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Constraint satisfaction problems (CSP’s) and data stream models are two powerful abstractions to capture
a wide variety of problems arising in different domains of computer science. Developments in the two
communities have mostly occurred independently and with little interaction between them. In this work, we
seek to investigate whether bridging the seeming communication gap between the two communities may
pave the way to richer fundamental insights. To this end, we focus on two foundational problems: model
counting for CSP’s and computation of zeroth frequency moments (𝐹0) for data streams.

Our investigations lead us to observe a striking similarity in the core techniques employed in the algorithmic
frameworks that have evolved separately for model counting and 𝐹0 computation. We design a recipe for
translating algorithms developed for 𝐹0 estimation to model counting, resulting in new algorithms for model
counting. We also provide a recipe for transforming sampling algorithm over streams to constraint sampling
algorithms. We then observe that algorithms in the context of distributed streaming can be transformed into
distributed algorithms for model counting. We next turn our attention to viewing streaming from the lens
of counting and show that framing 𝐹0 estimation as a special case of #DNF counting allows us to obtain a
general recipe for a rich class of streaming problems, which had been subjected to case-specific analysis in
prior works. In particular, our view yields an algorithm for multidimensional range efficient 𝐹0 estimation
with a simpler analysis.
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1 INTRODUCTION

Constraint Satisfaction Problems (CSP’s) and the data stream model are two core themes in computer
science with a diverse set of applications, ranging from probabilistic reasoning, networks, databases,
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verification, and the like. Model counting and computation of zeroth frequency moment (𝐹0) are
fundamental problems for CSP’s and the data stream model respectively. This paper is motivated
by our observation that despite the usage of similar algorithmic techniques for the two problems,
the developments in the two communities have, surprisingly, evolved separately, and rarely has a
paper from one community been cited by the other.
Given a set of constraints 𝜑 over a set of variables in a finite domain D, the problem of model

counting is to estimate the number of solutions of 𝜑 . We are often interested when 𝜑 is restricted
to a special class of representations such as Conjunctive Normal Form (CNF) and Disjunctive
Normal Form (DNF). A data stream over a domain [𝑁 ] is represented by a = 𝑎1, 𝑎2, · · ·𝑎𝑚 wherein
each item 𝑎𝑖 ⊆ [𝑁 ]. The zeroth frequency moment, denoted as 𝐹0, of a is the number of distinct
elements appearing in a, i.e., | ∪𝑖 𝑎𝑖 | (traditionally, 𝑎𝑖s are singletons; we will also be interested in
the case when 𝑎𝑖s are sets). The fundamental nature of model counting and 𝐹0 computation over
data streams has led to intense interest from theoreticians and practitioners alike in the respective
communities for the past few decades.

The starting point of this work is the confluence of two viewpoints. The first viewpoint contends
that some of the algorithms for model counting can conceptually be thought of as operating on the
stream of the solutions of the constraints. The second viewpoint contends that a stream can be
viewed as a DNF formula, and the problem of 𝐹0 estimation is similar to model counting. These
viewpoints make it natural to believe that algorithms developed in the streaming setting can be
directly applied to model counting, and vice versa. We explore this connection and indeed, design
new algorithms for model counting inspired by algorithms for estimating 𝐹0 in data streams. By
exploring this connection further, we design new algorithms to estimate 𝐹0 for streaming sets that
are succinctly represented by constraints. To put our contributions in context, we briefly survey
the historical development of algorithmic frameworks in both model counting and 𝐹0 estimation
and point out the similarities.

Model Counting

The complexity-theoretic study of model counting was initiated by Valiant who showed that this
problem, in general, is #P-complete [66]. This motivated researchers to investigate approximate
model counting and in particular achieving (𝜀, 𝛿)-approximation schemes. The complexity of
approximate model counting depends on its representation. When the model 𝜑 is represented as a
CNF formula 𝜑 , designing an efficient (𝜀, 𝛿)-approximation is NP-hard [62]. In contrast, when it is
represented as a DNF formula, model counting admits an FPRAS (fully polynomial-time randomized
approximation scheme) [43, 44]. We will use #CNF to refer to the case when 𝜑 is a CNF formula
while #DNF to refer to the case when 𝜑 is a DNF formula.

For #CNF, Stockmeyer [62] provided a hashing-based randomized procedure that can compute
(𝜀, 𝛿)-approximation within time polynomial in |𝜑 |, 𝜀, 𝛿 , given access to an NP oracle. Building on
Stockmeyer’s approach and motivated by the unprecedented breakthroughs in the design of SAT
solvers, researchers have proposed a series of algorithmic improvements that have allowed the
hashing-based techniques for approximate model counting to scale to formulas involving hundreds
of thousands of variables [2, 15, 16, 18, 26, 35, 39, 59, 60]. The practical implementations substitute
NP oracle with SAT solvers. In the context of model counting, we are primarily interested in time
complexity and therefore, the number of NP queries is of key importance. The emphasis on the
number of NP calls also stems from practice as the practical implementation of model counting
algorithms have shown to spend over 99% of their time in the underlying SAT calls [60].

Karp and Luby [43] proposed the first FPRAS scheme for #DNF, whichwas subsequently improved
in the follow-up works [25, 44]. Chakraborty, Meel, and Vardi [16] demonstrated that the hashing-
based framework can be extended to #DNF, hereby providing a unified framework for both #CNF
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and #DNF. Meel, Shrotri, and Vardi [49ś51] subsequently improved the complexity of the hashing-
based approach for #DNF and observed that hashing-based techniques achieve better scalability
than that of Monte Carlo techniques.

Zeroth Frequency Moment Estimation

Estimating (𝜀, 𝛿)-approximation of the 𝑘 th frequency moments (𝐹𝑘 ) is a central problem in the data
streaming model [3]. In particular, considerable work has been done in designing algorithms for
estimating the 0𝑡ℎ frequency moment (𝐹0), the number of distinct elements in the stream. While
designing streaming algorithms, the primary resource concerns are two-fold: space complexity
and processing time per element. For an algorithm to be considered efficient, these should be
poly(log𝑁, 1/𝜖) where 𝑁 is the size of the universe 1.

The first algorithm for computing 𝐹0 with a constant factor approximation was proposed by Fla-
jolet and Martin, who assumed the existence of hash functions with ideal properties resulting in an
algorithm with undesirable space complexity [32]. In their seminal work, Alon, Matias, and Szegedy
designed an 𝑂 (log𝑁 ) space algorithm for 𝐹0 with a constant approximation ratio that employs
2-universal hash functions [3]. Subsequent investigations into hashing-based schemes by Gibbons
and Tirthapura [34] and Bar-Yossef, Kumar, and Sivakumar [8] provided (𝜀, 𝛿)-approximation
algorithms with space and time complexity log𝑁 ·poly( 1

𝜀
). Subsequently, Bar-Yossef et al. proposed

three algorithms with improved space and time complexity [7]. While the three algorithms employ
hash functions, they differ conceptually in the usage of relevant random variables for the estimation
of 𝐹0. This line of work resulted in the development of an algorithm with optimal space complexity
𝑂 (log𝑁 + 1

𝜀2
) and 𝑂 (log𝑁 ) update time [42].

The above-mentioned works are in the setting where each data item 𝑎𝑖 is an element of the
universe. Subsequently, there has been a series of results of estimating 𝐹0 in rich scenarios with
particular focus to handle the cases 𝑎𝑖 ⊆ [𝑁 ] such as a list or a multidimensional range [8, 53, 63, 65].

The Road to a Unifying Framework

As mentioned above, the algorithmic developments for model counting and 𝐹0 estimation have
largely relied on the usage of hashing-based techniques and yet these developments have, sur-
prisingly, been separate, and rarely has a work from one community been cited by the other. In
this context, we wonder whether it is possible to bridge this gap and if such an exercise would
contribute to new algorithms for model counting as well as for 𝐹0 estimation? The main conceptual
contribution of this work is an affirmative answer to the above question. First, we point out that
the two well-known algorithms; Stockmeyer’s #CNF algorithm [62] that is further refined by
Chakraborty et. al. [16] and Gibbons and Tirthapura’s 𝐹0 estimation algorithm [34], are essentially
the same.

The core idea of the hashing-based technique of Stockmeyer’s and Chakraborty et al’s scheme is
to use pairwise independent hash functions to partition the solution space (satisfying assignments
of a CNF formula) into roughly equal and small cells, wherein a cell is small if the number of
solutions is less than a pre-computed threshold, denoted by Thresh. Then a good estimate for the
number of solutions is the number of solutions in an arbitrary cell × number of cells. To partition
the solution space, pairwise independent hash functions are used. To determine the appropriate
number of cells, the solution space is iteratively partitioned as follows. At the 𝑚𝑡ℎ iteration, a
hash function with range {0, 1}𝑚 is considered resulting in cells ℎ−1 (𝑦) for each 𝑦 ∈ {0, 1}𝑚 . An
NP oracle can be employed to check whether a particular cell (for example ℎ−1 (0𝑚)) is small by
enumerating solutions one by one until we have either obtained Thresh+1 number of solutions or

1We ignore𝑂 (log 1
𝛿
) factor in this discussion
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we have exhaustively enumerated all the solutions. If the cell ℎ−1 (0𝑚) is small, then the algorithm
outputs 𝑡 × 2𝑚 as an estimate where 𝑡 is the number of solutions in the cell ℎ−1 (0𝑚). If the cell
ℎ−1 (0𝑚) is not small, then the algorithm moves on to the next iteration where a hash function with
range {0, 1}𝑚+1 is considered.
We now describe Gibbons and Tirthapura’s algorithm for 𝐹0 estimation which we call the

Bucketing algorithm. We will assume the universe [𝑁 ] = {0, 1}𝑛 . The algorithm maintains a bucket
of size Thresh and starts by picking a hash function ℎ : {0, 1}𝑛 → {0, 1}𝑛 . It iterates over sampling
levels. At level𝑚, when a data item 𝑥 comes, if ℎ(𝑥) starts with 0𝑚 , then 𝑥 is added to the bucket. If
the bucket overflows, then the sampling level is increased to𝑚 + 1 and all elements 𝑥 in the bucket
other than the ones with ℎ(𝑥) = 0𝑚+1 are deleted. At the end of the stream, the value 𝑡 × 2𝑚 is
output as the estimate where 𝑡 is the number of elements in the bucket and𝑚 is the sampling level.
These two algorithms are conceptually the same. In the Bucketing algorithm, at the sampling

level𝑚, it looks at only the first𝑚 bits of the hashed value; this is equivalent to considering a
hash function with range {0, 1}𝑚 . Thus the bucket is nothing but all the elements in the stream
that belong to the cell ℎ−1 (0𝑚). The final estimate is the number of elements in the bucket times
the number of cells, identical to Chakraborty et. al’s algorithm. In both algorithms, to obtain an
(𝜀, 𝛿) approximation, the Thresh value is chosen as𝑂 ( 1

𝜀2
) and the median of𝑂 (log 1

𝛿
) independent

estimations is output.

Our Contributions

Motivated by the conceptual identity between the two algorithms, we further explore the connec-
tions between algorithms for model counting and 𝐹0 estimation.

(1) We formalize a recipe to transform streaming algorithms for 𝐹0 estimation to those for model
counting. Such a transformation yields new (𝜀, 𝛿)-approximate algorithms for model count-
ing, which are different from currently known algorithms. We also establish a relationship
between the space complexity of the streaming algorithms and the query complexity of the
obtained model counting algorithms. Recent studies in the fields of automated reasoning have
highlighted the need for diverse approaches [69], and similar studies in the context of #DNF
provided strong evidence to the power of diversity of approaches [50]. In this context, these
newly obtained algorithms open up several new interesting directions of research ranging
from the development of MaxSAT solvers with native XOR support to open problems in
designing FPRAS schemes.

(2) The problem of counting and sampling are closely related. In particular, the seminal work
of Jerrum, Valiant, and Vazirani [40] showed that the problem of approximate counting and
almost-uniform sampling are inter-reducible for self-reducible NP problems. Concurrent to
developments in approximate model counting, there has been a significant interest in the
design of efficient sampling algorithms. Building on the recipe to transform streaming algo-
rithms to model counting algorithms, we obtain a recipe to transfer 𝐿0-sampling algorithms
into constrained sampling algorithms.

(3) Given the central importance of #DNF (and its weighted variant) due to a recent surge of
interest in scalable techniques for provenance in probabilistic databases [56, 57], a natural
question is whether one can design efficient techniques in the distributed setting. In this work,
we initiate the study of distributed #DNF. We then show that the transformation recipe from
𝐹0 estimation to model counting allows us to view the problem of the design of distributed
#DNF algorithms through the lens of distributed functional monitoring that is well studied in
the data streaming literature.
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(4) Building upon the connection between model counting and 𝐹0 estimation, we design new
algorithms to estimate 𝐹0 over structured set streams where each element of the stream is a
(succinct representation of a) subset of the universe. Thus, the stream is 𝑆1, 𝑆2, · · · where each
𝑆𝑖 ⊆ [𝑁 ] and the goal is to estimate the 𝐹0 of the stream, i.e. size of ∪𝑖𝑆𝑖 . In this scenario, a
traditional 𝐹0 streaming algorithm that processes each element of the set incurs high per-item
processing time-complexity and is inefficient. Thus the goal is to design algorithms whose per-
item time (time to process each 𝑆𝑖 ) is poly-logarithmic in the size of the universe. Structured
set streams that are considered in the literature include 1-dimensional and multidimensional
ranges [53, 65]. Several interesting problems such as max-dominance norm [22], counting
triangles in graphs [8], and distinct summation problem [19] can be reduced to computing 𝐹0
over such ranges.

