds to certify the performance of a feedback policy
without making assumptions about the system dynamics or under-
lying uncertainty distributions. By parallelizing our approach, we
are able to demonstrate real-time receding-horizon SNMPC with
statistical safety guarantees in simulation and on hardware using a
1/10th scale rally car and a 24-inch wingspan fixed-wing unmanned
aerial vehicle (UAV).

Index Terms—Integrated planning and control, planning under
uncertainty, robot safety.

I. INTRODUCTION

ONLINEAR model predictive control (NMPC) has
N proven to be a powerful approach for controlling high-
dimensional, complex robotic systems (e.g., [11, [2], [3], [4]).
Nevertheless, although these methods can handle large state
spaces, nonlinear dynamics, and system constraints, their perfor-
mance can be adversely affected by the presence of uncertainty
even in the context of real-time replanning [5]. A number of
approaches have been proposed to compensate for this marginal
robustness, the simplest of which is to generate a feedback policy
to track the current receding-horizon plan (e.g., [2]). These ap-
proaches, however, do not account for uncertainty or closed-loop
performance during the planning process. To address this, ap-
proaches such as robust NMPC (RNMPC) and stochastic NMPC
(SNMPC) attempt to reason about the response of the policy
to disturbances during planning. This is usually accomplished
by making simplifying assumptions about the dynamics and
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Fig. 1. PAC-NMPC optimizes high confidence bounds on the expected
costs/constraint of feedback policy distributions. We demonstrated our approach
on a 1/10th-scale Rally Car (a), (b) and an Edge 540 fixed-wing UAV (c), (d).

disturbances. For instance, in RNMPC, disturbance sets may be
approximated by ellipsoids [6], or robustness guarantees may
require the existence of a control contraction metric (CCM) [7];
in SNMPC, uncertainty distributions are often approximated via
Gaussians [8] or sampling [9].

In this letter, we present a sampling-based SNMPC algorithm
capable of controlling stochastic dynamical systems without
applying limiting assumptions to the structure of the stochastic
dynamics or underlying uncertainty distributions. In addition,
our approach leverages recently derived sample complexity
bounds [10] to provide a probabilistic guarantee on system
performance. Our algorithm builds on Probably Approximately
Correct Robust Policy Search (PROPS) [11] to directly op-
timize an upper confidence bound on the expected cost and
the probability of constraint violation for a receding-horizon
feedback policy. Not only does this approach encourage robust
policy generation, but the minimized bounds themselves provide
a statistical guarantee for each planning interval. To achieve
real-time performance, we use a graphics processing unit (GPU)
to parallelize our algorithm. We then evaluate our approach in
simulation and on hardware using a 1/10th scale rally car and a
24-inch wingspan fixed-wing UAV (Fig. 1).

Our contributions are:

1) A novel algorithm, PAC-NMPC, for receding horizon

SNMPC with probabilistic performance guarantees.

2) A real-time implementation via GPU acceleration.

2377-3766 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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3) Demonstration of our algorithm on complex underactu-
ated systems via simulation and hardware experiments.

II. RELATED WORK

Prior research addresses the impact of uncertainty on NMPC
via robust NMPC (RNMPC) or stochastic NMPC (SNMPC).
RNMPC represents uncertainty in the system as bounded dis-
turbances. While min-max tube NMPC methods [6], [12], [13]
and multi-stage NMPC approaches [14] have been proposed,
constraint-tightening based tube NMPC [15] has proved to be the
most common and computationally tractable RNMPC approach.
Most of these approaches rely on tube size derived from a
computed Lipschitz constant [16], [17], CCMs [7], [18], [19], or
bounds on incremental stability [20]. These methods for com-
puting invariant sets are often complex, may place significant
restrictions on the dynamics, and can lead to overly conservative
results. Recent work has proposed sampling-based reachability
analysis for arbitrary continuously differentiable dynamics with
less conservative results [21], [22].

