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WELL-POSEDNESS OF MEAN FIELD GAMES
MASTER EQUATIONS INVOLVING NON-SEPARABLE
LOCAL HAMILTONIANS

DAVID M. AMBROSE AND ALPAR R. MESZAROS

ABSTRACT. In this paper we construct short time classical solutions to a class
of master equations in the presence of non-degenerate individual noise arising
in the theory of mean field games. The considered Hamiltonians are non-
separable and local functions of the measure variable, therefore the equation
is restricted to absolutely continuous measures whose densities lie in suitable
Sobolev spaces. Qur results hold for smooth enough Hamiltonians, without
any additional structural conditions as convexity or monotonicity.

1. INTRODUCTION

The theory of mean field games was initiated around the same time by J.-M.
Lasry and P.-L. Lions on the one hand (|27H29]) and by P. Caines, M. Huang and
R. Malhamé (|26]) on the other hand. The main motivation of both groups was
to characterize limits of Nash equilibria of stochastic (or deterministic) differential
games, when the number of agents tends to infinity.

A central object in this theory is the so-called master equation introduced by P.-
L. Lions in his lectures at College de France (cf. [30]). This is a nonlocal Hamilton-
Jacobi equation set on the space of Borel probability measures, which encodes all
the information about the game. One of the main features of the master equation
is that it serves as an important tool to show the convergence/mean field limit
of Nash equilibria of games with finite number of agents as the number of agents
increases to infinity (cf. [111[15/[16]). In particular, solutions to the master equation
can be used to obtain fine quantitative estimates on the rate of convergence and
these solutions typically provide e-Nash equilibria for games with large but finite
number of agents. In the same time, this equation contains all the information
about the finite dimensional mean field game system and it also describes a precise
quantitative stability of this system with respect to the initial distribution of the
agents.

The concept of master equations has a long history in kinetic theory and mean
field limits of particle systems (see for instance and the references therein).
The past couple of years have witnessed a great increase of literature on master
equations arising in the theory of mean field games. Depending on the techniques
used in these works to show the well-posedness of the corresponding master equa-
tions, one may group these results into three possible categories. We refer to a
non-exhaustive list of works as follows: probabilistic ideas for problems includ-
ing individual or common noise were used in [12/[13][20//33]; variational techniques
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(based on optimal transport or optimal control theory in Hilbert spaces, for prob-
lems without noise or with individual noise) were exploited in [8]19]23/31]; and
finally PDE techniques were used in to attack problems with common
or individual noise. In most of these references, a special hypothesis is assumed
on the Hamiltonian H appearing in the master equation, namely it is such that
the momentum variable it is separated from the measure variable, i.e. it has the
typical form of H(t,z,p,m) := H(t,z,p) + f(t, z,m). Moreover, in all the cases
previously considered in the literature, the dependence of the Hamiltonian on the
measure variable is always assumed to be (nonlocal) regularizing. To the best of
our knowledge, are the only works, where the authors show the short time
well-posedness of master equations involving non-separable regularizing Hamiltoni-
ans under mild assumptions (these are supposed to be smooth enough with some
additional growth condition of polynomial type in the momentum variable). The
recent work constructs global in time classical solutions to master equations
involving non-separable Hamiltonians, under an additional, so-called displacement
monotonicity assumption on the Hamiltonian. Finally, constructs local in time
classical solutions to the master equation in the deterministic setting for smooth
regularizing Hamiltonians that have the separable structure.

In this paper, we show the existence and uniqueness of classical solutions of
a class of so-called first order master equations (i.e. driven by non-degenerate
individual noise, and so derivatives with respect to the measure variable appear
only at first order) with non-separable Hamiltonians that depend locally on the
measure variable. Because of this local dependence, we clearly need to restrict
the domain of the master function to the set of absolutely continuous probability
measures whose densities lie in a suitable Sobolev space H*(T4) (for some s > 1).
Ours seems to be the first result on the well-posedness of master equations where the
Hamiltonian is a local function of the measure variable. The choice of the physical
space T? is for convenience, to avoid non-compactness issues. Nevertheless, we
expect our results to hold true, without major complications, in the setting of R4
as well (under suitable moment bounds on the measures).

It is a very natural and interesting question whether can one extend the short-
time results to global in time ones, in presence of (the generalized version of) the
Lasry-Lions monotonicity condition on the data (see for instance condition (1.6) in
imposed on non-separable Hamiltonians). This will be studied in a future work.

The equation in the center of our focus for U : [0, 7] x T? x 2(T4)NH*(T?) — R
reads as

(—0,U(t,z,m) — AU(t,z,m) + H(t,z, VU(t,z,m), m)
= Jra Vy - (Vo U(t, 2, m, y)) dm(y)
+ Jpa VU (t,2,m,y) - DyH(t,y, VU(t, y,m))dm(y) = 0,
(t,z,m) € (0,T) x T¢ x 2(T4) N H3(T9),
U(T,z,m) =G(z,m),
[ (z,m) € xT? x 2#(T4) N H*(T?).

The precise assumptions on the data H : [0,7] x T¢ x R? x [0,400) — R and
G : T4 x 2(T?) — R will be given in the next section. In the previous equation the
special notation VU stands for the Wasserstein gradient of U with respect to the
measure variable (see for instance in [611}21]). All other notations for derivatives
are understood with respect to the time and spacial variables.
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In our analysis we use PDE techniques in H*(T9) — when we look at the finite
dimensional mean field games system as characteristics of the master equation —
and similarly as in and [10], it is natural to work at the level of the linearized
system to obtain the necessary regularity estimates on the master function. Our
approach, at the technical level, fundamentally differs from the ones in and
(where the regularization effect of the Hamiltonian in the measure variable was
indispensable): at the level of this linearized system, in lack of regularization effect
of the Hamiltonian in the measure variable, we perform a careful analysis using the
energy method adapted to forward-backward problems. These techniques were used
previously by the first author in [4], to show the well-posedness of the underlying
finite dimensional mean field games system. As a result of this, when showing the
regularity of the master function with respect to the measure variable, it turns
out to be very convenient to work in the metric space (2(T9) N H*(T?), || - || g-1)-
In fact, by the Sobolev embedding theorem, all the regularity estimates on the
master function in this metric space will imply the corresponding estimates also in
(LT N H (T, || || z2)-

Because of the comparison between the H—! and W3 metrics (cf. ), we
expect our results to be useful in studying the convergence problem of games with
finitely many players to the mean field limit, in the presence of non-separable,
local Hamiltonians. A breakthrough on the convergence problem in the direction of
Hamiltonians depending locally on the measure variable has been recently achieved
in [9]. Here the proof of the convergence is carried out via the solution of the master
equation in which the dependence of the Hamiltonian on the measure variable
becomes more and more singular as the number of agents is increasing. Because of
this, a careful analysis had to be combined with special structural and monotonicity
assumptions on the Hamiltonian. In seems unclear whether such an argument could
work directly in our setting, because of the difference in nature of the assumptions
on the Hamiltonian. In a future work we aim to pursue a more ‘classical route’ by
first showing that the MFG system (for a class of Hamiltonians that depend locally
on the measure variable) is well-posed in Sobolev spaces, for general measure initial
data. Having such a result in hand (for which some initial investigation seems
already promising), would hopefully translate to the level of the master equation
and to the convergence problem. We remark again that some of the crucial estimates
on the master function are carried out in Sobolev spaces of negative order, which
give us hope to be able to extend the solution of the master equation to rougher
probability measures.

Finally, let us remark that (finite dimensional) mean field games systems involv-
ing non-separable Hamiltonians that depend locally on the measure variable, while
they appear very naturally in models coming from economics (cf. [1]), are poorly
understood in the literature in general. Beside the works [4](5], models involving
so-called congestion effects have been studied in [2|[14][17)18]/24/25].

The structure of the paper is as follows. In Section[2]we collect all our standing
assumptions and some preliminary results from the literature. This section recalls
the notions of derivatives of functions defined on measures that we use in the rest
of the paper. In the same time, here we describe the roadmap of our analysis, with
the precise steps that lead to the proof of our main theorem. Then in the upcoming
Sections 3] [4]and [6l we provide all the arguments to fill the necessary details on the
steps prescribed in Section [2] We end the main text with Subsection where
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we collect the necessary regularity estimates on the master function and conclude
with the existence and uniqueness of a solution to (1.1). Finally, in Appendix
we provide a technical stability result on the mean field game system, which is the
consequence of the results in [4].

2. PRELIMINARIES, MAIN ASSUMPTIONS AND OUR MAIN THEOREMS

Let T¢ := R4/(2nZ%) stand for the flat torus embedded in RY. We denote by
P (T4) the space of Borel probability measures on the flat torus T9, for s > 1 we
set 2 = P(T9) N H*(T4). For R > 0, we denote by 2p the elements of m € 2
such that ||m — | ;. < R, where 7 := (hya. These stand for R-balls in H*(T?)

centered at the uniform density on T¢. Let 7> 0.

Let H : [0,T] x T? x R? x [0, +00) — R be a given Hamiltonian function and let
G :T? x 2 — R be a given final cost. We assume the following hypotheses on the
data.

Standing assumptions.

(H1) s > max {[(d + 5)/2] + 1;4[d/2]+1} is a given real number.

Since our results are built upon the ones in [4], first we recall all the assumptions
present in [4]. First, let 8 € (N U {0})?¢*! be a multi-index, associated to the
arguments (¢, x,p, q) of the Hamiltonian H. The first d coordinates of 8 correspond
to (z1,...,x4), the following d coordinates correspond to (pi,...,p2) (which is
the placeholder for Vu), while the last coordinate corresponds to g (which is the
placeholder for the m variable). Suppose that there exists F : [0, +00) — [0, +00)
non-decreasing such that

(H2)  [0°H(, -, Vu,m)| < F(|Vuloo + Im|ac), ¥V BEN T |8 <s+2.

Suppose that for any B C R4+ bounded set and 8 € N24+! with 0 < |8] < 2,
Je > 0 such that if (p!,¢t), (p?, ¢?), then

d
(H3) |0°H(t,z,p",q") — O°H(t, z,p* ¢*)| < c (Z lpi =il +1g" - q2l) ;

i=1
V(t,x) € [0,T] x T4.
In Section [5]we will need a precise estimate on D?*# and D3*#. To describe this,
let us define the following quantities.
Fy = H(t,z, Vi,m) — H(t, z, Vu,m) — DyH(t, z, Vu,m) - V(i — u)
— 0,H(t, z, Vu,m)(m — m),
Fy = div(mD,H) — div(mD,H) — div((i — m)DyH) — div(m(D2,H)V (@ — u))
— div(m(Dp0,H)(m — m)),
where we used the shorthand notations f);?;{ = D, H(t,z,Va,m) and D,H =
D, H(t,z, Vu,m) in the last line.

Let us notice that under the assumption that s satisfies (H1), we have that there
exists 7 > 0 such that

(2.1) r>[d/2] and s> dr+1>max{[(d+5)/2] +1;4[d/2] + 1}.
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Let r > 0 satisfy (2.1). We assume that for any R > 0 then there exists ¢ > 0
such that

(H3) P12 < e(llu = ll g + lm — |3,

(H4) 1F2) - < e(llu —@llE + [[m — i),

for all m,m,u, @ such that ||m| gr, ||®| ar, |ul| g+, |G| g+ < R

Here and afterwards we simply use the notation D,H and 9, to refer to the
derivatives of 1 with respect to the third (the placeholder for Vu) and fourth (the
placeholder for m) variables, respectively. Let us underline that d,H is used instead
of 8,,H to avoid possible confusions with the Wasserstein derivative or L2-Gateaux
derivative with respect to the measure variable and to emphasize that this is a
standard ‘local’ derivative of the Hamiltonian function.

