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Abstract

We establish short-time existence of solutions to the surface quasi-geostrophic (SQG) equation in the 
Hölder spaces Cr(R2) for r > 1; to avoid an integrability assumption (such as membership of the data in an 
Lq space) we introduce a generalization of the SQG constitutive law. As an application of the Hölder theory, 
we use these solutions when forming an approximation sequence in the proof of existence of solutions of 
SQG in another class of non-decaying function spaces, the uniformly local Sobolev spaces Hs

ul
(R2) for 

s ≥ 3. Using methods similar to those for the surface quasi-geostrophic equation, we also obtain short-time 
existence for the three-dimensional Euler equations in uniformly local Sobolev spaces.
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1. Introduction

1.1. Background

We study non-decaying solutions of two fundamental models of fluid motion, the two-
dimensional surface quasi-geostrophic equation (SQG) and the three-dimensional incompress-
ible Euler equations (E). Classically, these equations (without forcing) can be written

(SQG)

⎧⎪⎨
⎪⎩

∂t θ + u · ∇θ = 0 in [0, T ] ×R2,

u = ∇⊥(−�)− 1
2 θ in [0, T ] ×R2,

θ |t=0 = θ0 in R2

and, in velocity formulation,

(E)

⎧⎪⎨
⎪⎩

∂tu + u · ∇u + ∇p = 0 in [0, T ] ×R3,

divu = 0 in [0, T ] ×R3,

u|t=0 = u0 in R3.

In (SQG), the scalar field θ is transported by the velocity field u, with u recovered from θ
via the constitutive law u = ∇⊥(−�)− 1

2 θ (making u divergence-free). In (E), the velocity field 
u is, in effect, transported by itself under the constraint that it remain divergence-free, which 
introduces the pressure gradient.
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The parallels between these two equations become clearer when (E) is written in vorticity 
form:

(Eω)

⎧⎪⎨
⎪⎩

∂tω + u · ∇ω = ω · ∇u in [0, T ] ×R3,

u = K ∗ ω, in [0, T ] ×R3,

ω|t=0 = ω0 in R3.

Here, ω = curlu is the vorticity, K is the Biot-Savart kernel, and u = K ∗ ω is the constitutive 
law. Rather than just being transported as θ is in (SQG), the vorticity field is stretched as it is 
being transported. Moreover, though both constitutive laws, (Eω)2, (SQG)2, yield divergence-
free vector fields, they differ sharply in that u gains one more spatial derivative of regularity over 
that of ω for (Eω), while it has the same spatial regularity as θ for (SQG).

Each of (SQG) and (E) are well-posed when the data is sufficiently smooth and sufficiently 
decaying. Insufficient smoothness motivates various weak formulations of the equations, a long 
tradition in PDE. Such weak formulations leave the constitutive law alone or integrate it into 
the weak formulation, but generalize or weaken what it means for the PDE itself to hold (that 
is, (SQG)1, (E)1, or (Eω)1). Studying PDEs when the data lacks sufficient decay has a shorter 
history, but focuses on extending or weakening the constitutive law. (Of course, both can be done 
at the same time.)

In this work, we study (SQG) and (E) for non-decaying, but sufficiently smooth solutions, 
which requires us to adapt the constitutive law while leaving the PDE itself unchanged. We will 
work with (E) primarily in vorticity form, though will also use the velocity form, which requires 
us to obtain estimates on the pressure p. The constitutive law u = K ∗ ω will enter (in adapted 
form) in the process of closing our estimates, as we shall see.

Our methodology for adapting the constitutive law follows that first employed by Serfati in 
[25] for the 2D Euler equations. He obtained an identity by applying a cutoff function to the Biot-
Savart kernel K to separate the near-field and far-field effects of the convolution. The far-field 
term is then integrated by parts twice—when the PDE and constitutive law permit this, as they 
do for (SQG) in 2D as well as (E) in any dimension—which allows the integrated form of it to 
be controlled for non-decaying data. The resulting identity then forms, in effect, a replacement 
constitutive law. This can be seen clearly in the form of these identities in Lemmas A.1 and B.1.

Even for decaying data, obtaining the existence of weak solutions to 3D Euler is beyond 
current technology, so we work with solutions having sufficient smoothness. We work, then, 
in Hölder-Zygmund spaces, which differ from Hölder spaces for integer indices—see Sec-
tion 2.2—and in uniformly local Sobolev spaces Hs

ul (see Section 2.3).
We prove existence for both (SQG) and (E) in Hs

ul by applying the existence theory in 
Hölder-Zygmund spaces to construct an approximation sequence, developing bounds uniform 
with respect to the approximation parameter, and passing to the limit.

1.2. Main results

We state our main results in Theorems 1.1 and 1.2, more completely stated in Theorems 3.1, 
4.2, and 5.2. See Sections 2.2 and 2.3 for the definitions of the function spaces Cr , Ċr , and Hs

ul .

Theorem 1.1. Let θ0 ∈ Cr(R2), r ∈ (1, ∞), and let u0 ∈ Cr(R2) satisfy u0 = ∇⊥(−�)−1/2θ0

in Ċr (R2). There exists T > 0 and a unique solution (u, θ) to (SQG) with the constitutive law 
in the form
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u(t) = u0 + (a�) ∗ ∇⊥(θ(t) − θ0) −
t∫

0

(∇∇⊥((1 − a)�))∗·(θu)

satisfying, for any r ′ ∈ (0, r),

θ ∈ L∞(0, T ;Cr(R2)) ∩ Lip([0, T ];Cr−1(R2)) ∩ C([0, T ];Cr ′
(R2)),

u ∈ L∞(0, T ;Cr(R2)) ∩ C([0, T ];Cr ′
(R2)).

If θ0 ∈ Hs
ul(R

2) and u0 ∈ Hs
ul(R

2) for some s ≥ 3 satisfy u0 = ∇⊥(−�)−1/2θ0 in Ċα(R2), 
where α > 1 satisfies the embedding Hs

ul(R
2) ↪→ Cα(R2), then

θ ∈ L∞(0, T ;Hs
ul(R

2)) ∩ Lip([0, T ];Hs−1
ul (R2)),

u ∈ L∞(0, T ;Hs
ul(R

2)).

Theorem 1.2. Let u0 ∈ Hs
ul(R

3) for some s ≥ 3, and let ω0 = ∇ × u0. There exists T > 0 and a 
unique classical solution (u, p) to (E) satisfying

u ∈ L∞(0, T ;Hs
ul(R

3)) ∩ Lip([0, T ];Hs−1
ul (R3)).

1.3. Prior work

There are a number of approaches to studying non-decaying solutions of nonlinear systems 
of partial differential equations, one of which is to focus on rough solutions, while another is to 
study more regular solutions.

For rough data, there is prior work on non-decaying solutions of the two-dimensional Euler 
equations under the assumption that the initial velocity and initial vorticity are only in L∞. This 
approach was pioneered by Serfati [25], and extended to contexts such as exterior domains by 
two of the authors and collaborators [3].

Wu has previously developed existence theory for (SQG) in Hölder spaces [30], with the 
restriction that the initial data is not only in a Hölder space but also in an Lq space for some 
q < ∞. In the present work, by incorporating estimates which stem from the Serfati identity, we 
remove this assumption that the data are in Lq , finding existence of non-decaying Hölder solu-
tions for (SQG). Without membership in the Hölder space, Marchand demonstrates existence of 
weak solutions with data in Lp for 4

3 < p < ∞ (Marchand also treats the case of data in Ḣ−1/2) 
[22]. An interesting question, which the authors will seek to address in the future, is whether the 
current formulation using a Serfati identity can be used to extend Marchand’s result, developing 
existence theory for (SQG) with L∞ data. A particular class of solutions of (SQG) with L∞
data has been studied in a series of papers by Hunter, Shu, and Zhang [13], [14], [15], [16], 
[17]. These works study the case of fronts in (SQG), in which θ takes on two distinct values, 
and includes both the case of vortex patches and halfspace-like fronts. Hunter, Shu, and Zhang 
develop contour dynamics equations, similarly to what has been done for vortex patches in the 
Euler equations (see e.g. [21] for a summary of such theory), and prove existence of solutions 
to the contour dynamics equation. We mention that seeking a more general L∞ existence theory 
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will be complementary to these works, as more general data may be treated, but such a theory 
will result in much less detailed information about the structure of solutions at positive times.

Our use of the Serfati identity has the purpose of allowing one to unambigously construct u
from θ ; with membership in an Lq space as in [22] or [30] there is no difficulty in making the 
reconstruction, but this is an issue in general for non-decaying solutions. An alternate way of 
dealing with this has been introduced by Albritton and Bradshaw, imposing m-fold rotational 
symmetry in a study of similarity solutions [2].

In recent work Córdoba and Martínez-Zoroa [9] have shown non-existence of solutions for 
(SQG) with data in Hölder spaces Ck for integer k ≥ 2. This is not a contradiction to the present 
work, for although Hölder-Zygmund spaces coincide with Hölder spaces for non-integer expo-
nents, they are larger than Hölder spaces for integer indices. This is discussed in more detail in 
Section 2 below. The same situation, non-existence of solutions in classical Hölder spaces but 
existence instead in Hölder-Zygmund spaces, has been shown to hold for the incompressible 
Euler equations as well [6,7].

Majda sketches a proof of existence for the compressible Euler equations in uniformly local 
Sobolev spaces in [20]; Majda remarks that the approach of [20] does not work for the incom-
pressible case. Other work for existence of fluid equations in the uniformly local Sobolev spaces 
includes a series of papers by Zelik, Anthony and Zelik, and Chepyzhov and Zelik on the Navier-
Stokes equations, the damped Euler equations, and the damped Navier-Stokes equations, all in 
two spatial dimensions [4], [8], [31], [32]. Alazard, Burq, and Zuily have proved well-posedness 
of the gravity water waves system (i.e. the incompressible, irrotational Euler equations with the 
fluid region bounded above by a free surface, subject to gravity) in uniformly local Sobolev 
spaces [1]; of course the water waves system is dispersive, and is thus of a different charac-
ter than the systems studied in the present work. Uniformly local solutions of the water waves 
system were then further studied by Nguyen [23].

1.4. Organization of the paper

We define Hölder -Zygmund spaces and uniformly local Sobolev spaces in Section 2, and in-
troduce notation and provide some key lemmas. In Section 3, we obtain existence of solutions to 
(SQG) in Hölder spaces, and then employ this result in Section 4 to construct an approximation 
sequence to obtain existence to (SQG) in uniformly local Sobolev spaces. In Section 5 we obtain 
existence of solutions to the 3D Euler equations in uniformly local Sobolev spaces.

In the appendices, we establish Serfati-like identities for (SQG) and 3D Euler, a constitutive 
relation for (SQG), and a pressure identity for 3D Euler akin to one used in 2D in [26].

2. Definitions and preliminary lemmas

In this section, we state some notation, definitions, and lemmas that will be useful in what 
follows.

We let a : Rd → R, d ≥ 2, denote a radially symmetric, smooth, compactly supported cutoff 
function which is identically 1 in a neighborhood of the origin and which vanishes outside of the 
ball of radius 2. For each λ > 0 and each x ∈Rd , we let aλ(x) = a(x/λ).

Define G on R3 by

G(x) = 1

4π |x| , (2.1)
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the fundamental solution to the Laplacian in R3, meaning that �G = δ, the Dirac delta function. 
We use � to denote the fundamental solution of the fractional Laplacian (−�)1/2 on R2; that is,

�(x) = C

|x|
for a constant C > 0. Finally, we have the simple estimates,

‖aλ�‖L1(R2) ≤ λ,

∥∥∥∇∇⊥((1 − aλ)�)

∥∥∥
L1(R2)

≤ Cλ−1. (2.2)

2.1. The Littlewood-Paley operators

In Section 3, we establish existence of solutions to (SQG) in the spaces Cr(R2) for r > 1, 
where Cr(R2) is defined using the Littlewood-Paley decomposition. We therefore begin this 
section with an overview of the Littlewood-Paley operators and some of their properties. It is 
classical that there exists two functions χ, ϕ ∈ S(Rd) with supp χ̂ ⊂ {ξ ∈Rd : |ξ | ≤ 5

6 } and supp 
ϕ̂ ⊂ {ξ ∈Rd : 3

5 ≤ |ξ | ≤ 5
3 }, such that, if for every j ∈ Z we set ϕj (x) = 2jdϕ(2j x), then

χ̂ +
∑
j≥0

ϕ̂j = χ̂ +
∑
j≥0

ϕ̂(2−j ·) ≡ 1.

For n ∈Z, define χn ∈ S(Rd) in terms of its Fourier transform χ̂n, where χ̂n satisfies

χ̂n(ξ) = χ̂ (ξ) +
∑
j≤n

ϕ̂j (ξ)

for all ξ ∈Rd . For f ∈ S ′(Rd), define the operator Sn by

Snf = χn ∗ f.

Finally, for f ∈ S ′(Rd) and j ∈Z, define the inhomogeneous Littlewood-Paley operators �j by

�jf =
⎧⎨
⎩

0, j < −1
χ ∗ f, j = −1
ϕj ∗ f, j ≥ 0,

and, for all j ∈Z, define the homogeneous Littlewood-Paley operators �̇j by

�̇jf = ϕj ∗ f.

