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Abstract—We present an implementation of a formally verified
safety fallback controller for improved collision avoidance in
an autonomous vehicle research platform. OQur approach uses
a primary trajectory planning system that aims for collision-free
navigation in the presence of pedestrians and other vehicles, and
a fallback controller that guards its behavior. The safety fallback
controller excludes the possibility of collisions by accounting
for nondeterministic uncertainty in the dynamics of the vehicle
and moving obstacles, and takes over the primary controller
as necessary. We demonstrate the system in an experimental
set-up that includes simulations and real-world tests with a 1/5-
scale vehicle. In stressing simulation scenarios, the safety fallback
controller significantly reduces the number of collisions.

Index Terms—Formal Methods, Autonomous Vehicles

I. INTRODUCTION

While artificially intelligent technology can enable increas-
ing levels of ground vehicle autonomy, the question of how to
safely adopt such autonomy remains critical to the successful
translation of this performance to operational settings. We
investigate the use of an approach to collision avoidance
that has been formally verified to construct a safe fallback
controller that guards the behavior of primary navigation
planner. Through the use of an independent fallback system,
our approach enables the safe adoption of complex autonomy
systems that optimize a number of performance factors. Fur-
thermore, this approach could enable better flexibility of the
system to incorporate new autonomous planning algorithms,
while keeping the risk of such adoption low. This approach
has been demonstrated in a system for the safe testing of
autonomous aircraft, [1]. In this work, we explore the use
of formally verified methods for safety controllers in the
fundamental design of the autonomous vehicle system.
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The design of the Verified Assured Learning for aU-
tonomous Embedded Systems (VALUES) is illustrated in
Figure 1. A primary controller employs physics- and learning-
based algorithms to arrive at a fused policy for vehicle path
planning. The secondary controller (box T2) monitors the
system and only intervenes on the planned navigation actions
if the system is in a critical state; i.e., a state in which only a
restricted set of actions can guarantee the future ability to avoid
collisions. In this investigation, the primary controller employs
greedy optimization of a cost function that uses a finite horizon
roll out. The cost function of the primary controller combines
a number of components pertaining to the vehicle dynamics,
such as jerk and progress towards goal, as well as safety met-
rics, such as distance to obstacles, into a single scalar value. By
optimizing a scalar-valued control function, the primary con-
troller policy attempts to simultaneously balance performance
sometimes resulting in significantly reduced safety margins,
which in the presence of noise, may result in collisions. The
watchdog fallback controller design is based on our prior work
in designing a formally verified fallback controller for aircraft
collision avoidance and is reviewed in sections II and III. We
demonstrate with simulations and vehicle tests that in such
scenarios the safety fallback controller significantly reduces
the number of collisions. As shown in Fig. 1, this architecture
also allows for autonomous systems that continually learn,
as the fallback controller maintains the safety of the overall
system even when the behavior of the primary controller is
altered.

A. Prior Work

Early work proposing the use of a fallback control archi-
tecture includes the simplex architecture of [2]. Indeed, the
safe adoption of autonomy in vehicles necessitates a means of
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Fig. 1. The Verified Assured Learning for aUtonomous Embedded Systems (VALUES) System Architecture

monitoring and guarding during safe operations, [3]. Outside
of the fields of robotics and control, the idea of having a trusted
code base is relevant to this approach, [4]. There has been
much additional work using reachability models as safeguards.
We do not summarize all such work, but some examples that
are relevant to our particular approach include [5], [6] and [7].
In our past work, we applied formally verified collision avoid-
ance safety predicates to aircraft systems, [8]-[10], and created
an approach for correct-by-construction fallback control using
those safety predicates, [11]. We now apply this approach,
and the verified collision avoidance theorems to collision-free
ground vehicle navigation. Our methods are applicable to the
avoidance of pedestrians and other moving obstacles, such
as other vehicles, and employ non-deterministic uncertainty
models to formulate envelopes that contain the uncertain
trajectories of both the ego car and the mobile intruders.

