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Abstract

We establish short-time existence of solutions to the surface quasi-geostrophic (SQG) equation in the
Holder spaces C" (R2) for r > 1; to avoid an integrability assumption (such as membership of the data in an
L1 space) we introduce a generalization of the SQG constitutive law. As an application of the Holder theory,
we use these solutions when forming an approximation sequence in the proof of existence of solutions of
SQG in another class of non-decaying function spaces, the uniformly local Sobolev spaces Hlj I (R2) for
s > 3. Using methods similar to those for the surface quasi-geostrophic equation, we also obtain short-time
existence for the three-dimensional Euler equations in uniformly local Sobolev spaces.
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1. Introduction
1.1. Background

We study non-decaying solutions of two fundamental models of fluid motion, the two-
dimensional surface quasi-geostrophic equation (SQG) and the three-dimensional incompress-
ible Euler equations (E). Classically, these equations (without forcing) can be written

30 +u-vo=0 in[0,T]x R2,
(SQG) u=VLi(—=A)"30 in[0,T]x R,
;=0 =6° in R?

and, in velocity formulation,

du+u-Vu+Vp=0 1in[0,T] x R3,
(E) divu =0 in[0, T] x R3,
Ul—g = uf in R3.

In (SQG), the scalar field 6 is transported by the velocity field #, with u recovered from 6

. o _1 . . .
via the constitutive law u = V- (—A)~20 (making u divergence-free). In (E), the velocity field
u is, in effect, transported by itself under the constraint that it remain divergence-free, which
introduces the pressure gradient.
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The parallels between these two equations become clearer when (E) is written in vorticity
form:

dw+u-Vo=w-Vu in[0,T] x R3,
(Ey) u=K *w, in[0,7] x R3,
w|i=0 = in R3.

Here, w = curlu is the vorticity, K is the Biot-Savart kernel, and u = K * w is the constitutive
law. Rather than just being transported as 6 is in (SQG), the vorticity field is stretched as it is
being transported. Moreover, though both constitutive laws, (E)2, (SQG)2, yield divergence-
free vector fields, they differ sharply in that u gains one more spatial derivative of regularity over
that of w for (E,), while it has the same spatial regularity as 6 for (SQG).

Each of (SQG) and (FE) are well-posed when the data is sufficiently smooth and sufficiently
decaying. Insufficient smoothness motivates various weak formulations of the equations, a long
tradition in PDE. Such weak formulations leave the constitutive law alone or integrate it into
the weak formulation, but generalize or weaken what it means for the PDE itself to hold (that
is, (SQG)1, (E)1, or (Ey)1). Studying PDEs when the data lacks sufficient decay has a shorter
history, but focuses on extending or weakening the constitutive law. (Of course, both can be done
at the same time.)

In this work, we study (SQG) and (E) for non-decaying, but sufficiently smooth solutions,
which requires us to adapt the constitutive law while leaving the PDE itself unchanged. We will
work with (E) primarily in vorticity form, though will also use the velocity form, which requires
us to obtain estimates on the pressure p. The constitutive law u = K * » will enter (in adapted
form) in the process of closing our estimates, as we shall see.

Our methodology for adapting the constitutive law follows that first employed by Serfati in
[25] for the 2D Euler equations. He obtained an identity by applying a cutoff function to the Biot-
Savart kernel K to separate the near-field and far-field effects of the convolution. The far-field
term is then integrated by parts twice—when the PDE and constitutive law permit this, as they
do for (SQG) in 2D as well as (E) in any dimension—which allows the integrated form of it to
be controlled for non-decaying data. The resulting identity then forms, in effect, a replacement
constitutive law. This can be seen clearly in the form of these identities in Lemmas A.1 and B.1.

Even for decaying data, obtaining the existence of weak solutions to 3D Euler is beyond
current technology, so we work with solutions having sufficient smoothness. We work, then,
in Holder-Zygmund spaces, which differ from Holder spaces for integer indices—see Sec-
tion 2.2—and in uniformly local Sobolev spaces H;, (see Section 2.3).

We prove existence for both (SQG) and (E) in HJ, by applying the existence theory in
Holder-Zygmund spaces to construct an approximation sequence, developing bounds uniform
with respect to the approximation parameter, and passing to the limit.

1.2. Main results

We state our main results in Theorems 1.1 and 1.2, more completely stated in Th_eorems 3.1,
4.2, and 5.2. See Sections 2.2 and 2.3 for the definitions of the function spaces C”, C", and Husl.

Theorem 1.1. Let 6° € C"(R?), r € (1,00), and let u® € C"(R?) satisfy u® = V+(—A)~1/26°
in C"(R?). There exists T > 0 and a unique solution (u, 0) to (SQG) with the constitutive law

in the form
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t
u@®)=u’ + (@®) « VO — 6% — /(Vvi((l —a)®))x(Bu)
0

satisfying, for any r' € (0,r),

6 € L®(0, T; C"(R?) N Lip([0, T]; C"~' (R*) N C([0, T]; C" (R?)),
ue L0, T;C"(R?)NC(0,T]; C" (R?)).

If0° e H;I(Rz) and u® € H,fz(Rz) for some s > 3 satisfy u® = V+(=A)"1/26% in C*(R?),
where o > 1 satisfies the embedding H, (R%) — C%(R?), then

0 € L0, T; H(R?) N Lip([0, T1; H: ' (R?)),
ueL®0,T; HS(R?)).

Theorem 1.2. Ler u® H;jl (R3)f0r some s >3, and let ®° =V x u®. There exists T > 0 and a
unique classical solution (u, p) to (E) satisfying

ue L0, T; Hy®)) N Lip([0, T1; Hy ' (RY)).
1.3. Prior work

There are a number of approaches to studying non-decaying solutions of nonlinear systems
of partial differential equations, one of which is to focus on rough solutions, while another is to
study more regular solutions.

For rough data, there is prior work on non-decaying solutions of the two-dimensional Euler
equations under the assumption that the initial velocity and initial vorticity are only in L°°. This
approach was pioneered by Serfati [25], and extended to contexts such as exterior domains by
two of the authors and collaborators [3].

Wu has previously developed existence theory for (SQG) in Holder spaces [30], with the
restriction that the initial data is not only in a Holder space but also in an L¢ space for some
g < oo. In the present work, by incorporating estimates which stem from the Serfati identity, we
remove this assumption that the data are in L7, finding existence of non-decaying Holder solu-
tions for (S QG). Without membership in the Holder space, Marchand demonstrates existence of
weak solutions with data in L? for % < p < 0o (Marchand also treats the case of data in H~1/2)
[22]. An interesting question, which the authors will seek to address in the future, is whether the
current formulation using a Serfati identity can be used to extend Marchand’s result, developing
existence theory for (SQG) with L°° data. A particular class of solutions of (SQG) with L™
data has been studied in a series of papers by Hunter, Shu, and Zhang [13], [14], [15], [16],
[17]. These works study the case of fronts in (SQG), in which 6 takes on two distinct values,
and includes both the case of vortex patches and halfspace-like fronts. Hunter, Shu, and Zhang
develop contour dynamics equations, similarly to what has been done for vortex patches in the
Euler equations (see e.g. [21] for a summary of such theory), and prove existence of solutions
to the contour dynamics equation. We mention that seeking a more general L* existence theory
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will be complementary to these works, as more general data may be treated, but such a theory
will result in much less detailed information about the structure of solutions at positive times.

Our use of the Serfati identity has the purpose of allowing one to unambigously construct u
from 6; with membership in an L7 space as in [22] or [30] there is no difficulty in making the
reconstruction, but this is an issue in general for non-decaying solutions. An alternate way of
dealing with this has been introduced by Albritton and Bradshaw, imposing m-fold rotational
symmetry in a study of similarity solutions [2].

In recent work Cérdoba and Martinez-Zoroa [9] have shown non-existence of solutions for
(SQG) with data in Holder spaces C* for integer k > 2. This is not a contradiction to the present
work, for although Holder-Zygmund spaces coincide with Holder spaces for non-integer expo-
nents, they are larger than Holder spaces for integer indices. This is discussed in more detail in
Section 2 below. The same situation, non-existence of solutions in classical Holder spaces but
existence instead in Holder-Zygmund spaces, has been shown to hold for the incompressible
Euler equations as well [6,7].

Majda sketches a proof of existence for the compressible Euler equations in uniformly local
Sobolev spaces in [20]; Majda remarks that the approach of [20] does not work for the incom-
pressible case. Other work for existence of fluid equations in the uniformly local Sobolev spaces
includes a series of papers by Zelik, Anthony and Zelik, and Chepyzhov and Zelik on the Navier-
Stokes equations, the damped Euler equations, and the damped Navier-Stokes equations, all in
two spatial dimensions [4], [8], [31], [32]. Alazard, Burq, and Zuily have proved well-posedness
of the gravity water waves system (i.e. the incompressible, irrotational Euler equations with the
fluid region bounded above by a free surface, subject to gravity) in uniformly local Sobolev
spaces [1]; of course the water waves system is dispersive, and is thus of a different charac-
ter than the systems studied in the present work. Uniformly local solutions of the water waves
system were then further studied by Nguyen [23].

1.4. Organization of the paper

We define Holder -Zygmund spaces and uniformly local Sobolev spaces in Section 2, and in-
troduce notation and provide some key lemmas. In Section 3, we obtain existence of solutions to
(SQG) in Holder spaces, and then employ this result in Section 4 to construct an approximation
sequence to obtain existence to (S QG) in uniformly local Sobolev spaces. In Section 5 we obtain
existence of solutions to the 3D Euler equations in uniformly local Sobolev spaces.

In the appendices, we establish Serfati-like identities for (S QG) and 3D Euler, a constitutive
relation for (SQG), and a pressure identity for 3D Euler akin to one used in 2D in [26].

2. Definitions and preliminary lemmas

In this section, we state some notation, definitions, and lemmas that will be useful in what
follows.

We let a : RY — R, d > 2, denote a radially symmetric, smooth, compactly supported cutoff
function which is identically 1 in a neighborhood of the origin and which vanishes outside of the
ball of radius 2. For each A > 0 and each x € R?, we let ay (x) = a(x/A).