Note that �̇jf = �jf when j ≥ 0.
We will make use of Bernstein’s Lemma in what follows. A proof of the lemma can be found 

in [7], Chapter 2. Below, Ca,b(0) denotes the annulus with inner radius a and outer radius b.
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Lemma 2.1. (Bernstein’s Lemma) Let r1 and r2 satisfy 0 < r1 < r2 < ∞, and let p and q satisfy 
1 ≤ p ≤ q ≤ ∞. There exists a positive constant C such that for every integer k, if u belongs to 
Lp(Rd), and supp û ⊂ Br1λ(0), then

sup
|α|=k

||∂αu||Lq ≤ Ckλ
k+d( 1

p
− 1

q
)||u||Lp . (2.3)

Furthermore, if supp û ⊂ Cr1λ,r2λ(0), then

C−kλk||u||Lp ≤ sup
|α|=k

||∂αu||Lp ≤ Ckλk||u||Lp . (2.4)

Lemma 2.2. Let �(x) = C |x|1−d on Rd . There exists C > 0 such that for every j ∈ Z,

‖�̇j (∇� ∗ f )‖L∞(Rd ) ≤ C‖�̇jf ‖L∞(Rd ). (2.5)

The result holds with ∇� replaced by ∇(a�).

Proof. The proof of (2.5) follows from an argument identical to the proof of Lemma 8 in [11]. 
To see that the result holds for ∇(a�) in place of ∇�, first note that the equivalent of this lemma 
for a Calderón-Zygmund operator T is well-known [27]. We note, however, that T = ∇(a�)∗ is 
not quite a Calderón-Zygmund operator; rather (see, for instance, Proposition 6.1 of [5]),

∇(a�) ∗ f (x) = p.v.

∫
Rd

∇(a�)(x − y)f (y) dy + Cf (x)I,

where the principal value integral does represent a Calderón-Zygmund operator. The result then 
follows immediately. �
Remark 2.3. The convolution ∇(a�) ∗ f in Lemma 2.2 is that of a compactly supported distri-
bution with a distribution. As in Theorem 6.37(e) of [24], we can move derivatives on and off 
each factor, so

∇(a�) ∗ f = (a�) ∗ ∇f = ∇((a�) ∗ f ).

2.2. Hölder-Zygmund spaces

We now introduce the Littlewood-Paley-based version of Hölder (more properly Hölder-
Zygmund) spaces.

Definition 2.4. For r ∈ R, we define Cr(Rd) to be the set of all f ∈ S ′(Rd) such that

sup
j≥−1

2jr‖�jf ‖L∞ < ∞.

We set
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‖f ‖Cr = sup
j≥−1

2jr‖�jf ‖L∞ .

It is well-known that when r > 0 is a non-integer, the space Cr(Rd) defined above coincides 
with the classical Hölder space C̃r(Rd), with norm

‖f ‖
C̃r =

∑
0≤|α|≤[r]

‖Dαf ‖L∞ + sup
x �=y

|f (x) − f (y)|
|x − y|r−[r] . (2.6)

However, when r is an integer, Cr(Rd) does not coincide with the space C̃r(Rd) of bounded 
functions with bounded derivatives up to and including order r . In this case, we have the inclusion

C̃r (Rd) ⊂ Cr(Rd).

Finally, we define the homogeneous Hölder spaces.

Definition 2.5. For r ∈ R, we define Ċr(Rd) to be the set of all f ∈ S ′(Rd) such that

sup
j∈Z

2jr‖�̇jf ‖L∞ < ∞.

We set

‖f ‖Ċr = sup
j∈Z

2jr‖�̇jf ‖L∞ .

The homogeneous Littlewood-Paley operators and Hölder-Zygmund spaces Ċr(Rd) will be 
useful in our analysis of non-decaying solutions to (SQG) and (E). In particular, the operators 
�̇j allow us to make sense of the Riesz transforms applied to non-decaying functions by defining, 
for f ∈ L∞(Rd),

�̇j ∂k(−�)−1/2f =F−1
(

ϕ̂j

iξk

|ξ | f̂
)

=F−1
(

ϕ̂j

iξk

|ξ |
)

∗ f. (2.7)

The following lemmas will be useful when proving estimates on (SQG) in the Cr spaces.

Lemma 2.6. Let s > 1. If for every j ≥ 0, f ∈ L∞(Rd) and g ∈ Cs(Rd) satisfy

�jf = �j∇⊥(−�)−1/2g

almost everywhere on Rd , then f belongs to Cs(Rd), and there exists an absolute constant C > 0
such that

‖f ‖Cs ≤ C(‖f ‖L∞ + ‖g‖Cs ).
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Proof. Young’s inequality gives

‖f ‖Cs ≤ C‖�−1f ‖L∞ + sup
j≥0

2js‖�jf ‖L∞

≤ C‖f ‖L∞ + sup
j≥0

2js‖∇⊥(−�)−1/2�jg‖L∞

≤ C‖f ‖L∞ + C sup
j≥0

2js‖�jg‖L∞

≤ C‖f ‖L∞ + C‖g‖Cs ,

where we used Lemma 2.2 to get the third inequality. �
The following Lemma is Proposition 2.2 of [30].

Lemma 2.7. Let k be a nonnegative integer and let s ∈ (0, 1). For f ∈ Ck+s(Rd), there exists a 
constant C, depending only on s, such that

‖f ‖
C̃k ≤ C‖f ‖Ck+s .

Moreover, C → ∞ as s → 0.

Lemma 2.8. Let s > 0, and assume f ∈ Cs(R2). Then

‖∇⊥(aλ�) ∗ f ‖L∞ ≤ C‖f ‖Cs ,

where C depends only on λ and s.

Proof. Write

‖∇⊥(aλ�) ∗ f ‖L∞ ≤
∑

j≥−1

‖�j(∇⊥(aλ�) ∗ f )‖L∞

= ‖�−1(∇⊥(aλ�) ∗ f )‖L∞ +
∑
j≥0

2js2−js‖�j(∇⊥(aλ�) ∗ f )‖L∞

≤ ‖aλ� ∗ (�−1∇⊥f )‖L∞ + C sup
j≥0

2js‖∇⊥(aλ�) ∗ �jf ‖L∞

≤ C‖f ‖L∞ + C sup
j≥0

2js‖�jf ‖L∞ ≤ C‖f ‖Cs ,

where we used Young’s inequality, Bernstein’s Lemma and Lemma 2.2 to get the third inequality. 
This proves the lemma. �
2.3. Uniformly local Sobolev spaces

We now define the uniformly local Sobolev spaces and mention some of their properties. We 
refer the reader to [18] for further details. We begin with a definition of Lp

(Rd).
ul
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Definition 2.9. For p ∈ [1, ∞), we define Lp
ul(R

d) to be the set of all functions f on Rd such 
that

‖f ‖L
p
ul

:= sup
x∈Rd

⎛
⎜⎝ ∫

|x−y|<1

|f (y)|p dy

⎞
⎟⎠

1/p

< ∞. (2.8)

Definition 2.10. For a nonnegative integer s, we define the space Hs
ul(R

d) to be the set of all 
functions f ∈ L2

ul(R
d) such that all distributional derivatives Dαf , with |α| ≤ s, also belong to 

L2
ul(R

d). We set

‖f ‖Hs
ul

=
∑
|α|≤s

‖Dαf ‖L2
ul
. (2.9)

In what follows, we make use of an equivalent norm to (2.9), as given in Proposition 2.11
below. For this purpose, throughout the paper we let φ ∈ C∞

c (Rd) be a standard bump function, 
identically 1 on B1(0), with support contained in B2(0), and we set

φx(y) = φ(y − x).

We have the following proposition (see, for example, [18]).

Proposition 2.11. One can define an equivalent norm to (2.8) on Lp
ul(R

d) by

sup
x∈Rd

‖φxf ‖Lp .

Moreover, if for λ > 0 fixed,

φx,λ(y) = φ

(
y − x

λ

)
, (2.10)

then for any pair λ1, λ2 > 0, the two norms

sup
x∈Rd

‖φx,λ1f ‖Lp , sup
x∈Rd

‖φx,λ2f ‖Lp

are equivalent. Therefore, for any λ > 0, the norm

‖f ‖Hs
ul,λ

:=
∑
|α|≤s

sup
x∈Rd

‖φx,λD
αf ‖L2 (2.11)

is equivalent to that in (2.9). Finally, the norm

sup
x∈Rd

‖φx,λf ‖Hs

is equivalent to that in (2.11) and can also be used as a norm on Hs (Rd).
ul
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We now state a few useful lemmas regarding Hs
ul spaces. Several of these lemmas demon-

strate that many properties of Hs spaces extend to the Hs
ul spaces. We begin with the following 

Calculus inequalities. Parts (i) and (iii) below can be found in [20].

Lemma 2.12. Assume s ≥ 1 is an integer.
(i) Given f , g ∈ Hs

ul ∩ L∞(Rd) and |α| ≤ s,

‖Dα(fg)‖L2
ul

≤ Cs(‖f ‖L∞‖g‖Hs
ul

+ ‖g‖L∞‖f ‖Hs
ul
).

(ii) Given f ∈ C̃s(Rd), g ∈ Hs(Rd),

‖fg‖Hs ≤ C‖f ‖
C̃s ‖g‖Hs(suppf ) , ‖fg‖Hs

ul
≤ C‖f ‖

C̃s ‖g‖Hs
ul

.

(iii) Given f ∈ Hs
ul ∩ C̃1(Rd) and g ∈ Hs−1

ul ∩ L∞(Rd), for |α| ≤ s,

‖Dα(fg) − f Dαg‖L2
ul

≤ Cs(‖f ‖
C̃1‖g‖

Hs−1
ul

+ ‖g‖L∞‖f ‖Hs
ul
).

Lemma 2.13. ([18]) Let j and m be nonnegative real numbers. If 2m > d , then Hj+m
ul (Rd) ↪→

C̃j (Rd).

Lemma 2.14. Let p ∈ [1, ∞), and assume f belongs to Lp
ul(R

d). There exists C > 0 such that 
for all n ∈N ,

‖Snf ‖L
p
ul

≤ C‖f ‖L
p
ul
.

Proof. By Minkowski’s inequality,

‖Snf ‖L
p
ul

= sup
z∈Rd

(∫
Rd

∣∣∣ ∫
Rd

φz(x)f (x − y)χn(y)dy

∣∣∣pdx

)1/p

≤ sup
z∈Rd

∫
Rd

‖φz(·)f (· − y)χn(y)‖Lpdy = sup
z∈Rd

∫
Rd

‖φz(·)f (· − y)‖Lp |χn(y)|dy

≤ ‖f ‖L
p
ul

∫
Rd

|χn(y)|dy ≤ C‖f ‖L
p
ul
. �

Lemma 2.15. With � as in Lemma 2.2, for any f ∈ Hr
ul(R

d), r ≥ 0,

‖∇((aλ�) ∗ f )‖Hr
ul

≤ Cλ‖f ‖Hr
ul

.

Proof. This follows for Hr in place of Hr
ul from a Littlewood-Paley decomposition or by using 

the expression in Lemma 2.2. It then follows for the Hr
ul norm by taking advantage of the identity, 

φx∇((aλ�) ∗ f ) = φx(∇(aλ�) ∗ f ) = φx(∇(aλ�) ∗ φx,8f ). �
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Definition 2.16. For v, w vector fields, we define v∗·w = vi ∗ wi , where we sum over the re-
peated indices. Similarly, for A, B matrix-valued functions on Rd , we define A∗·B = Aij ∗ Bij .

In Lemma 2.17, we obtain a stream function for ψ , but it is not the classical stream function in 
that it is not divergence-free. It can be written in the form of a one-dimensional integral, however, 
as in (2.13), which makes it amenable to localized estimates.

Lemma 2.17. For any divergence-free u ∈ Hs
ul(R

3) there exists a (non-divergence free) stream 
function ψ ∈ Hs+1

ul (R3) with the properties that curlψ = u, ψ(0) = 0. For any bounded convex 
U ⊆ BR(0),

‖ψ‖Hs(U) ≤ CR ‖u‖Hs
ul(R

3) , (2.12)

where the constant C depends upon the Lebesgue measure, |U |, of U .

Proof. It is sufficient to prove the result for u ∈ C∞(R3) ∩ Hs
ul(R

3), as the result then follows 
from the density of this space in Hs

ul(R
3). We can then define the stream function as

ψ(x) = −
1∫

0

τx × u(τx)dτ. (2.13)

Using curl(A ×B) = divB A − divA B + B · ∇A − A · ∇B , div(u(τx)) = 0, divx = 3, ∇x = I , 
we have

curl(x × u(τx)) = −3u(τx) + u(τx) · ∇x − τx · ∇u(τx)

= −3u(τx) + u(τx) · I − τx · ∇u(τx) = −2u(τx) − τx · ∇u(τx).

Hence,

curlψ(x) =
1∫

0

[
2τu(τx) + τ 2x · ∇u(τx)

]
dτ.

Integrating the first term by parts, we have

1∫
0

2τu(τx) dτ = τ 2u(τx)
∣∣1
0 −

1∫
0

τ 2x · ∇u(τx)dτ

= u(x) −
1∫

0

τ 2x · ∇u(τx)dτ.