We observe that several structured sets can be represented as small DNF formulae and
thus 𝐹0 counting over these structured set data streams can be viewed as a special case of
#DNF. Using the hashing-based techniques for #DNF, we obtain a general recipe for a rich
class of structured sets that include multidimensional ranges, multidimensional arithmetic
progressions, and affine spaces. Prior work on single and multidimensional ranges 2 had to
rely on involved analysis for each of the specific instances, while our work provides a general
recipe for both analysis and implementation.

Remark 1. This work is an extension of the work that appeared in PODS 2021 [54] and differs from

it in the following ways. First, we establish, in Section 3.5, a new relationship between the space

complexity of streaming algorithms and the query complexity of general model counting algorithms.

Second, building on the close relationship between counting and sampling, we provide a recipe for

the transformation of 𝐿0 sampling techniques to constrained sampling, thereby accomplishing the

future direction stated in the conference version. Third, we provide detailed algorithmic descriptions

for distributed DNF counting which are described in Section 5.

Organization

We present notations and preliminaries in Section 2. We then present the transformation of 𝐹0
estimation to model counting in Section 3. In Section 4, we provide a recipe to transform 𝐿0 sampling
algorithms into constrained sampling algorithms.We then focus on distributed #DNF in Section 5. In
Section 6, we present the transformation of model counting algorithms to structured set streaming
algorithms. We conclude in Section 7 with a discussion of future research directions.
We would like to emphasize that the primary objective of this work is to provide a unifying

framework for 𝐹0 estimation and model counting. Therefore, when designing new algorithms based
on the transformation recipes, we intentionally focus on conceptually cleaner algorithms and leave
potential improvements in time and space complexity for future work.

2 NOTATION

We will assume that the universe is [𝑁 ] = {0, 1}𝑛 . We write Pr [Z : Ω] to denote the probability
of outcomeZ when sampling from a probability space Ω. For brevity, we omit Ω when it is clear
from the context.

𝐹0 Estimation. A data stream a over domain [𝑁 ] can be represented as a = 𝑎1, 𝑎2, . . . 𝑎𝑚 wherein
each item 𝑎𝑖 ∈ [𝑁 ]. Let a𝑢 = ∪𝑖 {𝑎𝑖 }. 𝐹0 of the stream a is |a𝑢 |. We are often interested in a probably

2Please refer to Remark 2 in Section 6 for a discussion on the earlier work on multidimensional ranges [65].
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approximately correct scheme that returns an (𝜀, 𝛿)-estimate 𝑐 , i.e.,

Pr

[
|a𝑢 |

1 + 𝜀
≤ 𝑐 ≤ (1 + 𝜀) |a𝑢 |

]
≥ 1 − 𝛿

Model Counting. Let {𝑥1, 𝑥2, . . . 𝑥𝑛} be a set of Boolean variables. For a Boolean formula 𝜑 , let
Vars(𝜑) denote the set of variables appearing in 𝜑 . Throughout the paper, unless otherwise stated,
we will assume that the relationship 𝑛 = |Vars(𝜑) | holds. We denote the set of all satisfying
assignments of 𝜑 by Sol(𝜑).

The propositional model counting problem is to compute |Sol(𝜑) | for a given formula 𝜑 . A probably

approximately correct (or PAC) counter is a probabilistic algorithm ApproxCount(·, ·, ·) that takes
as inputs a formula 𝜑 , a tolerance 𝜀 > 0, and a confidence 𝛿 ∈ (0, 1], and returns a (𝜀, 𝛿)-estimate 𝑐 ,
i.e.,

Pr
[ |Sol(𝜑) |

1 + 𝜀
≤ 𝑐 ≤ (1 + 𝜀) |Sol(𝜑) |

]
≥ 1 − 𝛿.

PAC guarantees are also sometimes referred to as (𝜀, 𝛿)-guarantees. We use #CNF (resp. #DNF)
to refer to the model counting problem when 𝜑 is represented as CNF (resp. DNF).

Given a formula 𝜑 , tolerance parameter 𝜀 > 0, confidence parameter 𝛿 > 0, a constrained sampler
UnifSampler returns 𝜎 ∈ Sol(𝜑) such that

∀𝜎 ∈ Sol(𝜑),
(1 − 𝜀)

|Sol(𝜑) |
≤ Pr[UnifSampler(𝜑, 𝜀, 𝛿) = 𝜎] ≤

(1 + 𝜀)

|Sol(𝜑) |

And the algorithm UnifSampler succeeds with probability 1 − 𝛿 .

k-wise independent hash functions. Let 𝑛,𝑚 ∈ N andH(𝑛,𝑚) ≜ {ℎ : {0, 1}𝑛 → {0, 1}𝑚} be a family

of hash functions mapping {0, 1}𝑛 to {0, 1}𝑚 . We use ℎ
𝑅
←− H(𝑛,𝑚) to denote the probability space

obtained by choosing a function ℎ uniformly at random fromH(𝑛,𝑚).

Definition 1. A family of hash functions H(𝑛,𝑚) is 𝑘−wise independent if ∀𝛼1, 𝛼2, . . . 𝛼𝑘 ∈

{0, 1}𝑚 , distinct 𝑥1, 𝑥2, . . . 𝑥𝑘 ∈ {0, 1}
𝑛, ℎ

𝑅
←− H(𝑛,𝑚),

Pr[(ℎ(𝑥1) = 𝛼1) ∧ (ℎ(𝑥2) = 𝛼2) . . . (ℎ(𝑥𝑘 ) = 𝛼𝑘 )] =
1

2𝑘𝑚
(1)

We will useHk−wise (𝑛,𝑚) to refer to a 𝑘−wise independent family of hash functions mapping
{0, 1}𝑛 to {0, 1}𝑚 .

Explicit families. In this work, one hash family of particular interest is HToeplitz (𝑛,𝑚), which is
known to be 2-wise independent [12]. The family is defined as follows: HToeplitz (𝑛,𝑚) ≜ {ℎ :

{0, 1}𝑛 → {0, 1}𝑚} is the family of functions of the form ℎ(𝑥) = 𝐴𝑥 + 𝑏 with 𝐴 is a Toeplitz matrix
in F

𝑚×𝑛
2 and 𝑏 ∈ F

𝑚×1
2 . A matrix is Toeplitz if for every diagonal (top-left to bottom-right) its entries

are the same. Another related hash family of interest isHxor (𝑛,𝑚) wherein ℎ(𝑋 ) is again of the
form 𝐴𝑥 + 𝑏 where 𝐴 ∈ F

𝑚×𝑛
2 and 𝑏 ∈ F

𝑚×1
2 . BothHToeplitz andHxor are 2-wise independent but it

is worth noticing thatHToeplitz can be represented with Θ(𝑛)-bits whileHxor requires Θ(𝑚𝑛) bits
of representation. We use both these families, as we use results from prior works that use both
these hash families.
For every ℓ ∈ {1, . . . 𝑛}, the ℓ𝑡ℎ prefix-slice of ℎ, denoted ℎℓ , is a map from {0, 1}𝑛 to {0, 1}ℓ ,

where ℎℓ (𝑦) is the first ℓ bits of ℎ(𝑦). Observe that when ℎ(𝑥) = 𝐴𝑥 + 𝑏, ℎℓ (𝑥) = 𝐴ℓ𝑥 + 𝑏ℓ , where
𝐴ℓ denotes the submatrix formed by the first ℓ rows of 𝐴 and 𝑏ℓ is the first ℓ entries of the vector 𝑏.
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3 FROM 𝐹0 ESTIMATION TO COUNTING

As a first step, we present a unified view of the three hashing-based algorithms proposed in Bar-
Yossef et al [7]. The first algorithm is the Bucketing algorithm discussed above with the observation
that instead of keeping the elements in the bucket, it suffices to keep their hashed values. Since
in the context of model counting, our primary concern is with time complexity, we will focus on
Gibbons and Tirthapura’s Bucketing algorithm in [34] rather than Bar-Yossef et al.’s modification.
The second algorithm, which we callMinimum, is based on the idea that if we hash all the items of
the stream, then the O(1/𝜀2)-th minimum of the hash values can be used to compute a good estimate
of 𝐹0. The third algorithm, which we call Estimation, chooses a set of 𝑘 functions, {ℎ1, ℎ2, . . .}, such
that each ℎ 𝑗 is picked randomly from an O(log(1/𝜀))-independent hash family. For each hash
function ℎ 𝑗 , we say that ℎ 𝑗 is not lonely if there exists 𝑎𝑖 ∈ a such that ℎ 𝑗 (𝑎𝑖 ) = 0. One can then
estimate 𝐹0 of a by estimating the number of hash functions that are not lonely.

Algorithm 1, called ComputeF0, presents the overarching architecture of the three proposed algo-
rithms. Each of these algorithms first picks an appropriate set of hash functions𝐻 and initializes the
sketch S. The architecture of ComputeF0 is fairly simple: it chooses a collection of hash functions
using ChooseHashFunctions, calls the subroutine ProcessUpdate for every incoming element of
the stream, and invokes ComputeEst at the end of the stream to return the 𝐹0 approximation.

ChooseHashFunctions. As shown in Algorithm 2, the hash functions depend on the strategy
being implemented. The subroutine PickHashFunctions(H , 𝑡) returns a collection of 𝑡 independent
hash functions from the familyH . We use 𝐻 to denote the collection of hash functions returned,
this collection is viewed as either 1-dimensional array or as a 2-dimensional array. When 𝐻 is
1-dimensional array, 𝐻 [𝑖] to denote the 𝑖th hash function of the collection and when 𝐻 is a
2-dimensional array 𝐻 [𝑖] [ 𝑗] is the [𝑖, 𝑗]th hash functions.

Sketch Properties. For each of the three algorithms, their corresponding sketches can be viewed as
arrays of the size of 35 log(1/𝛿). The parameter Thresh is set to 96/𝜀2.

Bucketing The element S[𝑖] is a tuple ⟨ℓ𝑖 ,𝑚𝑖⟩ where ℓ𝑖 is a list of size at most Thresh, where
ℓ𝑖 = {𝑥 ∈ a | 𝐻 [𝑖]𝑚𝑖

(𝑥) = 0𝑚𝑖 }. We use S[𝑖] (0) to denote ℓ𝑖 and S[𝑖] (1) to denote𝑚𝑖 .
Minimum The elementS[𝑖] holds a set of size Thresh. This set is the Threshmany lexicographically

smallest elements of {𝐻 [𝑖] (𝑥) | 𝑥 ∈ a}. This sketch is also known as K-Minimum Value Sketch
(KMV Sketch) [10].

Estimation The element S[𝑖] holds a tuple of size Thresh. The 𝑗 ’th entry of this tuple is the largest
number of trailing zeros in any element of 𝐻 [𝑖, 𝑗] (a).

ProcessUpdate. For a new item 𝑥 , the update of S, as shown in Algorithm 3 is as follows:

Bucketing For a new item 𝑥 , if𝐻 [𝑖]𝑚𝑖
(𝑥) = 0𝑚𝑖 , then we add it toS[𝑖] if 𝑥 is not already present in

S[𝑖]. If the size of S[𝑖] is greater than Thresh (which is set to be O(1/𝜀2)), then we increment
𝑚𝑖 as in line 8 of Algorithm 3.

Minimum For a new item 𝑥 , if 𝐻 [𝑖] (𝑥) is smaller than the maxS[𝑖], then we replace maxS[𝑖]

with 𝐻 [𝑖] (𝑥).
Estimation For a new item 𝑥 , compute 𝑧 = TrailZero(𝐻 [𝑖, 𝑗] (𝑥)), i.e, the number of trailing zeros

in 𝐻 [𝑖, 𝑗] (𝑥), and replace S[𝑖, 𝑗] with 𝑧 if 𝑧 is larger than S[𝑖, 𝑗].