Define G on R3 by

G(x)= 2.1)

T 4w x|
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the fundamental solution to the Laplacian in R®, meaning that AG = §, the Dirac delta function.
We use ® to denote the fundamental solution of the fractional Laplacian (=A)Y/2 on R?; that is,

d(x) = £
| x|

for a constant C > 0. Finally, we have the simple estimates,

1 -1
o @lpgy < [V —ayo) | o <ca 2.2)

2.1. The Littlewood-Paley operators

In Section 3, we establish existence of solutions to (SQG) in the spaces C’(Rz) forr > 1,
where C”"(R?) is defined using the Littlewood-Paley decomposition. We therefore begin this
section with an overview of the Littlewood-Paley operators and some of their properties. It is
classical that there exists two functions x, ¢ € S(R?) with supp § C {£ e R? : |£| < %} and supp

¢ C{& eR?: 2 <|&] < 3}, such that, if for every j € Z we set ¢ (x) = 2/4¢(2/x), then

XY di=x+) 9@ )=1

Jj=0 Jj=0

For n € Z, define x, € S (Rd) in terms of its Fourier transform x,,, where x,, satisfies

@) =€)+ 9;®)

j<n

for all &£ € RY. For f € S’(R?), define the operator S, by

Snf =xn* [

Finally, for f € S’(R?) and j € Z, define the inhomogeneous Littlewood-Paley operators A i by

0, j<-1
Ajf={xx*/f j=-1
@j* f, Jj=0,

and, for all j € Z, define the homogeneous Littlewood-Paley operators A j by

Ajf=9j*f.
Note that Ajfz A; f when j > 0.
We will make use of Bernstein’s Lemma in what follows. A proof of the lemma can be found

in [7], Chapter 2. Below, C, 5(0) denotes the annulus with inner radius a and outer radius b.
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Lemma 2.1. (Bernstein’s Lemma) Let ry and ry satisfy 0 < r; < ry < 00, and let p and q satisfy
1 < p < g < oo. There exists a positive constant C such that for every integer k, if u belongs to
LP(RY), and supp &i C By,;.(0), then

1_1
sup [18%||ze < CEAFGTD 1w 1. (2.3)

la|=k
Furthermore, if supp i C Cyy.r,:.(0), then

C™ 2 |ullLr < sup 118%ullzr < C*AF||ull L. (2.4)
lo|=k

Lemma 2.2. Let ¥(x) =C lel_d on R, There exists C > 0 such that for every j € Z,

1A (VW £)l ooty < CIA; fll ooqray- 2.5)
The result holds with VW replaced by V (aW).

Proof. The proof of (2.5) follows from an argument identical to the proof of Lemma 8 in [11].
To see that the result holds for V(aW) in place of VW, first note that the equivalent of this lemma
for a Calder6n-Zygmund operator T is well-known [27]. We note, however, that T = V(a\W)x is
not quite a Calderén-Zygmund operator; rather (see, for instance, Proposition 6.1 of [5]),

V(aW) * f(x) =p.v. / V(@) (x —y) f(y)dy +Cf(x)1,
R4

where the principal value integral does represent a Calderén-Zygmund operator. The result then
follows immediately. O

Remark 2.3. The convolution V(aW) * f in Lemma 2.2 is that of a compactly supported distri-

bution with a distribution. As in Theorem 6.37(e) of [24], we can move derivatives on and off
each factor, so

Vav)x f=(@V) «Vf=V((aV)x* f).
2.2. Holder-Zygmund spaces

We now introduce the Littlewood-Paley-based version of Holder (more properly Holder-
Zygmund) spaces.

Definition 2.4. For r € R, we define C"(R9) to be the set of all f € S’(R) such that

sup 2/7|Aj fllpe < o0.
j=—1

We set
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I fllcr = sup 27" | A fllpe.

j=-1

It is well-known that when r > 0 is a non-integer, the space C" (R?) defined above coincides
with the classical Holder space C” (R9), with norm

1fler= S 1D fllgee + sup L= SO

. (2.6)
|
0<lal<[r] xy =l

However, when r is an integer, C” (R?) does not coincide with the space C"(R?) of bounded
functions with bounded derivatives up to and including order r. In this case, we have the inclusion

C"(RY) c C"(RY).
Finally, we define the homogeneous Holder spaces.

Definition 2.5. For r € R, we define C" (R9) to be the set of all fed& (R?) such that

sup 2/ [| A f | L= < oo.
JEZ

We set

I fller = sup 277 1A £l oo
JEZL

The homogeneous Littlewood-Paley operators and Holder-Zygmund spaces C” (R¢) will be
useful in our analysis of non-decaying solutions to (SQG) and (E). In particular, the operators
A ;j allow us to make sense of the Riesz transforms applied to non-decaying functions by defining,
for f € L®°(RY),

. B 1 f ~ &k 2 1 f ~ P8k
Ajp (=N f=F 1<‘Pj_ )=f 1(%_) * f. 2.7)
€] €]
The following lemmas will be useful when proving estimates on (SQG) in the C” spaces.
Lemma 2.6. Let s > 1. If for every j >0, f € L°(R%) and g € C*(R?) satisfy
Ajf=A;VE(=n)"2g

almost everywhere on R?, then f belongs to C*(R%), and there exists an absolute constant C > 0
such that

I flles = CAIfllze +llglics)-
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Proof. Young’s inequality gives

I fllcs = ClIA-1 fllLe + S_uposz”Ajf”Loo
J=

<Cllfl=+ sungs||VL<—A>‘”2AJ-g||Lm
J=

< C|lfllie +Csup2/||Ajgll
j=0

= Cllflle + Cliglics,

where we used Lemma 2.2 to get the third inequality. O
The following Lemma is Proposition 2.2 of [30].

Lemma 2.7. Let k be a nonnegative integer and let s € (0, 1). For f € C¥*$(R?), there exists a
constant C, depending only on s, such that

I fllgr = Cllfllgres-

Moreover, C — oo as s — 0.

Lemma 2.8. Let s > 0, and assume [ € C* (R2). Then

IVH(@.®) % fllz= < Cllfllcs.
where C depends only on ) and. s.

Proof. Write

IVE@®) # flle < D 1AV (@®) * )l
j=—1

= A1 (VEH@®) x Pl + Y2727 Aj (V@ ®) * )] L=
j=0

<lar® * (A_1 V£ 1 4+ Csup2/* | V(a5 @) % A f || oo
Jj=0

<CllfliLe +Csup2”|Aj fli < Cllfllcs,
j=0

where we used Young’s inequality, Bernstein’s Lemma and Lemma 2.2 to get the third inequality.
This proves the lemma. 0O

2.3. Uniformly local Sobolev spaces

We now define the uniformly local Sobolev spaces and mention some of their properties. We
refer the reader to [18] for further details. We begin with a definition of Lf ; (RY).
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Definition 2.9. For p € [1, c0), we define Lil (R?) to be the set of all functions f on R4 such
that

I/p

£ llpp = sup / lfDIP dy < 0. (2.8)
! xeR4 <1

Definition 2.10. For a nonnegative integer s, we define the space H;Z(Rd ) to be the set of all
functions f € Lﬁ I(Rd ) such that all distributional derivatives D® f, with || < s, also belong to
L2 (RY). We set

ez, = D 1D flpz - (2.9)

| <s

In what follows, we make use of an equivalent norm to (2.9), as given in Proposition 2.11
below. For this purpose, throughout the paper we let ¢ € C2° (R9) be a standard bump function,
identically 1 on B1(0), with support contained in B>(0), and we set

¢ (y) = (y —x).
We have the following proposition (see, for example, [18]).

Proposition 2.11. One can define an equivalent norm to (2.8) on L,f ; (R%) by

sup [[éx fllLe.

xeRd

Moreover, if for A > 0 fixed,

y—Xx
Grn(y) = ¢< -, ) , (2.10)

then for any pair Ay, Ay > 0, the two norms

sup || fliLe,  sup ligea, flie

xeR4 xeR4

are equivalent. Therefore, for any A > 0, the norm

I 1l s

ul A

= sup llge D flI 2 @.11)

| =s X<Re

is equivalent to that in (2.9). Finally, the norm

sup || fllas

xeRd

is equivalent to that in (2.11) and can also be used as a norm on HLfl(Rd).

116



D.M. Ambrose, E. Cozzi, D. Erickson et al. Journal of Differential Equations 364 (2023) 107-151

We now state a few useful lemmas regarding Hj);, spaces. Several of these lemmas demon-
strate that many properties of H* spaces extend to the H, spaces. We begin with the following
Calculus inequalities. Parts (i) and (iii) below can be found in [20].

Lemma 2.12. Assume s > 1 is an integer.
(i) Given f, g € H5; N L®(R?) and || <s,

ID*(fll 2, < CsUlf Lo lg s, + Nglzoel f 1l mg,)-
(ii) Given f € C5(RY), g € H*(RY),
Ifgllms < Clfllgs 18N mssupp py - N8l ms, = Cllflles gl s, -
(iii) Given f € H’, N C'(RY) and g € H:' N L®RY), for |a| <3,
ID%(f8) = D%l 2, = Cs (Ul flleallgl st + Ngloel flla)-

Lemma 2.13. ([/8]) Let j and m be nonnegative real numbers. If 2m > d, then Hujﬁm (R —
CJ/(RY).

Lemma 2.14. Let p € [1, 00), and assume f belongs to Lﬁl (R). There exists C > 0 such that
foralln e N,

<
IS0 Fllr < CUFlg -

Proof. By Minkowski’s inequality,

I/p
150 F 112z, = sup (‘Rf [ oo —y)xn(ywy\pdx)
u ZERd

d Rd

< Sup/|I¢z(-)f(-—y)xn(y)IILpdyZ Sup/|I¢z(-)f(-—y)IILplxn(y)Idy

d
Rd zeR R

5IIfIILgl/Ixn(y)ldySCIIfIIL;;,. :
R4

Lemma 2.15. With ¥ as in Lemma 2.2, for any f € H, R%), r >0,

IV (@) * Hllgr < Call fllgr, -

Proof. This follows for H” in place of H}; from a Littlewood-Paley decomposition or by using
the expression in Lemma 2.2. It then follows for the H, norm by taking advantage of the identity,

AV (@W) * f) = (VW) * ) = (V(ap W) x 8 f). O
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Definition 2.16. For v, w vector fields, we define vx-w = v’ * w’, where we sum over the re-
peated indices. Similarly, for A, B matrix-valued functions on R4, we define Ax-B = AV % B/,

In Lemma 2.17, we obtain a stream function for i, but it is not the classical stream function in
that it is not divergence-free. It can be written in the form of a one-dimensional integral, however,
as in (2.13), which makes it amenable to localized estimates.

Lemma 2.17. For any divergence-free u € H, (R3) there exists a (non-divergence free) stream

function € H;f' Y(R3) with the properties that curl v = u, ¥ (0) = 0. For any bounded convex
U < Br(0),

19 sy < CR1lull s s, 2.12)
where the constant C depends upon the Lebesgue measure, |U|, of U.