Remark 2.1. The Hamiltonians of the form

H(t, =, p,q) = a(t,z)P(p)Q(q),

where a : [0, +00) x T is smooth with bounded derivatives and P : RY — R, Q :
R — IR are polynomial functions, satisfy our standing assumptions through
(H4). Involving transcendental functions in the form of H is also allowable, as
H(t,z,p,q) = sin(|p|?) In(1 + ¢?) or H(t,z,p, q) = exp{cos(|p|?q>)} also satisfy the
assumptions.

Functions of finite regularity, such as fractional powers, are also admissible, but
must be sufficiently regular. For instance, if we have d = 1 then we find s = 6
is acceptable in (HL). Then in (H2), we must have H differentiable with bounded
derivatives at least 8 times; therefore, a Hamiltonian of the form H(t, z,p,q) =
|p|'"/?m? would be admissible.

The prior work [4] includes a result on Hamiltonians applicable to congestion
problems; in such Hamiltonians, a power of the measure, m, appears in the denom-
inator. This naturally carries with it an assumption that the initial measure be
bounded away from zero. We expect that such Hamiltonians (e.g. H(¢, z,p,q) =
|p|%/q"/?) could be treated from the point of view of the present results on the
master equation, at the cost of this further restriction on the class of measures
considered. We do not do so in the present work, but could pursue this direction
in the future.

Finally, we mention that there may be Hamiltonians for which the arguments
of [4] and the present work apply, even though the Hamiltonian may not satisfy
exactly through (H4). The assumptions are in place to work for a very general
class of Hamiltonians, and it is likely that for some particular Hamiltonians, fewer
derivatives may be required.

We consider the final cost function G to be a nonlocal smoothing operator applied
to a function of m. This is what was done also in and [10]. The reason for the
regularization is that the solutions (u,m) to have the following regularity:
u(t,-) € H* and m(t,-) € H*~!. If u has data G(m(T,-)) and G is not regularizing,
this is a problem since m(T,-) is not in the space that u should be in. Thus we
take G to be smoothing. This issue was discussed also in [4], and [4] Section 5.1]
presents the corresponding well-posedness result on the MFG system in the case of
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regularizing final cost functions (we note that the non-regularizing case is addressed
there as well). We assume the following conditions on G.

There exists T > 0 such that for all my,my € H*(T?),

(H5) IG(my, ) — G(ma, )3 < Tllmy —ma|Z..

We assume that there exists & > 0 such that for any s satisfying (HL), we have

2
< Kllul.s, Vm € 2p.
HS

(H6) Hg(-,mm

It will be convenient for us to take k > 1, so we make this assumption. Here, %
stands for the Gateaux derivative of G, that we define below. In the same time, by
G (. m)u we denote the action of 2<(-,m) on p.

Finally, we assume that G is Gateaux differentiable on H®(T%) (for s satisfying

(H1)) and for any R > 0, there exists ¢ > 0 such that

‘%(':m)(ﬁl—m) < cllm—ml%., Vin,me 25

() |6t - 6.m)

‘HS

Remark 2.2. The function
G(z,m) == [W * (g(m))](z),

where W : T¢ — R is smooth and ¢ : R — R is bounded and of class C*!
with bounded derivative, satisfies the assumptions (H5)—(H7). We note that the
assumption could be modified to consider m; in a bounded set in H*(T4), and
then the function g would only need to be locally C*1.

2.1. Notions of derivatives of functions defined on 2(T%). Let V : #(T¢) —
R and mg € 2(T?). We say that V is L2-differentiable in Gateaux sense at mq if
there exists 3% (mo) : T — R continuous such that

lim V(mo +ex) — V(mo) . 1'%

e—0 £ ) Td om

(mo)(y) dx(y)

for all y signed Borel measure such that x(T¢) = 0, independently on y. Notice

that whenever g,—‘;(mo) exists, it is unique up to additive constants. In what follows

it will be convenient to fix such a constant that [, g%(mo)(y)dmo (y) = 0. For

notational convenience, we use the notation 2% (mg)u := Jra 8V (my) (y) dp(y).
Given mg € 2(T9), we denote as L?(myg) the subset of Borel fields v : T¢ — R¢
which are mg—square integrable. The Wasserstein tangent space at mg, denoted as
Tan,,, 2(T4), is the closure of VC>(T) in L?(mg). We say that V : 2(T9) - R
is differentiable at myg if it is sub- and super differentiable in the Wasserstein sense
at mg (see for instance [6)2122]). In this case we denote by V,,V(mg) : T¢ — R¢
its so-called Wasserstein gradient, which is the unique element in the intersection
of Tan,,, 2(T%) and the sub- and super differentials. Notice that if ¢¥ (mg) exists

dm

and it is in C*(T9), we simply have that V.,V (mo)(y) = V2 (mo, y).
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Definition 2.3. Let s > 0 and let R > 0. We say that a function V' : 25 — R is
Gateaux differentiable on H*(T¢) if for all m € 25, 2™ : T4 — R exists and

dm
V(i) - Vm) — [ 2 (m)w)d(m —m)(y)| = o (lmo — foll-).

for all m,m € Pg.

Definition 2.4. Let s satisfy and let R > 0. We say that U : [0,T] x
T4 x 2r — R is a solution to the master equation if for all m € Z2g,
U(-,-,m) € CY[0,T] x T nC([0,T]; C**(T?)), U(t,=,-) is Gateaux differentiable
on H*(T?) (in the sense of Definition[2.3), with 2% (¢,z,m)(-) € H*(T%), uniformly

with respect to (t,z) € [0,T] x T? and 25 > m — 2Y(t,-,m)(y) € H*(T?) is

dm

continuous, for all (¢,y) € (0,7) x T¢. Moreover, (1.1) is satisfied pointwise for all
(t,z,m) € (0,T) x T¢ x 2.

Our main theorem of this paper can be formulated as follows.

Theorem 2.1. Let s,H and G satisfy (H1)-(H7) and let R > 0. Then, there ezists
Tyvs > 0 (depending on the data H and G and R) such that the master equation
(11) has a unique solution on [0,T,,,] x T4 x 2y in the sense of Definition

2.2. The strategy of the proof of our main theorem. In order to prove The-
orem [2.1] similarly as in Chapter 3|, we rely on the well-posedness of a finite
dimensional MFG system, its linearization and the smoothness of the value function
with respect to the initial measure. Let us mention, however, that even though the
roadmap leading to the main results is following [11], our analysis is fundamentally
different from the one present in this reference.

Let us recall the main result on the well-posedness of the MFG system, which is
the basis of our analysis. This can be found in [4] Theorem 7).

Theorem 2.2. Suppose that the assumptions (H1)-(HT7) take place and let R > 0.
There exists T > 0 (depending on R and the data) such that for all 0 <ty < T the
mean field games system

—0yu — Au+ H(t, z, Vu,m) =0, (t,x) € (ty, T) x T4,
(2.2) Om — Am —V - (mD,H(t,z,Vu,m)) =0, (t,z) € (to, T) x T,
m(to, z) = mo(z), w(T,z) =Gz, mz(z)), =e€T!

has a unigue classical solution (u,m) for any mg € 2. Moreover, this solution
has the regularity

u e L=([to, T); H(T%) N L2([to, T); H*TH(TY) N C([to, T); H (TY), Vs € [0, 5)
and
m € L ([to, T); H*~*(T%) N L*([to, T); H*(T%)) N C([to, T]; H* ~*(T*)),
Vs' €0, s)

and (u, m) is uniformly bounded in the corresponding spaces by a constant depending

only on R >0, H and G.
Corollary 2.3. By the Sobolev embedding theorem, one has
u € C([ta,’f]; C%*(T%) and m € C([to, f], C%(T?).
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for some a € [0,1). Using the fact that (u,m) is a solution to the system (2.2)),
this further yields that one also has u,m € C*([ty,T] x T%).

The candidate for the solution to (1.1) can be defined as
(23) U(tovxvmo) = u(tﬂv‘r):

where (u, m) is the unique solution to (2.2) with initial measure mg and initial time
to. We aim to show U solves (1.1) in the sense of Definition (2.4).
For this, we follow the following major steps. Let (u,m) be a solution to (2.2).

Step 1. We linearize (2.2) around this solution (u,m) allowing perturbations of
the form mg + £y on the initial data (here pq is typically a finite signed measure
with 0 mass). This system reads as

2.4
( )—aw—Av+Dp’H(t,x, Vu, m) - Vo+9,H(t, z, Vu, m)u=0, (t,z)€(to,T) x T4,
Oup — Ap — V- [uDyH(t, , Vu,m) + mDy, H(t, z, Vu, m)Vu]
+V - [mD,8,H(t, z, Vu m)u] =0, (t,z) € (to, T) x T¢,
u(to,”) = po, v(T,z) = S (z,mr)pur, x € T4

We show that this linearized system has a solution (v, 1) in suitable Sobolev spaces.
In particular we have Theorem

Theorem 2.4. Let R >0, mg € 2g and let (u,m) be the solution to (2.2) (given
in Theorem 2.2)), let T > 0. Then, there exists T, > 0 such that
(1) if po € H*"1(T9) and 0 < T < T, then there exist a unique pair (v,pu) €
L>([0,T); H5(T%)) x L>([0,T]; H*~Y(T%)) that solves (2.4);
(2) a:f,ua EH_S_I(']I'd) and 0<T <T., then there ezists a unique solution (v, p)
to such that ve L*([0,T]; H*(T%)) and pe L>([0,T); H~*~1(T9)).

Thzs Sofutwn is understood in the sense of distributions.

The proof of part (1) of this theorem is provided in Section 3] Part (2) is a
consequence of results in Section [4] (we detail this in Corollary[4.2).

Step 2. We show that if (v, 1) is a solution to (2.4) with initial condition pg, then
the operator jo +— v is continuous and linear and there exists K (o, 2, mo, ) : T¢ —
R such that

oltara) = [ Klto,a,m0,)duo(v)
T
This way we have a candidate for the L2-Gateaux derivative of the master function,
ie.

(25) K(tu,m,mu,-) = (to,.‘r,mo,').

om
This result is obtained as a consequence of a Riesz-type representation theorem.
Let us comment on the regularity of K(tp,-,mo,-). As a consequence of Theorem
[2.4]2), K will have H* regularity in the last variable. However, let us underline
that for (to, mo,y) € (0,T,) x 25 x T¢ fixed, the application z — K (to,z,mo,¥)
will a priori have only H™® regularity. Therefore, a special care is needed in the
derimtion of the master equation. This is in contrast with the corresponding results
from [11], where as a consequence of the regularizing effect of the Hamiltonian in
the measure variable, %Y is shown to be smooth also in the second variable.
We provide the detalls on these arguments in Section[4]and Subsection [5.1]
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Step 3. Lastly, by a Taylor expansion argument, we show that the kernel K ob-
tained in the previous step is indeed corresponding to the L?-Gateaux derivative
g%, ie. is shown rigorously in a suitable sense. To achieve this, we argue
as follows. Let u(tp,z) be the value function in with initial measure my and
(g, ) the value function in with initial measure 7y. Let moreover v(tg, z)
be the solution of the first equation in with pg := g — mg. Then we show

that
|@(to, -) — ulto, ) — v(to, )l zrr = o (|lmo — 0|l zr-1),

for r > 0 satisfying (2.1), uniformly with respect to t,.
Actually this further implies that

HU(tnv -.,‘ﬁ"‘.',n) - U(to, ] mo) - K(tO: 1y Mo, y)d(ﬁlﬂ - ml])
Td

H"'
= o(|lmo — mollg-1),

uniformly with respect to tg. So in particular, since r > 0 satisfies (2.1), the Sobolev
embedding theorem yields

U(tn,i{.’,'ﬁln) - U(to,.’lﬁ, mo) - K(tO:‘T: mo:y)d(ﬁlﬂ - mo)
']I‘d

sup
to€[0,T),z€Td

= o(|lmo — mgllg-1),

i.e. the necessary differentiability property of U with respect to the measure vari-
able.