Stochastic NMPC represents uncertainty as a probability dis-
tribution and optimizes the expectation over costs and constraint
violations. Oftentimes, they optimize a feedback policy, rather
than a control sequence. Our method, PAC-NMPC, falls into this
category of approaches. Early approaches focused on a local
iterative solution to the stochastic Hamilton-Jacobi-Bellman
equation [23], [24], which relies on a first order approximation
of the dynamics for noise propagation. Stochastic differential
dynamic programming approaches [25] would later allow for
second order approximation of the dynamics. More recent meth-
ods utilize the unscented transform to propagate noise through
nonlinear dynamics [8], [26]. In [27], the authors leverage path
integral control to generate open-loop trajectories and create a
sampling-based NMPC algorithm. More recent extensions [9],
[28] include a feedback policy for robust performance, [29]
provides guarantees on free-energy growth, and [30] penalizes
Conditional Value-at-Risk (CVaR).

Sampling-based stochastic optimal control methods are
closely related to policy search in reinforcement learning. A
general background and survey of common policy search meth-
ods can be found in [31]. In [11], researchers developed an
approach for robust policy search using a Probably Approxi-
mately Correct (PAC) learning framework called PAC Robust
Policy Search (PROPS) based on recently derived sample com-
plexity bounds in [10]. Researchers have also recently explored
(PAC)-Bayes theory to generate collision-avoidance policies
with performance guarantees in novel environments [32] and
achieve vision-based planning with motion primitives [33].
Our PAC-NMPC method builds on the work in [10] and [11]
to develop a highly generalizable sampling-based stochastic
feedback motion-planning algorithm that can provide statistical
performance guarantees for a large class of uncertain dynamical
systems.

III. BACKGROUND

Before presenting our approach for Probably Approximately
Correct NMPC, we first review the recently derived PAC bounds
for Iterative Stochastic Policy Optimization which are the foun-
dation for our approach.
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Algorithm 1: Episodic ISPO.

1 Inputs: g, i < 0;

2 while termination condition not met do

3 for j=1,...,M do

4 Sample Trajectory: (75,&;) ~ p(-,-|7]);
5 L Evaluate Cost: J; = J(7;);

6 vy, = argmin, JW) + aD(v,0});
7 P41+ 1

8 return U;

A. [Iterative Stochastic Policy Optimization

Consider the stochastic dynamics given by p(x;+1|x¢, us)
defined by a vector of state values x; € RN= a vector of control
inputs u; € R™+, and probability density p. Iterative Stochas-
tic Policy Optimization (ISPO) [10] formulates the search for
a control policy u; = (x4, &) as a stochastic optimization
problem, where £ is a set of policy parameters. Specifically,
ISPO introduces a surrogate distribution p(&|r) where policy
parameters £ are dependent on distribution hyper-parameters v.
This induces a joint distribution

p(T,élv) =p(rI€)p(§lv) €))
where p(7|€) represents the natural stochasticity of the system
and is given as p(T|€) = p(xo) [1}_o P(Xts1|%s, us), where
u; = w(x¢, &). Here T represents the discrete time trajectory
sequence {Xo,Ug,X1,U1...,Un,, XN.+1 ), Where Np is the
number of timesteps.

In general, the objective of ISPO is to solve the
optimization problem »* = arg min,J(v) where J(v) =
Er e~p(., v [/ (T)]. Todo this, ISPO iteratively samples from (1)
and solves the optimization problem ©;, ; = arg min,, TJw) +

aD(v,v}) for each iteration i until convergence. Here 7 () is
an empirical approximation of the expected cost, D is a distance
between distributions, often the CL-divergence, and a > 0 is
hand-tuned weight or Lagrange multiplier [34] computed for a
constraint on D(v, ;). Algorithm 1 is a general framework for
ISPO.