Proof. It is sufficient to prove the result for u € C ®MR3)HN H (R3), as the result then follows
from the density of this space in H}, (R3). We can then define the stream function as

1

Y(x) = — / Tx x u(rx)dr. 2.13)

0
Using curl(A x B) =divBA —divAB+ B-VA—A-VB,div(u(rx)) =0,divx =3, Vx =1,
we have
curl(x x u(tx)) = —3u(rx) +u(tx) - Vx —tx - Vu(rx)

= 3u(tx)+u(tx)-I —tx-Vu(rx) = —2u(tx) — tx - Vu(rx).
Hence,

1

curh/;(x):/[ZIu(rx)—l—er-Vu(tx)]dr.

0

Integrating the first term by parts, we have

1 1

/2ru(rx)dt:tzu(tx)|(1)—/1:2x-Vu(rx)dt
0 0
1

=u(x)— / 2x - Vu(tx)dr.

0

It follows that curl Y = u.

118



D.M. Ambrose, E. Cozzi, D. Erickson et al. Journal of Differential Equations 364 (2023) 107-151

For estimates, it is perhaps easier to write (2.13) in indices, as

1

wi(x)zf[rxi+2ui+l(rx)—rxi+1ui+2(rx)]dr, (2.14)
0

where if i + 1 or i 4+ 2 > 3 we subtract 3 from it.
In (2.14), we have |x| < Ron U, so

1 1

1Vl 220y SCR/THM(T')”[}(U)CJT=CR/

0 0

T
N ”u”LZ(IU) drt.
T2

But, [tU| < |U|forall T € [0, 1], s0 lull 2(zpy < C(IUI)IIuIILzl and

1

_1
W) < CR [ lul g dr = CR.
0

Let @ = (a1, oz, @3) be a multi-index. Then
D* [rxjue(rx)] = rxjrl"‘lD“ue(tx) + rrlal*lD“,ue(tx),

where o’ has the j index decreased by one, with the second term absent if «; = 0. Arguing as
for ||| L2(v)> We conclude from this that

sup, | D% [ 2y = CRlull g, + C el et
o=

from which (2.12) follows by summing over k <.
Finally, using div(A x B) = (curl A) - B — (curl B) - A, we have

1
divy (x) = — / T [curlx - u(tx) — t(curlu)(tx) - x] dt
0
1

= / 2x - (curlu)(tx) dz.

0

Because curlu € Lﬁl, curl ¢ and div ¢ lie in Lil, this is enough to conclude that € H;IH (RY).

As we use only H}, regularity, we do not include further details. O
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3. Existence of solutions to (S Q@ G) in Holder spaces
In this section, we prove the following theorem.
Theorem 3.1. For r € (1, 00), let 8° be a function in C"(R?), and let u® in C” (R?) satisfy
u? = v (=A)"1260 in CT(R?).

There exists T > 0 and a unique solution (u, ) to

0,0 +u-vVo =0,
0 a0 3.1
(u7 9)|l=0 = (u ) 0 )9
satisfying, for any r' € (0,r),
6 € L®(0,T; C"(R?) N Lip([0, T]; C"~'R»)) N C([0, T]; C" (R?)),
ueL®0,T;C"(RY)NC0, T]; C" (R?)).
Moreover, there exists C > 0 such that (u, 0) satisfies the estimate
C(|u°|| o + 116%]cr)
ujl o 100y + |81 oo cry < 3.2
el .20y + 101l L0 cr) = 7 CT U0 + 1801 (3.2)
and the equality (see Definition 2.16)
t
u@®)=u’ + (@®) « Vo) —6°) — /(vvi((l —a)®))x(Ou) (3.3)

0

foreacht [0, T].

Before proving the theorem, we make a few remarks.
Remark 3.2. For > 0 a non-integer, a pair (#°, 6°) satisfying the conditions of Theorem 3.1 can
be easily generated from any function ¥ € C"+!(R?) by setting u® = V- and 0® = (—A) /2.
Note that »” belongs to C”(R?) by the classical Schauder estimates for the fractional Laplacian

(see for example [28]). By the containment C” (R%) c C"(R?%) and Lemma 2.2, both «° and 6°
belong to C" (R?). Moreover, we have for every j € Z,

Aju® = A;vE(=n)~129°
almost everywhere on R2.
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Remark 3.3. Since (3.3) holds for @, in place of a for any A > 0, and 6 and u lie in L*°([0, T'] x
R?), by (2.2) we have

u@®)=u’ + lim (2, ®) vie@) — 6%,

the limit holding pointwise. This gives a form of the constitutive law for (3.1) and is the analog
for (SQG) of the renormalized Biot-Savart law of [3,19] that applies to non-decaying solutions
to the 2D Euler equations.

Proof of Theorem 3.1. We adapt the general strategy used in the proof of Theorem 4.1 in [30].
In particular, we construct an approximating sequence of solutions and pass to the limit in the
appropriate norm. To obtain uniform bounds on the approximating sequence, the proof in [30]
relies heavily on the estimate

IRfllcr =Cllflicrnra 34

for ¢ < 0o and r > 1, where R denotes a Riesz transform. Since our approximating sequence
must converge to a solution lacking spatial decay (and hence not belonging to L7(R?) for any
q < 00), we utilize Lemma 2.6 and a Serfati-type identity (see (3.6) below) in place of (3.4).

Approximating sequence. We define sequences (6")7° ; and (u")52, as follows:

0'(t, x) = $20°(x),

(3.5)
ul (1, x) = S’ (x),
for all t > 0, while, forn > 1,
30"t +u" Vot =0,
0" (x,0) = §,420°, u" 1 (x, 0) = Syy2u’,
un+1 (t) — un+1 (0) + (ad)) * VL (0n+1 (t) _ 0n+1 (0)) (36)

t
—/(vvi((l —a)®))x-(O"u").
0

Note that with (") and (6") as in (3.6), Lemma A.2 gives that for all j € Z, n € N, and r €
[0,T],

Aju"(t) = A;VE(=A)"120" (1)

almost everywhere on R?, which will allow us to apply Lemma 2.6 repeatedly in what follows.
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Uniform bounds. The proof of Proposition 4.2 in [30] yields the following estimate:

10"+ ) llcr < 16" 0) | cr

t
+C) / (16! @l ) ller + IVa" @l 16" @)l er ) ds
0

3.7
t
< 16" ) lcr + C(r) / 16" ()l er lu™ ()l cr ds.
0
We now use (3.6) to estimate [lu"*!(¢)| 2. In particular, one can write
lu" L (@) oo < 1" THO) || oo + CIVO"™ L (1)]| Lo
(3.8)

t
+C||V9n+l(0)||L°°+C/||9n+1(5)”L°°”un(s)”L°° ds.
0

Adding (3.7) and (3.8) gives

" @)l + 10" O ller < " O) [z + CEN"H @)ller + C 10" )l er

1
+ C(”)/(||9n+1(5)||L°°||”n(s)||L°O + 16" () e lu" ()l er) ds,
0

where we used Lemma 2.7. The term C (r)||9"+1(t)||cr appearing on the right hand side can
again be estimated using (3.7). Then we have
lu" T Ol e + 10" O ller < 11" O) |z + CH 0" O cr
t
£ [ 10 @l 5 ler ds
0

X . (3.9)
< [u"H(O) | + C(P 0" (O) | cr

t
+C@) /(||un+l(s)||L°° + 16" () lenllu ()l er ds.
0

Gronwall’s Lemma gives

" Dl + 160" Oller = CON N Ol + 16" O) el Gller 3.10)
By (3.10) and Lemma 2.6,
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" (@) oo + 16" @)l cr
- . 3.11)
< CEO(u" Ol + 116" O ¢r)eC D SoI D107 lersds,

where we can assume C(r) > 2.
We use induction and (3.11) to show that there exists M > 0 and T > 0 such that, for all
t<T,and foralln>1,

lu" ()Nl + 10" @) llcr < M. (3.12)

To prove the case n = 1, first note that by properties of Littlewood-Paley operators and Young’s
inequality, there exists a constant C3 such that, foralln > 1,

I1Sp2u° (| oo + 12420 lcr < Ca(lu®| s + 16| cr). (3.13)

In particular, we have

lutlzoe 4+ 16 cr < Co(lu® Iz 4+ 16° ).

Set M = 2C(r)Ca(|lu®|z + 118°|Icr), where C(r) is as in (3.11), and choose T such that
exp(C(r)T M) < 2. Then

lul oo + 16 e < Co(lull Lo + 16°)1cr) < M.

This proves (3.12) for n = 1.
Now assume, for fixed k € N, [lu¥(s)|z~ + [|6¥(s)lcr < M for each s € [0, T]. By (3.11)
and (3.13),

1 @Ol + 10 Oller < CE) AT O) L% + 165 (0) | er)e T
<2C()Ca(Jlu(0)|| Lo + 10(0)|Icr) =M.
Thus (3.12) holds for all .
From (3.12) and Lemma 2.6, it follows that, for » > 1, there exists C > 0 such that for all
n €N, ||u"||cr < CM. Therefore, for eachn € N,
180" Nl crt < [l - VO" | o
< C(lu" |1 11V0" Ml oo + | V" | 1) (3.14)
<O ler-1 10" ler < CryM>.
From this we conclude that for each n € N, 8,0" € L*(0, T; C" ') and 0" € Lip([0, T]; C"™1),
with norms uniformly bounded in 7.

(u") and (9") are Cauchy. We now show (9") is Cauchy in C([0, T']; C"~'(R?)) and (u") is
Cauchy in C([0, T]; L% (R?)). As in [30], let n* = 0" — 6"~ and v" = u" — "', From (3.5)
and (3.6), we have the system
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n' =526°—6°,

0

(3.15)
vl = Szuo —u’,

and forn > 1,

alnn+l +u. VnnJrl =" . Vo",
7", 0) = it (x) = Apt26°(x), (3.16)

V", 0) = v () = Ao (x).