ComputeEst. Finally, for each of the algorithms, we estimate 𝐹0 based on the sketch S as described
in the subroutine ComputeEst presented as Algorithm 4. It is crucial to note that the estimation
of 𝐹0 is performed solely using the sketch S for the Bucketing and Minimum algorithms. The
Estimation algorithm requires an additional parameter 𝑟 that depends on a loose estimate of 𝐹0; we
defer details to Section 3.4.
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Algorithm 1 ComputeF0(𝑛, 𝜀, 𝛿)

1: Thresh← 96/𝜀2

2: 𝑡 ← 35 log(1/𝛿)

3: 𝐻 ← ChooseHashFunctions(𝑛, Thresh, 𝑡)

4: S ← {}

5: while true do
6: if EndStream then exit;

7: 𝑥 ← 𝑖𝑛𝑝𝑢𝑡 ()

8: ProcessUpdate(S, 𝐻, 𝑥, Thresh)

9: 𝐸𝑠𝑡 ← ComputeEst(S, Thresh)

10: return 𝐸𝑠𝑡

Algorithm 2 ChooseHashFunctions(𝑛, Thresh, 𝑡 )

1: switch AlgorithmType do
2: case AlgorithmType==Bucketing
3: 𝐻 ← PickHashFunctions(HToeplitz (𝑛, 𝑛), 𝑡)

4: case AlgorithmType==Minimum

5: 𝐻 ← PickHashFunctions(HToeplitz (𝑛, 3𝑛), 𝑡)

6: case AlgorithmType==Estimation

7: 𝑠 ← 10 log(1/𝜀)

8: 𝐻 ← PickHashFunctions(H𝑠−wise (𝑛, 𝑛), 𝑡 × Thresh)
return 𝐻

3.1 A Recipe For Transformation

Observe that for each of the algorithms, the final computation of 𝐹0 estimation depends on the
sketch S. Therefore, as long as for two streams a and â, if their corresponding sketches say S and

Ŝ respectively, are equivalent, the three schemes presented above would return the same estimates.
The recipe for a transformation of streaming algorithms to model counting algorithms is based on
the following insight:

(1) Capture the relationship P(S, 𝐻, a𝑢) between the sketch S, set of hash functions 𝐻 , and set
a𝑢 at the end of stream. Recall that a𝑢 is the set of all distinct elements of the stream a.

(2) The formula 𝜑 is viewed as symbolic representation of the unique set a𝑢 represented by the
stream a such that Sol(𝜑) = a𝑢 .

(3) Given a formula 𝜑 and set of hash functions 𝐻 , design an algorithm to construct sketch S
such that P(S, 𝐻, Sol(𝜑)) holds. And now, we can estimate |Sol(𝜑) | from S.

In the rest of this section, we will apply the above recipe to the three types of 𝐹0 estimation
algorithms and derive corresponding model counting algorithms. In particular, we show how
applying the above recipe to the Bucketing algorithm leads us to reproduce the state-of-the-art
hashing-based model counting algorithm, ApproxMC, proposed by Chakraborty et al [16]. Applying
the above recipe to Minimum and Estimation allows us to obtain fundamentally different schemes.
In particular, we observe while model counting algorithms based on Bucketing and Minimum

provide FPRAS’s when 𝜑 is DNF, such is not the case for the algorithm derived based on Estimation.
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Algorithm 3 ProcessUpdate(S, 𝐻, 𝑥, Thresh)

1: for 𝑖 ∈ [1, |𝐻 |] do
2: switch AlgorithmType do
3: case Bucketing
4: 𝑚𝑖 = S[𝑖] (1)

5: if 𝐻 [𝑖]𝑚𝑖
(𝑥) == 0𝑚𝑖 then

6: S[𝑖] (0) ← S[𝑖] (0) ∪ {𝑥}

7: if size(S[𝑖] (0)) > Thresh then

8: S[𝑖] (1) ← S[𝑖] (1) + 1

9: for 𝑦 ∈ S do

10: if 𝐻 [𝑖]𝑚𝑖+1 (𝑦) ≠ 0𝑚𝑖+1 then

11: Remove(S[𝑖] (0), 𝑦)

12: case Minimum
13: if size(S[𝑖]) < Thresh then

14: S[𝑖] .Append(𝐻 [𝑖] (𝑥))

15: else

16: 𝑗 ← argmax(S[𝑖])

17: if S[𝑖] ( 𝑗) > 𝐻 [𝑖] (𝑥) then

18: S[𝑖] ( 𝑗) ← 𝐻 [𝑖] (𝑥)

19: case Estimation
20: for 𝑗 ∈ [1, Thresh] do

21: 𝑆 [𝑖, 𝑗] ← max(𝑆 [𝑖, 𝑗], TrailZero(𝐻 [𝑖, 𝑗] (𝑥)))

22: return S

Algorithm 4 ComputeEst(S, Thresh)

1: switch AlgorithmType do
2: case Bucketing

3: returnMedian
({
size(S[𝑖] (0)) × 2S[𝑖 ] (1)

}
𝑖

)

4: caseMinimum

5: returnMedian
({

Thresh×2𝑚

max{S [𝑖 ] }

}
𝑖

)

6: case Estimation(𝑟 )

7: returnMedian

({
ln

(
1− 1

Thresh

∑Thresh
𝑗=1 1{S [𝑖, 𝑗 ] ≥𝑟 }

)

ln(1−2−𝑟 )

}

𝑖

)

3.2 Bucketing-based Algorithm

The Bucketing algorithm chooses a set 𝐻 of pairwise independent hash functions and maintains a
sketch S that we will describe. Here we useHToeplitz as our choice of pairwise independent hash
functions. The sketch S is an array where, each S[𝑖] is of the form ⟨𝑐𝑖 ,𝑚𝑖⟩. We say that the relation
P1 (S, 𝐻, a𝑢) holds if

(1) |a𝑢 ∩ {𝑥 | 𝐻 [𝑖]𝑚𝑖−1 (𝑥) = 0𝑚𝑖−1}| ≥ 96
𝜀2

(2) 𝑐𝑖 = |a𝑢 ∩ {𝑥 | 𝐻 [𝑖]𝑚𝑖
(𝑥) = 0𝑚𝑖 }| < 96

𝜀2

The following lemma due to Bar-Yossef et al. [7] and Gibbons and Tirthapura [34] captures the
relationship among the sketch S, the relation P1 and the number of distinct elements of a multiset.
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Lemma 1. [7, 34] Let a ⊆ {0, 1}𝑛 be a multiset and 𝐻 ⊆ HToeplitz (𝑛, 3𝑛) where each 𝐻 [𝑖] is inde-

pendently drawn fromHToeplitz (𝑛, 3𝑛), and |𝐻 | = 𝑂 (log 1/𝛿) and let S be such that the P1 (S, 𝐻, 𝑎𝑢)

holds. Let 𝑐 = Median {𝑐𝑖 × 2
𝑚𝑖 }𝑖 . Then

Pr

[
|a𝑢 |

(1 + 𝜀)
≤ 𝑐 ≤ (1 + 𝜀) |a𝑢 |

]
≥ 1 − 𝛿.

To design an algorithm for model counting, based on the bucketing strategy, we turn to the sub-
routine introduced by Chakraborty, Meel, and Vardi: BoundedSAT, whose properties are formalized
as follows:

Proposition 1. [15, 16] There is an algorithm BoundedSAT that gets 𝜑 over 𝑛 variables, a hash

function ℎ ∈ HToeplitz (𝑛,𝑚), and a number 𝑝 as inputs, returns min(𝑝, |Sol(𝜑 ∧ ℎ(𝑥) = 0𝑚) |). If 𝜑 is

a CNF formula, then BoundedSAT makes O(𝑝) calls to an NP oracle. If 𝜑 is a DNF formula with 𝑘

terms, then BoundedSAT takes O(𝑛3 · 𝑘 · 𝑝) time.

Equipped with Proposition 1, we now turn to designing an algorithm for model counting based on
the Bucketing strategy. The algorithm follows in a similar fashion to its streaming counterpart where
𝑚𝑖 is iteratively incremented until the number of solutions of the formula (𝜑 ∧𝐻 [𝑖]𝑚𝑖

(𝑥) = 0𝑚𝑖 )

is less than Thresh. Interestingly, an approximate model counting algorithm, called ApproxMC,
based on bucketing strategy was discovered independently by Chakraborty et. al. [15] in 2013. We
reproduce an adaptation ApproxMC in Algorithm 5 to showcase how ApproxMC can be viewed
as a transformation of the Bucketing algorithm. In the spirit of Bucketing, ApproxMC seeks to
construct a sketchS of size 𝑡 ∈ O(log(1/𝛿)). To this end, for every iteration of the loop, we continue
to increment the value of the loop until the conditions specified by the relation P1 (S, 𝐻, Sol(𝜑))

are met. For every iteration 𝑖 , the estimate of the model count is 𝑐𝑖 × 2
𝑚𝑖 . Finally, the estimate of

the model count is simply the median of the estimation of all the iterations. Since in the context of
model counting, we are concerned with time complexity, wherein bothHToeplitz andHxor lead to
the same time complexity. Furthermore, Chakraborty et al. [14] observed no difference in empirical
runtime behavior due toHToeplitz andHxor.
The following theorem establishes the correctness of ApproxMC, and the proof follows from

Lemma 1 and Proposition 1.

Theorem 2. Given a formula 𝜑 , 𝜀, and 𝛿 , ApproxMC returns 𝐸𝑠𝑡 such that Pr[
|Sol(𝜑) |
1+𝜀

≤ 𝐸𝑠𝑡 ≤

(1 + 𝜀) |Sol(𝜑) |] ≥ 1 − 𝛿 . If 𝜑 is a CNF formula, then this algorithm makes O(𝑛 · 1
𝜀2
log(1/𝛿)) calls to

NP oracle. If 𝜑 is a DNF formula then ApproxMC is an FPRAS. In particular for a DNF formula with 𝑘

terms, ApproxMC takes O(𝑛4 · 𝑘 · 1
𝜀2
· log(1/𝛿)) time.

Further Optimizations. We now discuss how the setting of model counting allows for further
optimizations. Observe that for all 𝑖 , Sol(𝜑 ∧ (𝐻 [𝑖]𝑚𝑖−1) (𝑥) = 0𝑚𝑖−1) ⊇ Sol(𝜑 ∧ (𝐻 [𝑖]𝑚𝑖

) (𝑥) = 0𝑚𝑖 ).
Note that we are interested in finding the value of𝑚𝑖 such that |Sol(𝜑∧(𝐻 [𝑖]𝑚𝑖−1) (𝑥) = 0𝑚𝑖−1) | ≥ 96

𝜀2

and |Sol(𝜑 ∧ (𝐻 [𝑖]𝑚𝑖
) (𝑥) = 0𝑚𝑖 ) | < 96

𝜀2
, therefore, we can perform a binary search for𝑚𝑖 instead of

a linear search performed in the loop 8ś10. Indeed, this observation was at the core of Chakraborty
et al’s followup work [16], which proposed ApproxMC2, thereby reducing the number of calls to
NP oracle from O(𝑛 · 1

𝜀2
log(1/𝛿)) to O(log𝑛 · 1

𝜀2
log(1/𝛿)). Furthermore, the reduction in NP oracle

calls led to significant runtime improvement in practice. It is worth commenting that the usage
of ApproxMC2 as an FPRAS for DNF is shown to achieve runtime efficiency over the alternatives
based on Monte Carlo methods [49ś51].
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Algorithm 5 ApproxMC(𝜑, 𝜀, 𝛿)

1: 𝑡 ← 35 log( 1
𝛿
)

2: 𝐻 ← PickHashFunctions(HToeplitz (𝑛, 𝑛), 𝑡)

3: S ← {};
4: Thresh← 96

𝜀2

5: for 𝑖 ∈ [1, 𝑡] do

6: 𝑚𝑖 ← 0

7: 𝑐𝑖 ← BoundedSAT(𝜑,𝐻 [𝑖] |𝑚𝑖
, Thresh)

8: while 𝑐𝑖 ≥ Thresh do

9: 𝑚𝑖 ←𝑚𝑖 + 1

10: 𝑐𝑖 ← BoundedSAT(𝜑,𝐻 [𝑖] |𝑚𝑖
(𝑥), Thresh)

11: S[𝑖] ← (𝑐𝑖 ,𝑚𝑖 )

12: 𝐸𝑠𝑡 ← 𝑀𝑒𝑑𝑖𝑎𝑛({S[𝑖] (0) × 2S[𝑖 ] (1) }𝑖 )

13: return 𝐸𝑠𝑡

3.3 Minimum-based Algorithm

For a given multiset a ( eg: a data stream or solutions to a model), we now specify the property
P2 (S, 𝐻, a𝑢). The sketch S is an array of sets indexed by members of𝐻 that holds lexicographically
𝑝 minimum elements of 𝐻 [𝑖] (a𝑢) where 𝑝 is min( 96

𝜀2
, |a𝑢 |). P2 is the property that specifies this

relationship. More formally, the relationship P2 holds, if the following conditions are met.

(1) ∀𝑖, |S[𝑖] | = min( 96
𝜀2
, |a𝑢 |)

(2) ∀𝑖,∀𝑦 ∉ S[𝑖],∀𝑦 ′ ∈ S[𝑖] it holds that 𝐻 [𝑖] (𝑦 ′) ⪯ 𝐻 [𝑖] (𝑦)

Here ⪯ is the natural lexicographic order among the strings. The following lemma due to Bar-
Yossef et al. [7] establishes the relationship between the property P2 and the number of distinct
elements of a multiset. Let max(𝑆𝑖 ) denote the largest element of the set 𝑆𝑖 .

Lemma 2. [7] Let a ⊆ {0, 1}𝑛 be a multiset and𝐻 ⊆ HToeplitz (𝑛, 𝑛), where each𝐻 [𝑖] is independently

drawn fromHToeplitz (𝑛, 𝑛) such that |𝐻 | = 𝑂 (log 1/𝛿). Let S be such that the P2 (S, 𝐻, 𝑎𝑢) holds. Let

𝑐 = Median {
𝑝 ·2𝑚

max(𝑆 [𝑖 ])
}𝑖 . Then

Pr

[
|a𝑢 |

(1 + 𝜀)
≤ 𝑐 ≤ (1 + 𝜀) |a𝑢 |

]
≥ 1 − 𝛿.