B. PAC Bounds for Stochastic Policy Search

Instead of directly minimizing an empirical approximation of
the expected cost, it can be beneficial to minimize an upper
confidence bound on the expected cost. Not only does such
an approach encourage robust policies, but it also can provide
guarantees on future performance. In this letter, we directly
optimize the PAC bounds derived in [10]. While these bounds
are derived in [10] and discussed in [11], we review them here
since they are fundamental to our approach.

In [10] the presented PAC bound 7 (v) takes the form

TH (W) 2 Tav) + ad(v) + a(5) )

where 7, () is arobust estimator [35] of the expected cost, d(v/)
is a distance between distributions, and @, (9) is a concentration-
of-measure term which accounts for discrepancies between the
true mean, 7 (1), and the robust estimator, ja (v). For a partic-
ular choice of 7, (1), d(v), and ® (), [10] proves that 7 (v)
bounds the expected cost 7 (v) with a probability of 1 — 4.
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To derive an expression for J, (v), we must estimate

p(€lv) ]
TW) = Er e {JT . 3)
( ) T,6~p(-,-[vo) ( )p(E|V0)
Because the likelihood ratio pp((él:ﬂ)) can be unbounded, a ro-

bust estimation technique is needed. Following [35], the ex-
pected value of a random variable X can be approximated as
E[X] ~ -1 M 4(aX;) for some and o > 0, where X; is
a sampled value of X and ¢(z) = log(1 + z + 1z?). Given
L prior surrogate distributions with hyper-parameters v, v1,...
v,—1 and M iid samples from each joint distribution, (70, &;g),
(Ti1,&i1) e (Tina, Ear) ~ 0(+, -|V;), the robust estimate of the
expected cost can then be written as

R | L1
Ja(v) = aLM;;¢(afij) 4)
by = J(TU);)((E”L/)) ©)

ij Y

To compute the distance between the distributions, the Renyi
divergence, D>, is used. d(v) is given as

L1
s 1 2 D2 (p() | (p( 1))
d(l/)—ﬁZble 2P I (6)
i=0
The concentration-of-measure term @, (9) is given as
a 1 1
D, (0) £ i log 5 8)

It tightens the bound as the number of samples increases and as
the bound confidence, 1 — ¢, decreases.

In addition to cost-functions, we can also incorporate the
probability of constraint violation, C(v), of the form C(v) =
P(g(T) > 0) = Er ¢ p(...lv) [L{g(+)>0}], where Lis the indicator
function. Similarly, we can derive C () which upper bounds
C(v) with probability 1 — 4.

To combine costs and constraints, we optimize a weighted
sum of J'(v) and CI(v), where v > 0 is a heuristically
selected weighting coefficient. We solve

Vi1 = V" = arg min m>i% (T W) +Ct(v)) )
using a GPU implementation of L-BFGS-B [36]. When optimiz-
ing the bounds, we used self-normalized importance weights to
compute ¢;; in (5) and analytical gradients, as described in [11].

IV. APPROACH

To formulate a receding-horizon NMPC algorithm that lever-
ages the PAC bounds in [10], we first address the stochastic
trajectory optimization problem. We then extend this approach
to enable real-time feedback motion planning.

A. PAC Stochastic Trajectory Optimization

To formulate stochastic trajectory optimization using
PAC bounds, we consider a parameterization of a
discrete-time open-loop policy u; = 7(€) = ¢,, where £ =

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 11, NOVEMBER 2023

Algorithm 2: PAC Stochastic Trajectory Optimization.

1 Inputs: g, Xo, ¢ < 0;
2 while termination condition not met do
3 for j=1,...,M do // GPU Parallelized

4 Tij,&i5 ~ p(+, Vi, Xo0);

5 Jij = J(Tij), cij = c(7ij);

6 U1 ¢ argmin, mingso(J4 (v) +~CE (v));
7 141+ 1;

8 return U}, 7.5 (D)), CX (D))

Algorithm 3: 7 ~ p(-|€,x0).