Moreover,

V(1) =" (0) = (@ @) * V(" (1) — " (0))

t
(3.17)
- /(vvl((l —a)®) (" u" " + 0",
0
We have the following estimate from [30]:
" Y@l er-1 < 1" 1 O) | ort
t
+ C(r)/(lln”“(s)llcm " ($)llcr + V" )l cr-1 16" ()|l cr) ds
0 (3.18)

t
<" Oller-1 + C(r)M/(Hn"“(s)Hcr_] + ' ) ler-1)ds,
0

where we applied the uniform bounds on ||u"||cr and ||6"| ¢ to get the second inequality. We
apply the L°°-norm to (3.17), which gives

" (@) e < ") |1 + 1(@®) % VE" L@ || oo + [1(a®) % VER"TH0) || oo
t
+ / U™ ) oo ™ ()l oo + 10" () | oo 0™ () [l o) ds
n+(1) 1. n+l1 1. n+l (.19)
< 10" O) || oo + [1(@®) % VER" T (@) oo + 1 (a®) % VER" T (0) | 1o
t
+ CM/(nn”“(s)uLoo + 10" (s) | ) ds.
0

Adding (3.18) and (3.19) gives
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"N e + 1" O Nl er-1 < 10" THO) I 2oe + 17" O0) ]| o1

+IVE@®) * 7" T 0) | Lo 4 V(@ ®) % 7" (1) || oo
(3.20)

t
+MC(r) /(IIU"“ e + 10" @) ller-1 + 10 @) Mz + 17" ()l er-1) ds,
0
where we applied Lemma 2.6. To estimate the terms (VL (@) * 77”+1 ()|l and ||[VE(a®) *
7" t1(0)|| oo, we apply Lemma 2.8, giving

IVE@®) * " (@) e < COIN" T Ol er,
[VE@®) 7" )| o < COIN"THO) | ori

We then bound the resulting term ||" 1 (r) ||cr—1 using (3.18) and again apply Lemma 2.6. Sub-
stituting the resulting estimate into (3.20) gives

" )z + 11" Ol er1 < CLE)Y AV THOY oo + 17" THO) [ or-1)

; 1 1 (3.21)
+ M [ (A6l + 1 G+ ("6 + 10l er) ds.
0
Set D, (t) = |[v"*(#)|lL + In" ()|l cr—1. Then (3.21) gives
t
Drir(1) = CLIDut O+ CLOM [ (Dyir(5) + Dy (50 ds. (3.22)
0

Let

E(t):=2_ Duy1(0).

n=0
noting that E(0) is finite because 69 and u° lie in C" (R?). Summing (3.22) over n and using
(3.12), we have that

t
E(t)5CE(0)+CMt+CM/E(s)ds.
0

By Gronwall’s lemma,
E(1) < (CE(0) + CMT)eM!,

It follows that for any fixed time ¢ € [0, T'], the sequences (u"(¢)) and (8" (¢)) are Cauchy in
L®(R?) and C"~!(R?), respectively.
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Now let € > 0. From (3.14), we also have uniform-in-time control on (3;60"(r)) in C" ' (R?),
so we can choose a § > 0 such that for any s, 52 € [0, T'],

lsi —s2l <8 = [[0"(s1) — 0" (s2)]

€
Crfl(RZ) < 5

Let N7 be an integer greater than 7/§, and let txy = kT /N1, k=0, ..., N1. Choose an integer N>
(which we note depends upon Np) such that for all &,

m,n =Ny = 0" (1) = 0" (1) | o1 g2y < 3

Then by the triangle inequality, for all ¢ € [0, T'],

mon =Ny = [67@) = 0" )| oo oy < |67 0) = 0" 1)
+ 67 @) — 6™ )|

Cr—l(]RZ)
Cr—l(]RZ) + ||0m(tk) - em(t)|

cr-1 (RZ) <E€,

where we choose k so that |t — | < 8. This is enough to conclude that (") is Cauchy in
C([0, TT; C"1(R?)).

Similarly, taking the time derivative of (3.6)3 gives uniform-in-time control on (d;,u”(t)) in
L*®(R?), and we can conclude that («") is Cauchy in C ([0, T]; L (R?)).

Limit of the sequence solves (3.1). We conclude that the sequence (6") converges to some 6 in
c(o,1y; cr-1 (Rz)), and (u") converges to some u in C ([0, T']; LOO(]RZ)). Moreover, we have

6 € L™(0, Tri; C"(R*) N Lip([0, T11; "~ (R?)),

u € L0, Tr; C"(R?)).
Interpolation between C" 1 and C” shows that (") converges to 6 in C([0, T]; C’/(Rz)) for
all ' € [r — 1,r), and interpolation between CY and C” shows that (u") converges to u in

C([0, T1; C*(R?)) for all @ € (0, r). Having established convergence in these spaces, we can
then pass to the limit in (3.6); and (3.6),. Note also that, for v’ € [r — 1,r) and @ € (0, r),

6 € L®([0, T]; C"(R?) N Lip([0, T]; C"~'(R?) N C([0, T]; C" (R?)),
ue L®(0,T]; C"(R*) N C([0, T]; C*(R?)).

Solution (u,0) satisfies (3.2). We now show that the resulting solution (u, 8) of (3.1) satisfies
(3.2). Set W, (t) = [[u" ()|l Lo + 10" (D) |l cr, T € [0, T]. From (3.11), it follows that

W, (1) < CW, (0)eC Jo Vn(®)ds
so that

W, (1)e=Clo B)ds < oy (0).
By the chain rule,
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1 d —C [g Wn(s)ds
—EE(e 0 )501/,,(0).

For t € [t, T'], integrating both sides from 0 to ¢ gives

—eClin®ds L1 < cw, (0)r,

which implies

C.f() \Ir’,l(s‘)dC 1 (323)
“1—CV,(0)

The inequality C\I\’p (E) <e€ Jo wn()ds , combined with (3.23), imply that

W) C(ulie +16°cr)
cwon T 1= Cr(ull L + 6% cr)”

" @l + 10" (Ollcr = Wat) < T—

where we used that W,,(0) < C(||u°|| L +[|60°||cr) for all n to get the second inequality. It follows
that for each fixed t € [0, T],

C(lu® o + 116l cr)
— Ct(lu0 o + 169 cr)

lu@ L + 10Ol =

This yields (3.2).

(u,0) satisfies (3.3). It remains to prove (3.3). We have that (6") converges to 6 in C([0, T'];
C” (R2)) for all 7' < r, and (u") converges to u in C([0, T']; L (R?)). We claim that this is
enough to pass to the limit in (3.6);. For n € N, we subtract the right-hand side of (3.6); as
satisfied by (u, 0) from the right-hand-side as satisfied by (1", 6"). Taking the L°°-norm of the
resulting difference and applying Young’s inequality gives

Il (@™ — u) ()| oo
< 1 @" — w)(0)|| Lo + [[(@®) * VEO" —0) (1) |1 + [|(a®) * VE(©O" — 6)(0)]| 1

1
+/ 19V =)@l (16" = )" &)l + 106 @™ = u) ()1 ) ds.
0

It is clear that

1" —u)(0)][ L — O,

t

[ (16" =0 6yl + 106)@ " =06 lew) ds 0

0

as n approaches infinity, for all ¢ € [0, T'].
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We now show that ||(a®) x V(0" — 0)(@)|l1e = |V (a®) * (6" — 0)(1)| = — O for all
t € [0, T] as well. We utilize that V1 (a®) integrates to 0. Suppressing the time variable, and
setting §" = 6" — 0 for each n, we have, for any « € (0, min{l, » — 1}) and any x € RZ,

(Vi(acb)*(@”—@)(m‘ < p~V~/Vl(a<I>)(y) (8"(x —y) = 8"(x)) dy| + [C8, (x)]|
RZ

[6" (x —y) — 8" (x)]
|y[«

< / |V<a<b><y)||y|°‘<

RZ

) dy +|C8,(x)I| < Cl|8" [|ce — O,

since (6") converges to 6 in C([0, T]; C“ (Rz)). This implies (3.3) and completes the proof of
the theorem.

Uniqueness An argument similar to the demonstration above that (1") and (8") are Cauchy gives
uniqueness of solutions. 0O

4. (S QG) in uniformly local Sobolev spaces
4.1. A priori estimates

In this section, we establish a priori estimates on smooth solutions to (SQG) in uniformly
local Sobolev spaces. We prove the following theorem.

Theorem 4.1. Assume d =2 and s > 3 is an integer. Let (u, 0) be a solution to (SQG) on [0, T]
as given in Theorem 3.1 with Holder exponent r = s + 2. Then

t
10G): < 16°N3s exp C[<||u<r>||51 + V0@ %) d
0

Proof. Set W = D%0 with 0 < || <s and s > 3. Apply D® to (3.1); to get
W +u-VW=F, 4.1)
where
F=u-VW —D%(u-V0).
Multiplying (4.1) by ¢, gives
O (x W) +u - V(g W) = (u- Vo)W + ¢, F. (4.2)

After multiplying (4.2) by ¢, W and integrating, we conclude that
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/¢XW8t(¢xW)+/¢xW(u-V(¢xW))
R2 R2

:/¢XW(u~V¢x)W+/¢xW¢xF-
R2 R2

Now observe that

P W (G W) = 5l ox W7
R2

Moreover, one can show using the divergence-free property of u and integration by parts that

/ $uW (U - V(e W) = 0.
RZ

By properties of ¢, and Holder’s inequality, we also have
[¢x Wu- V¢X)W = /¢x Wu- V¢x)¢x,2w
R2 R?