Therefore, we can transform theMinimum algorithm for 𝐹0 estimation to that of model counting
given access to a subroutine that can computeS such thatP2 (S, 𝐻, Sol(𝜑)) holds true. The following
proposition establishes the existence and complexity of such a subroutine, called FindMin:

Proposition 2. There is an algorithm FindMin that, given 𝜑 over 𝑛 variables, ℎ ∈ HToeplitz (𝑛,𝑚),

and 𝑝 as input, returns a set, B ⊆ ℎ(Sol(𝜑)) so that if |ℎ(Sol(𝜑)) | ≤ 𝑝 , then B = ℎ(Sol(𝜑)), otherwise

B is the 𝑝 lexicographically minimum elements of ℎ(Sol(𝜑)). Moreover, if 𝜑 is a CNF formula, then

FindMin makes O(𝑝 ·𝑚) calls to an NP oracle, and if 𝜑 is a DNF formula with 𝑘 terms, then FindMin

takes O(𝑚3 · 𝑛 · 𝑘 · 𝑝) time.

Equipped with Proposition 2, we are now ready to present the algorithm for model counting,
which we call ApproxModelCountMin. Since the complexity of FindMin is PTIME when 𝜑 is in
DNF, we have ApproxModelCountMin as an FPRAS for DNF formulas.
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Algorithm 6 ApproxModelCountMin(𝜑, 𝜀, 𝛿)

1: 𝑡 ← 35 log(1/𝛿)

2: 𝐻 ← PickHashFunctions(HToeplitz (𝑛, 3𝑛), 𝑡)

3: 𝑆 ← {}

4: Thresh← 96
𝜀2

5: for 𝑖 ∈ [1, 𝑡] do

6: 𝑆 [𝑖] ← FindMin(𝜑,𝐻 [𝑖], Thresh)

7: 𝐸𝑠𝑡 ← Median
({

Thresh×23𝑛

max{𝑆 [𝑖 ] }

}
𝑖

)

8: return 𝐸𝑠𝑡

Theorem 3. Given 𝜑 , 𝜀,𝛿 , ApproxModelCountMin returns 𝑐 such that

Pr

(
|Sol(𝜑)

1 + 𝜀
≤ 𝐸𝑠𝑡 ≤ (1 + 𝜀) |Sol(𝜑) |

)
≥ 1 − 𝛿.

If 𝜑 is a CNF formula, then ApproxModelCountMin is a polynomial-time algorithm that makes

O( 1
𝜀2
𝑛 log( 1

𝛿
)) calls to NP oracle. If 𝜑 is a DNF formula, then ApproxModelCountMin is an FPRAS.

Implementing the Min-based Algorithm. We now give a proof of Proposition 2 by giving an imple-
mentation of FindMin subroutine.

Proof. We first present the algorithm when the formula 𝜑 is a DNF formula. Adapting the
algorithm for the case of CNF can be done by using similar ideas.

Let 𝜙 = 𝑇1 ∨𝑇2 ∨ · · · ∨𝑇𝑘 be a DNF formula over 𝑛 variables where𝑇𝑖 is a term. Let ℎ : {0, 1}𝑛 →

{0, 1}𝑚 be a linear hash function inHToeplitz (𝑛,𝑚) defined by a𝑚 ×𝑛 binary matrix 𝐴. Let C be the
set of hashed values of the satisfying assignments for 𝜑 : C = {ℎ(𝑥) | 𝑥 |= 𝜑} ⊆ {0, 1}𝑚 . Let C𝑝 be
the first 𝑝 elements of C in the lexicographic order. Our goal is to compute C𝑝 .

We will give an algorithm with running time𝑂 (𝑚3𝑛𝑝) to compute C𝑝 when the formula is just a
term 𝑇 . Using this algorithm we can compute C𝑝 for a formula with 𝑘 terms by iteratively merging
C𝑝 for each term. The time complexity increases by a factor of 𝑘 , resulting in an 𝑂 (𝑚3𝑛𝑘𝑝) time
algorithm.

Let 𝑇 be a term with width𝑤 (number of literals) and C = {𝐴𝑥 | 𝑥 |= 𝑇 }. By fixing the variables
in𝑇 we get a vector 𝑏𝑇 and an 𝑛× (𝑛−𝑤) matrix𝐴𝑇 so that C = {𝐴𝑇𝑥 +𝑏𝑇 | 𝑥 ∈ {0, 1}

(𝑛−𝑤) }. Both
𝐴𝑇 and 𝑏𝑇 can be computed from 𝐴 and𝑇 in linear time. Let ℎ𝑇 (𝑥) be the transformation 𝐴𝑇𝑥 +𝑏𝑇 .

We will compute C𝑝 (𝑝 lexicographically minimum elements in C) iteratively as follows: assuming

we have computed (𝑞− 1)𝑡ℎ minimum of C, we will compute 𝑞𝑡ℎ minimum using a prefix-searching
strategy. We will use a subroutine to solve the following basic prefix-searching primitive: Given any
𝑙 bit string 𝑦1 . . . 𝑦𝑙 , is there an 𝑥 ∈ {0, 1}𝑛−𝑤 so that 𝑦1 . . . 𝑦𝑙 is a prefix for some string in {ℎ𝑇 (𝑥)}?
This task can be performed using Gaussian elimination over an (𝑙 + 1) × (𝑛 −𝑤) binary matrix and
can be implemented in time 𝑂 (𝑙2 (𝑛 −𝑤)).
Let 𝑦 = 𝑦1 . . . 𝑦𝑚 be the (𝑞 − 1)𝑡ℎ minimum in C. Let 𝑟1 be the rightmost 0 of 𝑦. Then using the

above-mentioned procedure we can find the lexicographically smallest string in the range of ℎ𝑇
that extends 𝑦1 . . . 𝑦 (𝑟−1)1 if it exists. If no such string exists in C, find the index of the next 0 in 𝑦

and repeat the procedure. In this manner the 𝑞𝑡ℎ minimum can be computed using𝑂 (𝑚) calls to the
prefix-searching primitive resulting in an 𝑂 (𝑚3𝑛) time algorithm. Invoking the above procedure 𝑝
times results in an algorithm to compute C𝑝 in 𝑂 (𝑚3𝑛𝑝) time.

If 𝜑 is a CNF formula, we can employ the same prefix-searching strategy. Consider the following
NP oracle: 𝑂 = {⟨𝜑,ℎ,𝑦,𝑦 ′⟩ | ∃𝑥, ∃𝑦 ′′, so that 𝑥 |= 𝜑,𝑦 ′𝑦 ′′ > 𝑦,ℎ(𝑥) = 𝑦 ′𝑦 ′′}. With𝑚 calls to 𝑂 ,
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we can compute the lexicographically smallest string in C that is greater than 𝑦. So with 𝑝 ·𝑚 calls
to 𝑂 , we can compute C𝑝 .

□

Further Optimizations. As mentioned in Section 1, the problem of model counting has witnessed
a significant interest from practitioners owing to its practical usage. The recent developments
have been fueled by breakthrough progress in the design of SAT solvers. These developments
enable replacing calls to NP oracles with SAT solvers in practice.Motivated by the progress in SAT
solving, there has been significant interest in the design of efficient algorithmic frameworks for
related problems such as MaxSAT and its variants. The state-of-the-art MaxSAT solvers are based
on sophisticated strategies such as implicit hitting sets. Such solvers are shown to significantly
outperform algorithms based on merely invoking an SAT solver iteratively. Of particular interest
to us is the recent progress in the design of MaxSAT solvers to handle lexicographic objective
functions. In this context, it is worth remarking that we expect practical implementation of FindMin

would invoke a MaxSAT solver O(𝑝) times as practical solvers also provide witness (i.e., assignment
to variables) that achieves the optimal value.

3.4 Estimation-based Algorithm

We now adapt the Estimation algorithm to model counting. For a given stream a and chosen hash
functions 𝐻 , the sketch S corresponding to the estimation-based algorithm satisfies the following
relation P3 (S, 𝐻, a𝑢):

P3 (S, 𝐻, a𝑢) :=

(
𝑆 [𝑖, 𝑗] = max

𝑥 ∈a𝑢
TrailZero (𝐻 [𝑖, 𝑗] (𝑥))

)
(2)

where the procedure TrailZero(𝑧) is the length of the longest all-zero suffix of 𝑧. Bar-Yossef et al.
[7] show the following relationship between the property P3 and 𝐹0.

Lemma 3. [7] Let a ⊆ {0, 1}𝑛 be a multiset. For 𝑖 ∈ [𝑇 ] and 𝑗 ∈ [𝑀], suppose 𝐻 [𝑖, 𝑗] is drawn

independently from H𝑠−wise (𝑛, 𝑛) where 𝑠 = 𝑂 (log(1/𝜀)), 𝑇 = 𝑂 (log(1/𝛿)), and 𝑀 = 𝑂 (1/𝜀2). Let

𝐻 denote the collection of these hash functions. Suppose S satisfies P3 (S, 𝐻, a𝑢). For any integer 𝑟 ,

define:

𝑐𝑟 = Median




ln
(
1 − 1

𝑀

∑𝑀
𝑗=1 1{S[𝑖, 𝑗] ≥ 𝑟 }

)

ln(1 − 2−𝑟 )


𝑖

Then, if 2𝐹0 ≤ 2𝑟 ≤ 50𝐹0:

Pr [(1 − 𝜀)𝐹0 ≤ 𝑐𝑟 ≤ (1 + 𝜀)𝐹0] ≥ 1 − 𝛿

Following the recipe outlined above, we can transform an 𝐹0 streaming algorithm to a model
counting algorithm by designing a subroutine that can compute the sketch for the set of all solutions
described by 𝜑 and a subroutine to find 𝑟 . The following proposition achieves the first objective for
CNF formulas using a small number of calls to an NP oracle:

Proposition 3. There is an algorithm FindMaxRange that given 𝜑 over 𝑛 variables and hash function

ℎ ∈ H𝑠−wise (𝑛, 𝑛), returns 𝑡 such that

(1) ∃𝑧, 𝑧 |= 𝜑 and ℎ(𝑧) has 𝑡 least significant bits equal to zero.

(2) ∀(𝑧 |= 𝜑) =⇒ ℎ(𝑧) has ≤ 𝑡 least significant bits equal to zero.

If 𝜑 is a CNF formula, then FindMaxRange makes O(log𝑛) calls to an NP oracle.
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Algorithm 7 ApproxModelCountEst(𝜑, 𝜀, 𝛿, 𝑟 )

1: Thresh← 96/𝜀2

2: 𝑡 ← 35 log(1/𝛿)

3: 𝐻 ← PickHashFunctions(H𝑠−wise (𝑛, 𝑛), 𝑡 × Thresh)

4: 𝑆 ← {}

5: for 𝑖 ∈ [1, 𝑡] do

6: for 𝑗 ∈ [1, Thresh] do

7: 𝑆 [𝑖, 𝑗] ← FindMaxRange(𝜑,𝐻 [𝑖, 𝑗])

8: 𝐸𝑠𝑡 ← Median

{
ln

(
1− 1

Thresh

∑Thresh
𝑗=1 1{S [𝑖, 𝑗 ] ≥𝑟 }

)

ln(1−2−𝑟 )

}

𝑖
9: return 𝐸𝑠𝑡

Proof. Consider an NP oracle 𝑂 = {⟨𝜑,ℎ, 𝑡⟩ | ∃𝑥, ∃𝑦, 𝑥 |= 𝜑,ℎ(𝑥) = 𝑦0𝑡 ⟩}. Note that ℎ can be
implemented as a degree-𝑠 polynomial ℎ : F2𝑛 → F2𝑛 , so that ℎ(𝑥) can be evaluated in polynomial
time. A binary search, requiring 𝑂 (log𝑛) calls to 𝑂 , suffices to find the largest value of 𝑡 for which
⟨𝜑,ℎ, 𝑡⟩ belongs to 𝑂 . □

We note that unlike Propositions 1 and 2, we do not know whether FindMaxRange can be
implemented efficiently when 𝜑 is a DNF formula. For a degree-𝑠 polynomial ℎ : F2𝑛 → F2𝑛 , we
can efficiently test whether ℎ has a root by computing gcd(ℎ(𝑥), 𝑥2

𝑛

− 𝑥), but it is not clear how to
simultaneously constrain some variables according to a DNF term.
Equipped with Proposition 3, we obtain ApproxModelCountEst that takes in a formula 𝜑 and

a suitable value of 𝑟 and returns |Sol(𝜑) |. The key idea of ApproxModelCountEst is to repeatedly
invoke FindMaxRange for each of the chosen hash functions and compute the estimate based
on the sketch S and the value of 𝑟 . The following theorem summarizes the time complexity and
guarantees of ApproxModelCountEst for CNF formulas.

Theorem 4. Given a CNF formula 𝜑 , parameters 𝜀 and 𝛿 , and 𝑟 such that 2𝐹0 ≤ 2𝑟 ≤ 50𝐹0, the

algorithm ApproxModelCountEst returns 𝑐 satisfying

Pr

[
|Sol(𝜑)

1 + 𝜀
≤ 𝑐 ≤ (1 + 𝜀) |Sol(𝜑) |

]
≥ 1 − 𝛿.