1 Inputs: € = [u,...,ux,.]”, xo;
2 fort=20,..., N7 do

3 L X1 ~ p([xe, ue);

4 Return 7 = {xo, Uo, X1, U1, ..., UNy, XNy 41}

// Stochastic Rollout

(¢l T ¢%.1", ¢, € RN+ and Ny is the time horizon
for the trajectory.

We parameterize the surrogate distribution p(&€|v) as a
multivariate Gaussian over this discrete-time control trajec-
tory so that & ~ N(&|u, ). For computational efficiency,

we assume a diagonal covariance matrix ¥ so the distribu-
. . ) T
tion parameters are given as v = [p”, diag(X)”|" where

diag(X) = [nd nf n%T]T and 1, € RN+, Thus, a
control trajectory with an NV, -dimensional control input and
N7 timesteps, the surrogate distribution is parameterized as a
N, Nr-dimensional multivariate Gaussian where p € RNuNT
and diag(X) € RNuN7,

For each optimization iteration, M trajectories are sampled
from the joint distribution (1) and evaluated using the augmented
cost in (9). Sampling from the joint distribution is achieved by
first sampling policy parameters from the surrogate distribution
and then using these policy parameters to sample from the
stochastic dynamics as shown in Algorithm 3. The augmented
costs of the samples are used to find a new set of policy
parameters that minimize the weighted sum of the cost and
constraint bounds (Algorithm 2). This process iterates until a
termination condition (e.g. maximum time, convergence metric,
etc.) is reached. The optimization not only returns the optimized
policy parameters, but also the optimized bounds themselves.

An analytical formulation for the surrogate distribution is nec-
essary to compute the robust estimates (4) and Renyi divergences
(7). By contrast, the only requirement on the stochastic dynamics
is to permit sampling. This property allows our algorithm to
generalize to a large class of complex (potentially “black-box”)
stochastic dynamics models. In practice, the cost and constraint
functions can also be stochastic (e.g. J;;, ¢ij ~ p(-,|T4;))-

B. PAC Feedback Motion Planning

While the ability to compute PAC open-loop policies is valu-
able, ideally, we would like to compute closed-loop policies
of the form 7;(x;, &). A closed-loop policy should enable us
to generate tighter state-space trajectory distributions and im-
prove the ability of our policies to satisfy control objectives.
However, designing feedback policies is not straightforward
and can be very system specific. One fairly general approach
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Algorithm 4: 7 ~ p(-|€, x() With Feedback.

Inputs: € = [uo, ..., un, ], Xo;
Xg = Xo;
for k=0,...,Nr do

| xth =xi + f(xf,uf) At

d _ fod .d . d d d d .
T = {XOauval’u1'~-auNT7XNT+1}a

k& = TVLQR(T%);

fort =0,..., N7 do
u =K (x¢ — x¢) +u;
Xt4+1 Np('|xt,llt)§

10 Return 7 = {xo, U0, X1, U1, ..., UNp, XN7 41}

// Nominal Rollout

B W o =

// Feedback Rollout

o e N A w»n

might be to select a local feedback control policy of the form
u; = K (x¢ — x¢) +uf, where k = {Ko,K;,.... Ky, }isa
sequence of time-varying gains, K; € RN«*Ne xd ¢ RN+ g
a nominal state trajectory and uf € RV« is a nominal input
trajectory. All of the elements of these sequences are parameters
of the feedback policy. Assuming the surrogate distribution
is a mulitvariate Gaussian with a diagonal covariance matrix,
in this case, & € R2(NaNutNaetNu)N7 - Given the size of the
decision space, this parameterization of the policy is unlikely
to be computationally tractable. To overcome this challenge, we
instead use a local closed-loop policy of the form

u =Ky (Td(€7xo)) (Xg(gaXO) - Xt) + u?(S)

d 2 red vd od id d  d
Here we refer to 7% = {x{, uj, x{, uf...,uy, , X%, } as the

nominal trajectory, which is computed using a nominal deter-
ministic discrete-time dynamics model, f(x¢, uf),