2 2
=2 Wilallu - Véxllre = Cllulizee 1017 -

Finally, another application of Holder’s inequality gives

/¢xW¢xF < oWl 2llgx Flip2-
R2

We apply Lemma 2.12 to ||¢ F'||;2 with f =u and g = V6. This gives

16 Fll 2 = € (llulles 101 g, + 190Nl ) -
Combining the above estimates and integrating in time gives

g W(D)172 < Cligx W17

t

+ C/ (el 1013, + 16z (el N0z, + 196 el gz ) .
0

We now take the supremum of both sides of the inequality over x € R?. We conclude that
161 < ClIE s
\ 2 (4.3)
+ C/ (Nl 16 @ s, + 10 16 @) Ll ) .
0

129



D.M. Ambrose, E. Cozzi, D. Erickson et al. Journal of Differential Equations 364 (2023) 107-151

It remains to close the estimate and apply Gronwall’s lemma. To do this, note that, for each
fixed ¢ € [0, T'], the approximating sequences (6, (¢)) and (u,(¢)) from the proof of Theorem 3.1
converge to 0(¢) and u(t), respectively, in L°°(]R2). This convergence, along with Lemma 2.2,
allow us to pass to the limit in Lemma A.2. This gives, for all j € Z,

Aju=A;(VE(=a)"1%9).
Applying a differential operator D? with 1 <|y| <s gives
A;D"u=A;D"(V*(-A)"1%0).
This implies that, for |y | > 1,
D’u=D""'P+ (a®)* VED"0 + [D"(V:((1 —a)®))] %6

for almost every x € R2, where P is a polynomial. But D¥u and D119 are in C(0,T];
L (R?)) for each |y| < s, which implies that P is a constant. We conclude that for 2 <|y| <,
DY u and D70 satisty

DYu=(a®)* VED70 + [DY (V*((1 —a)®))] 6 (4.4)
for almost every x € R?. Applying Lemma 2.15, for any multi-index 8 with | 8] = 2,

1DPull s < CUON, + 16112) < ClOs, 4.5)

where we applied the Sobolev embedding theorem to get the last inequality. This estimate, com-
bined with ||u||LzI < Cl|lul|r and ||V“||L2, < |IVu|| >, gives

il s, < CIN s, + el ). (4.6)
Substituting this estimate into (4.3) gives

o(t 2~ 90 2
1013, < 16%13
t

+ Cf (@101 + 16Ol VOO =0l g, + Nu(lle)) d
0

5
<116%1%s +C/(||u(r)||@ +IVO@ )07 dT
0 4.7)

1
+ C/ 10 s, IVO(@) Lo u(T) || 61 dT
0

t
<116°Is +C / (lu@ g +IVE @) 8@ 175 d.
0
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where, to get the last inequality, we applied the Sobolev embedding theorem to conclude that
IVO(T)|| Lo < C||9(r)||H;l. By Gronwall’s Lemma,

t
16117 < 16°17s exp C/<||u<r>||@ +IVO(D)|z) dr
0

This completes the proof of Theorem 4.1. O
4.2. Existence of solutions
In this section, we prove the following theorem.
Theorem 4.2. Let s > 3. Let 6° be a function in H, (R, and let u® in HE, (R?) satisfy
W =vh(=a)"120  in CUR?),

where o > 1 satisfies the embedding H;, (R?) < C%(R?). There exists T > 0 and a unique
solution (u, 0) to

0,0 +u-vVo=0,
0 /0 4.8)
(Lt, 9)|t=0 = (l/l s 0 )
satisfying
0 € L0, T; H,(R?) N Lip([0, T1; ' (R?)),
ue L0, T; HS(R?).
Moreover, (u, 0) satisfies
t
u() =u’ + ((@®)) * V-0 0) —6°) — /(Vvi((l — a)®))x-(0u) ds. (4.9)
0

Proof. For the proof of Theorem 4.2, we will construct an approximation sequence of smooth
solutions (uy, 6,) given by Theorem 3.1 on [0, T]. We will then use Theorem 4.1 to establish
uniform bounds on (u,, 6,) in the Husl norm, which will allow us to pass to the limit to obtain
(4.8).

Approximation sequence and uniform bounds. Consider the sequences u2 = S,u" and 0,? =
$,0°. We see that for each n, u2 and 0,? belong to C"(R?) for every r > 0. Moreover, by
Lemma 2.14, there exists C> 0, depending only on s, such that

0 ~1,,0
Qs < Cllull s

. - (4.10)
16115, < €16 s
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We claim there exists a single 7 > 0 such that both (&,) and (6,) are uniformly bounded in
L, T, H;l (R?)). To see that such a T exists, note that Lemma 2.13 and construction of ug
and 6 give an a > 1 such that both (#0) and (6?) are uniformly bounded in C%(R?). Thus, by
Theorem 3.1, a solution (u,, 6,) exists in C¥ (]R3) at least on [0, T,,], with (u,, 6,) satisfying

(3.2). Choose T > 0 such that, for every n, T < T, and

L O 4 100 ce) = T 2o + 16 ) < —,
2C — n n - C

where C is as in (3.2). We have that for every n, (u,, 8,) is a solution satisfying Theorem 3.1 on
[0, T']. In particular, by (3.2),

Clu®l o + 116°]lce)

lunllcqo,r1:L%0) + 16nllcqo.11:c2) < , (4.11)
PRCOTRLS T ICUTECD =1 T (Ju0] L + 1161l cw)
and |lu,llcqo,71;%)> 18nllc(o,1);ce) are therefore uniformly bounded in n.
To establish a uniform bound on ||u, ||c(fo,7]:c«) in n, note that by Lemma 2.6,
lunllcqo,r1;cey < Clunllcqo, 1,20y + 10nllc(o,11:¢))- (4.12)

Then the uniform bound on ||u, ||c(j0,7];c«) again follows from (4.11).
Theorem 4.1, (4.10), and an application of the uniform bound on ||u,||c(0,7]:c*) imply that
there exists a constant C > 0, depending only on the initial data and 7', such that

10nllcqo.7; 15, < C- (4.13)

This bound, combined with the estimate (4.6), imply that there exists a constant C > 0, depending
only on the initial data and 7', such that

lunllcqo,ry;ms) = C (4.14)

as well.
To simplify notation in what follows, we set ¢r = ¢ g, Where ¢ g is as in (2.10).

(¢ g0,) is Cauchy. We now show that (¢g6,) is a Cauchy sequence in the space C ([0, T];
HS~1(R?)) for every R > 0. For some « > 1 and for each n, we know that u,, 6, €
c(o,T]; C“ (IRZ)), and that our solutions satisfy

010 +u, - VO, =0. (4.15)
Multiplying (4.15) by ¢ for some fixed R > 0, we have

PR Onll gs—1 < lPRUR - VOl pgs—1 < C(R) [ty - VOl pys-1
ul
(4.16)
< CR) 1196, i1 < C(R),
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where the third inequality follows because H,,,~ '(R?) is a Banach algebra, and the last inequality
follows since ||V8,]| ! and |uy,|| ! are uniformly bounded in n by a quantity depending
only on the initial data.

Via Rellich’s theorem, since for each t € [0, T'], [|6,(®)|| H;, is uniformly bounded over n,
we can conclude that for each R and ¢ € [0, T'], there exists a subsequence of (¢pr6,(t)) which
converges in H*~!(R?). A diagonalization argument shows that for each ¢ € [0, T'], there is a
subsequence of (6, (¢)) (relabeled to (6,(¢))) such that for every R > 0, the sequence (¢g6, (¢))
converges in H*~1(R?).

It remains to find a subsequence which converges for all ¢ € [0, T]. From (4.16), it follows
that given € > 0, there exists § > 0 such that for all n and for all s, ¢ € [0, T'] such that |t — 5| < &,

¢RON () — PRON ()| gs—1 < €/3. (4.17)

Consider a partition of [0, T],0 =1y <t <... <ty =T such that t; —t;_1 < §. Since there are
finitely many elements in the partition, we can find a further subsequence of (¢g6,) (relabeled
as (¢r6,)) such that for each #; in our partition, (¢g0,(;)) converges in H*~!(R?) for all R > 0.
Let N be such that for all m,n > N and for all #; in our partition,

PRON(1i) — PROM ()| prs—1 < €/3.

It follows that for all pairs m,n > N and for each ¢ € [0, T'], with #; chosen to satisfy |r — ;| < 8,

lPRON(E) — PROM ()] gs—1 < |PRON(E) — QRO () || s—1
+ 1 PROn (ti) — PROM E) | frs—1 + 1PROM (i) — PROM (D) || prs—1 < €.
Therefore, (¢pr0,) is a Cauchy sequence in C([0, T]; H*~1(R?)), and thus converges in

C([0, T1; H*~1(R?)). We conclude that there exists 6 such that ¢rO, — PR in C([0,T];
H*~1(R?)) forall R > 0.

(¢ gun) is Cauchy. The proof that for all R > 0, (¢pruy) is also Cauchy in C([0, T']; HS"2(R2))
is similar. Indeed, for each ¢ € [0, T], the uniform bound on ||u, (¢)|| H, Over n and a diagonal-
ization argument, as above, allow us to conclude that there exists a subsequence of (¢ru, (¢))
which converges in H*~2(R?) for every R > 0. It remains to find a single subsequence which
converges for all ¢ € [0, T']. We observe that by Theorem 3.1, for s, ¢ € [0, T'],

t
n () = tn(s) = (@®) 5 V(6 (1) — 6, (5)) — /(VVL((1 —a)®))x*-(Onttn),

so that for each R > 0,

t
lrun (1) — PRUN(S) | s—2 < C(R)||P8RON (1) — P8RON ()| ps—1 + C(R)/ 16n 1l oo llun [l Lo

=CR)t =5+ CR)[t —s| sup (|0, (T) ]|z llun(T)llLo0,

T€[s,1]
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where we used the equality ¢pr((a®) * f) = dr((@P) x (¢3r f)) to get the first inequality, and we
used (4.16) to get the second inequality. Since |6, || L and ||u, || L~ are uniformly bounded in 7,
given € > 0, there exists § > 0 such that for all R > 0, whenever s, ¢ € [0, T] satisfy |s — ]| < §,

lprun () — Prun(s) |l gs—2 <e.

Following an argument identical to that used to show (¢gr6,) is a Cauchy sequence in
C([0, T]; H*"'(R?)), we can conclude that (¢ru,) is Cauchy in C([0, T]; H*~%(R?)), and
there exists u with ¢pgu, — ¢dgu in C([0, T]; H*~2(R?)) for all R > 0.

(u,0) satisfies Theorem 4.1. We now pass to the limit in the H s=2(R2) norm. Given R > 0, if
we multiply (4.15) by ¢g, then forn,m e N,

OR(0:0y — 0:0p) = GRr(Up — ) - VOy + oruy - V(0 — O)
=¢r(Un — up) - (G2RVO0y) + PrUuy - 2RV (05 — Opy).

Hence, ateach t € [0, T],

lor(0:0n — 0:0m) |l ys—2 < PR (Un — up) - (P28 V) |l gs—2

+ I@run - P2V (On — Om) || 52
< N@rn — up)ll gs—2 1928 VOnlloo + PR (Un — tm)lloollP2r VO || grs—2
+ l¢rUn | 5211028V (Bn — Om) lloo + IPRUR 00 1928V On — O) || grs—2-

Since [|$g2rV O lloos |28V Om || gs—2, |@RUR | s—2, and ||@ru, ||co are uniformly bounded in n
on [0, T], as N — 0o, we have

sup o wn — um) || gs-211$28 VO lloc = 0,

m,n>N

sup |9 un — um) llooll@2R YV O || rs—2 = 0,

m,n>N

sup |¢runll gs—2 112V On — Om) oo = 0,

m,n>N

sup [|¢runlloollP2rV (O — O) |l gs—2 — 0.

m,n>N

From these estimates, it follows that (¢rd,6,) is Cauchy in C([0, T']; H S=2(R2)).