To perform the analysis in this step, we will rely on an important observation.
Using the notation

(2.6) z(t,x) == u(t,x) — u(t,z) — v(t, z),

we will have that z solves the equation
(2.7)
—0z — Az + DpyH(t,x,Vu,m) - Vz = — H(t,z, Vi, m)
+ H(t,z, Vu,m) + 0,H(t,z, Vu,m)p
+ DyH(t, z, Vu, m) - (Vi — Vu),
2(T,") = G(z,mr) — G(z,mr) — & (z, mq)ur,

dm

and thus, we essentially show that there exists C' > 0 such that
g
Iz(¢, )l z- < Climo — o]l g -
In fact the Sobolev embedding theorem further implies that
Iz(t, )l - < Climo — 1ol -

so the differentiability property holds true in H*(T9¢). We provide the details of
this step in Section [5] where the previous crucial estimate is provided by Theorem
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2.3. Some preliminary estimates and Sobolev norms. We define the operator
A to be a Fourier multiplier operator with symbol

FA(k) = (1+ k[2)"2,

so that A~1 is the operator with symbol

1
A=
For f € L!(T9) we define

L
(2m)?
For I € R and f € H!(T?) we define

Af@) = D 1R+ k) 2e.

k) = FIfI(k) = ‘Lfmﬂwﬁ, —

keza
We have the norm
(2.8) 17 = D 1FRPA+ kD) = (ATf, A f) L2 = A f72
kezd
We shall use the following convention: for v = (v1,: -+ ,v4) € (H'(T%))? we set

d
ol =Y llvill.
j=1
With this in mind, the identity V f(k) = ikf(k) allows to obtain that

el g2 etz k[ £ (k)| £ (k)2
1A Villze + 1A fllze = Z (1+ |k[2)s+1 + Z (1+ |k|2)*+T
keZd kemd

_ | (k)2
-2 (14 [K[2)*

keZd
We read off
(2.9) IA=* IV fl[Z + AT flI 7 = AT £l
If fe H5(T?) and g € H*(T%) we have
(2.10) (f,9)=(A°f,A°g) -
and so we may conclude
(211) Il = sup_(£,9)

Let us recall some important inequalities that will play important roles in our
analysis.

We will need a product estimate for negative-index Sobolev spaces; in particular
we want

(2.12) Ifgllzz— < 1 Fllzz-llgll e
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for some k£ > 0 large enough. We can establish this through duality and the
corresponding estimate for positive-index Sobolev spaces. In particular we have
(2.13)

Ifgllz— = sup (fg,¢)rz = sup (f,g¢)rz < sup . Il llgbll -

| g1=1 @]l 1 =1 @]l g1=

We then use the corresponding estimate for positive-index spaces (see, for example,

7)),
(2.14) [kl < ellhll a9 ae,
as long as 0 < r < s and s > d/2. So then can be estimated further as

Ifgllz— < sup cllflla—ldllallglar = cll fllm-1 gl e,
lloll y1=1
where our conditions on k are k > 1 and k > d/2. We can take k = [ 4],
In the same spirit, for s satisfying (H1), we have the inequality

(2.15) I fgllzz—= < ell fllz—Ilgll -

We also need the most standard Sobolev interpolation inequality. Let 0 < o <
be given, and let f € H?. Then the following holds:

(2.16) £ lee < ell 15221171152

The proof of this can be found many places, including in [3].

3. WELL-POSEDNESS OF THE LINEARIZED SYSTEM

Theorem 3.1. Let s satisfy (HL). Let T > 0 be given, and let mg € H*™1
be given. Let the payoff function G satisfy (H6). Let u € L°°([0,T]; H*) and
m € L>®([0,T); H*~') solve (2.2). Let g € H*~! be given. There exists Ty > 0 such
that if 0 < T < T,, then there ezist v € L*([0,T]; H*) and p € L*([0,T]; H*1)
which satisfy (2.4).

Proof. We set up an iterative scheme for v and p,
(3.1) A" = —Av"™ T 4 T(DyH - Vo©) + T (8, Hu™),

(3.2)
31,u.n+1 _ A#n-i-l + Jadiv(anpH) + jediv(ngp'HVUn) + Jadiv(mDpﬂq?i#),

with mollified data
1)
1.:”+1(T, ) =T (_G

dm

n, -)) w0, = Temo

For parameter & > 0, the operator J: is a Friedrichs mollifier. We have suppressed
the arguments of #, but of course H depends on the underlying solution Vu and
m rather than the linearized quantities Vv and p. We intialize the iteration with
v? = 0 and p° = 0. Note that v° and u° are (trivially) infinitely smooth, and and
"+ and pt1 satisfy forced heat equations with infinitely smooth data and forcing.
Therefore v+ and p"t! exist and are infinitely smooth. Note that while of course
the solutions depend on both regularization parameters n and £, we suppress the
dependence on ¢ for the time being.
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We now make energy estimates for v"*! and p"*!. Define E, and E, to be

1 1
B, = [l = ] (A*™1)? de,
2 2 Jpa
1 1 _
By= sl = & [ () dn
2 2 Td

Then the time derivative of E, satisfies

dtiu :/ (Asvn+1)(A33t,ufn+l) dz
Td

=- f (A" (A*Av™HY) da + f (A" ) (TA(DyH - Vo)) da
T

Td
~ / (A*o™ ) (TAS (B, Hu™) da
Td
=1, + 11, + III,.

We integrate this in time from time ¢ to time 7', arriving at (after slight rearranging
of terms)

T T T
o™ (t, M3 = 0" THT, ) || — 2/ I, dr — 2] I, dr — 2] III, dr.
t i t
The time derivative of E,, satisfies

dﬁ :f (As—lpn-i—l)(As—lat,un—i-l) dx
dt -

:f (As—lpn—i-l)(As—lA,un—i-l) d-'l?"l‘f (As—lpn—i-l)(As—ljsdiv(ansz)) dr
Td Td
+ fT AT (AT Jediv(mDp, - Vo©)) da

+ f (A* Y (AT Jdiv(mD,y0, Hu™)) dz
T
=1, +11,+ 111, +1V,.
We integrate this in time from time zero to time ¢, finding

™ (2, ) e

t t t t
= ™0, )% +2fo I, d’r—i—2]0 11, d'r—|—2fo 111, dT+2/O 1V, dr.

We begin estimating with the terms involving I, Il,, and III,. For I, we
integrate by parts:

I, = f (A*Vo T2 da,
T4
and integrating in time we have

T T
_/ I, :—/ Vo2, dr.
t t

For the term with /I, we use Young’s inequality with positive parameter o, and

(2.14) to obtain

o1 1 o1 c
(L] < —[[o" |Fe + 51 DpH - VO [ < [0 3 + — ([ Vo™ |l
2 20’1 2 aq
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Integrating in time and making some elementary manipulations, this becomes
T T
T »
—f II, dr < 2% sup [lv" Y%, + if Vo™ ||%. dr.

t 2 t€[0,T] g1 Jy
We treat the term with IT1, similarly:

(1)) 1 ang C

] < R0 e + 5 0,H" e < 10 e + i e,

and integrating in time,

T

T . T
— IIL, dr < % sup |Jv" %, + L] ™% dr.
0 te[0,7T7] a2 Jt

We next turn to the terms coming from E,. We begin with the I, term, inte-
grating by parts:

I_u — _/ (As—lvp‘n—i-l)2 da.
Td

Integrating this with respect to time, we find

t t
f I, dr = _/ IV p™ |30 dr.
0 0

For I1,,, we again use Young’s inequa.lity, now with positive parameter o3 :

o3
M1 < = e s t o0 ||M”Dp?i||Hs <3 B 3 + 3”#‘“”%{8'
We use the inequality
(3.3) ™ 1 < ll" Wgams + €l VA" 3gems,
and we integrate in time, finding
n+12 T T
|ff ldr < 2= sup_ ™ e -2 +— sup, ™ |- 1+— ||V';u [
telo 03 tefo,T

We treat 111, similarly:
o4 1 a4
I < SN s + 5 ImDp, H - Vo™ 3. < |01 vt — IIVU“IIHs
2 204 2
Integrated in time, this becomes
t t
oqT c
g dar < B sup i + = [ Vo d.
0 te[0,T7] g4 Jo

Finally, we work with IV, along similar lines,

a5
IVl < =5 S e [ %0+ ||mD BgH " |7 < 9 S s + —||,uL 72
We again use (3.3), and integrate in time to find
T t
f v, dr < 5L sup]nwln% S T = [ 19wy dr.
te[0,T J5 tefo 0
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We summarize what we have concluded so far, and we use (H6):
(3.4)

T
o™+t ) s +f Vo™ 5 dr < & sup [|p" 3.
t tE[O,T]

+ (01 +09)T sup [+

1

cT ¢ [T
+— sup ||p"||Fes + —/ V0" 3. dr
T2 t€[0,T] 71 Jo

T
[
+ L f IV 2 dr,
g2 Jo

(3.5)
t
I ()2 + f IV 2 s dr

< |lpol|Fyo—2 + (03 + 04 +05)T sup ||
i ]
1 1 1 1 T
vt (oot o) s Il re (5o o) [ 190 ar
g3 05/ tefo,1] g3 O3 0

T
+ 2 [ 9 dn
dTq 0

We take 0y = 05 = é, and we take o3 = 04 = 05 = ﬁ We multiply by ﬁ,
and we add the result to (3.5), taking into account these choices of our parameters.
Neglecting the integral terms on the left-hand sides of and (3.5), we are able
to take the supremum in time. The result after some slight rearranging is

3 5
3.6) — sup oY%, + = sup |p"tE. .
56) g 20 10" e+ w147

T
< oy +T* sup 4 rs + T |19 e+ 1907 s

If we instead neglect the other terms on the left-hand side of and (3.5), we
can instead find that

17 T
o | IVt B dr e [V ar
K Jo 0

" "

1 3 )
< — sup |v s+ - sup ||u am1 T+ || Mol zra—
(37) 32H te[l:l,T] || 8 tE[O?T] || 1 || ||H 1

T
+er? sup [ lecs +e [ IV + VA" dr.
te[0,T] 0
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Adding (3.6) and (3.7), and slightly rearranging, we conclude

1 1 1 T
I osup o2 4 L sup e+ = f Vo2, dr
16k tejo,1) S s T 8k ), "

T
68+ [ IV s dr
1]

T
< 2polfyrs + % sup [l yees + 7 [ 190 e+ 190 3
te0,T 0

We can now perform our induction. We wish to prove that for all n, we have

(3.9)
2 1

1 n| 2 1 n /T n| 2 T n|2
—— sup ||v «+— sup |u a1+ — Vv . dT+ Vi ec1 dT
16k te[0,T] || ||H 4 te[0,T] || ”H 1 8k Jo || ||H 0 || ”H 1

< 3|l oo

Clearly (3.9) holds when n = 0 since v* = u° = 0. We assume (3.9) holds for some
value of n. Then from (3.8), we see that for T sufficiently small, (3.9) holds for the
value n + 1. This restriction on the size of 7" is independent of n. We therefore have
established (3.9) for all values of n, and this is a uniform bound on our iterates.