(10)

x{, | =x¢ + f(x{, uf)At (11)
where uf = ¢,. To sample from this feedback policy, we must
first compute the nominal trajectory, 7¢. However, 7 itself is
dependent on &; for this reason, we employ a two-stage sampling
process. In the first stage, we sample from the trajectory distri-
bution p(7%|€) using the deterministic dynamics model (11) and
the surrogate distribution p(€|v). For each sample trajectory 79,
we the compute the time-varying gains K;(7¢). In the second
stage, we sample from the closed-loop stochastic dynamics
using the feedback policy (10). This approach, summarized
in Algorithm 4, certifies the feedback policy by allowing our
sampled costs and constraints to capture the impact of our local
feedback policy on our stochastic dynamics model.

We use the finite horizon, discrete, time-varying linear
quadratic regulator (TVLQR) [37] to compute the feedback
gains K, (7). For each sampled nominal trajectory, the gains
are computed by integrating the finite horizon discrete-time
Riccati equations backward in time using the nominal dynamics
linearized about 7¢.

C. PAC-NMPC

Finally, we propose a receding-horizon NMPC approach
based on our PAC feedback motion planning algorithm
(Algorithm 5). At each planning interval, with a period of H,
the trajectory distribution and corresponding feedback policy
is optimized given the current state, X, and the prior hyper-
parameters, U;,. Then, the trajectory and feedback gains are
trimmed by % to account for time passed since the begin-
ning of the planning interval and executed by the controller.

Algorithm 5: PAC-NMPC.

1 Input: vg;
2 x9 = GetCurrentState();
3 while objective not completed do

4 U* = Optimize(Vy, Xo); // Alg. 2
5 u? = MaximumLikelihoodEstimate(D*);
6 fort=0,...,Nr do // Nominal Rollout
d d d d\ A
7 L xiy1 = xt + f(x§,uf)At;
d d .d d d d d .
T = {x07uvalaul"-quTvaT+1}»
x = TVLQR(T%);
10 74 Kk, D" « Trim(t%, Kk, D*);
11 Execute (1%, K);
12 xo = GetCurrentState();
13 D¢ = InitializePrior(D*, 7%k, x0); // Alg. 6
14 Return

Algorithm 6: Initialize Prior.

1 Input: %, 7%, K, x0;

2 [;zg,uf,-~-,u§T_%mg,n1T, oMy ] =0

3 u’ =

4 fort=0,..., Nr— % do // Feedback Rollout
5 L ut:Kt(Xt_Xt)"‘ug;

6 Xe41 = Xt + f(Xe, ur) At

7f01‘t:NT—%—|—1,...,NTd0 // Extend prior

®

u; =0;
m = maw(nT_%,nmm);

o

}T

[

~x _ [T T T T T T
0 Return U5 = [Uug, Ui, ..., Uny, 10,71 5 oos TINg.

The trim operation is given as Trim(k) = {K%, oK

Hyper-parameters determining the first Aﬂt time steps of the
control trajectory represent control signals that the system is
executing during the optimization and are not modified during
the optimization. To execute the policy, we use the maximum
likelihood estimate of the policy parameters, which is simply
the mean, p, of the multivariate Gaussian p(&|v).

Given that optimal trajectory distributions are expected to be
similar between subsequent planning intervals, we use the opti-
mal hyper-parameters from the last planning interval to initialize
the prior policy distribution for the next. This initialization is
extremely important since it allows the prior to start near an
optimal solution, thus reducing the required number of iterations
for convergence. After trimming, we apply the feedback policy
to generate a modified policy parameter distribution with a mean
feasible for the current initial state. Then, we extend the mean
with zeros and the variance with its final value. We threshold the
prior variance with 7,,,,,, to prevent it from starting too small,
which would inhibit exploration (Algorithm 6).