ApproxModelCountEst makes O( 1
𝜀2
log𝑛 log( 1

𝛿
)) calls to an NP oracle.

In order to obtain 𝑟 , we run in parallel another counting algorithm based on the simple 𝐹0-
estimation algorithm [3, 32] which we call FlajoletMartin. Given a stream a, the FlajoletMartin

algorithm chooses a random pairwise-independent hash function ℎ ∈ 𝐻𝑥𝑜𝑟 (𝑛, 𝑛), computes the
largest 𝑟 so that for some 𝑥 ∈ a𝑢 , the 𝑟 least significant bits of ℎ(𝑥) are zero, and outputs 𝑟 . Alon,
Matias and Szegedy [3] showed that 2𝑟 is a 5-factor approximation of 𝐹0 with probability 3/5.
Using our recipe, we can convert FlajoletMartin into an algorithm that approximates the number
of solutions to a CNF formula 𝜑 within a factor of 5 with probability 3/5. It is easy to check that
using the same idea as in Proposition 3, this algorithm requires 𝑂 (log𝑛) calls to an NP oracle.

3.5 Role of the Sketch Complexity

In the design of streaming algorithms reducing the space complexity is of primary concern whereas
in model counting algorithms the goal is to minimize the run time or the number of NP queries
made. Having established a recipe to transform sketch-based streaming algorithms into model
counting algorithms, a natural question that arises is the relationship between the space complexity
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of the streaming algorithm and the number of NP queries made by the model counting algorithm.
In this section, we attempt to clarify this relationship. In the following, we will fold the hash
function ℎ also in the sketch 𝑆 . With this simplification, instead of writing 𝑃 (𝑆, ℎ, Sol(𝜑)) we write
𝑃 (𝑆, Sol(𝜑)).

We first introduce some complexity-theoretic notation. For a complexity class C, a language 𝐿
belongs to the complexity class ∃ · C if there is a polynomial 𝑞(·) and a language 𝐿′ ∈ C such that
for every 𝑥

𝑥 ∈ 𝐿 ⇔ ∃𝑦, |𝑦 | ≤ 𝑞( |𝑥 |), ⟨𝑥,𝑦⟩ ∈ 𝐿′

Consider a streaming algorithm for 𝐹0 that constructs a sketch such that 𝑃 (𝑆, 𝑎𝑢) holds for some
property 𝑃 using which we can estimate |𝑎𝑢 |, where the size of 𝑆 is poly-logarithmic in the size of
the universe and polynomial in 1/𝜀. Now consider the following Sketch-Language

𝐿𝑠𝑘𝑒𝑡𝑐ℎ = {⟨𝜑, 𝑆⟩ | 𝑃 (𝑆, Sol(𝜑)) holds}.

Theorem 5. If 𝐿𝑠𝑘𝑒𝑡𝑐ℎ belongs to the complexity class C, then there exists a FP∃·C model counting

algorithm that estimates the number of satisfying assignments of a given formula 𝜑 . The number of

queries made by the algorithm is bounded by the sketch size.

Proof. The proof uses the standard prefix search. Consider the following prefix language

𝑝𝑟𝑒 (𝐿𝑠𝑘𝑒𝑡𝑐ℎ) = {⟨𝜑,𝑢⟩ | ∃ 𝑣 such that 𝑃 (𝑢𝑣, Sol(𝜑)) holds}

It is easy to see that, using prefix search, there is an algorithm that makes queries to the language
𝑝𝑟𝑒 (𝐿𝑠𝑘𝑒𝑡𝑐ℎ) and constructs a sketch 𝑆 such that 𝑃 (𝑆, Sol(𝜑)) holds. In this algorithm since each
query reveals one bit of the sketch, the number of queries is bounded by the size of the sketch.
Recall that the size of the sketch is poly-logarithmic in the size of the universe, which is 2𝑛 (where
𝑛 is the number of variables of 𝜑), and polynomial in 1/𝜀. Thus the number of calls made by the
algorithm is polynomial in 𝑛 and 1/𝜀. Further, note that 𝑝𝑟𝑒 (𝐿𝑠𝑘𝑒𝑡𝑐ℎ) belongs to the complexity
class ∃ · C. □

The above theorem gives a general upper bound on the complexity of the model counting
algorithm based on the complexity of the language 𝐿𝑠𝑘𝑒𝑡𝑐ℎ . In the specific instances that we illustrate

(bucketing, minimum, and estimation), the sketch language is in coNP. This will lead to a FPΣ
P
2

algorithm for model counting. For example, consider the minimum-based algorithm. The sketch
language is the following.

{⟨𝜑, ⟨ℎ, 𝑣1, · · · 𝑣𝑡 ⟩⟩ | {𝑣1, · · · 𝑣𝑡 } is the set of 𝑡 lex-smallest elements of ℎ(Sol(𝜑))}

The above language is in the class coNP: If ⟨𝜑, ⟨ℎ, 𝑣1, · · · 𝑣𝑡 ⟩⟩ does not belong to the sketch
language, then there is a satisfying assignment 𝑎 of 𝜑 such that there exists 𝑖 , 0 ≤ 𝑖 ≤ 𝑡 − 1 and
𝑣𝑖 < ℎ(𝑎) < 𝑣𝑖+1 (where 𝑣0 is the empty string). Thus an NP machine for the complement language
works by guessing an assignment 𝑎 and verifying that 𝑎 satisfies 𝜑 and ℎ(𝑎) lies between 𝑣𝑖 and
𝑣𝑖+1 for some 𝑖 , 0 ≤ 𝑖 ≤ 𝑡 − 1. Thus the sketch language is in coNP. Since ∃ · coNP is same as the

class ΣP
2 , we obtain a FPΣ

P
2 algorithm. Since 𝑡 = 𝑂 (1/𝜀2) and ℎ maps from 𝑛-bit strings to 3𝑛-bit

strings, it follows that the size of the sketch is 𝑂 (𝑛/𝜀2). Thus the number of queries made by the
algorithm is 𝑂 (𝑛/𝜀2).

Note that in all three model counting algorithms that were obtained, are probabilistic polynomial-
time algorithms that make queries to languages in NP. The above generic transformation gives a
deterministic polynomial-time algorithm that makes queries to a ΣP

2 oracle. Precisely characterizing
the properties of the sketch that lead to probabilistic algorithms making only NP queries is an
interesting direction to explore.
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3.6 The Opportunities Ahead

As noted in Section 3.2, the algorithms based on Bucketingwere already known and havewitnessed a
detailed technical development from both applied and algorithmic perspectives. The model counting
algorithms based on Minimum and Estimation are new. We discuss some potential implications of
these new algorithms to SAT solvers and other aspects.

MaxSAT solvers with native support for XOR constraints. When the input formula 𝜑 is represented
as CNF, then ApproxMC, the model counting algorithm based on Bucketing strategy, invokes
NP oracle over CNF-XOR formulas, i.e., formulas expressed as a conjunction of CNF and XOR
constraints. The XOR constraints appear due to the need to evaluate the hash functions which are
evaluations of XORs. The significant improvement in the runtime performance of ApproxMC owes
to the design of SAT solvers with native support for CNF-XOR formulas [59ś61]. Such solvers have
now found applications in other domains such as cryptoanalysis. It is perhaps worth emphasizing
that the proposal of ApproxMC was crucial to renewed interest in the design of SAT solvers with
native support for CNF-XOR formulas. As observed in Section 3.3, the algorithm based on the
Minimum strategy would ideally invoke a MaxSAT solver that can handle XOR constraints naively.
We believe that the Minimum-based algorithm will ignite interest in the design of MaxSAT solver
with native support for XOR constraints.

FPRAS for DNF based on Estimation. In Section 3.4, we were unable to show that the model
counting algorithm obtained based on Estimation is FPRAS when 𝜑 is represented as DNF. The
algorithms based on Estimation have been shown to achieve optimal space efficiency in the context
of 𝐹0 estimation. In this context, an open problem is to investigate whether the Estimation-based
strategy lends itself to FPRAS for DNF counting.

Empirical Study of FPRAS for DNF Based on Minimum. Meel et al. [50, 51] observed that FPRAS for
DNF based on Bucketing has superior performance, in terms of the number of instances solved, to
that of FPRAS schemes based on the Monte Carlo framework. In this context, a natural direction of
future work would be to conduct an empirical study to understand the behavior of FPRAS scheme
based on the Minimum strategy.

4 FROM 𝐿0 SAMPLING TO CONSTRAINED SAMPLING

There has been considerable work on sampling elements from data streams [20, 33, 41, 52]. In
particular, for a data stream a, one would like to generate an uniform sample from a𝑢 , the set
of unique elements of the stream a. This problem is known as 𝐿0 sampling. It is known that
counting and sampling are closely-related problems. In particular, Jerrum, Valiant, and Vazirani [40]
demonstrated that model counting and constrained sampling (for example generating uniform
samples from the set of satisfying assignments of a Boolean formula) are inter-reducible. Therefore,
a natural question is whether known 𝐿0 sampling algorithms can be similarly transformed into
constrained sampling algorithms. In this section, we answer this question affirmatively for a broad
class of 𝐿0 sampling algorithms.
Our recipe for transformation is based on the following unifying framework presented by

Cormode and Firmani [20]. This framework involves three steps; sampling, recovery, and selection.

Sampling For a given stream a and its corresponding unique set a𝑢 , the sampling process implicitly
defines𝑚 subsets of a, say S[0],S[1],S[𝑚 − 1]. These subsets are not stored explicitly but
are summarized implicitly.

Recovery The recovery step seeks to recover every subset S[𝑖], if the size of |S[𝑖] | < 𝑠 for an
appropriately chosen parameter 𝑠 . We call such a set 𝑠-sparse.
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Algorithm 8 L0Sampler(𝑛, 𝜀, 𝛿)

1: 𝑠 = O(log 1/𝜀 + log 1/𝛿)

2: 𝑘 ← 𝑠
2

3: ℎ ← PickHashFunctions(H𝑘−𝑤𝑖𝑠𝑒 (𝑛, 3𝑛), 1) [0]

4: while true do
5: if EndStream then exit;

6: 𝑥 ← 𝑖𝑛𝑝𝑢𝑡 ()

7: for 𝑖 ∈ [𝑛] do

8: if TrailZero(ℎ(𝑥)) ≤ 𝑖 then

9: S[𝑖] .𝐴𝑝𝑝𝑒𝑛𝑑 (𝑥) ⊲ S[𝑖] is implicitly maintained via sparse-recovery data structures

10: for𝑚 ∈ [𝑛] do

11: (CanRecover,L) ← Recover(S, ℎ, 𝑠,𝑚)

12: if CanRecover == Success then

13: return argmin𝑥 ∈Lℎ(𝑥)

14: return FAIL

Selection In order to draw a sample, the 𝐿0 sampler seeks to choose a level 𝑗 ∈ [𝑚] such that S[𝑖]
is 𝑠-sparse but not empty. In such a case, the element 𝑦 is chosen such that 𝑦 ∈ S[𝑖] and ℎ(𝑦)
is smallest among all the elements recovered.

Based on the above framework, Cormode and Firmani synthesized the known samplers into the
algorithm presented in Algorithm 8.

4.1 A Recipe for Transformation

Our recipe for the transformation of 𝐿0 sampling algorithms captured by the unified framework of
Algorithm 8 to constrained sampling is based on two simple insights:

(1) Similar to the recipe for transformation of 𝐹0 estimation to model counting, for each 𝑖 , we
capture the relationship P(S[𝑖], ℎ, a𝑢) between the implicit subsets S[𝑖], hash function ℎ, the
set a𝑢 at the end of the stream. Again, we can view a formula𝜑 to be a symbolic representation
of some unique set a𝑢 such that Sol(𝜑) = a𝑢 .

(2) The exact s-sparse recovery step can be simulated by a generalization of BoundedSAT, i.e.,
given 𝜑 , the hash function ℎ, and a number 𝑖 , we can reconstruct S[𝑖] (if 𝑆 [𝑖] is small) such
that P(S[𝑖], ℎ, Sol(𝜑)) holds.

As an example, let us consider Algorithm 8 and we can formalize the property P4 (S[𝑖], ℎ, a𝑢) as
follows:

P4 (S[𝑖], ℎ, a𝑢) := 𝑆 [𝑖] = {𝑥 | TrailZero(ℎ(𝑥)) ≤ 𝑖 ∧ 𝑥 ∈ a𝑢}

We apply the above recipe to translate the unified algorithm presented in Algorithm 8 to one for
constrained sampling. To this end, we rely on the following generalization of BoundedSAT that
can simulate exact sparse recovery.

Proposition 4 (Lemma 3.7 of [9]). There is an algorithm GenBoundedSAT that gets 𝜑 over 𝑛

variables, a hash function ℎ ∈ H𝑘-𝑤𝑖𝑠𝑒 (𝑛, 3𝑛), and numbers𝑚 and 𝑝 as inputs, returns L such that

L ⊆ Sol(𝜑 ∧ TrailZero(ℎ(𝑥)) ≤ 𝑚) and |L| = min(𝑝, |Sol(𝜑 ∧ TrailZero(ℎ(𝑥)) ≤ 𝑚) |), and makes

O(𝑝 · 𝑛) calls to a NP oracle.