II. BACKGROUND

Our work on collision avoidance began with the stress
testing and verification of Airborne Collision Avoidance Sys-
tem X, the Federal Aviation Administration’s (FAA) next-
generation collision avoidance advisory system for aircraft
[12], [13]. We developed an approach for verifying safety of
ACAS X collision resolution advisories based on the geometric
analysis of reachable envelopes [8]. By separately treating the
horizontal and vertical dynamics of the aircraft, we reduce the
problem of collision avoidance to the avoidance of vertical
proximity during the time period in which the two aircraft are
within horizontal proximity. Control is modeled in the vertical
dimension only, and the horizontal components of the trajec-
tory simply determines the timing of horizontal proximity. The
aircraft collision avoidance maneuvers are specified in terms
of target vertical rates and compliance acceleration ranges.
Our approach to formulating and verifying theorems for safety
used the fact that the corresponding reachable envelopes are

piece-wise quadratic curves [10]. As a result, we obtained
closed form safety predicates that determine whether two such
envelopes overlap, indicating in a violation of separation con-
straints. In the case of ACAS X, this allowed us to efficiently
test the over 4 million two-aircraft encounter geometries and
the corresponding collision resolution advisories stored in the
policy score table, which served as the basis for optimal online
collision resolution advisory computation [14].

X _ Unsafe

Critical

Safeable

Fig. 2. Tllustration of the state space separated into safeable, critical, unsafe,
and failing subsets.

We developed a key property, termed safeability, that eval-
uates whether, at the next decision time, the system could
be made safe through the use of an available maneuver.
This property allowed us to determine precisely when the
current policy must be intervened upon to maintain safety. As
illustrated in figure 2, the system may move from a safeable
state, in which no restriction is needed on its policy, to a
critical state, in which only a subset of available maneuvers
can maintain future safety. When the system is in a critical
state, we restrict the control to the set of safe maneuvers, so
that we can avoid entering unsafe states. We demonstrated the
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use of safeability in the construction of fallback control in [11].
The result was a formalization of a simplex architecture that
could be used to derive provable safety guarantees (under the
assumption of correctness for reachable envelope analysis).

We realized then that the geometric analysis developed for
ACAS X verification could also be used as the core of a colli-
sion avoidance fallback controller for ground vehicles. Many
navigation path planning algorithms attempt to optimize their
actions by balancing multiple competing demands. For exam-
ple, this could involve avoiding collisions while minimizing
deviation from the planned shortest path. As a consequence, a
heuristic system may achieve overall performance that comes
at the expense of undesirable behavior in some limited set
of circumstances. Moreover, with the introduction of machine
learning and other autonomous learning methods it becomes
difficult to precisely characterize the set of states in which
the primary collision avoidance controller may underperform,
making it impossible to address problematic sets of states
algorithmically. It is therefore desirable to have a trusted
fallback controller that provides the final layer of safety. The
fallback controller can be constructed in an explainable and
verifiable way because its only goal is maintaining safety. The
simplex architecture with a primary and fallback controller [2]
allows the system to maintain its multi-objective performance
optimizations in the vast majority of circumstances while at
the same time guaranteeing safety in all circumstances.

Here we demonstrate an application of the simplex con-
trol approach by providing an implementation of the safety
fallback controller for ground vehicle collision avoidance.
This work assumes that our fallback controller will not use
turning motions as avoidance maneuvers, and rather controls
the velocity down the road, braking to avoid any intruders.
Due to the fact that the primary controller engages in turning
maneuvers, this limitation could impact the accuracy of the
fallback controller predictions. In [15], we show how to
perform a similar reachability analysis of turning maneuvers
using a provably sound approximation but this computation
is considerably more complex to implement. In this work,
we show that even with restricted fallback maneuvers, our
implementation provides a significant safety improvement in
some stressing situations.

II1. APPROACH

In this section we describe the unmanned ground vehicle
(UGV) system design and the implementation of the safe
fallback controller.

A. UGV architecture

The autonomous ground vehicle used for experimentation
and testing was the Johns Hopkins University (JHU) all-terrain
agile ground vehicle, a 1/5-scale ground vehicle model. This
vehicle used Redcat Racing Rampage XB-E as base, which
was heavily modified with additional hardware (Figure 3). The
drive and steering servo motor controllers were upgraded to
enable control and sensing of rotational position and velocity.
An ATmega2560 board was added as an interface between
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radio receiver and motor controllers. The vehicle was also
outfitted with a computer subsystem for onboard perception
processing and motion planning.