V. SIMULATION EXPERIMENTS

A. Trajectory Optimization Experiments

We simulate a stochastic bicycle model with acceleration and
steering rate inputs. We denote x; = [z, T1, T2, T3, 74T as the
state vector, u; = [ug, u1]” as the control vector, | = 0.33 as the
wheel base, and T = diag(][0.001,0.001,0.1,0.2,0.001]) as
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Iteration Iteration
Fig. 2.

the covariance.

Xer1 ~ P (X u) 2 x¢ + (f (x¢, 1) + w) At
f (x¢,up) = [x3 cos(wa), x5 sin(xs), x3 tan(xy) /1, ug, u1]

w~N(-]0,T) 12)

A 20 timestep trajectory with At = 0.1 sec is optimized, with
aninitial state of x; = [0.0,0.0,0.0, 1.0, 0.0]7 and a goal state of
xg = [3.0,0.0,0.0,1.0,0.0]”. The steering angle is constrained
to (—0.4,0.4) rad, the steering rate to (—1.0,1.0) 24, and the
acceleration to (—1.0,1.0) Z. We apply a quadratic cost on the

final state of the trajectory: J(7) = x}_ .1 QfXn, 41 Where
Qs = diag([2.0,2.0,0.0,0.0,0.0]). An obstacle constraint is
applied with circular obstacles at (1.0,0.75) and (2.0, —0.75).
The initial prior distribution has a mean of all zeros and a vari-
ance of all ones. Parameters were as follows: L = 5, M = 1024,
0 = 0.05,y = 10. Simulations were run on a laptop with an Intel
Core 19-9880H CPU and a Nvidia GeForce RTX 2070 GPU.

We ran trajectory optimization for 500 iterations. Once com-
pleted, our method returns the hyper-parameters, 7", and the
optimized PAC bounds, 7, (") and CJ ("). It is guaranteed
that policies sampled from p(&|v*) will have an expected cost
of < 7,7 (") and an expected constraint (probability of col-
lision) of < CJ(U") with a 95% chance. To validate the PAC
bounds, we compare them against Monte Carlo estimates of the
expected cost, J (%), and probability of collision, C(2"), at
each iteration.

To highlight the necessity of properly considering stochastic-
ity to generate accurate guarantees, we compared performance
while optimizing the PAC bounds with and without considering
stochastic dynamics (replace line 3 of Algorithm 3 and line
9 of Algorithm 4 with x;11 = x; + f(x¢, us)At). Optimizing
without stochastic dynamics caused 7 (&*) and C(D") to be
larger than the bounds, indicating that the guarantees were not
accurate (Fig. 2(a), (b)). We also performed an ablation study
in which we compared performance with and without feedback.
On average, each iteration took 15.9 ms without feedback and
18.5 ms with feedback. Feedback enabled the optimizer to
reduce the bounds to lower values (Fig. 2(e)—(h)) and resulted
in a tighter distribution in state-space (Fig. 3).

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 11, NOVEMBER 2023

With Feedback

Optimized with
stochastic dynamics

Optimized with
nominal dynamics

4.0 1 —— PAC Bound
2.07 ——— MC Estimate
1.0
0.5 1
0.3 0.238
0.1 ‘0.168 &) .0.147
40% -
20% A
10%
5% A
39 0.72%
1% A I,
i 0.29% | | (h) . 0.00%
0 200 400 0 200 400
Iteration Iteration

Convergence of PAC Bound compared to MC estimates (evaluated with stochastic dynamics). Y-axis switches from log to linear scale halfway.
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Fig. 3. Samples from optimized policy distribution and stochastic dynamics
in cyan. Samples from mean of the optimized policy distribution and stochastic
dynamics in magenta. Obstacles in brown.
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Fig. 4. Comparison between our approach and other methods.