Since ¢pr6, — ¢rb in C([0, T] x R2), we also have orO, — ¢drO in D'([0, T] x Rz). This
implies that ¢p0;0,, — ¢g0;0 in D'([0, T] x R2), so by the uniqueness of limits, for all R > 0,
PR, — PR30 in C([0, T1; H"2(R?)).

We multiply (4.8);, as satisfied by (u,, 6,), by ¢r, and we pass to the limit in C([0, T'];
H’™%(R?)). This gives ¢ppd;0 = —pru - VO for all R > 0.

To see that 6 belongs to L*°(0, T'; szl (R?)), we use (4.13) and a weak-* compactness argu-
ment. Note that by (4.13), for every x € Rz, neN,andr e [0, T],

fxbn ()| 5s < C.
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Therefore, up to a subsequence which depends on ¢ and x, ¢,.6, (t) converges weak-* in H*® (R?).
Note, however, that for every R > 0 and 7 € [0, T], ¢r0,(t) — ¢r0(t) in H*~(R?). Given x,
since we can always choose R large enough to ensure that ¢, = ¢x¢g, we have ¢,0,(t) —
#c0(t) in L2(R?). By uniqueness of limits, ¢,.6, (t) converges weak-* in H*® (R?) to ¢,0(z), and

¢x0(Dlms < C.

This holds forall t € [0, T] and for all x € R2, 506 belongs to L>°(0, T'; H,fz (Rz)). The argument
showing that u belongs to L>(0, T'; H;, (R?)) is similar.

(u,0) satisfies (4.9). Note that (4.9) follows from Theorem 3.1 since, by the Sobolev Embedding
Theorem, u and 6 belong to C([0, T]; C* (R2)) for some o > 1. This completes the proof of
Theorem 4.2.

Uniqueness Applying a cutoff function ¢z to two solutions and making the same argument that
showed (¢ruy,) is Cauchy gives uniqueness of solutions. O

5. (E) in uniformly local Sobolev spaces
5.1. A priori estimates
We now prove an analogous theorem to Theorem 4.1 for the Euler equations.
Theorem 5.1. Assume s is an integer satisfying s > 3, with d =2 or 3. Let u be a solution to

(E)in C'([0,T1; Hk (]Rd))for all k € N. Then there exists C > 0, depending on s, such that the
following estimate holds for each t € [0, T]:

1
lo@1,.1 = A+ 1) exp cf||u<r>||@1<||u<r>||%m+1>dr . 6D
0

Proof. The proof is similar to that of Theorem 4.1. We prove the theorem for d = 3. The proof
clearly extends to the case d = 2.
Set W = D% with 0 < o] <s — 1 and s > 3. Apply D to the vorticity equation to get

OW+u-VW=D%w-Vu)+F, (5.2)
where
F=u-VW —D%u - Vo).
For x € R? fixed, multiply (5.2) by ¢, to get
(W) +u-V(gxW) = (u- Vo)W + ¢ D*(@ - Vuu) + ¢y F. (5.3)
After taking the dot product of (5.3) with ¢, W and integrating, we conclude that
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f¢xW~8t(¢xW)+/¢xW-(u-V(¢xW))=/¢xW-((u-V¢x)W)
R3 R3 R3

+/¢XW-(¢xD“(w~Vu))+/¢xW-¢xF-
R3 R3

Now observe that

P W - 01 (9x W) = Sl P WlEo.
R3

Moreover, one can show using the divergence-free property of u and integration by parts that

/d)xW (u- V(g W)) =0.
R3

By properties of ¢, and Holder’s inequality, we also have
[oaw - -oowr = [ 6w - Vonew)
R3 R3

2 2
< lgx2Willpallu - Vorlie < ClluliLe |l
ul

and, again from Holder’s inequality,
/ G W - (px D* (@ - Vu)) < Cllgx Wl 21l D* (@ - V)| 12

R3

2
= lloll gs-r(loll gt Vullie + llollze I Vull gso1) < Cllullys 1Vulize,
u U u.

where we used Lemma 2.12 to get the second inequality. Finally, another application of Holder’s
inequality gives

/¢xW-¢xF§ ox WilL2 Ml Fll 2.
R3

Since u is divergence free, we can write
F=u-VW — D*div(uw),
which allows us to apply Lemma 2.12 to ||¢ F|| ;2 with f =u and g = w. This gives
16 Fll 2 = € (lull gl ot + ol el ) < Cllull gl
Combining the above estimates gives
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ld 2 2 2
S NS WIG2 = Cllullen (ol il g, + ey, ) < Clullga il

After integrating in time and taking the supremum over x € R3 of both sides, we conclude that

lo @11 = 11,0 +C / (@l (@) 17 d. (5:4)

It remains to close the estimate and apply Gronwall’s lemma. To do this, we use the Biot-Savart
law.

Let K3 = VG, with G as in 2.1, be (one form of) the Biot-Savart kernel in dimension
3. Setting w;, = (Vu — (VM)T);( = dpu' — 9;u*, since u and w are smooth and decaying, for
1 <i < 3, using implicit sum notation,

u = K3 *wk (aK;)*a)k—i—((] —a)K3) *a)k

= (aK¥) * of + (3 ((1 —a)K5)) xu' — (3 (1 —a)K%)) * u. G
Applying a differential operator D, with 0 < |8| < s — 1, to both sides of (5.5) gives
DPu’ = (aK¥) x DP ol + [DPor((1 —a)K¥) 1% u' — [DP3; (1 — a) K¥)] % u*.
Setting D? =0, D? and applying 0; then gives
DYu' = 3;((aK%) * DPw}) +[DY 3; (1 — a)K5¥)] % u'. (5.6)
Applying Lemma 2.15 gives
IVl g1 < Clloll o1 + ).
This estimate, combined with ||u|| 12, < Cllull e, gives
lullzry, = Clloll ot + Nl zoe)- (5.7

We use (5.7) and (5.4) to write

lo@1 1 = 11, +C / lu@llgr (e (@) st + (@) ) d
< eI, 1+C/||u(r>||cl<||w<r>||,,s L (@) dr,

< | - |+C/IIM(T)Ilcl(IIM(f)IILoo+1)(Ilw(f)ll 1l + Ddr,
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where we used that for A, B >0, (A 4+ B)? < C(A% + B?) to get the second inequality. Setting
h(®) =1+ oI, we have

ul

t
h(t)sh(0)+C/||u(r)||@1(||u(r)||ioc+1)h(r)dr.
0

An application of Gronwall’s Lemma gives

13
lx(®)le 1 = (4 oI5, ) exp Cf||u<r>||@1<||u<r>||%oc+1>dr
0

This completes the proof of Theorem 5.1. O
5.2. Existence of solutions
We prove the following theorem.

Theorem 5.2. Let s > 3. Let u® be a function in Hzfl (R3), and let ©° =V x uY. There exists
T > 0 and a unique classical solution (u, p) to (E) satisfying

ue L®0,T; H(R3)) N Lip([0, T1; H ' (RY)).
Moreover, p satisfies
Vpx)=-— / a(x —y)VG(x —y)divdiv(u @ u)(y) dy
R3

+ /(u Qu)(y)- VVI(I —alx —y)VG(x —y)]l dy.
R3

(5.8)

To prove the theorem, we construct an approximation sequence of smooth, decaying solutions
to (E), and we pass to the limit in (E). The construction of the sequence of initial velocities is
slightly more tedious in the three-dimensional setting than in two dimensions, as we must make
use of a more complicated explicit formula for a three-dimensional stream function.

Because we are seeking a strong solution to (E) in H;, we are forced to consider the meaning
of the pressure for such solutions. We are able to make sense of the pressure by passing to a
certain limit of the sequence of smooth pressures generated from the smooth velocity solutions.

To prepare the initial velocity, we adapt the classical strategy employed in [3] and [10] of
cutting off and smoothing the stream function associated with the initial velocity . Some addi-
tional care is required because of the lack of inherent decay of the velocity field.

Lemma 5.3. Let u” € Hp, (R3) and let s be a nonnegative integer. There exists a sequence (ug) of
Schwarz-class, divergence-free vector fields uniformly bounded in H, (R3) for which q‘)Rug —
dru’ in H*(R3) for any fixed R > 0.
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Proof. Let (m,);> | be a sequence of positive integers that we will specify later. We define ug
by

t) = S, (V X (@n V) = S, (@nte”) + S, (Vb X V), (5.9)
where v is the stream function for u° given in Lemma 2.17. Observe that u9 is Schwarz-class

and divergence-free.
Using Lemmas 2.12 and 2.14,

0 0 0 0
1Sm, @) 125, < Cllbutll s, < Cliblles ez, < Cllll s

Again by Lemmas 2.12 and 2.14,

1S, (Vébu X )l izs. < ClIVen x Yl = C sup 6=V x ¥ [l

zeR3

1 1
=C sup [¢:Vy x Yl usw) = C sup 19 Vullgs 1y 102 ¥ llms )

zeR3 zeR3

where U = B2,(0) N Ba(z). But by Lemma 2.17, (||l gs ) < Cn||u0||H5[ = Cn and hence

1 1
2 ¥ || sy < Cn. Since Ve, (-) =n~'Vep(n~!.), we have ||¢p? Ve, sy < Cn~!. It follows
that

C
[ Sy (Vo x ¥ s = —Cn=C.

This shows that (ug) is uniformly bounded in H; | (R3).
We now show that pru — ¢pru® in H*(R3). Because S, commutes with V x,

PRy — %) = PR [Si, (V X (@) =V x Y] = ¢rV X (S, ($a¥) — ¥).

But,
Sy (Dn¥) — ¥ =S, (Gn¥) — p ¥ + (P — DY
Forn > 2R, ¢, — 1 =0,50 ¢rV x ((¢, — 1)) =0, leaving
PRy — 1) =GRV X (S, @u¥) — du¥V) -

It is now time to choose m,,. Because V x (¢, V) € H® (R3), we know that V x (Si(¢n ) —
dn) — 0in H*(R3), as k — o0, so choose m,, > n sufficiently large that

1
IV (Sk(@u) = 9wl sy < - forall k = m,.
It follows that
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”¢R @ — u®) ” R < C;R).

This gives ¢Ru2 — ¢ru’ in H*(R3) forany R > 0. O

Proof of Theorem 5.2.
Uniform time of existence. From the sequence of initial velocities in Lemma 5.3, we generate
a sequence (u,) of solutions to (E) in H k(R3) for all k, where the time interval of existence in
H*(R3) for each u,, may vary with n. We claim, however, that there exists a single 7 > 0 such
that u,, solves (E) with (u,) uniformly bounded in L>(0, T; HS,(R?)).