Fig. 3. JHU all-terrain agile ground vehicle

This subsystem comprised an Intel NUC CPU, Nvidia
Jetson AGX Xavier, an ethernet switch and a wifi router.
For sensing and perception (in addition to wheel odometry
feedback), the vehicle was equipped with an Intel Realsense
D455 RGB-D camera, a LORD Microstrain 3DM-GX4-25
IMU and two u-blox ZED-FOP RTK-GPS units. The latter
provided readings of absolute heading as well as global
position.

The vehicle state estimation and motion planning was
implemented in the Robot Operating System (ROS), [16]. The
ROS architecture is illustrated in Figure 4. Vehicle state is
computed by fusing wheel odometry, inertial measurement
unit (IMU), and global positioning system (GPS) position and
heading using the ROS extended Kalman filter implementation
robot_localization [17], [18]. This test vehicle was designed
to operate on pedestrians sidewalks of the JHU campus. For
this reason, the perception module is focused on identifying
pedestrians. Pedestrian detection was performed by passing the
RGB-D camera feed to Yolov3 neural network classifier, which
itself uses Darknet-53 neural network for feature extraction.
Yolov3 was selected among other algorithms for its ability to
produce accurate bounding boxes while maintaining real time
performance. A video showing an example of the operation
of the UGV is available at https://drive.google.com/file/d/
1AXMgpmbTT-4L2bGDTxHjbXO091IUgqwqlx/view.

The overall software architecture (Figure 5) was organized
to maximally facilitate software/hardware in the loop testing.
This allowed us to test the full ROS software stack in the
CARLA virtual simulation environment, [19], as well as replay
ROS bags recorded during vehicle testing for debugging and
analysis. By testing in the virtual environment we were able
to eliminate bugs and fine tune performance so that physical
vehicle tests could be focused on addressing issues specific
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to interactions with the physical environment such as noise,
camera calibration, etc.

The design of our UGV primary control policy used the
methods of “Robust Policy Search for an Agile Ground
Vehicle Under Perception Uncertainty”, also called PROPS,
[20]. However, in the testing of a safety fallback controller, we
substituted the PROPS algorithm with a greedy policy roll-out
method. The greedy method is less conservative in accounting
for uncertainty and allowed us to better demonstrate the value
of the safety guard.

B. Safe Defensive Driving Fallback Controller

The objective of the Safe Defensive Driving (SDD) fallback
controller is to improve the overall safety of the UGV. While
the primary controller does take into account pedestrian prox-

imity, it weighs this metric against several other performance
metrics, which sometimes results in undesirable tradeoffs
between planned trajectory smoothness and safety. By having
a separate fallback controller focused entirely on pedestrian
collision avoidance, we can substantially reduce the likelihood
of such undesirable trajectories.

Furthermore, the primary controller considers possible fu-
ture pedestrian states resulting only from propagation of the
Gaussian uncertainty of the pedestrian detection. So, if the
pedestrian speeds up or slows down significantly the primary
controller is likely to miscalculate the future cost of a collision.
In contrast, the SDD takes into account a fairly broad range of
possible pedestrian dynamics, making the system much more
robust to unexpected pedestrian actions.
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Fig. 7. Down-the-road conflict computation

For the down-the-road direction, we compute the reachable
envelopes for each pedestrian and the vehicle, taking into
account dynamic behavior by including all trajectories satis-
fying selected acceleration bounds (Figure 7). Note, that the
vehicle’s reachable envelope includes a segment — between the
y-axis and the blue dots — representing the reachable positions
of the vehicle as it continues to move under the current primary
controller command for one controller iteration (the duration
on the t-axis is exaggerated). This segment is what allows
safety to be guaranteed for all future time provided the vehicle
starts in a safe state and the acceleration ranges, that determine
the shapes of reachable envelopes, encompass all possible
vehicle and pedestrian accelerations.