We now pass to the limit. Recall that our solutions depend on two parameters,
since there is a mollification parameter ¢ which we have suppressed, in addition
to the iteration parameter n. Note that the above bound (3.9) which is uniform
with respect to n is also uniform with respect to £. We will now take £ = % and
simply pass to the limit as n — oco. Our sequence (v™, ™) is uniformly bounded in
L>([0,T); H*(T%)) x L>([0, T]; H*~(T?)), with s > 3+ %. By Sobolev imbedding
this implies that ||Vv"| g, [|[Vu"||L~ and ||[Av™| p=, ||Ap™| L= are also uniformly
bounded. Inspection of the iterated equations and together with the uni-
form bound and Sobolev embedding further implies that ||§;v"|| L~ and ||@,pu™| L=
are uniformly bounded. We conclude that v™ forms a bounded equicontinuous
family, as does u™. By the Arzela-Ascoli theorem, there is a uniformly convergent
subsequence, which we do not relabel. We thus have a limit, (v, u).

Our sequence (v", u™) converges to (v, u) in (C([0,T] x T%))?, and thus also in
C([0,T); L%(T%) x L%(T)). With the uniform bound (3.9) and the Sobolev interpo-
lation inequality (2.16]), we may then conclude that the convergence actually holds
in C([0,T); H¥ (T%) x H*'~1(T%)), for any s’ < s.

Now we may conclude that (v, u) satisfies the appropriate system, which is (2.4).

Integrating with respect to time, we have
(3.10)
'Un+1 (t, ) :Jl/n. (%Pzn
(Recall that we have set ¢ = 1/n.) We have established uniform convergence in
sufficiently regular spaces to be able to take the limit in every term in (3.10). We
therefore have

T
(T, ))+ft (AU”H—Jl/n(Dp?{-Vv”)—Jl/n(ﬂq?{p”)) dr.

T
u(t,) = gu(iﬂ ) +/t (Av —~D,H Vv - aq'H,u) dr.

We can treat u analagously; we conclude that (2.4) is satisfied by (v, u).
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Finally, we note that since the unit ball of a Hilbert space is weakly compact,
the sequences v™(t,-) and pu"(t,-) have weak limits in H*(T4) x H*~}(T?) at every
time. This limit must be the same as the limit previously found, therefore we may
conclude (v, u) € L*([0,T); H5(T%) x H*~1(T?)) as well. O
Remark 3.1.

(1) By optimizing the time horizon in (3.7) and (3.6) in the above proof, we find
that

1
T* 2 Co 3
Chk

where ¢y > 0 is a universal constant, x is constant appearing in (H6), while

c=c (”Dpﬂ(t: 1M, vu) ||Hs! ||aq,H(t: 1M, vu) ||H”:
||ngp?_{'(t1 M, vu) ||H”! ||mDpaq%(t1 M, vu) ||H‘9) .

(2) In the same time, we have also that ||v||Le(z+) < €olluol|m-—1, for some
universal constant é; > 0.

Corollary 3.2. Under the assumption that s > [%‘i] , by Sobolev embedding the-
orem, the previous theorem yields v € C([0,T); C%*(T?)) for some a € [0,1).

4. MORE ESTIMATES ON THE SOLUTION OF THE LINEARIZED SYSTEM

To get the desired regularity on the kernel K with respect to the y variable, we
will use a Riesz type representation theorem. To conclude that K is in H® we will
use Theorem which shows that v is related to a continuous linear operator on
H—s.

Theorem 4.1. Let v and py be as in Theorem There exists T,, > 0 with
Tow < T, and ¢ > 0 such that if T € (0,T..), then for s satisfying

(4.1) sup |v(t, )l g-+ < cllpollg---1.
t€[0,T]

Proof. We define an energy, beginning with the piece
1 —s 12
E, = EHT}H%_H = f (A™*v)" da.
T

We take the time derivative of E,, finding

dEU —8 —s
= fT (A7) (A*w) da.

We now substitute from the d;v equation in (2.4), finding

dft'u _ [Ed (A™*v) (A™*Av) dz +[Ed (A*0) (A~*(DyH - Vv)) da

+ / (A=*0) (A~*(8,Hp)) dz = I, + II, + 111,
Td

where we have suppressed the arguments in H. We then integrate in time from time
t to time T, finding

T T T
Ey(t) = E,(T) — / I, dr — f II, dr — / 111, dr.
t t t
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We integrate by parts with respect to the spatial variables in the term involving
I, :

T T T
(4.2) —f L, dr = —f f (A=*Vv)? dadr = —f |A=5Vv||2. dr.
¢ ¢ Jra t

This term gives us a parabolic gain of regularity and will be useful as we continue
our estimates.

For the term involving II,, we begin by estimating with Cauchy-Schwarz, and
we recall from (2.8) that for any @, we have ||¢| - = |A" 0| 2 :

(1| < [[vll -« |1 DpH - Vol| -
We then use (2.15)), finding
(1| < cllvll - | DpHl s IVl -
We use Young’s inequality with positive parameter o :

C o1 -
11| < J—lllvllfq—slle?iII?fs + 5 A7V |Za.

We then integrate in time:

T T T
c o
(43) —f 11, dr < —f ||u||§f_s||ppﬂ||§fsd:r+—1] AV 2.dr.
t a1 Jt 2 J
We now turn to I71,, estimating similarly to before:
[IIL)| < |[v]l 2110 Hpll o < cllvll zr—o |0 H | el el 275 -

We next use Young’s inequality with positive parameter o3 :
c a2
(IL| < ol 10H 17 + =5 el -
g2

We integrate this in time:

T T T
@y - mnar< S [ e+ [ -
t g2 Jt 2

We next define the other piece of the energy, E,, which is

1 1 Ce—1 12
By = gl = 5 [ (A7) e

The time derivative of this is

dE e e
d—;‘:de(A L) (A~*10up) da

We substitute from the 8;u equation in (2.4), finding

dd% - de (A=) (A=~ Ap) do — de (A7) (A*71V - (uDyH)) da

— fT (A7) (AT - (m(Dp, H) V) da

— [ﬂ'd (A5 p) (A=*71V - (m(DpdyH)p)) dz
=1, + 11, +1II,+1V,.
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We integrate in time from time zero until time ¢,

t t t t
E,(t) :E,J(D)—kf I, d'r—i—f 11, dt+/ 111, d'r—i—f 1V, dr.
0 0 0 0

We integrate the term involving I, by parts, to find

t t
(4.5) / 1, dr = —/ f (A_S_lv,u)z dxdr.
0 0 Jrde

This is a parabolic term which will be helpful to us, as the term I, was as well.

We next note that for any f € H%, we have |[A=*"1V f||z2 < ¢||f|lg—-- The
H~*-norm of f, though, is not equivalent to the L?-norm of A~*~1V f, because of
the k = 0 mode. We instead will use the inequality

(4.6) I£1Z-2 < cllflF-ams + A=V f]1Z2.
We begin to estimate the rest of the terms, starting with the I, term,
(L] < el A= ull 2 | Dy | e Nl el 1 -
We use Young’s inequality with positive parameter o3,

C 03
1] < DA e el o2 + 5 Al
o3

We finally use with this, yielding
co3
2

CTos

C —5—
(1| < U—Sllﬂpﬂllisllﬁllﬁ—s—ﬁr el —os + 57 1A Va2

We integrate in time, finding
t t t
c co3
[ tdr < = [UD M lyos dr+ 552 [l ar
0 a3 Jo 2 Jy

Co3

2

(4.7)

t
T ] A==V |2, dr.
0

We next consider 111, :
(4.8) (11 < el| A=l g2 [m Dy, Hl 2= [ V0 |
We use Young’s inequality with positive parameter oy :
c s Tg 04—
(11, < —[|A™ 7 pllZa [mDp, Hl[ s + o ATV 2.
dTq 2

Integrated in time, this becomes

t t t
c e gy -

(4.9) / 111, |dr < — f 1A=l Zalim D Hl e dr + = / IA=*Vv||3. dr.

0 g4 Jo 0

Our final term to estimate is I'V),, and we use Cauchy-Schwarz to bound this as
[V, < el A= | 2 mDypdg Wl - ||l -
We use Young’s inequality with positive parameter o5 :
c s a5
VL] < A= pll 2 [mDpdg Hl 3o + 5 el

Next we use (4.6)), yielding

c e COs5
[TVal < 1A pl|Zs [mDp0y | . +

2

COs

2

leallFr—o—s + SEIAT* 1V p)1 2.
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Integrated in time, this is
' c [ 1,2 2
[ i dr < = [Tl lmDy 0, dr

cos t i .
([ il et [ 1AVl o).
0 0

We choose our parameters from Young’s inequality as follows:

(4.10)

o 1 oz 1 co3 1 oy 1 co; 1

2 8 2 12 2 12’ 2 8k’ 2 12
Then, our findings from our energy estimates can be summarized in the following

inequalities. First by (4.2)—(4.4) we have

7 T . T
B0+ [ IAVolls dr < Bu(r) +de [ ol DMy dr

T ) 1 T 9
w6 [ olfy-- [0 dr + 35 [ il
t

Increasing the value of ¢ if necessary we have

1 T
Eut)+ / IA~Vuls dr < Eu(T)+ ol + 35 [ il

We use (H6) and the fact that v(7,z) = D,G(x, mr)ur to obtain

7 (T K
B0+ [ 1AVl dr < Enp(n-)n;_hﬁcf sup. (o]}
(4.11) ¢ t€[0,7)

2
. d
+ 3 ||,u|| r

Since each one of the two terms at the left-hand side of (4.11) is nonnegative we
conclude that they are less than or equal to the expression at the right-hand side

of (4.11). Hence,

7 T
max{— sup ||U||H s §/0 ||A_SV”||%2 dT}

te[0,T]
4.12 £ L
(4.12) < 5 (T, IZ—ams + €T S;lp Ioll%-s + D IIMIIH—s—l dr
1 2
12, IIWIIH—s—n dr.

Arguing as above, we combine to obtain
) T —s5—1 2
B+ 5 [ 1Al dr

< B0+ T sup [l -os+ g0 / IA—*Vo|[2 dr.
te[0
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Taking into account the fact that each one of the expressions at the left and side
of the previous inequality are nonnegative, we conclude that

1 2 N 2
max< — sup ||plF—.-1, —/ A Vulz2dr
2 tefo,1] 6 Jo

(4.13)

1 I
< Slbolfyocs +e sup ulfys + g [ 1AVl ar
2 t€[0,T) 8k Jo
This gives an upper bound on &||u(7), -)||% _._, which we can use in (4.12) to obtain

1 s 177 2
ma.x{— sup ||v||5--, —/ [A=*Vo||72 d'r}
2 tejo,1) 8 Jo

K 1 T
(4.14) < 0,13 —as +¢T sup |[ol|%-. + — [ el dr
2 te[0,T] 12 Jo

1 (7 ) | N,
+ = WIVul]4-dr+ = [ AV dr.
12 J, 8 Jo

We combine (4.13) and (4.14) to conclude that
1 2 5 1 2 1 2 7T 2
5 sup |lpllg—art [ (IVullg-amrdr+5 sup |vll--+2 [ [IAT*Vo|72 dT
2 tejo,m) 6 Jo 2 teo,m) 8 Jo

1 T
<ol + T sup -+ g [ 1AVl dr
t

1

1 [T 1 [T
ool s + T sup [oll%r—s + & ] Ml dr ot & ] IVul s dr
te[0,T] 6 Jo 6 Jo

1 r —5 2
+= |[A™*Vu|72 dr.
4 Jo

Thus

¥

1 2 [T 1
(——cT) sup s+ 3 [ ||vp||§f-s_ld'r+(——cT) sup [loll%—s
3 te[0,T] 3 Jo 2

te[0,T7]
5 1y [T )
+(5-10) [ 190l ar

< (x + Dlluoly ..