We compare against optimizing an empirical approxima-
tion of the expected costs/constraints, regulated by the CL-
divergence to prior policies, to demonstrate that optimizing the
PAC bounds encourages more robust polices. We also compare
against RA-MPPI [30], a state-of-the-art risk-aware sampling
based NMPC method. We used the following parameters: >, =
0.01, M =1024, N =300, n=0, =03, A=10, B =1,
', = 0.5 for the cost, and C',, = 0.05 for the constraint. Our
approach converged to the lowest estimated expected cost and
probability of collision (Fig. 4).
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Y Position (meters)
o

5 4 -3 -2 -1 o 1 2 3
X Position (meters)

Fig. 5. Paths taken while following route (black) and avoiding obstacles
(brown) in simulation. Blue/green paths use stochastic bounds, red/orange paths
do not. Blue/orange paths use feedback, red/green paths do not.

B. NMPC Experiment

The system follows a receding horizon state generated on a
looping path. The path runs along a set of circular obstacles.
We optimize a 12 timestep trajectory with At = 0.1 second at
a replanning period of H = 0.2 sec. We apply a quadratic cost
on the final state of the trajectory: J(7) = X}, 1 QfXny41
where Q¢ = diag([1.0,1.0,0.1,0.1,0.0]). Parameters were as
follows: L =5, M = 1024, § = 0.05, v = 10. To allow for
a higher control rate, the executed control trajectory is inter-
polated from 10 Hz to 50 Hz with the assumption that our
PAC bounds will still hold. We perform an ablation study in
which we compare performance with and without feedback, as
well as optimizing the PAC bounds with and without stochastic
dynamics.

PAC-NMPC was successfully able to control the system in
real time and followed the path while avoiding nearby obstacles.
InFig. 5, we show the route taken by the system during five loops
of the path.

During each planning interval of H = 0.2 sec, the controller
achieved an average of 54 iterations of PAC stochastic trajectory
optimization (approximately 3.7 ms per iteration). The controller
consistently produced PAC bounds < 5% probability of colli-
sion, which accurately bounded the Monte Carlo estimates when
optimizing with stochastic dynamics. The bound was exceeded
only once out of 482 planning intervals. Thus, the estimates were
bounded accurately in around 99.8% of planning intervals, well
within the 95% confidence bound (Fig. 6(d)).

We demonstrate a quantitative difference in the observance of
the PAC Bounds in Fig. 6. When optimizing the bounds with the
nominal dynamics, the probability of collision estimates were
only bounded in 93.9% of planning intervals (Fig. 6(b)). This
decrease in bound accuracy is even more apparent when running
the controller without feedback to compensate for unmodeled
noise, resulting in only 64.7% of planning intervals having
bounded probability of collision estimates (Fig. 6(a)).

VI. HARDWARE EXPERIMENTS

A. Rally Car

1) Hardware: To evaluate our method on physical hardware,
we ran PAC-NMPC on a 1/10th-scale Traxxas Rally Car plat-
form. The algorithm runs on a Nvidia Jetson Orin mounted on
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Fig. 7. Rallycar dynamics noise model.

the bottom platform. The control interface is a variable elec-
tronic speed controller (VESC), which executes commands and
provides servo state information. The position and orientation is
tracked with an OptiTrack system.

2) Setup: The route, virtual obstacle placements, and
TVLQR costs are identical to those in the simulation experi-
ments. We optimize a 12 timestep trajectory with At = 0.1 sec at
areplanning period of = 0.2 sec. We apply a quadratic cost to
the final state of the trajectory: J(7) = Xn;4+1Q XN, +1 Where
Q¢ = diag([1.0,1.0,0.4,0.1,0.0]). Parameters were L =2,
M = 1024, 6 = 0.05, v = 10.

We model the rally car dynamics as a stochastic bicycle model
where noise is modeled as a 3 component Gaussian Mixture
Model. This mixture model was fit from 2500 samples of data
collected with the car (Fig. 7). We perform the same ablation
study as done in the simulation experiments.