It follows that curlψ = u.
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For estimates, it is perhaps easier to write (2.13) in indices, as

ψi(x) =
1∫

0

[
τxi+2u

i+1(τx) − τxi+1u
i+2(τx)

]
dτ, (2.14)

where if i + 1 or i + 2 > 3 we subtract 3 from it.
In (2.14), we have |x| ≤ R on U , so

‖ψ‖L2(U) ≤ CR

1∫
0

τ‖u(τ ·)‖L2(U) dτ = CR

1∫
0

τ

τ
3
2

‖u‖L2(τU) dτ.

But, |τU | ≤ |U | for all τ ∈ [0, 1], so ‖u‖L2(τU) ≤ C(|U |)‖u‖L2
ul

and

‖ψ‖L2(U) ≤ CR

1∫
0

τ− 1
2 ‖u‖L2

ul
dτ = CR.

Let α = (α1, α2, α3) be a multi-index. Then

Dα
[
τxju

�(τx)
]

= τxj τ
|α|Dαu�(τx) + ττ |α|−1Dα′

u�(τx),

where α′ has the j index decreased by one, with the second term absent if αj = 0. Arguing as 
for ‖ψ‖L2(U), we conclude from this that

sup
|α|=k

∥∥Dαψ
∥∥

L2(U)
≤ CR ‖u‖Hk

ul
+ C ‖u‖

Hk−1
ul

,

from which (2.12) follows by summing over k ≤ s.
Finally, using div(A × B) = (curlA) · B − (curlB) · A, we have

divψ(x) = −
1∫

0

τ [curlx · u(τx) − τ(curlu)(τx) · x] dτ

=
1∫

0

τ 2x · (curlu)(τx) dτ.

Because curlu ∈ L2
ul , curlψ and divψ lie in L2

ul , this is enough to conclude that ψ ∈ Hs+1
ul (R3). 

As we use only Hs regularity, we do not include further details. �
ul
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3. Existence of solutions to (SQG) in Hölder spaces

In this section, we prove the following theorem.

Theorem 3.1. For r ∈ (1, ∞), let θ0 be a function in Cr(R2), and let u0 in Cr(R2) satisfy

u0 = ∇⊥(−�)−1/2θ0 in Ċr (R2).

There exists T > 0 and a unique solution (u, θ) to

∂t θ + u · ∇θ = 0,

(u, θ)|t=0 = (u0, θ0),
(3.1)

satisfying, for any r ′ ∈ (0, r),

θ ∈ L∞(0, T ;Cr(R2)) ∩ Lip([0, T ];Cr−1(R2)) ∩ C([0, T ];Cr ′
(R2)),

u ∈ L∞(0, T ;Cr(R2)) ∩ C([0, T ];Cr ′
(R2)).

Moreover, there exists C > 0 such that (u, θ) satisfies the estimate

‖u‖L∞(0,T ;L∞) + ‖θ‖L∞(0,T ;Cr) ≤ C(‖u0‖L∞ + ‖θ0‖Cr )

1 − CT (‖u0‖L∞ + ‖θ0‖Cr )
(3.2)

and the equality (see Definition 2.16)

u(t) = u0 + (a�) ∗ ∇⊥(θ(t) − θ0) −
t∫

0

(∇∇⊥((1 − a)�))∗·(θu) (3.3)

for each t ∈ [0, T ].

Before proving the theorem, we make a few remarks.

Remark 3.2. For r > 0 a non-integer, a pair (u0, θ0) satisfying the conditions of Theorem 3.1 can 
be easily generated from any function ψ ∈ Cr+1(R2) by setting u0 = ∇⊥ψ and ω0 = (−�)1/2ψ . 
Note that ω0 belongs to Cr(R2) by the classical Schauder estimates for the fractional Laplacian 
(see for example [28]). By the containment Cr(R2) ⊂ Ċr (R2) and Lemma 2.2, both u0 and θ0

belong to Ċr (R2). Moreover, we have for every j ∈ Z,

�̇ju
0 = �̇j∇⊥(−�)−1/2θ0

almost everywhere on R2.
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Remark 3.3. Since (3.3) holds for aλ in place of a for any λ > 0, and θ and u lie in L∞([0, T ] ×
R2), by (2.2) we have

u(t) = u0 + lim
λ→∞(aλ�) ∗ ∇⊥(θ(t) − θ0),

the limit holding pointwise. This gives a form of the constitutive law for (3.1) and is the analog 
for (SQG) of the renormalized Biot-Savart law of [3,19] that applies to non-decaying solutions 
to the 2D Euler equations.

Proof of Theorem 3.1. We adapt the general strategy used in the proof of Theorem 4.1 in [30]. 
In particular, we construct an approximating sequence of solutions and pass to the limit in the 
appropriate norm. To obtain uniform bounds on the approximating sequence, the proof in [30]
relies heavily on the estimate

‖Rf ‖Cr ≤ C‖f ‖Cr∩Lq (3.4)

for q < ∞ and r > 1, where R denotes a Riesz transform. Since our approximating sequence 
must converge to a solution lacking spatial decay (and hence not belonging to Lq(R2) for any 
q < ∞), we utilize Lemma 2.6 and a Serfati-type identity (see (3.6) below) in place of (3.4).

Approximating sequence. We define sequences (θn)∞n=1 and (un)∞n=1 as follows:

θ1(t, x) = S2θ
0(x),

u1(t, x) = S2u
0(x),

(3.5)

for all t ≥ 0, while, for n ≥ 1,

∂t θ
n+1 + un · ∇θn+1 = 0,

θn+1(x,0) = Sn+2θ
0, un+1(x,0) = Sn+2u

0,

un+1(t) = un+1(0) + (a�) ∗ ∇⊥(θn+1(t) − θn+1(0))

−
t∫

0

(∇∇⊥((1 − a)�))∗·(θn+1un).

(3.6)

Note that with (un) and (θn) as in (3.6), Lemma A.2 gives that for all j ∈ Z, n ∈ N , and t ∈
[0, T ],

�̇ju
n(t) = �̇j∇⊥(−�)−1/2θn(t)

almost everywhere on R2, which will allow us to apply Lemma 2.6 repeatedly in what follows.
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Uniform bounds. The proof of Proposition 4.2 in [30] yields the following estimate:

‖θn+1(t)‖Cr ≤ ‖θn+1(0)‖Cr

+ C(r)

t∫
0

(
‖∇θn+1(s)‖L∞‖un(s)‖Cr + ‖∇un(s)‖L∞‖θn+1(s)‖Cr

)
ds

≤ ‖θn+1(0)‖Cr + C(r)

t∫
0

‖θn+1(s)‖Cr ‖un(s)‖Cr ds.

(3.7)

We now use (3.6)3 to estimate ‖un+1(t)‖L∞ . In particular, one can write

‖un+1(t)‖L∞ ≤ ‖un+1(0)‖L∞ + C‖∇θn+1(t)‖L∞

+ C‖∇θn+1(0)‖L∞ + C

t∫
0

‖θn+1(s)‖L∞‖un(s)‖L∞ ds.
(3.8)

Adding (3.7) and (3.8) gives

‖un+1(t)‖L∞ + ‖θn+1(t)‖Cr ≤ ‖un+1(0)‖L∞ + C(r)‖θn+1(t)‖Cr + C(r)‖θn+1(0)‖Cr

+ C(r)

t∫
0

(‖θn+1(s)‖L∞‖un(s)‖L∞ + ‖θn+1(s)‖Cr ‖un(s)‖Cr ) ds,

where we used Lemma 2.7. The term C(r)‖θn+1(t)‖Cr appearing on the right hand side can 
again be estimated using (3.7). Then we have

‖un+1(t)‖L∞ + ‖θn+1(t)‖Cr ≤ ‖un+1(0)‖L∞ + C(r)‖θn+1(0)‖Cr

+ C(r)

t∫
0

‖θn+1(s)‖Cr ‖un(s)‖Cr ds

≤ ‖un+1(0)‖L∞ + C(r)‖θn+1(0)‖Cr

+ C(r)

t∫
0

(‖un+1(s)‖L∞ + ‖θn+1(s)‖Cr )‖un(s)‖Cr ds.

(3.9)

Grönwall’s Lemma gives

‖un+1(t)‖L∞ + ‖θn+1(t)‖Cr ≤ C(r)(‖un+1(0)‖L∞ + ‖θn+1(0)‖Cr )eC(r)
∫ t

0 ‖un(s)‖Cr . (3.10)

By (3.10) and Lemma 2.6,
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‖un+1(t)‖L∞ + ‖θn+1(t)‖Cr

≤ C(r)(‖un+1(0)‖L∞ + ‖θn+1(0)‖Cr )eC(r)
∫ t

0 (‖un(s)‖L∞+‖θn(s)‖Cr ) ds,
(3.11)

where we can assume C(r) ≥ 2.
We use induction and (3.11) to show that there exists M > 0 and T > 0 such that, for all 

t < T , and for all n ≥ 1,

‖un(t)‖L∞ + ‖θn(t)‖Cr ≤ M. (3.12)

To prove the case n = 1, first note that by properties of Littlewood-Paley operators and Young’s 
inequality, there exists a constant C2 such that, for all n ≥ 1,

‖Sn+2u
0‖L∞ + ‖Sn+2θ

0‖Cr ≤ C2(‖u0‖L∞ + ‖θ0‖Cr ). (3.13)

In particular, we have

‖u1‖L∞ + ‖θ1‖Cr ≤ C2(‖u0‖L∞ + ‖θ0‖Cr ).

Set M = 2C(r)C2(‖u0‖L∞ + ‖θ0‖Cr ), where C(r) is as in (3.11), and choose T such that 
exp(C(r)T M) ≤ 2. Then

‖u1‖L∞ + ‖θ1‖Cr ≤ C2(‖u0‖L∞ + ‖θ0‖Cr ) < M.

This proves (3.12) for n = 1.
Now assume, for fixed k ∈ N , ‖uk(s)‖L∞ + ‖θk(s)‖Cr ≤ M for each s ∈ [0, T ]. By (3.11)

and (3.13),

‖uk+1(t)‖L∞ + ‖θk+1(t)‖Cr ≤ C(r)(‖uk+1(0)‖L∞ + ‖θk+1(0)‖Cr )eC(r)T M

≤ 2C(r)C2(‖u(0)‖L∞ + ‖θ(0)‖Cr ) = M.

Thus (3.12) holds for all n.
From (3.12) and Lemma 2.6, it follows that, for r > 1, there exists C > 0 such that for all 

n ∈N , ‖un‖Cr ≤ CM . Therefore, for each n ∈N ,

‖∂t θ
n+1‖Cr−1 ≤ ‖un · ∇θn+1‖Cr−1

≤ C(‖un‖Cr−1‖∇θn+1‖L∞ + ‖un‖L∞‖∇θn+1‖Cr−1)

≤ C(r)‖un‖Cr−1‖θn+1‖Cr ≤ C(r)M2.

(3.14)

From this we conclude that for each n ∈N , ∂t θ
n ∈ L∞(0, T ; Cr−1) and θn ∈ Lip([0, T ]; Cr−1), 

with norms uniformly bounded in n.

(un) and (θn) are Cauchy. We now show (θn) is Cauchy in C([0, T ]; Cr−1(R2)) and (un) is 
Cauchy in C([0, T ]; L∞(R2)). As in [30], let ηn = θn − θn−1 and vn = un − un−1. From (3.5)
and (3.6), we have the system
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η1 = S2θ
0 − θ0,

v1 = S2u
0 − u0,

(3.15)

and for n ≥ 1,

∂tη
n+1 + un · ∇ηn+1 = vn · ∇θn,

ηn+1(x,0) = ηn+1
0 (x) = �n+2θ

0(x),

vn+1(x,0) = vn+1
0 (x) = �n+2u

0(x).

(3.16)

Moreover,

vn(t) − vn(0) = (aλ�) ∗ ∇⊥(ηn(t) − ηn(0))

−
t∫

0

(∇∇⊥((1 − aλ)�))∗·(ηnun−1 + θnvn−1).
(3.17)

We have the following estimate from [30]:

‖ηn+1(t)‖Cr−1 ≤ ‖ηn+1(0)‖Cr−1

+ C(r)

t∫
0

(‖ηn+1(s)‖Cr−1‖un(s)‖Cr + ‖vn(s)‖Cr−1‖θn(s)‖Cr ) ds

≤ ‖ηn+1(0)‖Cr−1 + C(r)M

t∫
0

(‖ηn+1(s)‖Cr−1 + ‖vn(s)‖Cr−1) ds,

(3.18)

where we applied the uniform bounds on ‖un‖Cr and ‖θn‖Cr to get the second inequality. We 
apply the L∞-norm to (3.17), which gives

‖vn+1(t)‖L∞ ≤ ‖vn+1(0)‖L∞ + ‖(a�) ∗ ∇⊥ηn+1(t)‖L∞ + ‖(a�) ∗ ∇⊥ηn+1(0)‖L∞

+
t∫

0

(‖ηn+1(s)‖L∞‖un(s)‖L∞ + ‖θn+1(s)‖L∞‖vn(s)‖L∞) ds

≤ ‖vn+1(0)‖L∞ + ‖(a�) ∗ ∇⊥ηn+1(t)‖L∞ + ‖(a�) ∗ ∇⊥ηn+1(0)‖L∞

+ CM

t∫
0

(‖ηn+1(s)‖L∞ + ‖vn(s)‖L∞) ds.