Since k > 1 we complete the proof when 3¢T" < 1. O

Remark 4.1.
(1) We remark that the constant ¢ in depends on

IDpH (2, -, Vu,m) |, 10K (2, -, Vu,m) || s, [|mDy, HE, -, Vu, m)|| -
and |mD,0,H(t, -, Vu, m)| m-.

(2) The time horizon appearing in the previous theorem satisfies Th\ < 5.
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(3) In fact, we proved that

T T
maX{ sup ||v(t, )|l z-+; sup II#IIH—s—l;/ IIWIIfq—s—xd'r;f IVoll%-. d’r}
0 0

tef0,T] te[0,T]
< cllpoll -+,
which is a stronger conclusion than (4.1]).

Remark 4.2. We remark that in the proof of Theorem [4.1] we have only used that
po € H=*71(T9) (i.e. we do not require for these estimates po € H*1(T?)) and the
regularity of solutions (m,u) on the mean field game system (2.2). Therefore, we
can conclude that in fact Theorem (combined with the techniques of the proof
of Theorem provides an existence and uniqueness result for for initial
data pp € H=s~1(T9).

Corollary 4.2. Under the assumptions of Theorem 3.1 and py € H—5"1(T%) (that
replaces the assumption uo € H*~1(T%)), there exists T.. > 0 and a unique distri-
butional solution (v, u) to (2.4) such that if T € (0,T..) then

(v, ) € L=([0,T); H=*(T%)) x L([0, T]; H*~1(T7)).

The proof of this result is straightforward, since the system (2.4) is linear with
smooth coefficients (and it follows from the estimates in the proof of Theorem ,
so we omit it.

The estimate in Theorem [4.1]yields the following result.

Lemma 4.3. The v component of the solution to the linearized system (2.4) (given
by Theorem can be represented as

(4.15) v(t,x) = (po, K(t,z, mo, ")) g—= m=, Y(t,z) € [0,T}) x T4,
for a unique K : [0,T,) x T4 x 2 x T — R. In particular K(t,z,my,-) € H*(T%).

Proof. Let us denote by T : H~*(T%) — H~*(T9) the bounded linear operator
such that T'(uo) = v(t,-) and let T : H*(T9) — H*(T9) stand for its adjoint. Let
Q : H*(T%) — H*(T9) canonically, so that Q! : H®* — H~*° canonically. (The
operator ) can be expressed simply in terms of the operator A we have introduced
previously; since f € H~*% if and only if A=5f € L2, and similarly for H*, we
may define Qf = A=25f for any f € H—*. Then A*Qf = A—°f € L?, and we see
Qf € H®. The inverse is similarly given by Q1 = A%s.)

For any o € H™*(T?), we have QT o € H*. Since s > 4, if we let z be given,
then pug — (QT'1g)(z) is a bounded linear functional on H~*. Thus this bounded
linear functional can be represented as the L? inner product with an element of
H#. We write this as

(QTpo)(z) = (po(y), K(2,y)) (z-+.14),»

where we have established K (z,y) € H(T) for any z.
If we fix yy and let pg be the Dirac mass supported at g, then we have

(QT o) (z) = K (2, y0)-
We know that QT o € H2(T9), so we have K(z,y0) € H:(T4) for all y,.
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We let K = Q; 'K, and we see that K(-,y) € H;* for all y and K (z,-) € H for
all z. So far, we have the following:
(Tpo(@), h(2)) (51,11, = (Qz (1o ¥), K (2,9)) (sr—2,110),» R (X)) (-2 11)..
= ((po(y), Qz "K(2,9)) (sr—=,11%),» h()) (21-211)..
= ((po(y), K(z,9)) (zr-=,m7),, M) (11— ,115), -
We can then write this as

(Tpao(2), h(2)) 11—+ 11+y. = ffm Vh(z) dyds.

Considering the subset of H~¢(T%) x H*(T9) of pairs of functions (ug,h) each
of which has exponentially decaying Fourier series, we see that we may change the
order of integration, finding

(416) (Tho(a)h@)r-ooy. = [ [ nolw) K@, 1)h(o) dody

= (uo(y), (K(z,y), h(@)) (-2, 12). )(H—s ), = (po(@), T'M@)) (1,117, -
Since (4.16) holds on a dense subset, this representation holds for all of H ~%(T4) x
H* (Td) The thesis of the lemma follows by setting K (¢, z,my, -) := K (z, -). O

5. THE FIRST VARIATION OF THE MASTER FUNCTION

In addition to the problem written for z, we need to develop the corre-
sponding problem for v := 7 — m — u. Note that the initial data for v is a signed
measure that has zero total mass, but is not equal to zero. An equation for v is
needed, since the PDE in involves the term d,Hy, to which we need to add
and subtract m — m. One of the resulting terms will help to complete the Taylor
expansion of H, but the other resulting term will include v, which then must be
estimated.

We take and perform the mentioned adding and subtracting:

=0,z — Az + D H(t,z,Vu,m) - Vz = =H(t,z,Va,m) + H(t,z, Vu,m)

+ DyH(t, z, Vu,m) - V(i — u)
— 0,H(t,z, Vu,m)(m — m — p)
+ 0,H(t, z, Vu, m)(m — m).

We rearrange this to put the term with v on the left-hand side:

— Oz — Az + D, H(t, , Vu,m) - Vz 4+ 9, H(t, z, Vu, m)v
(5.1) = —H(t,z,Va,m) + H(t,z, Vu,m)
+ D,H(t, x, Vu,m) - V(& — u) + 0,H(t, z, Vu,m)(m — m).

We next need to form the v equation. Clearly we have g = 8,/ — Oym — Oy,
and we use (2.2) for the /. and m equations, and we use (2.4) for the px equation.

For brevity we will write D, = D,H(t,z, Vu,m) and .’D:?ﬂ{ = D, H(t, z, Va,m),
and similarly for Dgp'H and D,0,H. To begin, just substituting for d,m, dym, and
Oy 1, we have
O = Av + div(ﬁzm) —divimD,yH) — div(uDpyH) — div(ngp?{Vv)
+ div(mD,0,Hp).
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We next add and subtract a few times; for each of the two times on the right-hand
side that u appears, we add and subtract / — m to make v appear, and in the one
instance that v appears on the right-hand side, we add and subtract @ — u so as to
bring out z. These considerations yield the following:

(5.2) B = Av — div(mD,H) + div(mD,H) + div(vD,H) — div((7 — m)D,H)
+div(mD3, HV z)—div(mD3, HV (i—u))—div(mD,d, Hv)+div(mD,d,H(m—m)).

We restate the equations (5.1, so that the terms which do not explicitly
involve z or v are rephrased as forcing terms,

(5.3) —0z — Az + DpyH(t,x, Vu,m) - Vz + 0,H(t, z, Vu,m)v + Fy =0,

(5.4) 0w = Av +div(vDyH) + div(mD;p?{Vz) — div(mD,0,Hv) + F.
Here, we recall the formulas for Fy and F, from (H3) and (H4).

Theorem 5.1. Let s satisfy and let v be given as in (2.1). Let R > 0.
Let (u,m), (@, ) be solutions to (2.2), with initial data mg, My € 2g, respectively,
given by Theorem Let (v,v) be the solution to (2.4) with initial data po =
Mg — mg, given by Theorem There exists ¢ > 0 and Tyvs > 0 such that if
T € (0, Tuss), then

(5.5) sup |27+ < ellmo — o3/,
te[0,T7]

Proof. We will make energy estimates for z € H"(T?) and v € H"~!(T?), for the
given r. We therefore define
E. = 1] (A"2)? dz,
2 Jra

E, = lf (A" )2 da.
2 T

Let us notice that by the assumptions on s in (H1) and the choice of r in (2.1),
H"(T9) is an algebra.

Then we have
dE.

dt
We substitute from (5.3), to get

_ fT (W) (A9;2) da

diz = _de(Arz)(A’”Az) dx +de(A’"z)(A’”(Dp?{.vz)) dx

+ f (A"2)(A"(8,H)) dz + / (A"2)(A"F)) do = I + II, + ITI, + IV..
Td Td
We integrate in time from time ¢ to time T to find

T T T T
(5.6) Ez(t):Ez(T)—f I, d'r—f II, d»r—/ 111, d»r—/ IV, dr.
t t t t

For the term involving I., we integrate by parts with respect to the spatial
variable,

T T
(5.7) - f I dr = — / / (A"V2)? dadr.
t t Td
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For the term involving /1., we use Young’s inequality with parameter o1,

T T 1 9 T o1 )
—f 1L d»rg/ L2, d»r+/ LD H) Ve dr.
t t 20’1 t 2

We continue by bounding D,H by a constant, since this depends only on the solu-
tion (u, m) of the original problem. We also bound the integrals on the right-hand
side, using a supremum in time for the first of these, and taking a larger domain of
integration for the second of these:

(5.8) f Ir, d’r(— sup ||z||Hr+cglf f (A"V2)? dxdr.
20 te[0,7T

We treat I11, similarly, applying Young’s inequality with positive parameter oo,

T T 1 9 T oo 9
—f 111 d»rg/ 1213 d»r+f %2 @ H)e dr.
t t 202 t 2

Again, continuing as we have for the previous term, we find
co
f I dr < — sup |z||% + =2 f (A"v)? dadr.
209 4¢ [0,T7] 'er

We next wish to change the form of the final integral on the right-hand side, to
have (A"~1Vv)? rather than (A"v)2. Using the inequality

/(Arv)2dxgc(||v||Hr_1+f (A’"‘1Vv)2d:c)
Td Td

we obtain the bound

T
T

—/ III, dr < — sup ||z||%- + cooT sup |v|%—:
209 tejo,1) t€[0,T)

(5.9)
—|—corg/ (A""1Vv)? dxdr.
0 JTd
For the term involving I'V,, we use Young’s inequality without parameter,
T

T T
- IV, dr < 5 sup IzII%- + 5 sup | F1]l%-.
t t€[0,T) te[0,T)
We then use (H3), finding
r T
(5.100 — [ IV.dr< 5 sup |23 + ¢ sup (|lm — )% + |lu — @l/3+).
t te[0,T te[0,7T

We combine (5.6), using the deﬁ_mtlon of E,, with (5.7), (5.8), (5.9), and (5.10).
This yields

—|| e + f/A’”Vz dedr

1 1 1
< ST, + 5( +—+1) sup 2|3 + cooT sup ||y
g1 02 te ]

: :

T T
+ colf / (A"V2)? dedT + cogf / (A"*Vv)? dadr
0 Td 0 Td

+c¢ sup (||m — % + |lu— ﬂ||%{r+1) .
telo,]
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Since by the data 2(T, ) is also quadratic in m — 1, this simplifies slightly as

1 T .
§||z(t, )||ip -l—f / (A Vz)2 dxdr
¢ JTd
1

T 1
<= (_ + =+ 1) sup ||z||7 + co2T sup |[v||7.—
2 \o1 o9 te[0,T) te[0,T]

T T
+ colf / (A"V2)? dxdr + cogf / (A™"1Vv)? dadr
0 Td 0 Td

+c sup (lm—mlF + lu—al..)-
telo,]

We then treat the terms on the left-hand side separately, and take the supremum
with respect to time, finding