The results of the lateral and down-the-road computations
are combined to obtain the estimated distance of closest down-
the-road approach within the lateral conflict time interval
[ti:,tf] (Figure 7). If this distance is positive, it is safe for
the vehicle to continue to move at its current speed until the
next fallback controller invocation. If, on the other hand, the
computed distance of closest approach is zero or negative,
then the vehicle should still try to avoid collision by braking

immediately [11].

The SDD fallback controller was integrated into the motion
planner by attaching it as a filter on the primary controller out-
put. Specifically, the fallback controller was implemented as a
class that had an interface identical to the primary controller,
so that the two were indistinguishable from the point of view
of the motion planner. When active, the fallback controller
called the primary controller to determine what velocity goal
the primary controller planned to set. It then performed the
previously described safety computation to determine whether
it was safe to proceed. If the safety computation returned
a positive result the original primary controller actions was
returned to the planner, otherwise, a braking command was
issued.

This approach had the advantage that the primary controller
could be developed and run without any special modifications.
In particular this allowed us to quickly and easily compare
vehicle safety performance with and without the SDD fallback
controller. It also allowed for very easy parallel and inde-
pendent development on both the primary and the fall back
controller.

A special emergency brake case was added to handle the
situations when the pedestrian popped up in the vehicle’s field
of view. In our tests this occurred almost exclusively when the
pedestrian overtook the vehicle from behind but could also
occur if a pedestrian steps out from behind an occlusion or
due to perception failure.

IV. RESULTS

In order to stress test the primary and SDD fallback
controllers, we used a custom simulation environment based
on simple Newtonian dynamics that provides planning for
vehicles and pedestrians. This provides lower fidelity than
other environments, as it does not possess the ability to
model metrics such as wheel friction or rigid body dynamics
that sophisticated simulation engines provide. However, it
remains representative of the system under ideal road and
perception conditions, allowing us to interrogate the policy
of the controllers while removing perception artifacts. This
simple environment also afforded more efficient computations
for simulation, allowing us to test thousands of scenarios.

Additionally, to validate our stress testing results in a more
realistic setting, we performed targeted testing in a custom
CARLA environment. CARLA is a simulator for autonomous
driving research that is implemented over the Unreal Engine
4; this provides state-of-the-art rendering quality, realistic
physics, basic NPC logic, and an ecosystem of interoperable
plugins [19].

We stressed the system by creating pop-up pedestrian en-
counters. While the set-up is non-physical, it successfully tests
cases where a pedestrian’s position is mis-estimated or an
undetected pedestrian enters the field of view at very close
range. Such sensing failures are possible in the actual system,
and so our test investigates the navigation system’s ability to
respond to these stressing cases. These simulated encounters
involved a vehicle traveling along a two lane road with a
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pedestrian initially located at the center line 40 meters ahead
of the vehicle as seen in Figure 8. The vehicle will move down
the road attempting to reach a goal velocity, 10 m/s, and avoid
collisions. If there are no obstacles, the vehicle will just move
in a straight line down the center of the lane. Additionally, the
pedestrian moves towards a goal position and velocity. For the
purpose of our simulations, these values are tested over large
ranges to encompass a variety of scenarios.

Fig. 8. Initial state of simulation with the pedestrian represented as a circle
and the vehicle represented as a rectangle.

During the simulation, we changed the pedestrian’s current
position to be in front of the vehicle at some time, effectively
teleporting the pedestrian. In addition, we added random
positional offsets from a uniform distribution over [0, 1) to the
pedestrian’s trajectory to mimic sensor noise. The teleportation
interrupts the pedestrian’s trajectory abruptly and places the
pedestrian’s position in front of the vehicle with a sampled
vertical and horizontal offset. These offsets were calculated
to ensure the pedestrian was not teleported to a position that
would result in an unavoidable collision. We teleported the
pedestrian in this manner for a range of offsets, goal positions
and velocities. The pedestrian was only teleported at one
time stamp for each scenario, but our scenarios tested all
possible time stamps for every range of values. The controllers
were given ground truth position and velocity values for the
pedestrian, so there were no filtering delays in estimating the
state of the new intruder. For each encounter, we tested the
primary controller and the SDD fallback controller.
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Fig. 9. Safety performance comparing the primary controller and safety

defensive driving controller under stress from a set of pop-up encounters over
times of encounter. A total of 980 collisions were observed by the primary
controller. No collisions were observed using the SDD fallback controller.