(3.19)

Adding (3.18) and (3.19) gives
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‖vn+1(t)‖L∞ + ‖ηn+1(t)‖Cr−1 ≤ ‖vn+1(0)‖L∞ + ‖ηn+1(0)‖Cr−1

+ ‖∇⊥(a�) ∗ ηn+1(0)‖L∞ + ‖∇⊥(a�) ∗ ηn+1(t)‖L∞

+ MC(r)

t∫
0

(‖vn+1‖L∞ + ‖ηn+1(s)‖Cr−1 + ‖vn(s)‖L∞ + ‖ηn(s)‖Cr−1) ds,

(3.20)

where we applied Lemma 2.6. To estimate the terms ‖∇⊥(a�) ∗ ηn+1(t)‖L∞ and ‖∇⊥(a�) ∗
ηn+1(0)‖L∞ , we apply Lemma 2.8, giving

‖∇⊥(a�) ∗ ηn+1(t)‖L∞ ≤ C(r)‖ηn+1(t)‖Cr−1,

‖∇⊥(a�) ∗ ηn+1(0)‖L∞ ≤ C(r)‖ηn+1(0)‖Cr−1 .

We then bound the resulting term ‖ηn+1(t)‖Cr−1 using (3.18) and again apply Lemma 2.6. Sub-
stituting the resulting estimate into (3.20) gives

‖vn+1(t)‖L∞ + ‖ηn+1(t)‖Cr−1 ≤ C1(r)(‖vn+1(0)‖L∞ + ‖ηn+1(0)‖Cr−1)

+ C1(r)M

t∫
0

(
(‖vn+1(s)‖L∞ + ‖ηn+1(s)‖Cr−1) + (‖vn(s)‖L∞ + ‖ηn(s)‖Cr−1)

)
ds.

(3.21)

Set Dn(t) = ‖vn(t)‖L∞ + ‖ηn(t)‖Cr−1 . Then (3.21) gives

Dn+1(t) ≤ C1(r)Dn+1(0) + C1(r)M

t∫
0

(Dn+1(s) + Dn(s)) ds. (3.22)

Let

E(t) :=
∞∑

n=0

Dn+1(t),

noting that E(0) is finite because θ0 and u0 lie in Cr(R2). Summing (3.22) over n and using 
(3.12), we have that

E(t) ≤ CE(0) + CMt + CM

t∫
0

E(s) ds.

By Grönwall’s lemma,

E(t) ≤ (CE(0) + CMT )eCMt .

It follows that for any fixed time t ∈ [0, T ], the sequences (un(t)) and (θn(t)) are Cauchy in 
L∞(R2) and Cr−1(R2), respectively.
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Now let ε > 0. From (3.14), we also have uniform-in-time control on (∂tθ
n(t)) in Cr−1(R2), 

so we can choose a δ > 0 such that for any s1, s2 ∈ [0, T ],

|s1 − s2| < δ =⇒ ∥∥θn(s1) − θn(s2)
∥∥

Cr−1(R2)
<

ε

3
.

Let N1 be an integer greater than T/δ, and let tk = kT /N1, k = 0, . . . , N1. Choose an integer N2
(which we note depends upon N1) such that for all k,

m,n ≥ N2 =⇒ ∥∥θn(tk) − θm(tk)
∥∥

Cr−1(R2)
<

ε

3
.

Then by the triangle inequality, for all t ∈ [0, T ],

m,n ≥ N2 =⇒ ∥∥θn(t) − θm(t)
∥∥

Cr−1(R2)
≤ ∥∥θn(t) − θn(tk)

∥∥
Cr−1(R2)

+ ∥∥θn(tk) − θm(tk)
∥∥

Cr−1(R2)
+ ∥∥θm(tk) − θm(t)

∥∥
Cr−1(R2)

< ε,

where we choose k so that |t − tk| < δ. This is enough to conclude that (θn) is Cauchy in 
C([0, T ]; Cr−1(R2)).

Similarly, taking the time derivative of (3.6)3 gives uniform-in-time control on (∂tu
n(t)) in 

L∞(R2), and we can conclude that (un) is Cauchy in C([0, T ]; L∞(R2)).

Limit of the sequence solves (3.1). We conclude that the sequence (θn) converges to some θ in 
C([0, T ]; Cr−1(R2)), and (un) converges to some u in C([0, T ]; L∞(R2)). Moreover, we have

θ ∈ L∞(0, T1;Cr(R2)) ∩ Lip([0, T1];Cr−1(R2)),

u ∈ L∞(0, T1;Cr(R2)).

Interpolation between Cr−1 and Cr shows that (θn) converges to θ in C([0, T ]; Cr ′
(R2)) for 

all r ′ ∈ [r − 1, r), and interpolation between C0 and Cr shows that (un) converges to u in 
C([0, T ]; Cα(R2)) for all α ∈ (0, r). Having established convergence in these spaces, we can 
then pass to the limit in (3.6)1 and (3.6)2. Note also that, for r ′ ∈ [r − 1, r) and α ∈ (0, r),

θ ∈ L∞([0, T ];Cr(R2)) ∩ Lip([0, T ];Cr−1(R2)) ∩ C([0, T ];Cr ′
(R2)),

u ∈ L∞([0, T ];Cr(R2)) ∩ C([0, T ];Cα(R2)).

Solution (u,θ) satisfies (3.2). We now show that the resulting solution (u, θ ) of (3.1) satisfies 
(3.2). Set �n(τ) = ‖un(τ)‖L∞ + ‖θn(τ )‖Cr , τ ∈ [0, T ]. From (3.11), it follows that

�n(τ) ≤ C�n(0)eC
∫ τ

0 �n(s) ds,

so that

�n(τ)e−C
∫ τ

0 �n(s) ds ≤ C�n(0).

By the chain rule,
126



D.M. Ambrose, E. Cozzi, D. Erickson et al. Journal of Differential Equations 364 (2023) 107–151
− 1

C

d

dτ

(
e−C

∫ τ
0 �n(s) ds

)
≤ C�n(0).

For t ∈ [τ, T ], integrating both sides from 0 to t gives

−e−C
∫ t

0 �n(s) ds + 1 ≤ C�n(0)t,

which implies

eC
∫ t

0 �n(s) ds ≤ 1

1 − C�n(0)t
. (3.23)

The inequality �n(t)
C�n(0)

≤ eC
∫ t

0 �n(s) ds , combined with (3.23), imply that

‖un(t)‖L∞ + ‖θn(t)‖Cr = �n(t) ≤ C�n(0)

1 − C�n(0)t
≤ C(‖u0‖L∞ + ‖θ0‖Cr )

1 − Ct(‖u0‖L∞ + ‖θ0‖Cr )
,

where we used that �n(0) ≤ C(‖u0‖L∞ +‖θ0‖Cr ) for all n to get the second inequality. It follows 
that for each fixed t ∈ [0, T ],

‖u(t)‖L∞ + ‖θ(t)‖Cr ≤ C(‖u0‖L∞ + ‖θ0‖Cr )

1 − Ct(‖u0‖L∞ + ‖θ0‖Cr )
.

This yields (3.2).

(u,θ) satisfies (3.3). It remains to prove (3.3). We have that (θn) converges to θ in C([0, T ];
Cr ′

(R2)) for all r ′ < r , and (un) converges to u in C([0, T ]; L∞(R2)). We claim that this is 
enough to pass to the limit in (3.6)3. For n ∈ N , we subtract the right-hand side of (3.6)3 as 
satisfied by (u, θ) from the right-hand-side as satisfied by (un, θn). Taking the L∞-norm of the 
resulting difference and applying Young’s inequality gives

‖(un − u)(t)‖L∞

≤ ‖(un − u)(0)‖L∞ + ‖(a�) ∗ ∇⊥(θn − θ)(t)‖L∞ + ‖(a�) ∗ ∇⊥(θn − θ)(0)‖L∞

+
t∫

0

‖∇∇⊥((1 − a)�)‖L1

(
‖(θn − θ)(s)un−1(s)‖L∞ + ‖θ(s)(un−1 − u)(s)‖L∞

)
ds.

It is clear that

‖(un − u)(0)‖L∞ → 0,

t∫
0

(
‖(θn − θ)(s)un−1(s)‖L∞ + ‖θ(s)(un−1 − u)(s)‖L∞

)
ds → 0

as n approaches infinity, for all t ∈ [0, T ].
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We now show that ‖(a�) ∗ ∇⊥(θn − θ)(t)‖L∞ = ‖∇⊥(a�) ∗ (θn − θ)(t)‖L∞ → 0 for all 
t ∈ [0, T ] as well. We utilize that ∇⊥(a�) integrates to 0. Suppressing the time variable, and 
setting δn = θn − θ for each n, we have, for any α ∈ (0, min{1, r − 1}) and any x ∈R2,

∣∣∣∇⊥(a�) ∗ (θn − θ)(x)

∣∣∣≤
∣∣∣∣∣∣∣p.v.

∫
R2

∇⊥(a�)(y)
(
δn(x − y) − δn(x)

)
dy

∣∣∣∣∣∣∣+ |Cδn(x)I |

≤
∫
R2

|∇(a�)(y)||y|α
( |δn(x − y) − δn(x)|

|y|α
)

dy + |Cδn(x)I | ≤ C‖δn‖Cα → 0,

since (θn) converges to θ in C([0, T ]; Cα(R2)). This implies (3.3) and completes the proof of 
the theorem.

Uniqueness An argument similar to the demonstration above that (un) and (θn) are Cauchy gives 
uniqueness of solutions. �
4. (SQG) in uniformly local Sobolev spaces

4.1. A priori estimates

In this section, we establish a priori estimates on smooth solutions to (SQG) in uniformly 
local Sobolev spaces. We prove the following theorem.

Theorem 4.1. Assume d = 2 and s ≥ 3 is an integer. Let (u, θ) be a solution to (SQG) on [0, T ]
as given in Theorem 3.1 with Hölder exponent r = s + 2. Then

‖θ(t)‖2
Hs

ul
≤ ‖θ0‖2

Hs
ul

exp

⎛
⎝C

t∫
0

(‖u(τ)‖
C̃1 + ‖∇θ(τ )‖L∞) dτ

⎞
⎠ .

Proof. Set W = Dαθ with 0 ≤ |α| ≤ s and s ≥ 3. Apply Dα to (3.1)1 to get

∂tW + u · ∇W = F, (4.1)

where

F = u · ∇W − Dα(u · ∇θ).

Multiplying (4.1) by φx gives

∂t (φxW) + u · ∇(φxW) = (u · ∇φx)W + φxF. (4.2)

After multiplying (4.2) by φxW and integrating, we conclude that
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∫
R2

φxW∂t (φxW) +
∫
R2

φxW(u · ∇(φxW))

=
∫
R2

φxW(u · ∇φx)W +
∫
R2

φxWφxF.

Now observe that ∫
R2

φxW∂t (φxW) = 1

2

d

dt
‖φxW‖2

L2 .

Moreover, one can show using the divergence-free property of u and integration by parts that∫
R2

φxW(u · ∇(φxW)) = 0.

By properties of φx and Hölder’s inequality, we also have∫
R2

φxW(u · ∇φx)W =
∫
R2

φxW(u · ∇φx)φx,2W

≤ ‖φx,2W‖2
L2‖u · ∇φx‖L∞ ≤ C‖u‖L∞‖θ‖2

Hs
ul
.

Finally, another application of Hölder’s inequality gives∫
R2

φxWφxF ≤ ‖φxW‖L2‖φxF‖L2 .

We apply Lemma 2.12 to ‖φxF‖L2 with f = u and g = ∇θ . This gives

‖φxF‖L2 ≤ C
(
‖u‖

C̃1‖θ‖Hs
ul

+ ‖∇θ‖L∞‖u‖Hs
ul

)
.

Combining the above estimates and integrating in time gives

‖φxW(t)‖2
L2 ≤ C‖φxW(0)‖2

L2

+ C

t∫
0

(
‖u‖L∞‖θ‖2

Hs
ul

+ ‖θ‖Hs
ul
(‖u‖

C̃1‖θ‖Hs
ul

+ ‖∇θ‖L∞‖u‖Hs
ul
)
)

dτ.

We now take the supremum of both sides of the inequality over x ∈ R2. We conclude that

‖θ(t)‖2
Hs

ul
≤ C‖θ0‖2

Hs
ul

+ C

t∫ (
‖u(τ)‖

C̃1‖θ(τ )‖2
Hs

ul
+ ‖θ(τ )‖Hs

ul
‖∇θ(τ )‖L∞‖u(τ)‖Hs

ul

)
dτ.

(4.3)
0
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It remains to close the estimate and apply Grönwall’s lemma. To do this, note that, for each 
fixed t ∈ [0, T ], the approximating sequences (θn(t)) and (un(t)) from the proof of Theorem 3.1
converge to θ(t) and u(t), respectively, in L∞(R2). This convergence, along with Lemma 2.2, 
allow us to pass to the limit in Lemma A.2. This gives, for all j ∈Z,

�̇ju = �̇j (∇⊥(−�)−1/2θ).

Applying a differential operator Dγ with 1 ≤ |γ | ≤ s gives

�̇jD
γ u = �̇jD

γ (∇⊥(−�)−1/2θ).