Equipped with GenBoundedSAT, we present the algorithm UnifSampler in Algorithm 9 that
takes in a formula 𝜑 , tolerance parameter 𝜀, and confidence parameter 𝛿 , and returns a sample

, Vol. 1, No. 1, Article . Publication date: December 2023.



Algorithm 9 UnifSampler(𝜑, 𝜀, 𝛿)

1: 𝑠 = O(log 1/𝜀 + log 1/𝛿)

2: 𝑘 ← 𝑠
2

3: ℎ ← PickHashFunctions(H𝑘−𝑤𝑖𝑠𝑒 (𝑛, 3𝑛), 1)

4: for𝑚 ∈ [𝑛] do

5: L ← GenBoundedSAT(𝜑,ℎ,𝑚, 𝑠 + 1)

6: if 1 ≤ |L| ≤ 𝑠 then

7: return argmin𝑥 ∈Lℎ(𝑥)

8: return FAIL

𝜎 ∈ Sol(𝜑). Since GenBoundedSAT implements exact sparse recovery, the algorithm UnifSampler

enjoys theoretical guarantees for the quality of its samples.

Theorem 6. For a given formula𝜑 , tolerance parameter 𝜀, and confidence parameter 𝛿 ,UnifSampler

succeeds (i.e., does not return FAIL) with probability at least 1 − 𝛿 , and conditioned on success, outputs

𝜎 ∈ Sol(𝜑) with probability 1±𝜀
|Sol(𝜑) |

± 𝛿 .

5 DISTRIBUTED DNF COUNTING

Consider the problem of distributed DNF counting. In this setting, there are 𝑘 sites that can each
communicate with a central coordinator. The input DNF formula 𝜑 is partitioned into 𝑘 DNF
subformulas 𝜑1, . . . , 𝜑𝑘 , where each 𝜑𝑖 is a subset of the terms of the original 𝜑 , with the 𝑗 ’th site
receiving only 𝜑 𝑗 . The goal is for the coordinator to obtain an (𝜖, 𝛿)-approximation of the number
of solutions to 𝜑 , while minimizing the total number of bits communicated between the sites and
the coordinator. Distributed algorithms for sampling and counting solutions to CSP’s have been
studied recently in other models of distributed computation [28ś31]. From a practical perspective,
given the centrality of #DNF in the context of probabilistic databases [55, 56], a distributed DNF
counting would entail applications in distributed probabilistic databases.

From our perspective, distributed DNF counting falls within the distributed functional monitoring

framework formalized by Cormode et al. [23]. Here, the input is a stream a which is partitioned
arbitrarily into sub-streams a1, . . . , a𝑘 that arrive at each of 𝑘 sites. Each site can communicate with
the central coordinator, and the goal is for the coordinator to compute a function of the joint stream
awhile minimizing the total communication. This general framework has several direct applications
and has been studied extensively [4, 6, 21, 24, 37, 45ś47, 58, 67, 68, 70]. In distributed DNF counting,
each sub-stream a𝑖 corresponds to the set of satisfying assignments to each subformula 𝜑𝑖 , while
the function to be computed is 𝐹0.

The model counting algorithms discussed in Section 3 can be extended to the distributed setting,
using the mergeability of the underlying sketches. We describe next the distributed implemen-
tations for each of the three algorithms. As earlier, we set the parameters Thresh to 𝑂 (1/𝜀2)

and 𝑡 to 𝑂 (log(1/𝛿)). We use a variant of BoundedSAT that takes in 𝜑 over 𝑛 variables, a func-
tion ℎ ∈ HToeplitz (𝑛,𝑚), and a threshold 𝑡 as inputs, and returns a set 𝑈 of solutions such that
|𝑈 | = min(𝑡, |Sol(𝜑 ∧ ℎ(𝑥) = 0𝑚) |), instead of returning |𝑈 | itself.

Bucketing. Setting ℓ =𝑂 (log(𝑘/𝛿𝜀2)), the coordinator chooses𝐻 [1], . . . , 𝐻 [𝑡] fromHToeplitz (𝑛, 𝑛)

and 𝐺 fromHxor (𝑛, ℓ). It then sends them to the 𝑘 sites, along with the values of 𝑡 and thresh. Let
𝑚𝑖, 𝑗 be the smallest𝑚 such that the size of the set BoundedSAT(𝜑 𝑗 , 𝐻 [𝑖]𝑚, thresh) is smaller than
thresh. The 𝑗 ’th site sends to the coordinator the following tuples:

⟨𝑖,𝐺 (𝑥), TrailZero(𝐻 [𝑖] (𝑥)),𝑚𝑖, 𝑗 ⟩
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for each 𝑖 ∈ [𝑡] and for each 𝑥 in BoundedSAT(𝜑 𝑗 , 𝐻 [𝑖]𝑚𝑖,𝑗
, thresh).

Each of the 𝑘 sites only sends tuples for at most𝑂 (1/𝜀2) choices of 𝑥 . By a standard union-bound
argument, 𝐺 hashes these 𝑥 to distinct values with probability 1 − 𝛿/2. The coordinator can then
execute the rest of the algorithm, as shown in the coordinator part of ApproxMCDis. For each
𝑖 = 1, . . . , 𝑡 , it merges the lists sent over by each of the 𝑘 sites to get a final list consisting of the
hashes of at most Thresh elements that (i) have at least 𝑀 [𝑖] many trailing zeros when hashed
by 𝐻 [𝑖] and (ii) satisfy the subformula for at least one of the sites. The communication cost is
𝑂̃ (𝑘 (𝑛+1/𝜀2) · log(1/𝛿)), and the time complexity for each site is polynomial in 𝑛, 𝜀−1, and log(𝛿−1).

Minimum. The coordinator chooses hash functions 𝐻 [1], . . . , 𝐻 [𝑡] from HToeplitz (𝑛, 3𝑛) and
sends it to the 𝑘 sites. Each site runs the FindMin algorithm for each hash function and sends
the outputs to the coordinator. So, the coordinator receives sets 𝑆 [𝑖, 𝑗], consisting of the Thresh
lexicographically smallest hash values of the solutions to 𝜑 𝑗 . The coordinator then extracts 𝑆 [𝑖],
the Thresh lexicographically smallest elements of 𝑆 [𝑖, 1] ∪ · · · ∪ 𝑆 [𝑖, 𝑘] and proceeds with the rest
of algorithm ApproxModelCountMin. The communication cost is 𝑂 (𝑘𝑛/𝜀2 · log(1/𝛿)) to account
for the 𝑘 sites sending the outputs of their FindMin invocations. The time complexity for each site
is polynomial in 𝑛, 𝜀−1, and log(𝛿−1).

Algorithm 10 ApproxMCDis(𝑛, 𝑘, 𝜀, 𝛿) for
coordinator
Stage: Initialization

1: 𝑡 ← 35 log( 1
𝛿
)

2: ℓ ← 10 log( 𝑘

𝛿𝜀2
)

3: 𝐻 ← PickHashFunctions(HToeplitz (𝑛,𝑛), 𝑡 )

4: 𝐺 ← PickHashFunctions(Hxor (𝑛, ℓ), 1)

5: Thresh← 96
𝜀2

6: Broadcast 𝑡, thresh, 𝐻 and𝐺 to all sites.

7: 𝑀 ← [0, . . . , 0] of length 𝑡

8: 𝐸𝑙𝑡𝑠 ← [{}, . . . , {}] of length 𝑡

Stage: Processing message ⟨𝑖, 𝑧,𝑚0,𝑚⟩

1: if𝑚 < 𝑀 [𝑖 ] or ⟨𝑧,𝑚0 ⟩ ∈ 𝐸𝑙𝑡𝑠 [𝑖 ] then

2: return

3: 𝑀 [𝑖 ] ←𝑚

4: Add ⟨𝑧,𝑚0 ⟩ to 𝐸𝑙𝑡𝑠 [𝑖 ]

5: for each ⟨𝑧′,𝑚′0 ⟩ ∈ 𝐸𝑙𝑡𝑠 [𝑖 ] do

6: if𝑚′0 < 𝑀 [𝑖 ] then

7: Remove ⟨𝑧′,𝑚′0 ⟩ from 𝐸𝑙𝑡𝑠 [𝑖 ]

8: while |𝐸𝑙𝑡𝑠 [𝑖 ] | ≥ Thresh do

9: 𝑀 [𝑖 ] ← 𝑀 [𝑖 ] + 1

10: for each ⟨𝑧′,𝑚′0 ⟩ ∈ 𝐸𝑙𝑡𝑠 [𝑖 ] do

11: if𝑚′0 < 𝑀 [𝑖 ] then

12: Remove ⟨𝑧′,𝑚′0 ⟩ from 𝐸𝑙𝑡𝑠 [𝑖 ]

Stage: Output estimate

1: 𝐸𝑠𝑡 ← Median( {𝑀 [𝑖 ] × 2|𝐸𝑙𝑡𝑠 [𝑖 ] | }𝑡𝑖=1)

2: return 𝐸𝑠𝑡

Algorithm 11 ApproxMCDis(𝜑) for site

Stage: Initialization

1: Receive 𝑡, Thresh, and hash functions

𝐻 [1], . . . , 𝐻 [𝑡 ],𝐺 from coordinator

2: S ← {};

Stage: Processing of input 𝜑

1: for 𝑖 ∈ [1, 𝑡 ] do

2: 𝑚𝑖 ← 0

3: 𝑐𝑖 ← BoundedSAT(𝜑,𝐻 [𝑖 ]𝑚𝑖 , Thresh)

4: while 𝑐𝑖 ≥ Thresh do

5: 𝑚𝑖 ←𝑚𝑖 + 1

6: 𝑐𝑖 ← BoundedSAT(𝜑,𝐻 [𝑖 ]𝑚𝑖 , Thresh)

7: for each 𝑥 ∈ 𝑐𝑖 do

8: Send ⟨𝑖,𝐺 (𝑥), TrailZero(𝐻 [𝑖 ] (𝑥)),𝑚𝑖 ⟩ to

coordinator

, Vol. 1, No. 1, Article . Publication date: December 2023.



Algorithm 12 ApproxMCMinDis(𝑛, 𝑘, 𝜀, 𝛿)

for coordinator
Stage: Initialization

1: 𝑡 ← 35 log(1/𝛿)

2: Thresh← 96
𝜀2

3: 𝐻 ← PickHashFunctions(HToeplitz (𝑛, 3𝑛), 𝑡 )

4: Broadcast 𝑡, thresh and 𝐻 to all sites

5: 𝑆′, 𝐸𝑙𝑡𝑠 ← ∅

Stage: Processing of input 𝑆

1: for 𝑖 ∈ [1, 𝑡 ] do

2: 𝑆′ [𝑖 ] ← 𝑆′ [𝑖 ] ∪ 𝑆 [𝑖 ]

Stage: Output estimate

1: for 𝑖 ∈ [1, 𝑡 ] do

2: 𝐸𝑙𝑡𝑠 [𝑖 ] ← the Thresh lexicographically smallest

elements of 𝑆′ [𝑖 ]

3: 𝐸𝑠𝑡 ← Median
({

Thresh×23𝑛

max{𝑆 [𝑖 ]}

}
𝑖

)

4: return 𝐸𝑠𝑡

Algorithm 13 ApproxMCMinDis(𝜙) for site

Stage: Initialization

1: Receive 𝑡, thresh, 𝐻 [1], . . . , 𝐻 [𝑡 ] from coordinator

2: 𝑆 ← {}

Stage: Processing of input 𝜑

1: for 𝑖 ∈ [1, 𝑡 ] do

2: 𝑆 [𝑖 ] ← FindMin(𝜑,𝐻 [𝑖 ], Thresh)

3: Send 𝑆 to coordinator

Estimation. For each 𝑖 ∈ [𝑡], the coordinator chooses Thresh hash functions𝐻 [𝑖, 1], . . . , 𝐻 [𝑖, Thresh],
drawn pairwise independently fromH𝑠−wise (𝑛, 𝑛) (for 𝑠 = 𝑂 (log(1/𝜀))) and sends it to the 𝑘 sites.
Each site runs the FindMaxRange algorithm for each hash function and sends the output to the
coordinator. Suppose the coordinator receives 𝑆 [𝑖, 𝑗, ℓ] ∈ [𝑛] for each 𝑖 ∈ [𝑡], 𝑗 ∈ [Thresh] and
ℓ ∈ [𝑘]. It computes 𝑆 [𝑖, 𝑗] = maxℓ 𝑆 [𝑖, 𝑗, ℓ]. The rest of ApproxModelCountEst is then executed

by the coordinator. The communication cost is 𝑂̃ (𝑘 (𝑛 + 1/𝜀2) log(1/𝛿)).