We found that the SDD fallback controller was 100%
effective at improving the safety of these pop-up encounters.
Figure 9 shows the number of collisions the primary controller
encountered during our 24,500 test scenarios over each time
of teleportation. We see a decrease in the number of collisions
(without SDD) as time of teleportation increases. This is
because as the pedestrian is teleported later in the simulation,
it is possible that the vehicle will never reach that pedestrian.
The collisions encountered at these higher time stamps are
attributed to the positional noise in the pedestrian’s trajectory
rather than the teleportation. There are fewer opportunities
to stress the controller at these higher time stamps. The
fallback controller anticipates a broader range of pedestrian
trajectories, meaning it will anticipate positional noise and can
start slowing down even before the pedestrian is teleported in
front of the vehicle, making it easier for the vehicle to avoid
the pedestrian.

Accordingly, this phenomenon can be seen through sce-
narios in which the primary controller caused a collision.
During these scenarios, the vehicle had an average velocity of
8.842 m/s when the primary controller was activated and an
average velocity of 6.742 m/s when the fallback controller was
activated. We note that the primary controller makes almost
no attempt to slow down for these encounters, as the average
velocity of the vehicle under the primary controller during
scenarios in which there were no collision was 8.847 m/s.

Taking a closer look at an example collision from the
primary controller, Figure 10, on the left, displays a scenario
where the primary controller does not sufficiently react to a
pedestrian that is in front of the vehicle. We see the vehicle
hitting the pedestrian without slowing down, as seen with the
constant red in the trajectory. The vehicle tries to swerve at
the last minute, but does not manage to miss the pedestrian.
The vehicle remains on its original trajectory even though the
pedestrian is still in the vicinity. In comparison, the right side
of Figure 10 shows the reaction of the SDD fallback controller.
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colorbar to the right of each figure.

The vehicle slows to a complete stop multiple times denoted
by the blue in the trajectory, as it anticipates how the pedestrian
might move. The vehicle remains at a reduced speed, as seen
by the green and yellow, until the pedestrian is at a safe
distance away from the vehicle. After the vehicle passes the
pedestrian, it begins gaining speed, as seen by the eventual
return to red. At the beginning of this simulation the vehicle
begins to slow well before the pop-up occurs, allowing ample
time for the vehicle to stop and avoid the pedestrian.

The behavior of our fallback controller is rather conserva-
tive, as described in the scenario above. During the 24,500
stress tests, the fallback controller triggered the STOP action
3,151 times. Of these times, the fallback controller triggered
the STOP action 2,638 times when the greedy controller
did not have a collision nor triggered a STOP action. This
corresponds to the false positive rate of 83.7% for the fallback
controller.

As mentioned above, we validated our stress testing results
by performing targeted testing in CARLA. We reproduced the
random positional offsets and teleportation of the pedestrian’s
trajectory, and tested over a similar range of time stamps to
ensure our stress testing setup was represented appropriately
in the CARLA simulation. We found that in this higher fidelity
testing environment, the SDD fallback controller remained
100% effective at improving the safety of pop-up encounters.
For the 60 CARLA test scenarios, we saw 5 collisions while
the primary controller was activated and O collisions under
the control of the SDD fallback controller. While this is about
double the collision rate we saw in our custom simulation
environment above, this is expected due to the targeted nature
of this test setup.

V. CONCLUSIONS

We developed a safe defensive driving fallback controller to
act as a fallback controller, providing run-time monitoring of
a primary autonomous vehicle system. To develop the safety
logic, we took advantage of collision avoidance logic that had
been formally verified for aircraft applications. We integrated
the safety fallback on a 1/5-sized test vehicle and demonstrated
the system in experimental tests. We further stress tested the
safety fallback by pairing it with a simple primary controller,
showing that in simulations with pedestrians that pop up
in front of the vehicle the safety system greatly reduced
the collision rates. We confirmed these test results in higher
fidelity CARLA simulation tests. The results are encouraging
and demonstrate the value of implementing independent safety
monitoring as a means of enabling the safe adoption of
complex autonomy.
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