This implies that, for |γ | ≥ 1,

Dγ u = Dγ−1P + (a�) ∗ ∇⊥Dγ θ + [Dγ (∇⊥((1 − a)�))] ∗ θ

for almost every x ∈ R2, where P is a polynomial. But Dγ u and Dγ+1θ are in C([0, T ];
L∞(R2)) for each |γ | ≤ s, which implies that P is a constant. We conclude that for 2 ≤ |γ | ≤ s, 
Dγ u and Dγ θ satisfy

Dγ u = (a�) ∗ ∇⊥Dγ θ + [Dγ (∇⊥((1 − a)�))] ∗ θ (4.4)

for almost every x ∈ R2. Applying Lemma 2.15, for any multi-index β with |β| = 2,

‖Dβu‖
Hs−2

ul
≤ C(‖θ‖Hs

ul
+ ‖θ‖L∞) ≤ C‖θ‖Hs

ul
, (4.5)

where we applied the Sobolev embedding theorem to get the last inequality. This estimate, com-
bined with ‖u‖L2

ul
≤ C‖u‖L∞ and ‖∇u‖L2

ul
≤ ‖∇u‖L∞ , gives

‖u‖Hs
ul

≤ C(‖θ‖Hs
ul

+ ‖u‖
C̃1). (4.6)

Substituting this estimate into (4.3) gives

‖θ(t)‖2
Hs

ul
≤ ‖θ0‖2

Hs
ul

+ C

t∫
0

(
‖u(τ)‖

C̃1‖θ(τ )‖2
Hs

ul
+ ‖θ(τ )‖Hs

ul
‖∇θ(τ )‖L∞(‖θ(τ )‖Hs

ul
+ ‖u(τ)‖

C̃1)
)

dτ

≤ ‖θ0‖2
Hs

ul
+ C

t∫
0

(‖u(τ)‖
C̃1 + ‖∇θ(τ )‖L∞)‖θ(τ )‖2

Hs
ul

dτ

+ C

t∫
0

‖θ(τ )‖Hs
ul
‖∇θ(τ )‖L∞‖u(τ)‖

C̃1 dτ

≤ ‖θ0‖2
Hs

ul
+ C

t∫
(‖u(τ)‖

C̃1 + ‖∇θ(τ )‖L∞)‖θ(τ )‖2
Hs

ul
dτ,

(4.7)
0
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where, to get the last inequality, we applied the Sobolev embedding theorem to conclude that 
‖∇θ(τ )‖L∞ ≤ C‖θ(τ )‖Hs

ul
. By Grönwall’s Lemma,

‖θ(t)‖2
Hs

ul
≤ ‖θ0‖2

Hs
ul

exp

⎛
⎝C

t∫
0

(‖u(τ)‖
C̃1 + ‖∇θ(τ )‖L∞) dτ

⎞
⎠ .

This completes the proof of Theorem 4.1. �
4.2. Existence of solutions

In this section, we prove the following theorem.

Theorem 4.2. Let s ≥ 3. Let θ0 be a function in Hs
ul(R

2), and let u0 in Hs
ul(R

2) satisfy

u0 = ∇⊥(−�)−1/2θ0 in Ċα(R2),

where α > 1 satisfies the embedding Hs
ul(R

2) ↪→ Cα(R2). There exists T > 0 and a unique 
solution (u, θ) to

∂t θ + u · ∇θ = 0,

(u, θ)|t=0 = (u0, θ0)
(4.8)

satisfying

θ ∈ L∞(0, T ;Hs
ul(R

2)) ∩ Lip([0, T ];Hs−1
ul (R2)),

u ∈ L∞(0, T ;Hs
ul(R

2)).

Moreover, (u, θ) satisfies

u(t) = u0 + ((a�)) ∗ ∇⊥(θ(t) − θ0) −
t∫

0

(∇∇⊥((1 − a)�))∗·(θu)ds. (4.9)

Proof. For the proof of Theorem 4.2, we will construct an approximation sequence of smooth 
solutions (un, θn) given by Theorem 3.1 on [0, T ]. We will then use Theorem 4.1 to establish 
uniform bounds on (un, θn) in the Hs

ul norm, which will allow us to pass to the limit to obtain 
(4.8).

Approximation sequence and uniform bounds. Consider the sequences u0
n = Snu

0 and θ0
n =

Snθ
0. We see that for each n, u0

n and θ0
n belong to Cr(R2) for every r > 0. Moreover, by 

Lemma 2.14, there exists C̃ > 0, depending only on s, such that

‖u0
n‖Hs

ul
≤ C̃‖u0‖Hs

ul
,

‖θ0‖ s ≤ C̃‖θ0‖ s .
(4.10)
n Hul Hul
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We claim there exists a single T > 0 such that both (un) and (θn) are uniformly bounded in 
L∞(0, T ; Hs

ul(R
2)). To see that such a T exists, note that Lemma 2.13 and construction of u0

n

and θ0
n give an α > 1 such that both (u0

n) and (θ0
n) are uniformly bounded in Cα(R2). Thus, by 

Theorem 3.1, a solution (un, θn) exists in Cα(R3) at least on [0, Tn], with (un, θn) satisfying 
(3.2). Choose T > 0 such that, for every n, T ≤ Tn and

1

2C
≤ Tn(‖u0

n‖L∞ + ‖θ0
n‖Cα ) ≤ T (‖u0‖L∞ + ‖θ0‖Cα ) <

1

C
,

where C is as in (3.2). We have that for every n, (un, θn) is a solution satisfying Theorem 3.1 on 
[0, T ]. In particular, by (3.2),

‖un‖C([0,T ];L∞) + ‖θn‖C([0,T ];Cα) ≤ C(‖u0‖L∞ + ‖θ0‖Cα )

1 − CT (‖u0‖L∞ + ‖θ0‖Cα )
, (4.11)

and ‖un‖C([0,T ];L∞), ‖θn‖C([0,T ];Cα) are therefore uniformly bounded in n.
To establish a uniform bound on ‖un‖C([0,T ];Cα) in n, note that by Lemma 2.6,

‖un‖C([0,T ];Cα) ≤ C(‖un‖C([0,T ];L∞) + ‖θn‖C([0,T ];Cα)). (4.12)

Then the uniform bound on ‖un‖C([0,T ];Cα) again follows from (4.11).
Theorem 4.1, (4.10), and an application of the uniform bound on ‖un‖C([0,T ];Cα) imply that 

there exists a constant C > 0, depending only on the initial data and T , such that

‖θn‖C([0,T ];Hs
ul)

≤ C. (4.13)

This bound, combined with the estimate (4.6), imply that there exists a constant C > 0, depending 
only on the initial data and T , such that

‖un‖C([0,T ];Hs
ul)

≤ C (4.14)

as well.
To simplify notation in what follows, we set φR = φ0,R , where φ0,R is as in (2.10).

(φRθn) is Cauchy. We now show that (φRθn) is a Cauchy sequence in the space C([0, T ];
Hs−1(R2)) for every R > 0. For some α > 1 and for each n, we know that un, θn ∈
C([0, T ]; Cα(R2)), and that our solutions satisfy

∂t θn + un · ∇θn = 0. (4.15)

Multiplying (4.15) by φR for some fixed R > 0, we have

‖φR∂tθn‖Hs−1 ≤ ‖φRun · ∇θn‖Hs−1 ≤ C(R)‖un · ∇θn‖Hs−1
ul

≤ C(R)‖un‖ s−1‖∇θn‖ s−1 ≤ C(R),
(4.16)
Hul Hul
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where the third inequality follows because Hs−1
ul (R2) is a Banach algebra, and the last inequality 

follows since ‖∇θn‖Hs−1
ul

and ‖un‖Hs−1
ul

are uniformly bounded in n by a quantity depending 
only on the initial data.

Via Rellich’s theorem, since for each t ∈ [0, T ], ‖θn(t)‖Hs
ul

is uniformly bounded over n, 
we can conclude that for each R and t ∈ [0, T ], there exists a subsequence of (φRθn(t)) which 
converges in Hs−1(R2). A diagonalization argument shows that for each t ∈ [0, T ], there is a 
subsequence of (θn(t)) (relabeled to (θn(t))) such that for every R > 0, the sequence (φRθn(t))

converges in Hs−1(R2).
It remains to find a subsequence which converges for all t ∈ [0, T ]. From (4.16), it follows 

that given ε > 0, there exists δ > 0 such that for all n and for all s, t ∈ [0, T ] such that |t − s| < δ,

‖φRθn(t) − φRθn(s)‖Hs−1 < ε/3. (4.17)

Consider a partition of [0, T ], 0 = t0 < t1 < ... < tM = T such that ti − ti−1 < δ. Since there are 
finitely many elements in the partition, we can find a further subsequence of (φRθn) (relabeled 
as (φRθn)) such that for each ti in our partition, (φRθn(ti)) converges in Hs−1(R2) for all R > 0. 
Let N be such that for all m, n ≥ N and for all ti in our partition,

‖φRθn(ti) − φRθm(ti)‖Hs−1 < ε/3.

It follows that for all pairs m, n ≥ N and for each t ∈ [0, T ], with ti chosen to satisfy |t − ti | < δ,

‖φRθn(t) − φRθm(t)‖Hs−1 ≤ ‖φRθn(t) − φRθn(ti)‖Hs−1

+ ‖φRθn(ti) − φRθm(ti)‖Hs−1 + ‖φRθm(ti) − φRθm(t)‖Hs−1 < ε.

Therefore, (φRθn) is a Cauchy sequence in C([0, T ]; Hs−1(R2)), and thus converges in 
C([0, T ]; Hs−1(R2)). We conclude that there exists θ such that φRθn → φRθ in C([0, T ];
Hs−1(R2)) for all R > 0.

(φRun) is Cauchy. The proof that for all R > 0, (φRun) is also Cauchy in C([0, T ]; Hs−2(R2))

is similar. Indeed, for each t ∈ [0, T ], the uniform bound on ‖un(t)‖Hs
ul

over n and a diagonal-
ization argument, as above, allow us to conclude that there exists a subsequence of (φRun(t))

which converges in Hs−2(R2) for every R > 0. It remains to find a single subsequence which 
converges for all t ∈ [0, T ]. We observe that by Theorem 3.1, for s, t ∈ [0, T ],

un(t) − un(s) = (a�) ∗ ∇⊥(θn(t) − θn(s)) −
t∫

s

(∇∇⊥((1 − a)�))∗·(θnun),

so that for each R > 0,

‖φRun(t) − φRun(s)‖Hs−2 ≤ C(R)‖φ8Rθn(t) − φ8Rθn(s)‖Hs−1 + C(R)

t∫
s

‖θn‖L∞‖un‖L∞

≤ C(R)|t − s| + C(R)|t − s| sup ‖θn(τ )‖L∞‖un(τ)‖L∞ ,

τ∈[s,t]
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where we used the equality φR((a�) ∗f ) = φR((a�) ∗(φ8Rf )) to get the first inequality, and we 
used (4.16) to get the second inequality. Since ‖θn‖L∞ and ‖un‖L∞ are uniformly bounded in n, 
given ε > 0, there exists δ > 0 such that for all R > 0, whenever s, t ∈ [0, T ] satisfy |s − t | < δ,

‖φRun(t) − φRun(s)‖Hs−2 < ε.

Following an argument identical to that used to show (φRθn) is a Cauchy sequence in 
C([0, T ]; Hs−1(R2)), we can conclude that (φRun) is Cauchy in C([0, T ]; Hs−2(R2)), and 
there exists u with φRun → φRu in C([0, T ]; Hs−2(R2)) for all R > 0.

(u,θ ) satisfies Theorem 4.1. We now pass to the limit in the Hs−2(R2) norm. Given R > 0, if 
we multiply (4.15) by φR , then for n, m ∈N ,

φR(∂t θn − ∂t θm) = φR(un − um) · ∇θm + φRun · ∇(θn − θm)

= φR(un − um) · (φ2R∇θm) + φRun · φ2R∇(θn − θm).

Hence, at each t ∈ [0, T ],

‖φR(∂t θn − ∂t θm)‖Hs−2 ≤ ‖φR(un − um) · (φ2R∇θm)‖Hs−2

+ ‖φRun · φ2R∇(θn − θm)‖Hs−2

≤ ‖φR(un − um)‖Hs−2‖φ2R∇θm‖∞ + ‖φR(un − um)‖∞‖φ2R∇θm‖Hs−2

+ ‖φRun‖Hs−2‖φ2R∇(θn − θm)‖∞ + ‖φRun‖∞‖φ2R∇(θn − θm)‖Hs−2 .

Since ‖φ2R∇θm‖∞, ‖φ2R∇θm‖Hs−2 , ‖φRun‖Hs−2 , and ‖φRun‖∞ are uniformly bounded in n
on [0, T ], as N → ∞, we have

sup
m,n≥N

‖φR(un − um)‖Hs−2‖φ2R∇θm‖∞ → 0,

sup
m,n≥N

‖φR(un − um)‖∞‖φ2R∇θm‖Hs−2 → 0,

sup
m,n≥N

‖φRun‖Hs−2‖φ2R∇(θn − θm)‖∞ → 0,

sup
m,n≥N

‖φRun‖∞‖φ2R∇(θn − θm)‖Hs−2 → 0.