1 T(1 1
(5.11) = sup ||z|%. < = (— +—+ 1) sup ||z||%- 4 cooT sup |v||4—
2 4eio,m) 2 \o1 o2 t€[0,T] t€[0,T]

T T
+ colf / (A"V2)? dxdr + cogf / (A™"1Vv)? dadr
0 Td 0 Td

+e sup (|lm —mffe + lu—dlF.)

t€[0,T]
as well as
(5.12)
T 2 T(1 1 > )
f f (A"Vz)* dowdr < 5 (— + — -l—l) sup ||z||g- +co2T sup ||v||F-—
o Jrd 2 \oy o2 t€[0,T] t€[0,T]
T T
+601f / (A"V2)? dxdr +602f / (A™"1Vv)? dadr
0 Td 0 Td
e sup (Im = ml%r + llu— ).
t€[0,T]
We next write out the time derivative of E,,,

dE, _ _
= f (A" W)(A" o) dz.
Td

We substitute from (5.4) to find

= [Laraian do [ (W@ tieD,H) do
Td Td

~ / (A" ') (A" div(mD}, HV2)) dz — f (A" ') (A" div(mD,d,Hv)) dx
Td Td
+f (A"~YW) (A" Fy)) de =1, + I, + 111, + 1V, +V,,.
T

We integrate in time from time zero until time 7', and we use E,(0) = 0, finding

t t t t t
(5.13)  E,(t) :/ I, d¢+f 11, d'r—i—f 111, d'r—i—f v, d»r+f v, dr.
0 0 0 0 0
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For the term involving I,, we integrate by parts with respect to the spatial
variable,

t t
(5.14) / I, dr = — f / (A""*Vv)? dadr.
0 0 JTd

For the term involving I1,,, we use Young’s inequality with paramter o3, and we
proceed as we did above for the terms involving 17, and II1.,

t
(5.15) / L] dr < — sup [[v]2- 1+"““3f (A""1V)? dadr.
20 te[0,T7] Td

For the term umolvmg 111, we use Young’s inequality with parameter oy,
T T

(5.16) |III | dr < 5 - sw [P —— / (A"V2)? dadr.
204 1e0,1) 2 Jo Jra

For the term mvolvmg IV, we continue in the same manner, using Young’s inequal-
ity with positive para.meter os,

5.17 T < sup ||¥||gr-1 + — v)* dzdr.
AR 2 “’5 (A™'V0)? ded
Td

StEDT

Finally, we estimate the term involving V, in the same manner we estimated the
above term involving IV,

! T 2 T 2
Vo] dr < 5 sup w71 + 5 sup | Fallzrr—1-
0 te[0,T] te[0,T]
We use (H4) with this, yielding
t
T - -
(618) [ Wildr< g s [l te sup (Im =l + fu =)
0 t€[0,T] t€[0,T]

We use the definition of E, in (5.13), and we substitute from (5.14), (5.15),
(5.16), (5.17), and (5.18). This yields

1 ¢
EHV(t:’)”%p_l -l-/ (A""1Vv)? dadr
0 Jrd

<T(1+1+1+1)s 2
—= —+ — up | v||7—
T 2 \o3 o4 te[u,pT] H

T T
+c(o3 + 05)/ (A™"1Vv)? dadr —|—cor4/ (A"V2)? dedr

o Jra o Jra

+e sup (Im— il +u—alk.)
te[0,T]

Treating the terms on the left-hand side separately, and taking the supremum with
respect to time, we thus find

(5.19) L sup ]2 <T(1+1+1+1) 12
. — su 12 r— — - —_— —_— s v r—
2 tefo,T p =2 \o3 o4 o5 te[O?T] o

T
+ ¢(o3 + 03) / / (A"*Vv)? dadr + cml/ (A"V2)? dxdr
o Jra o Jra

+c sup ([[m— g + llu—all3)
te[0,T]
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and also
r—1 1 1 2
(5.20) A Vv)? dxdr < = + — -l— — +1) sup |[v|f—
g5 te[0,7]
T
+ ¢(o3 + 03) / (A"*Vv)? dadr + cml/ (A"V2)? dxdr
0o Jrd o Jrd
+ ¢ sup (||m — ﬁl”;,-_l + ||u— ﬂ||§1n~) .
te[0,T]

We add and (5.20), finding

f Aer d£d7+/ (A" 1Vv dxdr
'JI“‘ 'er

1 1
< -|— — +1) sup ||z||%4-
2 o) t€[0,T)

T T T T )
+|l =+ —+—+ 7 +coxT | sup |[v||f—
203 204 205 2 t€[0,7]

T
+¢(o1 + 04)] (A"V2)? dedr + c(oy + 03 + 05)] / (A""'Vv)? dadr
o Jra o Jra

+c sup (|lm—mlf + lu—@l4)
te[0,T

We choose the constants so that
1
cloy+o04) = 2 cloa+o3+o5)==

We then conclude

T T
(5.21) f (A"V2)?* dxdr —|—f (A"'Vv)? dzdr
o Jra 0o Jra
<l sup |zl|F +eT sup [[v]|5r—s +c sup (|lm — g + llu =@l fosa) -
te[0,T] t€[0,T) te[0,T]
We next use the bound (5.21) on the right-hand sides of (5.11) and (5.19), finding

sup |2lf7- + sup |v|f-2 <eT sup |z]|F +cT sup V][5
t€[0,T] t€[0,T] t€[0,T] €[0,77]

+c¢ sup (||m — |5 + |Ju— ﬂ||§{r+1) .
telo,]

Taking T sufficiently small, we have

sup ||z[|3- + sup [[v[|z— < e sup ([lm— g + [lu— allF) -
te[0,T] t€[0,T) te[0,T]

Neglecting the v-term on the left-hand side, this establishes

(5.22) sup ||z|%- < ¢ sup (|lm —7m|F + llu—a@lF) -
te[0,T] te[0,T]

We will use the Sobolev interpolation inequality (2.16), and we will do this in
two steps. First we take & = r and 8 = 4r. Then we have

(5.23) £ 7 < el flIZall Fllzrar-
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We do this because, Theorem yields
(5.24) sup (||m — 7|3z + flu— ﬂ||§{1) < ¢||mg — thg||32.

Although this estimate is the consequence of results from [4], for completeness, we
provide its proof in Appendix[A] So, combining (5.22) with (5.23) and (5.24), we
have

sup |z||3- < ¢ ( sup |lm — 1|72 + [lu — ﬁll%n) < c[mo — o2,
te[0,T]

1

where we have used that m and / remain bounded in H*", and u and @ remain
bounded in H4*! throughout the time interval [0, 7. We then make another use
of (2.16), with & =1 and 3 = 6,

_ — 5/2 — 1/2 5/2 1/2
1132 = A7 Fl3 < IATSFIS2IAT T FIALE = el FI2, 01 1102
With mg and 1y bounded in H®, this implies
sup |23+ < ellmo — |3/,
te[0,7T]

As desired, we have established z = o(||mo—mg||7—1). This completes the proof. [

Remark 5.1.
(1) We notice that the constant ¢ in the estimate (5.5) is depending on

”DPH(t: 4 Vu, m)”H“: ||3!?%(t1 “ Vu,m)”Hr‘, ”ngp,H'(tv 5 Vu, m)||H°'1
ImDpdH(t, -, Vu, m)| v, [ml e, 1l e ([l o [[ @] ravss

and on the constants from the assumptions (H3)—(H4). These last constants depend
in particular on

||D2,H'(t1 ALY V'L-'.) ”H" and ||mD3H(t: M, VU)HH”'
(2) The time horizon appearing in Theorem [5.1]satisfies Thuy < 1.

5.1. Regularity of the master function. We show now how the results from
Sections [3] [4]and [5] will yield the necessary regularity of the master functions U.
Let us recall our standing assumption (H1). We recall r from which in

particular satisfies r > [§].

Theorem 5.2. Let R >0 and let U : [0,T] x T? x 2r — R be defined in (2.3).
Then
(i) U(,-,mo) € L>([0,T]; H*(T?)) N C([0, T]; C*(T4)) N C*([0, T] x T¢) for
allmg € 2R and t € [0,T.

(ii) Forall(t,z)€[0,T]xT?, y € T? and mg € 2r, the function 2¥ (t,z, mo)(y)
U

§a(t,z, mg)() defines a continuous linear oper-

is well defined. Moreover,
ator on H—5(T9).

(iii) The map m — U(t,z,m) is Gateauz differentiable in H*(T%), uniformly
with respect to t,x € [0,T] x TZ. In particular, there exists C > 0 such that

U -
sup U(t,z,mo) — U(t, z,mp) — J—(f: x,mg)(y) d(mg — mo)(y)
te[0,T),zeTd Td 017

< C|lmo — tol| ..
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for all g, my € 25

(iv) H(TY) 3> m — $YU(t,-,m)(y) € H™*(T?) is continuous uniformly with
respect to (t,y) € [0,T] x T.

(v) The functions T4 35 y — 2Y(t,.,mo)(y) € H*(T4), T¢ 5 y —
Yy 5y (t,,mo) (y) € H~*(T%) and T 5 y > Dy, 50 (¢, mo) (y) € H—*(T)

are Lipschitz continuous, for any (t,mg) € [0,T] x 2g.

Proof. (i) By the definition of U in (2.3), for each fixed mo € 25, U(-, -, mq) inherits
the regularity properties of u. The result follows from Corollary
(ii-iii) Let us recall K from the Riesz type representation, provided in Lemma
By (2.6), and the estimates in Theorem [5.1] for mg, Mo € 2r, we see that
there exists a constant C' > 0 such that

sup [[U(t,,0) = U(t,-mo) = [ K(t,-mo) (w)d(rino — mo) 3

t€[0,T7] Td Hr
< Cllmo — ol -
If r > [2], we have in addition
sup_sup [U(t,,10) = U(t,2,mo) = | K(t,2,m0)(y)d(io — mo) ()|
te[0,T] 2T Td

< Climo — ol -1 < Cllmo — mol| .-

By the regularity of K, this means that U(t,z,-) is Gateaux differentiable in
H—#%(T4) N H*(T?) = H*(T¢), uniformly with respect to (¢,z) € [0,T] x T<.

Now, let us fix yp € T?. Since P(T?) — H~*~1(T4), we have that uy = &, €
H~*"1(T9). And so, by the previous representation one obtains

U(tv ) = - K(tv T, mo)(y)dpﬂ(y) = K(t,:z,mu)(yo)

and so, we can set
é
om
and this expression is meaningful pointwise.

(iv) By Corollary [4.2]for g € H—*~1(T%) we have that v € L*([0,T]; H—*(T%)).
Therefore, yields that

OU (2, mo) (o) = K (t, 2, m0) (30),

oU

» 5 (& smo) (y) duo(y),

H™*(T% 3 0(t,-) =
for all t € [0, T]. Since the solution (u,m) of depends continuously on mg €
2p, and so the coefficient functions in depend also continuously on mq, we
have that for each fixed po € H—*"1(T?), v(¢, -) depends continuously on mg € 2,
uniformly in ¢ € [0,T]. Now, let us fix y, € T and consider pg = 8, € H=*~}(T9).
Again, by the previous representation one has

ot = [ g mo) W) duo(y) = 5
U

Td dm
Thus, the previous reasonings imply that H*(T%) 5> mqo — $-(t,-,m0)(v0) is con-
tinuous, uniformly with respect to (¢,0) € [0,7] x T¢, and so the claim follows.