Algorithm 14 ApproxMCEstDis(𝑛, 𝑘, 𝜀, 𝛿, 𝑟 )

for coordinator
Stage: Initialization

1: 𝑡 ← 35 log(1/𝛿)

2: Thresh← 96/𝜀2

3: 𝐻 ← PickHashFunc(H𝑠−wise (𝑛,𝑛), 𝑡 × Thresh)

4: Broadcast 𝑡, thresh, 𝐻 to all sites

5: S′ ← ∅

Stage: Processing message 𝑆

1: for 𝑖 ∈ [1, 𝑡 ] do

2: for 𝑗 ∈ [1, Thresh] do

3: S′ [𝑖, 𝑗 ] ← max(𝑆′ [𝑖, 𝑗 ], 𝑆 [𝑖, 𝑗 ])

Stage: Output estimate

1: 𝐸𝑠𝑡 ← Median

{
ln

(
1− 1

Thresh

∑Thresh
𝑗=1 1{S′ [𝑖,𝑗 ]≥𝑟 }

)

ln(1−2−𝑟 )

}

𝑖
2: return 𝐸𝑠𝑡

Algorithm 15 ApproxMCEstDis(𝜑) for site

Stage: Initialization

1: Receive 𝑡, thresh, 𝐻 from coordinator

2: 𝑆 ← {}

Stage: Processing of input 𝜑

1: for 𝑖 ∈ [1, 𝑡 ] do

2: for 𝑗 ∈ [1, Thresh] do

3: 𝑆 [𝑖, 𝑗 ] ← FindMaxRange(𝜑,𝐻 [𝑖, 𝑗 ])

4: Send 𝑆 to coordinator

Lower Bound

The communication cost for the Bucketing and Estimation-based algorithms is nearly optimal in
their dependence on 𝑘 and 𝜀. Woodruff and Zhang [67] showed that the randomized communication
complexity of estimating 𝐹0 up to a 1 + 𝜀 factor in the distributed functional monitoring setting
is Ω(𝑘/𝜀2). We can reduce 𝐹0 estimation problem to distributed DNF counting. Namely, if for the
𝐹0 estimation problem, the 𝑗 ’th site receives items 𝑎1, . . . , 𝑎𝑚 ∈ [𝑁 ], then for the distributed DNF
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counting problem, 𝜑 𝑗 is a DNF formula on ⌈log2 𝑁 ⌉ variables whose solutions are exactly 𝑎1, . . . , 𝑎𝑚
in their binary encoding. Thus, we immediately get an Ω(𝑘/𝜀2) lower bound for the distributed
DNF counting problem. Finding the optimal dependence on 𝑁 for 𝑘 > 1 remains an interesting
open question3.

6 FROM COUNTING TO STREAMING: STRUCTURED SET STREAMING

In this section we consider structured set streaming model where each item 𝑆𝑖 of the stream is
a succinct representation of a set over the universe 𝑈 = {0, 1}𝑛 . Our goal is to design efficient
algorithms (both in terms of memory and processing time per item) for computing | ∪𝑖 𝑆𝑖 |Ðnumber
of distinct elements in the union of all the sets in the stream. We call this problem 𝐹0 computation
over structured set streams.

DNF Sets

A particular representation we are interested in is where each set is presented as the set of satisfying
assignments to a DNF formula. Let 𝜑 be a DNF formula over 𝑛 variables. Then the DNF Set

corresponding to 𝜑 is the set of satisfying assignments of 𝜑 . The size of this representation is the
number of terms in the formula 𝜑 .
A stream over DNF sets is a stream of DNF formulas 𝜑1, 𝜑2, . . .. Given such a DNF stream, the

goal is to estimate |
⋃

𝑖 𝑆𝑖 | where 𝑆𝑖 the DNF set represented by 𝜑𝑖 . This quantity is same as the
number of satisfying assignments of the formula ∨𝑖𝜑𝑖 . We show that the algorithms described in
the previous section carry over to obtain (𝜖, 𝛿) estimation algorithms for this problem with space
and per-item time poly(1/𝜖, 𝑛, 𝑘, log(1/𝛿)) where 𝑘 is the size of the formula.

Notice that this model generalizes the traditional streaming model where each item of the stream
is an element 𝑥 ∈ 𝑈 as it can be represented as single term DNF formula 𝜙𝑥 whose only satisfying
assignment is 𝑥 . This model also generalizes certain other models considered in the streaming
literature that we discuss later.

Theorem 7. There is a streaming algorithm to compute an (𝜖, 𝛿) approximation of 𝐹0 over DNF

sets. This algorithm takes space𝑂 ( 𝑛
𝜀2
· log 1

𝛿
) and processing time𝑂 (𝑛4 · 𝑘 · 1

𝜀2
· log 1

𝛿
) per item where

𝑘 is the size (number of terms) of the corresponding DNF formula.

Proof. We show how to adapt Minimum-value based algorithm from Section 3.3 to this setting.
The algorithm picks a hash function ℎ ∈ HToeplitz (𝑛, 3𝑛) and maintains the set B consisting of 𝑡
lexicographically minimum elements of the set {ℎ(Sol(𝜑1∨ . . .∨𝜑𝑖−1))} after processing 𝑖 − 1 items.
When 𝜑𝑖 arrives, it computes the set B ′ consisting of the 𝑡 lexicographically minimum values of
the set {ℎ(Sol(𝜑𝑖 ))} and subsequently updates B by computing the 𝑡 lexicographically smallest
elements from B∪B ′. By Proposition 2, computation of B ′ can be done in time𝑂 (𝑛4 ·𝑘 · 𝑡) where 𝑘
is the number of terms in 𝜑𝑖 . Updating B can be done in𝑂 (𝑡 ·𝑛) time. Thus update time for the item
𝜑𝑖 is𝑂 (𝑛

4 · 𝑘 · 𝑡). For obtaining an (𝜀, 𝛿) approximations we set 𝑡 = 𝑂 ( 1
𝜀2
) and repeat the procedure

𝑂 (log 1
𝛿
) times and take the median value. Thus the update time for item 𝜑 is 𝑂 (𝑛4 · 𝑘 · 1

𝜀2
· log 1

𝛿
).

For analyzing sapce, each hash function uses 𝑂 (𝑛) bits and to store 𝑂 ( 1
𝜖2
) minimums, we require

𝑂 ( 𝑛
𝜖2
) space resulting in overall space usage of𝑂 ( 𝑛

𝜀2
· log 1

𝛿
). The proof of correctness follows from

Lemma 2. □

Instead of using Minimum-value based algorithm, we could adapt Bucketing-based algorithm
to obtain an algorithm with similar space and time complexities. As noted earlier, some of the set

3Note that if 𝑘 = 1, then log(𝑛/𝜀) bits suffices, as the site can solve the problem on its own and send to the coordinator the

binary encoding of a (1 + 𝜀)-approximation of 𝐹0.
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streaming models considered in the literature can be reduced the DNF set streaming. We discuss
them next.

Multidimensional Ranges

A 𝑑 dimensional range over an universe𝑈 = {0, · · · , 2𝑛 − 1} is defined as [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × . . . ×
[𝑎𝑑 , 𝑏𝑑 ]. Such a range represents the set of tuples (𝑥1, . . . , 𝑥𝑑 ) where 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 and 𝑥𝑖 is an integer.
Note that every 𝑑-dimensional range can be succinctly represented by the tuple ⟨𝑎1, 𝑏1, · · ·𝑎𝑑 , 𝑏𝑑⟩.
A multi-dimensional stream is a stream where each item is a 𝑑-dimensional range. The goal is to
compute 𝐹0 of the union of the 𝑑-dimensional ranges effeiciently. We will show that 𝐹0 computation
over multi-dimensional ranges can reduced to 𝐹0 computation over DNF sets. Using this reduction
we arrive at a simple algorithm to compute 𝐹0 over multi-dimensional ranges.

Lemma 4. Any 𝑑-dimensional range 𝑅 over 𝑈 can be represented as a DNF formula 𝜑𝑅 over 𝑛𝑑

variables whose size is at most (2𝑛)𝑑 . There is an algorithm that takes 𝑅 as input and outputs the 𝑖𝑡ℎ

term of 𝜑𝑅 using 𝑂 (𝑛𝑑) space, for 1 ≤ 𝑖 ≤ (2𝑛)𝑑 .

Proof. Let 𝑅 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × . . . × [𝑎𝑑 , 𝑏𝑑 ] be a 𝑑-dimensional range over𝑈 𝑑 . We will first
describe the formula to represent the multi-dimensional range as a conjunction of 𝑑 DNF formulae
𝜙1, · · · , 𝜙𝑑 each with at most 2𝑛 terms, where 𝜙𝑖 represents [𝑎𝑖 , 𝑏𝑖 ], the range in the 𝑖𝑡ℎ dimension.
Converting this into a DNF formula will result in the formula 𝜙𝑅 with (2𝑛)𝑑 terms.
For any ℓ bit number 𝑐 , 1 ≤ 𝑐 ≤ 2𝑛 , it is straightforward to write a DNF formula 𝜑≤𝑐 , of size

at most ℓ , that represents the range [0, 𝑐] (or equivalently the set {𝑥 | 0 ≤ 𝑥 ≤ 𝑐}). Similarly
we can write a DNF formula 𝜑≥𝑐 , of size at most ℓ for the range [𝑐, 2ℓ−1]. Now we construct a
formula to represent the range [𝑎, 𝑏] over𝑈 as follows. Let 𝑎1𝑎2 · · ·𝑎𝑛 and 𝑏1𝑏2 · · ·𝑏𝑛 be the binary
representations of 𝑎 and 𝑏 respectively. Let ℓ be the largest integer such that 𝑎1𝑎2 · · ·𝑎𝑙 = 𝑏1𝑏2 · · ·𝑏𝑙 .
Hence 𝑎ℓ+1 = 0 and 𝑏ℓ+1 = 1. Let 𝑎′ and 𝑏 ′ denote the integers represented by 𝑎𝑙+2 · · ·𝑎𝑛 and
𝑏𝑙+2 · · ·𝑏𝑛 . Also, let𝜓 denote the formula (a single term) that represents the string 𝑎1 · · ·𝑎ℓ . Then
the formula representing [𝑎, 𝑏] is𝜓 ∧ (𝑥ℓ+1𝜑≥𝑎′ ∨ 𝑥ℓ+1𝜑≤𝑏′). This can be written as a DNF formula
by distributing𝜓 and the number of terms in the resulting formula is at most 2𝑛, and has 𝑛 variables.
Note that each 𝜑𝑖 can be constructed using 𝑂 (𝑛) space. To obtain the final DNF representing the
range 𝑅, we need to convert 𝜑1 ∧ · · ·𝜑𝑑 into a DNF formula. It is easy to see that for any 𝑖 , then 𝑖th
term of this DNF can be computed using space 𝑂 (𝑛𝑑). Note that this formula has 𝑛𝑑 variables, 𝑛
variables per each dimension.

□

Using the above reduction and Theorem 7, we obtain an algorithm for estimating 𝐹0 over
multidimensional ranges in a range-efficient manner.

Theorem 8. There is a streaming algorithm to compute an (𝜖, 𝛿) approximation of 𝐹0 over 𝑑-

dimensional ranges that takes space𝑂 ( 𝑛𝑑
𝜀2
· log(1/𝛿)) and processing time𝑂 ((𝑛𝑑)4 ·𝑛𝑑 · 1

𝜀2
) log(1/𝛿))

per item.

Remark 2. Tirthapura and Woodruff [65] studied the problem of range efficient estimation of 𝐹𝑘
(𝑘𝑡ℎ frequency moments) over 𝑑-dimensional ranges. They claimed an algorithm to estimate 𝐹0 with

space and per-item time complexity poly(𝑛,𝑑, 1/𝜖, log 1/𝛿). However, they have retracted their claim

(Woodruff, Personal Communication, June 16, 2020). Their method only yields poly(𝑛𝑑 , 1/𝜖, log 1/𝛿)

time per item. Their proof is based on recursive sketches [11, 38] as well as a range-efficient imple-

mentation of count sketch algorithm [17]. We obtain the same complexity bounds with much simpler

analysis and a practically efficient algorithm that can use off the shelf available implementations [50].
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Remark 3. Subsequent to the present work, an improved algorithm for 𝐹0 over structured sets is

presented in [64]. In particular, the paper presents an 𝐹0 estimation algorithm, called APS-Estimator,

for streams overDelphic sets. A set 𝑆 ⊆ {0, 1}𝑛 belongs to Delphic family if the following queries can be

done in𝑂 (𝑛) time: (1) know the size of the set 𝑆 , (2) draw a uniform random sample from 𝑆 , and (3) given

any 𝑥 check if 𝑥 ∈ 𝑆 . The authors design a streaming algorithm that given a streamS = ⟨𝑆1, 𝑆2 · · · , 𝑆𝑀 ⟩

wherein each 𝑆𝑖 ⊆ {0, 1}
𝑛 belongs to Delphic family, computes an (𝜀, 𝛿)-approximation of |

⋃𝑀
𝑖=1 𝑆𝑖 |

with worst-case space complexity 𝑂 (𝑛 · log(𝑀/𝛿) · 𝜀−2) and per-item time is 𝑂 (𝑛 · log(𝑀/𝛿) · 𝜀−2).

The algorithm APS-Estimator, when applied to 𝑑-dimensional ranges, gives per-item time and space

complexity bounds that are poly(𝑛,𝑑, log𝑀, 1/𝜀, log 1/𝛿). While APS-Estimator brings down the

dependency on 𝑑 from exponential to polynomial, it works under the assumption that the length of the

stream𝑀 is known. The general setup presented in [64], however, can be applied to other structured

sets considered in this paper including multidimensional arithmetic progressions.