From these estimates, it follows that (φR∂t θn) is Cauchy in C([0, T ]; Hs−2(R2)).
Since φRθn → φRθ in C([0, T ] × R2), we also have φRθn → φRθ in D′([0, T ] × R2). This 

implies that φR∂tθn → φR∂tθ in D′([0, T ] × R2), so by the uniqueness of limits, for all R > 0, 
φR∂tθn → φR∂tθ in C([0, T ]; Hs−2(R2)).

We multiply (4.8)1, as satisfied by (un, θn), by φR , and we pass to the limit in C([0, T ];
Hs−2(R2)). This gives φR∂tθ = −φRu · ∇θ for all R > 0.

To see that θ belongs to L∞(0, T ; Hs
ul(R

2)), we use (4.13) and a weak-* compactness argu-
ment. Note that by (4.13), for every x ∈ R2, n ∈ N , and t ∈ [0, T ],

‖φxθn(t)‖Hs ≤ C.
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Therefore, up to a subsequence which depends on t and x, φxθn(t) converges weak-* in Hs(R2). 
Note, however, that for every R > 0 and t ∈ [0, T ], φRθn(t) → φRθ(t) in Hs−1(R2). Given x, 
since we can always choose R large enough to ensure that φx = φxφR , we have φxθn(t) →
φxθ(t) in L2(R2). By uniqueness of limits, φxθn(t) converges weak-* in Hs(R2) to φxθ(t), and

‖φxθ(t)‖Hs ≤ C.

This holds for all t ∈ [0, T ] and for all x ∈ R2, so θ belongs to L∞(0, T ; Hs
ul(R

2)). The argument 
showing that u belongs to L∞(0, T ; Hs

ul(R
2)) is similar.

(u,θ ) satisfies (4.9). Note that (4.9) follows from Theorem 3.1 since, by the Sobolev Embedding 
Theorem, u and θ belong to C([0, T ]; Cα(R2)) for some α > 1. This completes the proof of 
Theorem 4.2.

Uniqueness Applying a cutoff function φR to two solutions and making the same argument that 
showed (φRun) is Cauchy gives uniqueness of solutions. �
5. (E) in uniformly local Sobolev spaces

5.1. A priori estimates

We now prove an analogous theorem to Theorem 4.1 for the Euler equations.

Theorem 5.1. Assume s is an integer satisfying s ≥ 3, with d = 2 or 3. Let u be a solution to 
(E) in C1([0, T ]; Hk(Rd)) for all k ∈N . Then there exists C > 0, depending on s, such that the 
following estimate holds for each t ∈ [0, T ]:

‖ω(t)‖2
Hs−1

ul

≤ (1 + ‖ω0‖2
Hs−1

ul

) exp

⎛
⎝C

t∫
0

‖u(τ)‖
C̃1(‖u(τ)‖2

L∞ + 1) dτ

⎞
⎠ . (5.1)

Proof. The proof is similar to that of Theorem 4.1. We prove the theorem for d = 3. The proof 
clearly extends to the case d = 2.

Set W = Dαω with 0 ≤ |α| ≤ s − 1 and s ≥ 3. Apply Dα to the vorticity equation to get

∂tW + u · ∇W = Dα(ω · ∇u) + F, (5.2)

where

F = u · ∇W − Dα(u · ∇ω).

For x ∈ R3 fixed, multiply (5.2) by φx to get

∂t (φxW) + u · ∇(φxW) = (u · ∇φx)W + φxD
α(ω · ∇u) + φxF. (5.3)

After taking the dot product of (5.3) with φxW and integrating, we conclude that
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∫
R3

φxW · ∂t (φxW) +
∫
R3

φxW · (u · ∇(φxW)) =
∫
R3

φxW · ((u · ∇φx)W)

+
∫
R3

φxW · (φxD
α(ω · ∇u)) +

∫
R3

φxW · φxF.

Now observe that ∫
R3

φxW · ∂t (φxW) = 1

2

d

dt
‖φxW‖2

L2 .

Moreover, one can show using the divergence-free property of u and integration by parts that∫
R3

φxW · (u · ∇(φxW)) = 0.

By properties of φx and Hölder’s inequality, we also have∫
R3

φxW · ((u · ∇φx)W) =
∫
R3

φxW · ((u · ∇φx)φx,2W)

≤ ‖φx,2W‖2
L2‖u · ∇φx‖L∞ ≤ C‖u‖L∞‖ω‖2

Hs−1
ul

,

and, again from Hölder’s inequality,∫
R3

φxW · (φxD
α(ω · ∇u)) ≤ C‖φxW‖L2‖φxD

α(ω · ∇u)‖L2

≤ ‖ω‖
Hs−1

ul
(‖ω‖

Hs−1
ul

‖∇u‖L∞ + ‖ω‖L∞‖∇u‖
Hs−1

ul
) ≤ C‖u‖2

Hs
ul
‖∇u‖L∞,

where we used Lemma 2.12 to get the second inequality. Finally, another application of Hölder’s 
inequality gives ∫

R3

φxW · φxF ≤ ‖φxW‖L2‖φxF‖L2 .

Since u is divergence free, we can write

F = u · ∇W − Dα div(uω),

which allows us to apply Lemma 2.12 to ‖φxF‖L2 with f = u and g = ω. This gives

‖φxF‖L2 ≤ C
(
‖u‖

C̃1‖ω‖
Hs−1

ul
+ ‖ω‖L∞‖u‖Hs

ul

)
≤ C‖u‖

C̃1‖u‖Hs
ul
.

Combining the above estimates gives
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1

2

d

dt
‖φxW‖2

L2 ≤ C‖u‖
C̃1

(
‖ω‖

Hs−1
ul

‖u‖Hs
ul

+ ‖u‖2
Hs

ul

)
≤ C‖u‖

C̃1‖u‖2
Hs

ul
.

After integrating in time and taking the supremum over x ∈ R3 of both sides, we conclude that

‖ω(t)‖2
Hs−1

ul

≤ ‖ω0‖2
Hs−1

ul

+ C

t∫
0

‖u(τ)‖
C̃1‖u(τ)‖2

Hs
ul

dτ. (5.4)

It remains to close the estimate and apply Grönwall’s lemma. To do this, we use the Biot-Savart 
law.

Let K3 = ∇G, with G as in (2.1), be (one form of) the Biot-Savart kernel in dimension 
3. Setting ωi

k = (∇u − (∇u)T )ik = ∂ku
i − ∂iu

k , since u and ω are smooth and decaying, for 
1 ≤ i ≤ 3, using implicit sum notation,

ui = Kk
3 ∗ ωi

k = (aKk
3 ) ∗ ωi

k + ((1 − a)Kk
3 ) ∗ ωi

k

= (aKk
3 ) ∗ ωi

k + (∂k((1 − a)Kk
3 )) ∗ ui − (∂i((1 − a)Kk

3 )) ∗ uk.
(5.5)

Applying a differential operator Dβ , with 0 ≤ |β| ≤ s − 1, to both sides of (5.5) gives

Dβui = (aKk
3 ) ∗ Dβωi

k + [Dβ∂k((1 − a)Kk
3 )] ∗ ui − [Dβ∂i((1 − a)Kk

3 )] ∗ uk.

Setting Dγ = ∂jD
β and applying ∂j then gives

Dγ ui = ∂j ((aKk
3 ) ∗ Dβωi

k) + [Dγ ∂i((1 − a)Kk
3 )] ∗ ui. (5.6)

Applying Lemma 2.15 gives

‖∇u‖
Hs−1

ul
≤ C(‖ω‖

Hs−1
ul

+ ‖u‖L∞).

This estimate, combined with ‖u‖L2
ul

≤ C‖u‖L∞ , gives

‖u‖Hs
ul

≤ C(‖ω‖
Hs−1

ul
+ ‖u‖L∞). (5.7)

We use (5.7) and (5.4) to write

‖ω(t)‖2
Hs−1

ul

≤ ‖ω0‖2
Hs−1

ul

+ C

t∫
0

‖u(τ)‖
C̃1(‖ω(τ)‖

Hs−1
ul

+ ‖u(τ)‖L∞)2 dτ

≤ ‖ω0‖2
Hs−1

ul

+ C

t∫
0

‖u(τ)‖
C̃1(‖ω(τ)‖2

Hs−1
ul

+ ‖u(τ)‖2
L∞) dτ,

≤ ‖ω0‖2
Hs−1

ul

+ C

t∫
‖u(τ)‖

C̃1(‖u(τ)‖2
L∞ + 1)(‖ω(τ)‖2

Hs−1
ul

+ 1) dτ,
0
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where we used that for A, B ≥ 0, (A + B)2 ≤ C(A2 + B2) to get the second inequality. Setting 
h(t) = 1 + ‖ω(t)‖2

Hs−1
ul

, we have

h(t) ≤ h(0) + C

t∫
0

‖u(τ)‖
C̃1(‖u(τ)‖2

L∞ + 1)h(τ ) dτ.

An application of Grönwall’s Lemma gives

‖ω(t)‖2
Hs−1

ul

≤ (1 + ‖ω0‖2
Hs−1

ul

) exp

⎛
⎝C

t∫
0

‖u(τ)‖
C̃1(‖u(τ)‖2

L∞ + 1) dτ

⎞
⎠ .

This completes the proof of Theorem 5.1. �
5.2. Existence of solutions

We prove the following theorem.

Theorem 5.2. Let s ≥ 3. Let u0 be a function in Hs
ul(R

3), and let ω0 = ∇ × u0. There exists 
T > 0 and a unique classical solution (u, p) to (E) satisfying

u ∈ L∞(0, T ;Hs
ul(R

3)) ∩ Lip([0, T ];Hs−1
ul (R3)).

Moreover, p satisfies

∇p(x) = −
∫
R3

a(x − y)∇G(x − y)div div(u ⊗ u)(y) dy

+
∫
R3

(u ⊗ u)(y) · ∇∇ [(1 − a(x − y))∇G(x − y)] dy.

(5.8)

To prove the theorem, we construct an approximation sequence of smooth, decaying solutions 
to (E), and we pass to the limit in (E). The construction of the sequence of initial velocities is 
slightly more tedious in the three-dimensional setting than in two dimensions, as we must make 
use of a more complicated explicit formula for a three-dimensional stream function.

Because we are seeking a strong solution to (E) in Hs
ul , we are forced to consider the meaning 

of the pressure for such solutions. We are able to make sense of the pressure by passing to a 
certain limit of the sequence of smooth pressures generated from the smooth velocity solutions.

To prepare the initial velocity, we adapt the classical strategy employed in [3] and [10] of 
cutting off and smoothing the stream function associated with the initial velocity u0. Some addi-
tional care is required because of the lack of inherent decay of the velocity field.

Lemma 5.3. Let u0 ∈ Hs
ul(R

3) and let s be a nonnegative integer. There exists a sequence (u0
n) of 

Schwarz-class, divergence-free vector fields uniformly bounded in Hs
ul(R

3) for which φRu0
n →

φRu0 in Hs(R3) for any fixed R > 0.
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Proof. Let (mn)
∞
n=1 be a sequence of positive integers that we will specify later. We define u0

n

by

u0
n = Smn(∇ × (φnψ)) = Smn(φnu

0) + Smn(∇φn × ψ), (5.9)

where ψ is the stream function for u0 given in Lemma 2.17. Observe that u0
n is Schwarz-class 

and divergence-free.
Using Lemmas 2.12 and 2.14,

‖Smn(φnu
0)‖Hs

ul
≤ C‖φnu

0‖Hs
ul

≤ C‖φn‖Cs ‖u0‖Hs
ul

≤ C‖u0‖Hs
ul
.

Again by Lemmas 2.12 and 2.14,

‖Smn(∇φn × ψ)‖Hs
ul

≤ C‖∇φn × ψ‖Hs
ul

= C sup
z∈R3

‖φz∇φn × ψ‖Hs

= C sup
z∈R3

‖φz∇φn × ψ‖Hs(U) ≤ C sup
z∈R3

‖φ
1
2
z ∇φn‖C̃s (U)

‖φ
1
2
z ψ‖Hs(U),

where U = B2n(0) ∩ B2(z). But by Lemma 2.17, ‖ψ‖Hs(U) ≤ Cn‖u0‖Hs
ul

= Cn and hence 

‖φ
1
2
z ψ‖Hs(U) ≤ Cn. Since ∇φn(·) = n−1∇φ(n−1·), we have ‖φ

1
2
z ∇φn‖C̃s (U)

≤ Cn−1. It follows 
that

∥∥Smn(∇φn × ψ)
∥∥

Hs
ul

≤ C

n
Cn = C.

This shows that (u0
n) is uniformly bounded in Hs

ul(R
3).

We now show that φRu0
n → φRu0 in Hs(R3). Because Smn commutes with ∇×,

φR(u0
n − u0) = φR

[
Smn(∇ × (φnψ)) − ∇ × ψ

]= φR∇ × (Smn(φnψ) − ψ).

But,

Smn(φnψ) − ψ = Smn(φnψ) − φnψ + (φn − 1)ψ.

For n > 2R, φn − 1 = 0, so φR∇ × ((φn − 1)ψ) = 0, leaving

φR(u0
n − u0) = φR∇ × (Smn(φnψ) − φnψ

)
.