(t,,mo) (vo)-
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(v) Now, let us define v(-, -, ) to be the first component of the solution of
with initial condition d,. By linearity of the system (2.4), we find

oU oU
U(tv I, y) - U(tv I, Z) = %(tamu mO)(y) - %(t: I, mO)(z)
Thus, (4.1) yields

o, 8) = 006, 2=+ = || 3o (- ma) ) — 20 (1, mo) )|

< CI6y = b:llgr-emr < Cly — 2.

H-=

This shows the Lipschitz continuity of T 5 y — 2Y(¢,-,mo)(y) € H™*(T9). .
Now, for € € R small and e; € R? the i*" canonical basis element we set y! :=
y + €e;. Again, by linearity of the system (2.4), we find

. oU : oU
'U(t,i[.',y:.) - 'U(t,.’l?, y) = %(t,i{.’,mo)(y:) - E(tixvmo)(y)'

By dividing this identity by £ and taking the limit as € — 0, one obtains in the
sense of distributions

oU
ayﬁ”(t: T, y) = ay‘- %(t: I, mo)(y)

This last object also corresponds to

oU
<E(t:$:m0)(y):_ayiay> 3

Hs H—*

where 0,, 6, stands for the distributional derivative of d,. This is the same as solving
(2.4) with po = —9,,0,.
Therefore, fixing y,y’ € T¢, the linearity of the system (2.4) (4.1) yields

In the last inequality we have relied on the following observation. Since 53;(1:) =

oU U
Vy s (t,- mO)(y)_vyE

()W)

< C||DSy—Déy || y-as < Cly — /|-
H-=

z‘kg;(k) = (22‘)43—“"‘3’, we have
— —_— ik ’ . ! —ik-(sy+(1—s)y")
D3,(k) — Doy (k) = mor(y—y) - (<ik) [ e ds,
(2m) 0
and so
||D5 _ DS F”2 . < ;w_y!lz Z L < Cly_yr|2
Y Yy g — (2?]-)20: by (1 + |k|2)5+1 - !

for some C' > 0 depending only on d. Here, we also used the fact that s satisfies
(HI).

So, by fixing (t,mo) € [0,7] x H*(T%), we find that y — V, 2L (t,-,mo)(y) €
H~*(T%) is a Lipschitz continuous function. Using similar reasoning, the same

: sU
conclusion can be made for y — D2 3--(t, -, mo)(y). O
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6. WELL-POSEDNESS OF THE MASTER EQUATION

In this section we conclude by showing that the master equation (L.I) has a
unique solution. This proof closely follows the proof of Theorem 2.4.2].

Proof of Theorem Existence.

Let ¢y € (0,T.) and h € (—1,1), h # 0 such that ¢t + h € (0,T.ss). Let (u,m)
be the solution to the MFG system initiated at some mg € 2g at ty and let
U be defined in (2.3). We have

U(tﬂ +h: I:mo) - U(to,iﬁ,mn) _ U(tﬂ +h:$:m0) - U(tn +h’:$:m(t0 + h’))
h B h
+ U(tO + h,i{.’,m(to + h)) - U(to,.’lﬁ, mo)
h .

Let us denote m, := (1 — s)mg + sm(ty, + h). Now, we can write

Uty + h,z,m(to + h)) — U(to + h, z,mq)
= [ [ 5t + hzsmo) @)+ 1)~ mto, ) duds
Td,
to+h é‘U
:f / / to + h,z,m,)(y)oym(t,y)dtdyds
Td

to+h
f /T/ ou —(to + h,z,m.) (v) [Amit, )
(m(t, y)D H(t,y, Du(t,y), m(t, y)))] dtdyds.

Now, by dividing this expression by h and taking the limit as h — 0, we find
that
. Ulto+h,z,m(tg + h)) — U(to + h,z,mp)
lim
h—0 h
LrosU
= [ [, ot ) (Ao,
+v ' (m(tO: y)DpIH(tD: Y, Du(t[): y):‘ m(tO: y)))] dyd&
oU
= [ 27 (to,2,mu) ) [Amlto,v)
+v ( (tO:y)DpIH(tD:y: Du(to,y),m(to,y)))] dy

= [ V- [VuUl(to,z,mo)(y)mo(y) dy

Td

va(tO: &I, mO) (y) : Dp%(tl): Y, Du(t[): y): mo(y))mo(y) dy
']l'd

In the first equality, we have used the continuity of the integra.nd (see Theorem

[5.2[iv)), while in the last equality, we used the fact that 2 (to, z, my,)(-) € H*(T%)
(see Theorem [5.2{ii)).

Second, by the time regularity of u (see Corollary [2.3), we have

U(to+h,z, m(to+h))—Ul(to, z,mo) = u(to+h,x)—u(te,z) = hyu(te, z)+o(h).
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Therefore, we have
lim U(to + h, T, mo) — U(tu, T, mu)
h—0 h

_ /Td Y, - [VuUl(to, T, mo) (y)mo(y) dy

= dyu(to, x)

+ va(tO: Z, mﬂ)(y) : DPH(tO: Y, Du(tO: y)'.! mo(y))mg(y)dy
']I‘d

And since u solves the first equation from (2.2), we get
- atU(tOJ I, mO) - AU(tO! I, mO) + H(tv T, VU': m)

61) /Td Vy - [VwU](to, 2, mo) (y)mo (v) dy

+ va(tO: Z, mﬂ)(y) : Dp’H(tO: Y, VU(tO'.! y)'.! mo(y))mo(y) dy =0.
']I‘d

Let us remark that for (ty,mo) € [0,T] x H*(T¢) fixed, by Theorem the
mapping

s — / Yy - [VawU(to, 2, mo) (y)mo(y) dy
(6.2) T
+ » VwU(to, ,mo)(y) - DpH(to, y, VU (to, y), mo(y))mo(y) dy

has to be regarded a priori as an element of H~*(T¢). However, by (6.1), since
x = —8U(tp, x,mo) — AU (to, x,m0) + H(t, z, VU, m)

is continuous, the mapping in (6.2) becomes also continuous.  Therefore, U is
indeed a solution to the master equation.

Uniqueness. Let us suppose now that V : [0,7] x T¢ x 2r — R is another
solution to the master equation. Let my € 2g. By the regularity of V', decreasing
the time horizon T > 0 if necessary, one has that the problem

dym — Am —V - (mDyH(t,z,V,V(t,z,m),m)) =0, in (0,7) x T4,
m(t[): ) = mo, in T4

has a classical solution.
Now, for all (t,z) € [to,T] x T9, set i(t,z) := V (¢, x,m;). By the regularity of
V' and m the computations below are justified:

sV
Owu(t,x) = O,V (¢, z,my) + E(tixv my) (y)Ovmy (y) dy
']l'd

=, V(t,z,my) + div, V, V (¢, z, ms) (y)me(y) dy
Td

~ [ VuVitzm)w) - Dyt 2,V mi)mi(y) dy
']l'd

= A V(t,z,my) — H(t, 2,V V(t,z,me), my)

= Agu(t, ) — H(t, z, Voalt, z), my),

where in the penultimate equality we have used the fact that V' solves the master
equation, while in the last equality, we have used the definition of 4. Since by
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definition we also have 4(T, ) = G(z, mr), we have that (@, m) is a solution to the
mean field game system. That system has a unique solution and therefore, we must
have that V(to,z, mg) = U(to, x, mg) for my smooth. The uniqueness follows. [

APPENDIX A. A STABILITY RESULT

For a probability density m, if we write m = m + pu, with p having zero mean
(where m stands for the uniform measure on T¢), then we introduce G through
G(u(z),z) = PG(m(z),z), where P is the projection operator that removes the
mean of a periodic function. In particular, we also have Pm = pu.

Let us recall the Lipschitz continuity condition on G, assumed in (H5). For m,m
probability measures, note that m — /m = u — fi. We notice that immediately
implies ~ ~

G (p1, ) = Gluaa, )T < Tllin — pzll3.
This follows because ||Pf||%,, < ||f||%. for all f.
We are now able to state our stability theorem.

Theorem A.1. Let (u',m+p') and (u?,m+pu?) be two classical solutions of
on (0,T) x T? , with data m!(0,-) = m}, m2(0,-) = m2. Assume that there ezists
K such that the solutions are each bounded by K :

IDu' | s + Il < K, i€ {1,2},

for some s > 2+ % (which is ensured by Theorem and the assumption (H1)).
Assume that (H3) and (H5) hold. If T is sufficiently small, then there ezists a
constant ¢ > 0 (depending on the data and K ) such that

(A1) e lu" = u?|[F + [m' —m?|[Z2 < cllmg — m{|lZa.
)

Proof. We use the notation w' := Pu’ and we notice that Dw' = Du’. We also use
the notation

O(t,z, Dw, p) == —H(t, z, Du,m).
Let us notice that yields

3twl" -+ Auf' -+ P9(t3:::, Duw', ut) =0, (t,x) € (0,T) x T4,
o' — Ap' + V- (p'D,O(t, z, Dw', u'))
+mV - (D,0(t, z, Dw', i) = 0,
pi(to, z) = mo(z) —m, w'(T,x) =Gz, uin(z)), = €T
We define an energy E = E, + E,, by
1

E,= —f (0" — p?)? de,
2 Jra

d
_ 1 1_ 242
E, = 2;[Ed(3¢jw O, w*)* dz.

We will first bound E,, and E,,. To finish the argument, we will then only need to
bound the mean of u; — us.

To estimate the growth of this energy, we begin by taking the following time
derivative:

(A.2) (t,x) € (0,T) x T4,

dE
it = / (u' = 1*)(Op" — Bup*) da.
Td
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Substituting for p; and p? from (A.2), and then adding and subtracting, we arrive
at

dE
— = /Td(,u‘ — ) A" — p?)da
- de(ul — p?)div (' — p*)D,O(t,z, Dw', pu')) da
- de(u‘ — p?)div (u? (D,O(t, z, Dw', u') — D,O(t,z, Dw?, i?))) dz

— ﬁl[ (ut — p?)div (D,O(t, z, Dw',u') — D,O(t,z, DwQ,,uQ)) dz.
Td

We expand the derivatives on the right-hand side, introducing the notation
dE, 14
. Z -‘/E,
dt —
where the summands are given by the following expressions:
Vo= [t = iAG - i) da,
Td
Vp = —/ (' —p®) (V (u' = p?)) - D,O(t,z, Dw', p') du,
Td
Va = —/ (,ul - ,u2)2 div (D,O(t, z, le,,ul)) dz,
Td

V-i = _/ (}u'l - “2)(V,u2) . (Dpe(t!"E:lenu'l) - Dpe(t'!mv Dwznu'z)) d"T:
Td

d

1/% = _/ (.ru'l - #2)(»”‘2) Z [epéié(t: &£, lenu*l) - epémé(t:‘ &£, Dwzs p?)] dﬂ.’.‘,
Td

i=1

d
1, 2y, 2 1,1 a:ul 2 op !
Vﬁ = _w[lI‘d(p‘ — )(,U. )Z [epfq(t:I:Dw s 1 )3"51' _epéq(taanw y M )sz d£

i=1

d
_ o' =)\ .
VT——/WM—,U E:[epsqt‘ch:p‘)(T dz,

321.{}1

d d
Vg: w[]l' ,U. _,U. Zzlep‘pj t‘EDw'-‘*u‘ )Bméamj

i=1 j=1

0“w
epu‘:’j(t €T, Dw P M )axiale d‘r

LI 0% (w! — w?)
Vo = — /p—p [@ljt‘ch,,u)(i)]dm,
Td ;; pip 31173'3:17_;;
d

@m o, (t,z, Dw', ut) — 0, ;. (t, , Dwz,,uz)] dz,
i=1

V10=—m ,U —u?)