Representing Multidimensional Ranges as CNF Formulas. Since the algorithm, APS-Estimator,
presented in [64], employs a sampling-based technique, a natural question is whether there exists
a hashing-based technique that achieves per-item time polynomial in 𝑛 and 𝑑 . We note that the
above approach of representing a multi-dimensional range as DNF formula does not yield such an
algorithm. This is because there exist 𝑑-dimensional ranges whose DNF representation requires
Ω(𝑛𝑑 ) size.

Observation 1. There exist 𝑑-dimensional ranges whose DNF representation has size ≥ 𝑛𝑑 .

Proof. The observation follows by considering the range 𝑅 = [1, 2𝑛 − 1]𝑑 (only 0 is missing from
the interval in each dimension). We will argue that any DNF formula 𝜑 for this range has size (num-

ber of terms) ≥ 𝑛𝑑 . For any 1 ≤ 𝑗 ≤ 𝑑 , we use the set of variables𝑋 𝑗
= {𝑥

𝑗
1, 𝑥

𝑗
2, . . . , 𝑥

𝑗
𝑛} for represent-

ing the 𝑗𝑡ℎ coordinate of 𝑅. Then 𝑅 can be represented as the formula 𝜑𝑅 = ∨(𝑖1,𝑖2,...,𝑖𝑑 )𝑥
1
𝑖1
𝑥2𝑖2 . . . 𝑥

𝑑
𝑖𝑑
,

where 1 ≤ 𝑖 𝑗 ≤ 𝑛. This formula has 𝑛𝑑 terms. Let 𝜑 be any other DNF formula representing 𝑅. The
main observation is that any term𝑇 of 𝜑 is completely contained (in terms of the set of solutions) in
one of the terms of 𝜑𝑅 . This implies that 𝜑 should have 𝑛𝑑 terms. Now we argue that𝑇 is contained
in one of the terms of 𝜑𝑅 . 𝑇 should have at least one variable as positive literal from each of 𝑋 𝑗 .
Suppose 𝑇 does not have any variable from 𝑋 𝑗 for some 𝑗 . Then 𝑇 contains a solution with all the

variables in 𝑋 𝑗 set to 0 and hence not in 𝑅. Now let 𝑥
𝑗
𝑖 𝑗
be a variable from 𝑋 𝑗 that is in 𝑇 . Then

clearly 𝑇 is in the term 𝑥1𝑖1𝑥
2
𝑖2
. . . 𝑥𝑑𝑖𝑑 of 𝑅. □

This leads to the question of whether we can obtain a super-polynomial lower bound on the time
per item. We observe that such a lower bound would imply P ≠ NP. For this, we note the following.

Observation 2. Any 𝑑-dimensional range 𝑅 can be represented as a CNF formula of size 𝑂 (𝑛𝑑) over

𝑛𝑑 variables.

This is because a single dimensional range [𝑎, 𝑏] can also be represented as a CNF formula of
size 𝑂 (𝑛) [13] and thus the CNF formula for 𝑅 is a conjunction of formulas along each dimension.
Thus the problem of computing 𝐹0 over 𝑑-dimensional ranges reduces to computing 𝐹0 over a
stream where each item of the stream is a CNF formula. As in the proof of Theorem 7, we can
adapt Minimum-value based algorithm for CNF streams. When a CNF formula 𝜑𝑖 arrive, we need
to compute the 𝑡 lexicographically smallest elements of ℎ(Sol(𝜑𝑖 )) where ℎ ∈ HToeplitz (𝑛, 3𝑛). By
Proposition 2, this can be done in polynomial-time by making𝑂 (𝑡𝑛𝑑) calls to an NP oracle since 𝜑𝑖
is a CNF formula over 𝑛𝑑 variables. Thus if P equals NP, then the time taken per range is polynomial
in 𝑛, 𝑑 , and 1/𝜀2. Thus a super polynomial time lower bound on time per item implies that P differs
from NP.
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From Weighted #DNF to d-Dimensional Ranges. Designing a hashing-based streaming algorithm
with a per-item update time of polynomial in 𝑛 and 𝑑 is a very interesting open problem with
implications on weighted DNF counting. Consider a formula 𝜑 defined on the set of variables
𝑥 = {𝑥1, 𝑥2, . . . 𝑥𝑛}. Let a weight function 𝜌 : 𝑥 ↦→ (0, 1) be such that weight of an assignment 𝜎
can be defined as follows:

𝑊 (𝜎) =
∏

𝑥𝑖 :𝜎 (𝑥𝑖 )=1

𝜌 (𝑥𝑖 )
∏

𝑥𝑖 :𝜎 (𝑥𝑖 )=0

(1 − 𝜌 (𝑥𝑖 ))

Furthermore, we define the weight of a formula 𝜑 as

𝑊 (𝜑) =
∑︁

𝜎 |=𝜑

𝑊 (𝜎)

Given 𝜑 and 𝜌 , the problem of weighted counting is to compute𝑊 (𝜑). We consider the case

where for each 𝑥𝑖 , 𝜌 (𝑥𝑖 ) is represented using𝑚𝑖 bits in binary representation, i.e., 𝜌 (𝑥𝑖 ) =
𝑘𝑖
2𝑚𝑖

.
Inspired by the key idea of weighted to unweighted reduction due to Chakraborty et al. [13], we
show how the problem of weighted DNF counting can be reduced to that of estimation of 𝐹0 over
𝑛-dimensional ranges. The reduction is as follows: we transform every term of 𝜑 into a product
of multi-dimension ranges where every variable 𝑥𝑖 is replaced with interval [1, 𝑘𝑖 ] while ¬𝑥𝑖 is
replaced with [𝑘𝑖 + 1, 2

𝑚𝑖 ] and every ∧ is replaced with ×. For example, a term (𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3)
is replaced with [1, 𝑘1] × [𝑘2 + 1, 2

𝑚2 ] × [𝑘3 + 1, 2
𝑚3 ]. Given 𝐹0 of the resulting stream, we can

compute the weight of 𝜑 simply as𝑊 (𝜑) = 𝐹0
2
∑
𝑖 𝑚𝑖

. Thus a hashing-based streaming algorithm that

has 𝑝𝑜𝑙𝑦 (𝑛,𝑑) time per item, yields a hashing-based FPRAS for weighted DNF counting, solving an
open problem from [1].

Multidimensional Dyadic Arithmetic Progressions. We will now generalize Theorem 8 to handle
arithmetic progressions instead of ranges. Let [𝑎, 𝑏, 𝑐] represent the arithmetic progression with
common difference 𝑐 in the range [𝑎, 𝑏], i.e.,𝑎, 𝑎+𝑐, 𝑎+2𝑐, 𝑎+𝑖𝑑 , where 𝑖 is the largest integer such that
𝑎+𝑖𝑑 ≤ 𝑏. Here, we consider𝑑-dimensional arithmetic progressions𝑅 = [𝑎1, 𝑏1, 𝑐1]×· · ·×[𝑎𝑑 , 𝑏𝑑 , 𝑐𝑑 ]

where each 𝑐𝑖 is a power two. We first observe that the set represented by [𝑎, 𝑏, 2ℓ ] can be expressed
as a DNF formula as follows: Let 𝜑 be the DNF formula representing the range [𝑎, 𝑏] and let
𝑎1, . . . , 𝑎ℓ are the least significant bits of 𝑎. Let 𝜓 be the term that represents the bit sequence
𝑎1 . . . 𝑎ℓ . Now the formula to represent the arithmetic progression [𝑎, 𝑏, 2ℓ ] is 𝜙 ∧𝜓 which can be
converted to a DNF formula of size𝑂 (𝑛). Thus the multi-dimensional arithmetic progression 𝑅 can
be represented as a DNF formula of size 𝑂 (𝑛)𝑑 . Note that the time and space required to convert 𝑅
into a DNF formula are as before, i.e, 𝑂 (𝑛𝑑 ) time and 𝑂 (𝑛𝑑) space. This leads us to the following
corollary.

Corollary 1. There is a streaming algorithm to compute an (𝜖, 𝛿) approximation of 𝐹0 over 𝑑-

dimensional arithmetic progressions, whose common differences are powers of two, that takes space

𝑂 (𝑛𝑑/𝜀2 · log 1/𝛿) and processing time 𝑂 ((𝑛𝑑)4 · 𝑛𝑑 · 1
𝜀2
) log(1/𝛿)) per item.

Affine Spaces

Another example of a structured stream is where each item of the stream is an affine space repre-
sented by𝐴𝑥 = 𝐵 where𝐴 is a boolean matrix and 𝐵 is a zero-one vector. Without loss of generality,
we may assume that 𝐴 is a 𝑛 × 𝑛 matrix. Thus an affine stream consists of ⟨𝐴1, 𝐵⟩, ⟨𝐴2, 𝐵2⟩ · · · ,
where each ⟨𝐴𝑖 , 𝐵𝑖⟩ is succinctly represents a set {𝑥 ∈ {0, 1}𝑛 | 𝐴𝑖𝑥 = 𝐵𝑖 }.

For a 𝑛 × 𝑛 Boolean matrix 𝐴 and a zero-one vector 𝐵, let Sol(⟨𝐴, 𝐵⟩) denote the set of all 𝑥 that
satisfy 𝐴𝑥 = 𝐵.
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Proposition 5. Given (𝐴, 𝐵),ℎ ∈ HToeplitz (𝑛, 3𝑛), and 𝑡 as input, there is an algorithm,AffineFindMin,

that returns a set, B ⊆ ℎ(Sol(⟨𝐴, 𝐵⟩)) so that if |ℎ(Sol(⟨𝐴, 𝐵⟩)) | ≤ 𝑡 , then B = ℎ(Sol(⟨𝐴, 𝐵⟩)), other-

wise B is the 𝑡 lexicographically minimum elements of ℎ(Sol(⟨𝐴, 𝐵⟩)). Time taken by this algorithm

is 𝑂 (𝑛4𝑡) and the space taken by the algorithm is 𝑂 (𝑡𝑛).

Proof. Let 𝐷 be the matrix that specifies the hash function ℎ. Let C = {𝐷𝑥 | 𝐴𝑥 = 𝐵}, and the
goal is to compute the 𝑡 smallest element of C. Note that if 𝑦 ∈ C, then it must be the case that
𝐷 |𝐴𝑥 = 𝑦 |𝐵 where 𝐷 |𝐴 is the matrix obtained by appending rows of 𝐴 to the rows of 𝐷 (at the
end), and 𝑦 |𝐵 is the vector obtained by appending 𝐵 to 𝑦. Note that 𝐷 |𝐴 is a matrix with 4𝑛 rows.
Now the proof is very similar to the proof of Proposition 2. We can do a prefix search as before and
this involves doing Gaussian elimination using sub matrices of 𝐷 |𝐴. □

Theorem 9. There is a streaming algorithms computes (𝜖, 𝛿) approximation of 𝐹0 over affine spaces.

This algorithm takes space 𝑂 ( 𝑛
𝜖2
· log(1/𝛿)) and processing time of 𝑂 (𝑛4 1

𝜖2
log(1/𝛿)) per item.

7 CONCLUSION AND FUTURE OUTLOOK

To summarize, our investigation led to a diverse set of results that unify over two decades of work
in model counting and 𝐹0 estimation. We believe that the viewpoint presented in this work has the
potential to spur several new interesting research directions. We sketch some of these directions
below:

Faster Model Counting Algorithms. In this paper, we considered three 𝐹0 estimation algorithms
and showed that they can be transformed into model counting algorithms. An exciting research
direction is to explore the possibility of transforming other 𝐹0 estimation algorithms into model
counting algorithms. For example, can we transform the optimal (in terms of space and time) 𝐹0
estimation algorithm due to Kane, Nelson, and Woodruff [42] into a model counting algorithm
with better runtime than the currently known algorithms? Another 𝐹0 estimation algorithm that is
of interest is the HyperLogLog algorithm. In practice, the HyperLogLog is shown to be one of the
most efficient 𝐹0 estimation algorithms. Thus, transforming this algorithm could potentially yield a
new model counting algorithm that is faster in practice.

Higher Moments. There has been a long line of work on the estimation of higher moments, i.e. 𝐹𝑘
in the streaming context. A natural direction of future research is to adapt the notion of 𝐹𝑘 in the
context of CSP. For example, in the context of DNF, one can view 𝐹1 be simply a sum of the size of
clauses but it remains to be seen to understand the relevance and potential applications of higher
moments such as 𝐹2 in the context of CSP. Given the similarity of the core algorithmic frameworks
for higher moments, we expect an extension of the framework and recipe presented in the paper to
derive algorithms for higher moments in the context of CSP.

Sparse XORs. In the context of model counting, the performance of underlying SAT solvers
strongly depends on the size of XORs. The standard construction ofHToeplitz andHxor lead to XORs
of size Θ(𝑛/2) and an interesting line of research has focused on the design of sparse XOR-based
hash functions [2, 5, 27, 36, 39] culminating in showing that one can use hash functions of form

ℎ(𝑥) = 𝐴𝑥 + 𝑏 wherein each entry of m-th row of 𝐴 is 1 with probability O(
log𝑚

𝑚
) [48]. Such XORs

were shown to improve runtime efficiency. In this context, a natural direction would be to explore
the usage of sparse XORs in the context of 𝐹0 estimation.
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