It is now time to choose mn. Because ∇ × (φnψ) ∈ Hs(R3), we know that ∇ × (Sk(φnψ) −
φnψ) → 0 in Hs(R3), as k → ∞, so choose mn ≥ n sufficiently large that

‖∇ × (Sk(φnψ) − φnψ)‖Hs(R3) ≤ 1

n
for all k ≥ mn.

It follows that
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∥∥∥φR(u0
n − u0)

∥∥∥
Hs(R3)

≤ C(R)

n
.

This gives φRu0
n → φRu0 in Hs(R3) for any R > 0. �

Proof of Theorem 5.2.
Uniform time of existence. From the sequence of initial velocities in Lemma 5.3, we generate 
a sequence (un) of solutions to (E) in Hk(R3) for all k, where the time interval of existence in 
Hk(R3) for each un may vary with n. We claim, however, that there exists a single T > 0 such 
that un solves (E) with (un) uniformly bounded in L∞(0, T ; Hs

ul(R
3)).

To see that such a T exists, note that Lemma 2.13 gives an α > 1 such that u0
n belongs to 

Cα(R3) for each n. Thus, a solution un will exist in Cα(R3) at least on [0, Tn], with un satisfying 
the estimate (see [6] and chapter 4 of [7])

‖un‖C([0,Tn];Cα) ≤ ‖u0
n‖Cα

1 − CTn‖u0
n‖Cα

≤ C̃‖u0
n‖Hs

ul

1 − C̃Tn‖u0
n‖Hs

ul

. (5.10)

Choose T > 0 such that, for every n, T ≤ Tn and satisfies

1

2C̃
≤ Tn‖u0

n‖Hs
ul

≤ T ‖u0‖Hs
ul

<
1

C̃
,

where C̃ is as in (5.10). We have that for every n, un is a solution to (E) in Cα(R3) on 
[0, T ]. Moreover, by (5.10) and Lemma 5.3, ‖un‖C([0,T ];Cα) is uniformly bounded in n. But 
this implies that for every n, ‖∇un‖L∞(0,T ;L∞(R3)) < ∞. From this and classical theory we can 
conclude that un belongs to C([0, T ]; Hk(R3)) for every k. Thus, for every n, un satisfies The-
orem 5.1 on [0, T ]. Theorem 5.1, Lemma 5.3, and another application of the uniform bound on 
‖un‖C([0,T ];Cα) imply that there exists a constant C > 0, depending only on the initial data and 
T , such that for all n,

‖ωn‖C([0,T ];Hs−1
ul )

≤ C. (5.11)

Moreover, by (5.7), (5.11), and (5.10), there exists a constant C > 0, depending only on the initial 
data and T , such that for all n,

‖un‖C([0,T ];Hs
ul)

≤ C. (5.12)

(un) converges to u. Note that for each n, un belongs to the space C1([0, T ]; Hs(R3)). More-
over, we have

∂tun + un · ∇un = −∇pn, (5.13)

where pn satisfies pn = �−1∇(un · ∇un). For fixed R > 0, multiply (5.13) by φR . Then

‖φR∂tun‖Hs−1 ≤ ‖φR(un · ∇un)‖Hs−1 + ‖φR∇pn‖Hs−1 .
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Note that

‖φR(un · ∇un)‖Hs−1 ≤ C(R)‖un · ∇un‖Hs−1
ul

≤ C(R)‖un‖L∞‖∇un‖Hs−1
ul

+ C(R)‖∇un‖L∞‖un‖Hs−1
ul

≤ C(R)‖un‖2
Hs

ul
,

which can be bounded uniformly in n by (5.12).
To estimate the pressure term, observe that

∇pn = −(a∇G) ∗ div div(un ⊗ un) + [∇∇((1 − a)∇G)] · ∗(un ⊗ un). (5.14)

Applying Dγ to this identity with 1 ≤ |γ | ≤ s − 1 and applying Lemma 2.15,

‖∇pn‖Hs−1
ul

≤ C(‖un ⊗ un‖Hs
ul

+ ‖un ⊗ un‖L∞) ≤ C‖un ⊗ un‖Hs
ul
,

where we used the Sobolev embedding theorem. Thus,

‖φR∇pn‖Hs−1 ≤ C(R)‖∇pn‖Hs−1
ul

≤ C‖un‖2
Hs

ul
, (5.15)

which can be uniformly bounded in n.
Combining the above inequalities, we conclude that

‖φR∂tun‖Hs−1 ≤ C, (5.16)

with C depending on the initial data and R, but not on n.
By Rellich’s Theorem and the uniform bounds on ‖un(t)‖Hs

ul
for each t , we can conclude that 

for each t and each R, there exists a subsequence of (φRun(t)) which converges in Hs−1(R3). 
Using a standard diagonalization argument, for each fixed t , one can find a subsequence of 
(φRun(t)), relabeled (φRun(t)), which converges in Hs−1(R3) for every R.

To find a single subsequence that works for all t , we use (5.16). Given ε > 0, there exists 
δ > 0 such that for all n,

‖φRun(s) − φRun(t)‖Hs−1 < ε/3 (5.17)

whenever |s − t | < δ. Given this δ, construct a partition of [0, T ], 0 = t0 < t1 < t2 < ...... < tM =
T such that ti − ti−1 < δ. Using the process above, one can find a subsequence of (φRun), which 
we relabel (φRun), such that (φRun(ti)) converges, and hence is Cauchy in, Hs−1 for each ti , 
i = 1, 2, ..., M and for every R > 0.

Let N be such that for all n, m ≥ N and for all ti in the partition,

‖φRun(ti) − φRum(ti)‖Hs−1 < ε/3.

Then for all pairs m, n ≥ N and for each t ∈ [0, T ], there exists ti such that

‖φRun(t) − φRum(t)‖Hs−1 ≤ ‖φRun(t) − φRun(ti)‖Hs−1

+ ‖φ u (t ) − φ u (t )‖ + ‖φ u (t ) − φ u (t)‖ < ε.
R n i R m i Hs−1 R m i R m Hs−1
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We conclude that (φRun) is Cauchy in C([0, T ]; Hs−1(R3)), and thus there exists u such that 
(φRun) converges to φRu in C([0, T ]; Hs−1(R3)) for all R > 0.

(pn) converges to p. We now show that, up to subsequences, for all R > 0, (φR∇pn) is Cauchy 
(and thus converges) in C([0, T ]; Hs−2(R3)). The process is very similar to that above. As 
above, using the uniform bound in (5.15) and Rellich’s Theorem, we can conclude that for each 
fixed t , there exists a subsequence of (φR∇pn(t)), relabel it (φR∇pn(t)), which converges in 
Hs−2(R3) for every R. To find a single subsequence that works for all t , we must find a time 
modulus of continuity for (φR∇pn(t)) which is uniform in n. To do this, first note that by Propo-
sition C.1,

‖∂tun‖L∞ ≤ ‖un‖L∞‖∇un‖L∞ + ‖∇pn‖L∞

≤ C‖un‖2
C̃1 ≤ C‖un‖2

Hs
ul

≤ C

for all n and for all t ∈ [0, T ]. Thus there exists C > 0 such that for all s, t ∈ [0, T ] and for all n,

‖un(t) − un(s)‖L∞ ≤ C|t − s|. (5.18)

Applying (5.14) and Lemma 2.15, for s, t ∈ [0, T ],

‖φR∇pn(t) − φR∇pn(s)‖Hs−2 ≤ C‖φ4R(un ⊗ un(t) − un ⊗ un(s))‖Hs−1

+ C‖un ⊗ un(t) − un ⊗ un(s)‖L∞ .

It follows from uniform bounds on ‖un‖L∞ and ‖un‖Hs−1
ul

in n, along with (5.18) and (5.17), that 
given ε > 0, there exists δ > 0 such that for all n, whenever |s − t | < δ,

‖φR∇pn(t) − φR∇pn(s)‖Hs−2 < ε.

With this uniform continuity in hand, we follow a process identical to that used to show for all 
R > 0, (φRun) is Cauchy in C([0, T ]; Hs−1(R3)). We conclude that for all R > 0, (φR∇pn) is 
Cauchy in C([0, T ]; Hs−2(R3)), and thus there exists p such that (φR∇pn) converges to φR∇p

in C([0, T ]; Hs−2(R3)).

(u,p) solve (E). For fixed R > 0, multiply (5.13) by φR . Then for any m, n,

φR(∂tun − ∂tum) = φR(un − um) · ∇um + φRun · ∇(um − un) − φR∇(pn − pm)

= φR(un − um)φ2R · ∇um + φRun · φ2R∇(um − un) − φR∇(pn − pm),

so that, for each t ,

‖φR(∂tun − ∂tum)‖Hs−2 ≤ ‖φR(un − um)φ2R∇um‖Hs−2

+ ‖φRun · φ2R∇(um − un)‖Hs−2 + ‖φR∇(pn − pm)‖Hs−2

≤ ‖φR(un − um)‖L∞‖φ2R∇um‖Hs−2 + ‖φR(un − um)‖Hs−2‖φ2R∇um‖L∞

+ ‖φRun‖L∞‖φ2R∇(um − un)‖Hs−2 + ‖φRun‖Hs−2‖φ2R∇(um − un)‖L∞

+ ‖φ ∇(p − p )‖ .
R n m Hs−2
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Note that ‖φ2R∇un‖Hs−2 , ‖φ2R∇un‖L∞ , ‖φRun‖L∞ , and ‖φRun‖Hs−2 are uniformly bounded 
in n. We conclude that as N → ∞,

sup
m,n≥N

‖φR(un − um)‖L∞‖φ2R∇um‖Hs−2 → 0,

sup
m,n≥N

‖φR(un − um)‖Hs−2‖φ2R∇um‖L∞ → 0,

sup
m,n≥N

‖φRun‖L∞‖φ2R∇(um − un)‖Hs−2 → 0,

sup
m,n≥N

‖φRun‖Hs−2‖φ2R∇(um − un)‖L∞ → 0,

sup
m,n≥N

‖φR∇(pn − pm)‖Hs−2 → 0.

From the estimates above, it follows that (φR∂tun) is Cauchy in C([0, T ]; Hs−2(R3)). 
Since φRun → φRu in C([0, T ] × R3), φRun → φRu in D′([0, T ] × R3), which means 
φR∂tun → φR∂tu in D′([0, T ] × R3). Thus, by uniqueness of weak limits, φR∂tun → φR∂tu

in C([0, T ]; Hs−2(R3)) for every R. This, combined with convergence of (φRun) to (φRu) in 
C([0, T ]; Hs−1(R3)) for every R, allows us to conclude that for every R > 0,

φR∂tun → φR∂tu,

φRun · ∇un → φRu · ∇u

in C([0, T ]; Hs−2(R3)).
It remains to take the limit of (φR∇pn) in C([0, T ]; Hs−2(R3)). To do this, first note that by 

Proposition C.1, for every n,

∇pn(t, x) = −
∫
R3

a(x − y)∇G(x − y)div div(un ⊗ un)(t, y) dy

+
∫
R3

(un ⊗ un)(t, y) · ∇∇ [(1 − a(x − y))∇G(x − y)] dy.

Since (un ⊗ un) is uniformly bounded in C([0, T ]; L∞(R3)), for each t ∈ [0, T ], there ex-
ists a subsequence (unk

(t) ⊗ unk
(t)) converging weak-* in L∞(R3). Since (φRun) converges 

to φRu in C([0, T ]; Hs−1(R3)) for each R, (φRun ⊗ φRun) converges to φRu ⊗ φRu in 
C([0, T ]; Hs−1(R3)) for each R. It follows from uniqueness of weak limits that for this fixed 
t ∈ [0, T ], (unk

(t) ⊗ unk
(t)) converges weak-* in L∞ to u(t) ⊗ u(t). Since, for each x ∈ R3, 

∇∇ [(1 − a(x − y))∇G(x − y)] is in L1
y(R

3),

∫
R3

(unk
⊗ unk

)(t, y) · ∇∇ [(1 − a(x − y))∇G(x − y)] dy

→
∫

3

(u ⊗ u)(t, y) · ∇∇ [(1 − a(x − y))∇G(x − y)] dy
R

143



D.M. Ambrose, E. Cozzi, D. Erickson et al. Journal of Differential Equations 364 (2023) 107–151
for each x ∈R3.
Similarly, since (div div(un ⊗ un)) = (∇un · (∇un)

T ) is uniformly bounded in the space 
C([0, T ]; L∞(R3)), for each t ∈ [0, T ], there exists a subsequence (div div(unk

(t) ⊗ unk
(t)))

converging weak-* in L∞(R3). But again, since (φRun ⊗ φRun) converges to φRu ⊗ φRu in 
C([0, T ]; Hs−1(R3)) for each R, for this fixed t ∈ [0, T ], (div div(unk

⊗ unk
)) converges to 

div div(u ⊗ u) in D′(R3). By uniqueness of weak limits, the weak-* limit of (div div(unk
(t) ⊗

unk
(t))) must be (div div(u(t) ⊗u(t))). Since, for each x ∈R3, a(x −y)∇G(x −y) is in L1

y(R
3),

∫
R3

a(x − y)∇G(x − y)div div(unk
⊗ unk

)(t, y) dy

→
∫
R3

a(x − y)∇G(x − y)div div(u ⊗ u)(t, y) dy

for each x ∈R3.
We conclude that for each t ∈ [0, T ], there exists a subsequence (∇pnk

) such that ∇pnk
(t, x)

→ ∇p(t, x) for every x ∈R3, where

∇p(t, x) = −
∫
R3

a(x − y)∇G(x − y)div div(u ⊗ u)(t, y) dy

+
∫
R3

(u ⊗ u)(t, y) · ∇∇ [(1 − a(x − y))∇G(x − y)] dy.