To see that such a T exists, note that Lemma 2.13 gives an « > 1 such that ug belongs to
c« (]R3) for each n. Thus, a solution u,, will existin C¢ (]R3) at least on [0, 7},], with u,, satisfying
the estimate (see [6] and chapter 4 of [7])

0 ~11,,0
luplce — _ Cluallay

0 = ~ '
CTulluplice =~ 1= CT,l|ud e

lunllcqo,T,:c0) < T— (5.10)

Choose T > 0 such that, for every n, T < T,, and satisfies
1 710 _—_— 1
E =< n||l4n||H;'l <T|u ||H51 < E,

where C is as in (5.10). We have that for every n, u, is a solution to (E) in C*(R?) on
[0, T]. Moreover, by (5.10) and Lemma 5.3, [lu,llc(o,7);ce) is uniformly bounded in n. But
this implies that for every n, | Vuy | 1000 7. oo (R3y) < 0©. From this and classical theory we can
conclude that u,, belongs to C([0, T]; H k(]R3)) for every k. Thus, for every n, u,, satisfies The-
orem 5.1 on [0, T]. Theorem 5.1, Lemma 5.3, and another application of the uniform bound on
lluenllc (o, 71;coy imply that there exists a constant C > 0, depending only on the initial data and
T, such that for all n,

”a)"”C([O,T];H;l_I) <C. (511)

Moreover, by (5.7), (5.11), and (5.10), there exists a constant C > 0, depending only on the initial
data and T, such that for all n,

lunllcqo,ri;ms) < C- (5.12)

(u,) converges to u. Note that for each n, u, belongs to the space c'([0, T1; H*(R?)). More-
over, we have

Oty +up - Vu, =—Vpy,, (5.13)
where p, satisfies p, = A~V (u,, - Vu,). For fixed R > 0, multiply (5.13) by ¢. Then

@R unllgs—1 < 1R (Un - Vun)ll gs—1 + 1QRV Pull gs—1-
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Note that
¢ tn - Vi)l gs1 < CR Nt - Vatnl ot < CCRY || Vit o

+ COR Vit 2%t s+ < CCR)an

which can be bounded uniformly in #n by (5.12).
To estimate the pressure term, observe that

Vp,=—(@VG)xdivdiv(u, @ u,) +[VV({(1 —a)VG)] - *(u, Quy,). (5.14)
Applying DY to this identity with 1 <|y| <s — 1 and applying Lemma 2.15,
1V Pl ot = Cllitn @ nll s, + lttn ® ) = Clatn @ il
where we used the Sobolev embedding theorem. Thus,

168V Pall -1 < CARIIV pall gt < Clta 1 (5.15)

which can be uniformly bounded in 7.
Combining the above inequalities, we conclude that

lprOunll gs—1 < C, (5.16)

with C depending on the initial data and R, but not on n.
By Rellich’s Theorem and the uniform bounds on ||u,, (¢) | H, for each ¢, we can conclude that

for each ¢ and each R, there exists a subsequence of (¢gu,(¢)) which converges in H s—L(R3).
Using a standard diagonalization argument, for each fixed ¢, one can find a subsequence of
(pru, (1)), relabeled (pru,(t)), which converges in H*~! (R3) for every R.

To find a single subsequence that works for all ¢, we use (5.16). Given € > 0, there exists
8 > 0 such that for all n,

lprun(s) — Prun ()|l gs—1 <€/3 (5.17)

whenever |s —t| < §. Given this &, construct a partition of [0, T],0 =1 <t <fh < ...... <ty =
T such that t; — t;_1 < §. Using the process above, one can find a subsequence of (¢ru,), which
we relabel (¢pruy), such that (¢pru, (t;)) converges, and hence is Cauchy in, H*~! for each t;,
i=1,2,..., M and for every R > 0.

Let N be such that for all n,m > N and for all #; in the partition,

lPrun(t;) — Prutm (i)l gs—1 < €/3.
Then for all pairs m, n > N and for each ¢ € [0, T'], there exists #; such that
lprun(t) — drum ()| gs—1 < lPprUA () — GRUA ()| 51
+ l[orun () — GRUM () | grs—1 + | PRUM (1) — PRUM (D) || gs—1 < €.
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We conclude that (¢ru,) is Cauchy in C([0, T]; H s=1(R3)), and thus there exists u such that
(¢ru,) converges to ¢pru in C([0, T'1; H~Y(R3)) for all R > 0.

(p,,) converges to p. We now show that, up to subsequences, for all R > 0, (¢prV p,,) is Cauchy
(and thus converges) in C([0, T]; H*"2(R?)). The process is very similar to that above. As
above, using the uniform bound in (5.15) and Rellich’s Theorem, we can conclude that for each
fixed ¢, there exists a subsequence of (¢prV p, (1)), relabel it (¢rV p,(¢)), which converges in
H’~2(R?) for every R. To find a single subsequence that works for all 7, we must find a time
modulus of continuity for (¢prV p,(¢)) which is uniform in n. To do this, first note that by Propo-
sition C.1,
0:unliLoe < llunlloell Vgl + IV pullLe

< Cllunllz, < Cllunllzys <€
for all n and for all ¢t € [0, T']. Thus there exists C > O such that for all s, t € [0, T'] and for all n,
lun () — un(s)llpoe < Clt — 5. (5.18)
Applying (5.14) and Lemma 2.15, for s, ¢ € [0, T'],
orY Pn(t) = ORV P ()| gs—2 < Cllar (tn @ tn (1) — ttn & tn (s)) |l ps-1
+ Cllun @ up(t) —up @ un(s)| oo

It follows from uniform bounds on ||u,, ||~ and ””"”Hf 1 in n, along with (5.18) and (5.17), that
given € > 0, there exists § > 0 such that for all n, Whenever |s —t| < 3§,

NORY pn(®) — RV Pu($) || prs—2 < €.

With this uniform continuity in hand, we follow a process identical to that used to show for all
R > 0, (¢ruy) is Cauchy in C([0, T]; H*~'(R?)). We conclude that for all R > 0, (prV p,) is
Cauchy in C ([0, T']; H’~2(R?)), and thus there exists p such that (¢gV p,) converges to ¢prV p
in C([0, T1; HS~2(R?Y)).

(u, p) solve (E). For fixed R > 0, multiply (5.13) by ¢g. Then for any m, n,

OR(Ortty — Ortty) = QR(Up — Up) - Vg + PRty - V(i — ty) — GV (Pn — Pm)
=¢rWn — Up)P2R - Vity, + drity - G2V (U, — uy) — PRV (P — Pm),

so that, for each ¢,

lor Orttn — dutm) | ggs—2 < lPR (Un — ) P2R Vit || s—2
+ ll@run - 2RV (U — un)l -2 + 1ORV (Pn — i) | s—2
< lorn —um) L2 ll@p2r Viem || gs—2 + o n — ttm) || gs—2 1| @28 Vit || Lo
+ l@runllLellp2rY (Um — un) || gs—2 + |@rUR | s—2 P28V (U — un) || Lo
+ 10V (Pn — Pl 5—2-
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Note that ||¢2r Vil gs—2, |92Vl Lo, || Loe, and ||@ru, || gs—2 are uniformly bounded
in n. We conclude that as N — oo,

sup [[¢r(up — um) Lo lp2r Vit || gs—2 — 0,
m,n>N

sup |l¢rwn — um) |l gs—211¢28 Vitm || Lo — 0,
m,n>N

sup |[@runllLoelp2rV (Um — un) |l gs—2 — 0,
m,n>N

sup |@runll gs—21$2r Y (Um — un)||Loe — 0,
m,n>N

sup |[¢rV(pn — pm)”Hsz — 0.

m,n>N

From the estimates above, it follows that (¢gd;u,) is Cauchy in C([0, T]; HS~2(R3)).
Since ¢ru, — ¢dru in C([0,T] x R?), ¢pru, — ¢ru in D'([0,T] x R3?), which means
PR U, — PrOu in D'([0, T x R3). Thus, by uniqueness of weak limits, ¢ro;u, — ¢rou
in C([0, T]; H"2(R3)) for every R. This, combined with convergence of (¢gu,) to (¢ru) in
c(o,1y; Hs ! (]R{3)) for every R, allows us to conclude that for every R > 0,

PrOiuy — ProsU,
Oruy - Vuy, — ¢ru - Vu
in C([0, T1; H~2(R?)).

It remains to take the limit of (¢pzV p,) in C([0, T]; H*~2(R?)). To do this, first note that by
Proposition C.1, for every n,

Vpa(t.0) = [ ale = ) VG ) divaivun © 1) 0.3)dy
R3
+ /(”n ®up)(t,y) - VV[(1 —alx —y)VG(x —y)] dy.
R3

Since (u, ® u,) is uniformly bounded in C([0, T]; LOO(R3)), for each r € [0, T], there ex-
ists a subsequence (un, (1) ® up, (t)) converging weak-* in L>®(R3). Since (¢prun) converges
to ¢ru in C([0,TT; H*~1(R3)) for each R, (prUn ® Pru,) converges to ¢pru ® Pru in
c(o0,T]; H* -1 (]R3)) for each R. It follows from uniqueness of weak limits that for this fixed

t €0, T], (un, () ® uy, (t)) converges weak-* in L* to u(r) ® u(t). Since, for each x € R3,
VVI(l —a(x —y)VG(x — y)lisin LL(R?),

/(unk Qun)(t,y)- VV[(l —alx —y)VG(x — y)] dy
R3

- [(u Qu)(t,y) - VVI[(l —alx —y)VG(x — y)l dy
R3
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for each x € R3.

Similarly, since (divdiv(u, ® u,)) = (Vu, - (Vu,)T) is uniformly bounded in the space
C([0, T]; L°(R3)), for each ¢ € [0, T], there exists a subsequence (divdiv(uy,, () ® up, (1))
converging weak-* in L°°(]R3). But again, since (¢pru, ® ¢ru,) converges to ¢pru Q ¢ru in
C ([0, T1; H*~1(R3)) for each R, for this fixed € [0, T, (divdiv(u,, ® upy,)) converges to
divdiv(y ® u) in D' (R3). By uniqueness of weak limits, the weak-* limit of (divdiv(u,, (1) ®
Un, ())) must be (div div(u(t) ®u(t))). Since, for each x € R*, a(x —y)VG(x —y) isin L} (R?),

[a(x = VVGx = y)divdiv(uy, ® un)(t,y)dy
R3
— /a(x — VG —y)divdiv(u @ u)(t, y)dy
R3
for each x € R3.