3) Results: PAC-NMPC ran onboard the rally carin real-time
and followed the path while avoiding nearby obstacles. In Fig. 8,
we display the path taken by the car with collisions annotated
by arrows. During each planning interval of H = 0.2 sec, the
controller achieved an average of 10 iterations of trajectory dis-
tribution optimization with approximately 20 ms per iteration.

The controller consistently produced PAC bounds <10%
probability of collision, which accurately bounded the Monte
Carlo estimates of the probability of collision at all planning
intervals (Fig. 9(d)). In this context, Monte Carlo estimates refer
to sampled trajectories using the simulated stochastic dynamics
model. When optimizing with stochastic dynamics and without
feedback, the car collided with virtual obstacles twice, likely due
to unmodeled dynamics not captured in the Gaussian mixture
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Fig. 10.  Edge540 acceleration noise model.

model (Fig. 9(c)). When optimizing the bound with nominal
dynamics, the car collided with virtual obstacles, with and
without feedback (Fig. 9(a), (b)).

B. Fixed-Wing UAV

1) Hardware: To demonstrate that our approach can ex-
tend to more complex, high-dimensional systems, we use
PAC-NMPC to control a 24” wingspan Edge 540 fixed-wing
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route (black) and avoiding obstacles (brown).
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UAV. It has a controllable propeller, rudder, elevator, and
kinematically linked ailerons. The position and orientation are
tracked with an OptiTrack system.

2) Setup: We utilize a quaternion formulation of the fixed-
wing described in [2] with RK2 integration. This system has a
17-dimensional state space and a 4-dimensional control space.
The state of the system is x = [r, q, §, v, w, p] where r € R? is
the position, q € Q is the orientation, § € R? are control surface
deflections of the ailerons, elevator, and rudder respectively,
v € R3 is the linear velocity, w € R? is the angular velocity,
and p is the propeller speed. The control signal is the rate of
change of the control surface deflections and of the propeller
speed: u = [ug, Ue, Uy, up). We place noise represented by a 3
component Gaussian Mixture Model over the body frame accel-
erations, which was fit from 2000 samples of data collected with
the fixed-wing (Fig. 10). We optimize a 12 timestep trajectory
with At = 0.1 sec at a replanning period of H = 0.2. We ap-
ply a quadratic cost of the form J(7) = XN 117 QeXNpr1 +
Zii 4 (x4 Qx¢ + uy " Ruy) and an obstacle constraint. Param-
eters were as follows: L = 1, M = 1024, = 0.05,and v = 10.
We use feedback and use stochastic dynamics to optimize
the PAC bounds. To enable real-time performance, we set the
number of prior policies, L, to one and compute the linearized
dynamics for the feedback policy using finite difference on the
mean trajectory of the prior. The controller was run on a desktop
computer with an AMD Ryzen 7 5800x and a NVIDIA GeForce
RTX 3080.

3) Results: PAC-NMPC was successfully able to control the
fixed-wing in real-time, following a square path while avoiding
nearby obstacles. In Fig. 11, we display the route taken by
the system during five loops of the path. During each planning
interval of H = 0.2 sec, the controller achieved an average of
22 iterations of trajectory distribution optimization with around
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8.5 ms per iteration. The controller consistently produced PAC
bounds of around 10% probability of collision, which accurately
bounded the Monte Carlo estimates (Fig. 12).

VII. DISCUSSION

In this work, we presented a novel SNMPC method capable
of propagating uncertainty through arbitrary nonlinear dynamic
systems and of providing statistical guarantees on expected
cost and constraint violations. We demonstrated real time per-
formance both in simulation and on-board physical hardware.
Further, we show that the algorithm is capable of scaling to more
complex systems, like fixed-wing UAVs. Since this algorithm
can be used with “black-box” sampling of dynamics (assuming
they are continuously differentiable), costs, constraints, and
noise, future work can investigate its use with learned dynamics
and perception-informed costs. Future work could also explore
the extension of this approach to more complex control trajectory
distributions.
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