(5.19)

Finally, since (φR∇pn) converges in C([0, T ]; Hs−2(R3)), by the above it must converge to 
φR∇p in C([0, T ]; Hs−2(R3)). Thus, (u, p) solves (E), where p satisfies (5.19).

u belongs to L∞(0,T ;Hs
ul(R

3)). By (5.12), for every x ∈ R2, n ∈ N , and t ∈ [0, T ],

‖φxun(t)‖Hs ≤ C.

Therefore, up to a subsequence which depends on t and x, φxun(t) converges weak-* in Hs(R2). 
Note, however, that for every R > 0 and t ∈ [0, T ], φRun(t) → φRu(t) in Hs−1(R2). Given x, 
since we can always choose R large enough to ensure that φx = φxφR , we have φxun(t) →
φxu(t) in L2(R2). By uniqueness of limits, φxun(t) converges weak-* in Hs(R2) to φxu(t), and

‖φxu(t)‖Hs ≤ C.

This holds for all t ∈ [0, T ] and for all x ∈R2, so u belongs to L∞(0, T ; Hs
ul(R

2)).

Uniqueness Applying a cutoff function φR to two solutions and making the same estimates that 
showed (u, p) solve (E) yields uniqueness. Moreover, uniqueness also follows from [29] or from 
[12]. �
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Appendix A. A constitutive relation for (SQG)

Lemma A.1. Assume that (u, θ) are smooth solutions on [0, T ] × R2, with θ compactly sup-
ported in space, to

⎧⎪⎨
⎪⎩

∂t θ + u · ∇θ = 0,

u(t) = ∇⊥(�)− 1
2 θ(t),

(u, θ)|t=0 = (u0, θ0).

Then for all t ∈ [0, T ] and any λ > 0, we have the Serfati-type identity,

u(t) = u0 + (aλ�) ∗ ∇⊥(θ(t) − θ0) −
t∫

0

(∇∇⊥((1 − aλ)�)∗·(θu(s)) ds.

In indices, this is

ui(t) = (u0)i + (a�) ∗ (∇⊥(θ(t) − θ0))i −
t∫

0

∂j (∇⊥((1 − a)�))i ∗ (θuj (s)) ds.

Proof. Because θ is compactly supported in space, we can write the constitutive law in the form 
u(t) = ∇⊥(� ∗ θ(t)). Taking the time derivative, we can introduce the cutoff function to obtain

∂tu(t) = ∇⊥(� ∗ ∂t θ(t)) = ∇⊥((aλ�) ∗ ∂t θ(t)) + ∇⊥(((1 − aλ)�) ∗ ∂t θ(t))

= ∂t ((aλ�) ∗ ∇⊥θ(t)) − ∇⊥(((1 − aλ)�) ∗ (u · ∇θ)(t)).

But u · ∇θ = div(θu), so

[
∇⊥(((1 − aλ)�) ∗ (u · ∇θ)(t))

]i =
[
∇⊥(((1 − aλ)�)

]i ∗ (div(θu)(t))

= ∇
[
∇⊥(((1 − aλ)�)

]i ∗·(θu)(t).

Integrating in time completes the proof. �
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Lemma A.2. Assume the sequences (un) and (θn) are generated as in (3.5) and (3.6). For every 
j ∈Z, n ∈ N , and t ∈ [0, T ],

�̇ju
n(t) = �̇j∇⊥(−�)−1/2θn(t),

equality holding almost everywhere on R2.

Proof. Applying ∂t to (3.6)3 gives, for every j ∈Z,

ϕj ∗ ∂tu
n(t) = ϕj ∗ ((a�) ∗ ∂t∇⊥θn(t)) − ϕj ∗

(
∇L∗·(un−1θn)(t)

)
, (A.1)

where L = ∇⊥((1 − a)�), which we note has the singularity at the origin removed and which 
decays like C |x|−2 as x → ∞. We apply the Fourier transform to both sides of (A.1). This gives

ϕ̂jF(∂tu
n) = ϕ̂jF(a�)F(∂t∇⊥θn) − ϕ̂jF(∇L)F(un−1θn)

= ϕ̂j (â ∗ �̂)(iξ⊥)F(∂t θ
n) − ϕ̂j (iξ

⊥)(F(1 − a) ∗ �̂)
[
iξ ·F(un−1θn)

]
= iϕ̂j ξ

⊥ [(â ∗ �̂)F(∂t θ
n) − (F(1 − a) ∗ �̂)

[
iξ ·F(un−1θn)

]]
.

But,

iξ ·F(un−1θn) =F(div(θnun−1)) =F(un−1 · ∇θn) = −F(∂t θ
n),

so

ϕ̂jF(∂tu
n) = iF(∂t θ

n)ϕ̂j ξ
⊥ [(â ∗ �̂) + (F(1 − a) ∗ �̂)

]
.

Note that â ∈ S , and �̂ decays like |ξ |−1, so that â ∗ �̂ = â ∗ (a�̂) + â ∗ ((1 − a)�̂) is in 
L1 + Lp for all p > 2, by Young’s inequality. Moreover, observe that

ϕ̂j (F(1 − a) ∗ �̂) = ϕ̂j ((δ − â) ∗ �̂) = ϕ̂j �̂ − ϕ̂j (â ∗ �̂). (A.2)

Since ϕ̂j �̂ ∈ S , we have that ϕ̂j (F(1 − a) ∗ �̂) belongs to L1 + Lp as well. In particular, all 
three terms in (A.2) are defined almost everywhere as, then, are the products. This allows us to 
write the following equality, which holds in the distributional sense:

ϕ̂jF(∂tu
n) = ϕ̂j (iξ

⊥)�̂F(∂t θ
n). (A.3)

Defining G ∈ S(R2) by G = F−1[ϕ̂j (iξ
⊥)�̂] and applying the inverse Fourier transform to 

(A.3) gives

ϕj ∗ ∂tu
n = G ∗ ∂t θ

n in S ′(R2). (A.4)
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Since both sides of the equality in (A.4) are convolutions of Schwarz functions with bounded 
functions, both sides belong to L1

loc(R
2). Therefore, equality in (A.4) holds pointwise almost 

everywhere on R2. Moreover, by (2.7), we can write

�̇j ∂tu
n(t) = �̇j∇⊥(−�)−1/2∂t θ

n,

which also holds almost everywhere. Integrating in time and using the identity �̇ju
0 =

�̇j∇⊥(−�)−1/2θ0 for all j ∈Z, we have that for all t ≥ 0,

�̇ju
n(t) = �̇j∇⊥(−�)−1/2θn,

proving the lemma. �
Appendix B. Serfati identity for 3D Euler

We establish the 3D version of the Serfati identity of [26]. The key point of this identity is not 
its precise form, but rather the order of the derivatives that appear on its near and far field terms.

Lemma B.1. Let

K(x) = x

4π |x|3 ,

one form of the 3D Biot-Savart kernel. Any smooth solution to the 3D Euler equations with 
velocity u and with vorticity ω compactly supported in space satisfies, for any λ > 0, the 3D 
Serfati identity,

uk(t) = (u0)k +
∫
R3

(aλK)(x − y) × ω(t, y) dy

+
∫
R3

∇∇((1 − aλ)K
k)(x − y)∗·(u ⊗ u)(t, y) dy

+
∫
R3

∇ div((1 − aλ)K)(x − y)∗·(uk u)(t, y) dy.

Proof. Because ω is compactly supported in space, we can write the constitutive law in the form 
(see, for instance, Proposition 2.16 of [21])

u(t, x) =
∫
R3

K(x − y) × ω(t, x) dy.

Proceeding as in the proof of (A.1), we have

∂tu(t) = d

dt

∫
R3

(aλK)(x − y) × ω(t, y) dy +
∫
R3

L(x − y) × ∂tω(t, y) dy,
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where L = (1 − aλ)K . But ∂tω = curl(∂tu) = − curl(u · ∇u) = − curl div(u ⊗ u). Hence, the ith

component of the second integral above, using Lemma B.2, becomes

−
⎡
⎢⎣∫
R3

L(x − y) × curl div(u ⊗ u)(t, y) dy

⎤
⎥⎦

k

=
∫
R3

∂yi
Lk(x − y) · [div(u ⊗ u)(t, y)]i + ∂yi

Li(x − y)[div(u ⊗ u)(t, y)]k dy

=
∫
R3

∂yi
Lk(x − y)∂j (u

j ⊗ ui)(t, y) + ∂yi
Li(x − y)∂j (u

j ⊗ uk)(t, y) dy

= −
∫
R3

∂j ∂iL
k(x − y)(uj ⊗ ui)(t, y) + ∂j ∂iL

i(x − y)(uj ⊗ uk)(t, y) dy.

Integrating in time yields the result. �
Lemma B.2. For u, v smooth with uv compactly supported,

∫
R3

u × curlv =
∫
R3

(−∇u · v + divuv) =
∫
R3

(−∂iu
kvi + ∂iu

i vk)ek.

Proof. We have,

u × curlv =
∣∣∣∣∣∣

i j k
u1 u2 u3

∂2v
3 − ∂3v

2 ∂3v
1 − ∂1v

3 ∂1v
2 − ∂2v

1

∣∣∣∣∣∣ .
Working only on the first component and integrating by parts, we have

∫
R3

(u × curlv)1 =
∫
R3

u2(∂1v
2 − ∂2v

1) − u3(∂3v
1 − ∂1v

3)

=
∫
R3

(−∂1u
2v2 + ∂2u

2v1 + ∂3u
3v1 − ∂1u

3v3).

But ∂2u
2 + ∂3u

3 = divu − ∂1u
1, so∫

R3

(u × curlv)1 =
∫
R3

(−∂1u
2v2 + (divu − ∂1u

1)v1 − ∂1u
3v3)

=
∫
R3

(−∂1u · v + divuv1).
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Similar expressions for the other two terms give the result. �
Appendix C. Pressure identity

We derive in this appendix the pressure identity for solutions to the Euler equations, adapted 
from the 2D version due to Serfati [26], as derived in [19].

We work throughout with a sufficiently smooth decaying solution, (u, p), to the 3D Euler 
equations in all of R3. It is classical in that setting that

p(t, x) = −G ∗ div div(u(t) ⊗ u(t))(x), (C.1)

where G is the fundamental solution to the Laplacian on R3, defined in (2.1).

Proposition C.1. Let a be as in Section 2. The identity,

∇p(x) = −
∫
R3

a(x − y)∇G(x − y)div div(u ⊗ u)(y) dy

+
∫
R3

(u ⊗ u)(y) · ∇∇ [(1 − a(x − y))∇G(x − y)] dy,

(C.2)

holds independently of the choice of cutoff function, and ∇p ∈ L∞([0, T ] ×R3) with

‖∇p(t)‖L∞ ≤ C ‖u(t)‖2
C̃1 .

Proof. Applying ∂i to (C.1) gives

∂ip(x) = −
∫
R3

∂iG(x − y)div(u · ∇u)(y) dy.

Here, we suppress the time variable to streamline notation. Applying a cutoff and integrating by 
parts,

∂ip(x) = −
∫
R3

a(x − y)∂iG(x − y)div(u · ∇u)(y) dy

−
∫
R3

(1 − a(x − y))∂iG(x − y)div(u · ∇u)(y) dy

= −
∫
R3

a(x − y)∂iG(x − y)div(u · ∇u)(y) dy

+
∫
R3

(u · ∇u)(y) · ∇ [(1 − a(x − y))∂iG(x − y)] dy.
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Integrating as in Lemma C.2 gives

∂ip(x) = −
∫
R3

a(x − y)∂iG(x − y)div(u · ∇u)(y) dy

+
∫
R3

(u(y) · ∇y)∇y [(1 − a(x − y))∂iG(x − y)] · u(y)dy,

which we can write more succinctly as (C.2).
We conclude, since div(u · ∇u) = ∇u · (∇u)T , that

‖∂ip‖L∞ ≤ ‖a∂iG‖L1 ‖∇u‖2
L∞ + ‖∇∇ [(1 − a)∂iG]‖L1 ‖u‖2

L∞ .

Here, we are using that (in any dimension), ∇G is locally in L1 and, away from its singularity, 
∇3G lies in L1. This gives the bound on ∇p(t) in L∞.

That the expression in (C.2) is independent of the choice of cutoff function a can be seen by 
subtracting the expression for two different cutoffs then undoing the integrations by parts. �

We used the following lemma above.

Lemma C.2. Let V ∈ H 1(R3). Then∫
R3

(u · ∇u) · V = −
∫
R3

(u · ∇V ) · u.

Proof. Using the vector identity, (u · ∇u) · V = u · ∇(V · u) − (u · ∇V ) · u gives∫
R3

(u · ∇u) · V =
∫
R3

u · ∇(V · u) −
∫
R3

(u · ∇V ) · u = −
∫
R3

(u · ∇V ) · u,

where the one integral vanishes since divu = 0. �
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