We conclude that for each ¢ € [0, T'], there exists a subsequence (V p,, ) such that Vp,, (¢, x)
— Vp(t, x) for every x € R3, where

Vp(t,x)= —/a(x — VG (x — y)divdiviu Q u)(t, y)dy

R (5.19)

+ /(M Qu)(t,y) - VVI(I —alx = y)VG(x = y)] dy.
R3

Finally, since (¢rV p,) converges in C([0, T]; H S=2(R3Y), by the above it must converge to
$rVpin C([0, T); H*72(R?)). Thus, (u, p) solves (E), where p satisfies (5.19).

u belongs to L*(0,T; HS ,(R%)). By (5.12), for every x e R, n € N, and 1 € [0, T,
pxutn(@®)lls < C.

Therefore, up to a subsequence which depends on ¢ and x, ¢, u, (t) converges weak-* in H*® (R?).
Note, however, that for every R > 0 and t € [0, T'], ¢pru,(t) = ¢dru(t) in H1(R?). Given x,
since we can always choose R large enough to ensure that ¢, = ¢x¢pg, we have ¢ u,(t) —
¢cu(t) in L>(R?). By uniqueness of limits, ¢, u, (1) converges weak-* in H* (R?) to ¢, u(r), and

llpxu(®)|ms < C.

This holds for all ¢ € [0, T'] and for all x € R?, so u belongs to L>(0, T’; HE (R?)).
Uniqueness Applying a cutoff function ¢g to two solutions and making the same estimates that
showed (u, p) solve (E) yields uniqueness. Moreover, uniqueness also follows from [29] or from
[12]. O
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Appendix A. A constitutive relation for (S QG)

Lemma A.l. Assume that (u,0) are smooth solutions on [0, T] x R2, with 6 compactly sup-
ported in space, to

00 +u-vVe=0,
u(t) = V(A)“20(r).
(. 0)]1—0 = ®, 6°).

Then for all t € [0, T] and any A > 0, we have the Serfati-type identity,
t
u@®) =u’ + (@, @) x V(O (@) —6°) — /(vvl((l —a;)®)*-(Buls))ds.
0

In indices, this is

1
u' (1) = @) + (@®) x (V@) — %) — / 3j(VE((1 —a)®))" * (u’ () ds.
0

Proof. Because 6 is compactly supported in space, we can write the constitutive law in the form
u(t) = VE(@ % 0(1)). Taking the time derivative, we can introduce the cutoff function to obtain

du(t) = VE(D % 3,0(1)) = V(a3 D) * 30(1)) + V(1 — @) ®) * 3,0(2))
= (a5 @) * VE0(1)) — VE((1 — a3) D) * (u - VO)(1)).
But u - VO =div(0u), so

1

(V41 = a)®) @ V00| =[TH( = a)®)] + @ivEou o)
=V[vH( - ap®) | w0 .

Integrating in time completes the proof. O
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Lemma A.2. Assume the sequences (u,) and (8,) are generated as in (3.5) and (3.6). For every
jeZ,neN,andt €[0,T],

A1) = A vE(=n)"120m (1),
equality holding almost everywhere on R,
Proof. Applying 9; to (3.6)3 gives, for every j € Z,
@) * " (1) = @ % ((@®) * V0" (1)) — g} (VL*~(u”_10”)(t)> , (A1)

where L = VL ((1 — a)®), which we note has the singularity at the origin removed and which
decays like C |x| ™2 as x — oo. We apply the Fourier transform to both sides of (A.1). This gives

¢, F(Bu") = ¢; F(a®)F (@, V") — §; F(VL)Fu"~1o")
= (@ BYIEHF@0") — ¢ (F (1 - a) + &) [ie - Fur~om |
—igEt [(& « &) F(3,6") — (F(1 —a) % &) [ig .f(u"—le”)]] .
But,
i£ - FW" 0" = Fdive"u" ")) = Fu" ' - vt = —F(8,0M),
50
G F (u") =i F(3,0")p;6+ [(& % @) + (F(1 —a) % ci>)] )

Note that 4 € S, and & decays like |£]7!, so that a % d=a%@d) +ax*((1—a)d)isin
L' + L7 for all p > 2, by Young’s inequality. Moreover, observe that

Gi(F(l—a)«D)=¢;((—a)xD)=§; D —@;(a D). (A.2)
Since <,?)j<i> € S, we have that ¢;(F(1 — a) * ) belongs to L' 4+ L? as well. In particular, all

three terms in (A.2) are defined almost everywhere as, then, are the products. This allows us to
write the following equality, which holds in the distributional sense:

O F(@u") = ¢, (iE)DF(3,6"). (A.3)

Defining G € S(R?) by G = F~[¢ i (i& L)®] and applying the inverse Fourier transform to
(A.3) gives

@j % du" =G *8,0" in S'(R?). (A.4)
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Since both sides of the equality in (A.4) are convolutions of Schwarz functions with bounded
functions, both sides belong to L}OC(Rz). Therefore, equality in (A.4) holds pointwise almost
everywhere on R?. Moreover, by (2.7), we can write

Ajdu(t) = A;vE(—n)"12,0m,

which also holds almost everywhere. Integrating in time and using the identity A juo =
AjVJ-(—A)’l/zGO for all j € Z, we have that for all ¢ > 0,

Aju" (1) = A;VEH(—nA)"120m,
proving the lemma. O
Appendix B. Serfati identity for 3D Euler

We establish the 3D version of the Serfati identity of [26]. The key point of this identity is not
its precise form, but rather the order of the derivatives that appear on its near and far field terms.
Lemma B.1. Let

X

K(x)=—f,
) 47 |x|3

one form of the 3D Biot-Savart kernel. Any smooth solution to the 3D Euler equations with
velocity u and with vorticity ® compactly supported in space satisfies, for any A > 0, the 3D
Serfati identity,

Wk (1) = (% + / (@.K)(x — y) x (1, y)dy
R3

+/VV(<1 — @) K" (x — )+ @u)(t,y)dy
R3

+/Vdiv((1 —a)K)(x — y)x-(ufu)(t, y) dy.
R3

Proof. Because w is compactly supported in space, we can write the constitutive law in the form
(see, for instance, Proposition 2.16 of [21])

u(t,x):/K(x—y) X w(t,x)dy.
R3

Proceeding as in the proof of (A.1), we have

d
Oru(t) = — /(“AK)()C —y) xolt,y)dy +/L(x — ) X d(t, y)dy,
R3 R3
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where L = (1 —a;)K . But 3;w = curl(d,u) = — curl(u - Vu) = — curldiv(x ® u). Hence, the i'"
component of the second integral above, using Lemma B.2, becomes

k

_ /L(x — ) x curl div(u ® u)(t, y) dy
R3

= / By, L (x — y) - [div(u @ u)(t, y)I' + 8y, L' (x — y)[div(u @ u)(z, y)* dy
R3

= / By, L (x — )8! @u')(t, y) + 8y, L' (x — y)d; (! @ ub)(t, y)dy
]R3

=— f 30 LK (x — y)w! @u')(t, y) + 8,8 L' (x — y)w! @ ub)(z, y)dy.
R3

Integrating in time yields the result. O

Lemma B.2. For u, v smooth with uv compactly supported,

/u x curlv = /(—Vu -v+divuv) = /(—Biukvi + oju' vk)ek.
R3 R3 R3

Proof. We have,

i j k
u x curlv = ul u? ul

821}3—831)2 831}1—81113 81112—821)1

Working only on the first component and integrating by parts, we have

/(u x curlv)! = / u?(3v? — !y —ud (330! — 810?)
R3 R3
= /(—81142112 + 82142111 + 83u3v1 — 81u3v3).
R3
But 9u? + 83u® =divu — dju’, so
/(u X curlv)1 = /(—81u2v2 + (divu — Blul)vl - 81u3v3)
R3 R3

= /(—Blu ‘v +divuvl).
R3
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Similar expressions for the other two terms give the result. O

Appendix C. Pressure identity

We derive in this appendix the pressure identity for solutions to the Euler equations, adapted

from the 2D version due to Serfati [26], as derived in [19].

We work throughout with a sufficiently smooth decaying solution, (u, p), to the 3D Euler

equations in all of R3. It is classical in that setting that
pt,x)=—G xdivdiv(u(t) ® u(t))(x),
where G is the fundamental solution to the Laplacian on R3, defined in 2.1).
Proposition C.1. Let a be as in Section 2. The identity,
Vpn == [ ate = V6L - ) divdiviu @ () dy
R3

+ /(u Qu)(y)- VVI(I —alx —y)VG(x —y)l dy,
R3

holds independently of the choice of cutoff function, and V p € L°([0, T] x R3) with
IVp()llLe =C IIM(I)IIZ@ .

Proof. Applying 9; to (C.1) gives

3ip(x) = — / 3G (x — y)div(u - Vu)(y) dy.
R3

(C.1)

(C.2)

Here, we suppress the time variable to streamline notation. Applying a cutoff and integrating by

parts,

dip(x) = —/a(x —»aiG(x —y)div(u - Vu)(y) dy

R3
- /(1 —a(x— y)HG(x — y)diviu - Vi) (y)dy
R3
_ —/a(x — DHG(x — y)diviu - V) (y) dy
R3
+/<u~Vu><y)-V[(1 —a(x— )% G — )] d.
R3
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Integrating as in Lemma C.2 gives

0ip(x)=— / a(x —y)0;G(x — y)div(u - Vu)(y)dy
]R3

+ /(u(y) “V)Vy [ =alx =y)3Gx —y)] - u(y)dy,
R3

which we can write more succinctly as (C.2).
We conclude, since div(u - Vu) = Vu - (Vu)T, that

19: pll oo < 1a8i Gl 1 [Vull7eo + IVV (1 = @) Gl 1 7o -

Here, we are using that (in any dimension), VG is locally in L! and, away from its singularity,
V3G lies in L'. This gives the bound on Vp(r) in L.

That the expression in (C.2) is independent of the choice of cutoff function a can be seen by
subtracting the expression for two different cutoffs then undoing the integrations by parts. O

We used the following lemma above.

Lemma C.2. Ler V € HY(R?). Then

/(u-Vu)~V=—/(u.VV)~u.
R3 R3

Proof. Using the vector identity, (u - Vu) -V =u-V(V -u) — (u - VV) - u gives

/(u~Vu)~V=/u-V(V-u)—/(u~VV)~u=—/(u-VV)-u,
R3 R3 R3 R3

where the one integral vanishes since divu =0. 0O
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