_ - 3M1 2 1 3#1
V].].:_m ,U. _:u' Z ep‘q t €T, Dw P M )3£ epéq(t'!xnu' '.!Dw )ax d"T:
i—1 i i
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’ (' — 1)
Vio= - [ (4" = 12> Oty 2, Du?, %) (—) dz,

Td im1 3.‘173'

1 2 < 11y OPw!
Vig = —mr — o (t,z, D
13 m Td(# H )121; epmj( y Ty LW, 1 )33:3-3335
82wl
- epipj (t: €T, Dw2’#2)3x§3le d"r:
o 35 o (P52
= —m — x, w Y a X
14 - M M o pqu y 3271'337:;
We integrate four of these terms by parts. For Vi we arrive at
(A.3) Vi=— [ |V(e'—p?) |2 dx.
T
Continuing to integrate by parts, we have
Vy = %/ (4! — u2)2div (D,O(t, z, Dw', i) dz,
Td
d
Vi = EZ (! — 1222 ((1*)Op.q(t,z, Dw', pt)) da
2 — Td axi Pig\tr L] L]
A
Vig = E%Z:;/Td(#l ) O (ep‘q(t z, Dw, p )) dx

These terms, and also V3, are then bounded in terms of the energy, using the bound
on the solutions in terms of K. We introduce a non-decreasing function G such that

(A4) Vo+ Va4 Vo4 Vip < Q’(K)E

Note that the we have estimated, for instance, u? in L* here, which we may do
since s is large enough. Such estimates will be made several times in the rest of
this proof.

For most of the remaining V; terms, we may estimate them using Lipschitz
properties of D,© and its derivatives; we then have

(A.5) Va+Vs+ Ve + Vs + Vig + Vi1 + Viz < G(K)(E, + E;/QEtluﬂ):

where G(K) is as before.

For the final two terms, V5 and V14, we use Young’s inequality with an eye toward
bounding them by a beneficial term arising from E.,. For V4, we bound ©,,,, and
u? with G(K) :

2 _an2
Vo < G(K ZZ[ﬁ—pa;ﬂxaxw)dm.

i=1 j=1
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We introduce a constant w = ﬁ. We then apply Young’s inequality, with parameter

4G(K)/w :

(A6) Vy <G(K) de(,ul —u%)? dx + éZ/Td(a%. (Dw' — Dw?))? dx

d
<OU0B,+ T3 [ (04(Du! = Du?)? do
j=1

Notice that in the first term on the right-hand side, we have simply incorporated
w into G. The final term, Vy4, is then entirely similar:

(A7) Vie < G(K)E, + % Z/Td(axj (Dw' — Dw?))? da.

We add the bounds (A.4), (A.5), (A.6), and (A.7), finding the following conclu-

sion:

(A.8) g Vi <G(K)(Ew,+ E,) + 1 ; /W(aIj (Dw' — Dw?))? dx.

We next treat E,,, introducing the notation E,, = Zle EJ, with

J
% - / (amiwl - afjw2)3t(axjw1 — 0, w?) dax.
']l'd

)
We further decompose each of these time derivatives as
; 6
dE}, j
dt = Z Wf ’
£=1
where the Wf are given by

Wi = — f (0w = By w?) A(Op, 0" — 0y, w?) da,
Td
Wﬁ? = _/ (amjwl — 31;.-1.02) (813 (t: T, lenu'l) - em}- (t’ T, Dwz’ "uz)) diL',
Td
Wg = - Ad(amjwl — 81?jw2) (eq(t’mtil’pl)p‘ij - eq(t’ T Dwz’pz)p‘ij) dx,

Wi - _/'];d(amjwl - axjw2) (Dpe(t’ z Dwz,p.z),u.ij - eq(t’ T Dwz, pz)pij) de,

d
Wi=-3% fT (020" — 0e,w?) (O, (1,7, Du', p)2,, w'
i=1

_ep" (t’ I’ Dw2’ #2)31231?3'1”1) d_'r,

d
wi=-%" fT (02, 0" — 02,w?) (O, (1,7, Du?, y)32,, w'
i=1

—ep‘.(t,a:,Dw{ﬁ)agmwQ) dz.
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As before, we begin by integrating some of the terms by parts. Integrating Wf
by parts, we have

wi :/ Vo, (w! —w?)|* dz.
Td

We also have the following, upon integrating Wg by parts:

14
=53 | (@0 00,020, (4,(t,3, D ) do
i=1
With G as before, we may then estimate several of the terms:
(A.9) Wi + Wi + Wi + W{ < G(K)(Ew, + E}/*E}/?).

The only remaining term to estimate is Wi . We first bound D,0O(t, z, Dw?, 1i?)
in L* using G(K), arriving at
Wi <) [ (00" — 0., 0%, (1 — ) da.
Td
Applying Young’s inequality with 2G(K) as the parameter, we have

; 1
Wi < G(K)Bu + f (9o, — By, )’ do.
Td
Adding to this yields

6 d
(A.10) YD W <G(K)(Ew+ Ey) / |Dpt — Dp?|? dz.

=2 j=1

We are now in a position to integrate d—ft& with respect to time over the interval
[0,]; doing so, we arrive at
¢ 14

B = B0+ [ Y-V
0 =
Applying then yields

E.(t) < E,(0)+TG(K)(E,.+ E.)

t d
+/ Vﬁ%Zf (0, (Dw' — Dw?)? dz| dr.
0 it O

We similarly integrate @“L over the temporal interval [t, T], finding

Ew(t):Ew(T)—/t zzwg dr.

j=14¢=1
Applying (A.10), we find
(A.11)

E,(t) < BEy(T)+TG(K)(E,+E,) Z/ Wi dr+ -~ /]|D,u —Dy?|? dzdr.

We work now with the term E,,(T). A formula for this is

T) =) 110z,wi(T, ) = 8z, w2 (T, -)II3.
J
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Using the payoff function, G, this can be estimated as
Eyu(T) < |G (T,), ) = Glu2(T, ), )15
Using our smoothing assumption on G, then, this may again be estimated as
Ey(T) < Y|pa (T, ) — (T, )3
We may replace this with a supremum, as

E,(T)<TY sup E.(1).
te[0,T]

We multiply (A.11) by @ > 0, apply the definitions of V; and Wf , and summarize
what we have found thus far:
t T
(A12) wEu(t)+ EL(t) +/ |Dut — Du?||2 dr —|—w/ | D*w! — D?w?||2 dr
0 t

ST sup Bu(0)+ Bu0) + TG (Eult) + Eu(0)

T t
+ E[ |Dut — Dp?|)? dr + "Ef |D2w! — D*w?|? dr.
4 Jy 4 Jo
We can bound the integrals appearing on the right-hand side by taking a larger
domain of integration:
t T
(A.13) wEw(t)+Ep(t)+/ IDpt — D212 d’r—i—w/ ID?w! — D2w?|2 dr
0 t

@Y sup Bult) + Bul0) + TGUK)(Bu(t) + Eu(0)

T T
+5 [ 1o - ar+ T [ 0%t - Dl dr.
4 Jo 4 Jo
Considering the first integral on the left-hand side of (A.13), we find

(A.14

14)
t
[ 10wt =Dl dr < @ sup Eu(0)+ Eu(0) + TGK)(Bul®) + Eu(0)
0 te[0,T]

T T
w w
+ % [Ciowt - D dar+ % [ 0%t - DRl .
4 Jo 4 Jo
Taking the supremum with respect to ¢ on both sides of (A.14), we have
(A.15)

T
f |Du'—Dp?||§ dr <wY sup E,(t)+E,(0)+TG(K) ( sup (Ew(t)+Ep(t)))
0 te[0,T] te[o,T]

T T
+Z f |Du! ~ DR dr + % ] |Dw! — D*w?|3 dr.
0 0
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Now considering instead the second integral on the left-hand side of (A.13), making
the corresponding manipulations, we have

w/o |D*w' — D*w?||2 dr
(A.16) <wT sup E,(t)+ E.(0) +TG(K) ( sup (E.(t) + Ep(t)))

te[0,T] te[0,T]

T T
w w
+ 1] |Dpt — D[ dr + I/ |D*w! — D*w?||3 dr.
0 0

We assume that w satisfies w < 1. Adding (A.15) and (A.16) and rearranging, we
have

T T
] IDut — D22 dr + f |D?w! — D?u?|2 dr
0 0

<4E,(0) + 4wYTE,(0) + TG(K) ( sup (E,(t) + Ep(t))) .
te[0,T]

Combining this with (A.13), and making some adjustments of factors of w, we have

(A17) s;pT](wEw (t) + EL(t)) < 2E,(0) + 2wY SEPT] (wEw(t) + EL(t))

+TG(K) (; :[lépﬂ(wEw(f) + Ep(t))) :

Recall our choice w = g&. We take TG(K) < § (which may be accomplished

simply by taking 7" sufficiently small), concluding

t:[%%] (Eu(t) + wEy(t)) < 8E,(0) = 8||m'(0) — m*(0)|3.

We may eliminate the factor of w on the left, resulting in

(A.18) sup (Bu(t) + Eu(t)) < 647 [m"(0) — m?(0)[5.

’

Let us notice that the estimate on the u variables directly translates to the estimate
on the m variables (since m! — m? = p! = u?). Therefore, to conclude with the
estimate on the u variables from the estimate on the w variables, it remains to
estimate the difference of the averages of the u variables.

The equation for u is

du = —Au+ H(t,z,Vu,m).

Integrating this over the entire spatial domain, we have

Ot (/ u dm) = H(t, z, Vu,m) dz.
Td Td

Let (u1,m1) and (ua,m2) be two solutions. We take the difference in the evolution
equations for the mean, recalling that Vu; = Vw, :

3;] U1 — Ug dr = H(t, z,Vwy,mi) — H(t,z, Vws, my) dx.
T4 T
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Taking absolute values, adding and subtracting, and using the triangle inequality,
we have

3:/ U — Us dx < |IH,(t, xZ, le, ml) — ?{(t,:[.‘, ng,m1)| dz
Ta

Td

+ |H(t, z, Vwa, mq) — H(t, z, Vwa, ma)| dx.
']I‘d,

Using the Lipschitz properties of the Hamiltonian, and the boundedness of the
solutions (w;, m;), we may bound this as

3;/ Uy — Uz dx
Td

Using my — mg = p1 — pe, this then implies

3;/ Uy — Uz dx
Td

We can write the difference of the means as

/Td uy(t,) —us(t, ) doe = [rd uy (T, ) — ua(T, ) dx — /tT 0, ([Td U — U d:::) ds.

Using the terminal condition for u, this becomes

< c] |V, — Vws| d:r—i—cf |m1 — mga| dx.
T T4

(A.19)

< c(llwy — well g + g — p2llze).-

[mt) =ty do= [ Gomy(T.),) = Glma(T: ), ) da

Td

T
—/ 3;(/ ul—ugda:)ds.
t T4

3;/ Uy —usg d,.l,“
Td

We may then estimate this as

Uy —1ug dr
']I‘d

The Lipschitz property of G then implies

/ul—ugdm 3;] ul—UQdJE‘.
Td T4
Again using m; — mg = p1 — po, and also using (A.19), and using a supremum in
time, we have

sup f U] — ug dz
tef0,7] 1J T4

We see that then implies
sup

/ Uy — Ug d.’L'
tef[0,7] |JTe

This completes the proof of (A.1). O

< |G(m1(T: )1)_G(m2(T1)1)| dz+T sup
Td t€[0,T]

<ec |mi(T, ) — ma(T, )| dz+T sup
Td te[0,T)

<c sup ([wy —wollmr + [lur — pallz2).
te[0,T]

< cllmg — mgl.
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