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ABSTRACT. Lei and Lin [Comm. Pure Appl. Math. 64 (2011), pp. 1297-1304]
have recently given a proof of a global mild solution of the three-dimensional
Navier-Stokes equations in function spaces based on the Wiener algebra. An
alternative proof of existence of these solutions was then developed by Bae
[Proc. Amer. Math. Soc. 143 (2015), pp. 2887-2892], and this new proof
allowed for an estimate of the radius of analyticity of the solutions at positive
times. We adapt the Bae proof to prove existence of the Lei-Lin solution in
the spatially periodic setting, finding an improved bound for the radius of
analyticity in this case.

1. INTRODUCTION

Lei and Lin have developed a mild solution of the three-dimensional Navier-
Stokes equations which is global in time for small data in spaces related to the
Wiener algebra [23]. Bae subsequently outlined a different proof of this result, with
a benefit of the new approach being that a lower bound for the radius of analyticity
of solutions is established in a straightforward way [5]. The results of both these
papers are for solutions with domain R®; in the present work, we prove existence
of the corresponding solutions in T® instead, and find an improvement in the lower
bound for the radius of analyticity in this case. We note that Wiener algebras first
appeared in estimating the time behavior of the radius of analyticity in parabolic
equations in [25)].

The lower bound for the radius of analyticity demonstrated in [5] is proportional
to v/t; the data need not be analytic at time ¢ = 0, but the solution then becomes
analytic with radius at least /¢ at any positive time. This bound remains valid
for all time. This lower bound for the radius of analyticity follows the scaling of
the linear parabolic term, i.e. the viscous term, in the Navier-Stokes equations:
since it is a second-order term, the radius of analyticity may be demonstrated to
grow at least like ¢1/2. This bound has been obtained before in other works such
as [6], [15], [18], [19], [22]. For related problems such as the Kuramoto-Sivashinsky
equation, the leading-order linear parabolic term is fourth-order, and these methods
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yield instead a lower bound on the radius of analyticity like t'/# [3], [19]. Biswas
attained a general result along these lines on dissipative equations with quadratic
nonlinearities in [8].

A related result is the proof of global existence of vortex sheets by Duchon and
Robert [16]. This result is also on free space, i.e. the domain is R, and the leading-
order linear terms are first-order. Thus, consistent with the previous results, the
radius of analyticity of solutions grows at least like ¢. In a series of papers, the first
author and collaborators have adapted the Duchon-Robert method to the spatially
periodic setting. In the spatially periodic case, one attains a radius of analyticity
growing at least like £ regardless of the order of the linear terms in the evolution
equations [1], [2], [3]. Linear-in-time growth for the radius of analyticity was also
obtained in for a modified Navier-Stokes system in full space, with an additional
low-frequency damping term. This linear-in-time growth of the radius of analyticity
is an improvement on long time scales over the fractional-power growth guaranteed
by other methods on free space, but does represent slower growth initially.

In the present work, we combine the two approaches, demonstrating that the
lower bound on the radius of analyticity for the Lei-Lin solution of the three-
dimensional Navier-Stokes equations on the torus is initially like /%, later improving
to t. We mention that Foias and Temam mention that one can prove a lower bound
on the radius of analyticity for solutions of the Navier-Stokes equations on the torus
growing linearly in time, but their result demonstrates this only for a finite time [18];
see also [7]. Ferrari and Titi later study general parabolic evolution equations on
periodic domains, and state that the linear lower bound for the radius of analyticity
of solutions can be proved as long as the Sobolev norm of the solution remains
bounded [17]|. Biswas and Swanson also study the three-dimensional Navier-Stokes
equations in the periodic case, and demonstrate with data in weighted ¢ spaces
that one finds small solutions existing for all time, with radius of analyticity growing
linearly in time [10]. In contrast with these results, in the present work we are using
the Wiener-based norms of Lei and Lin, and we also include the improved lower
bound on the radius of analyticity at small times.

It will be of interest to explore the actual behavior of the radius of analyticity
of such solutions in more detail in the future, including possibly by computational
methods. The proof of our lower bound, which informally is like max{v/,t} (see
Theorem [2] in Section [3] for the technical statement) would carry over to other
nonlinear parabolic equations such as Burgers’ equation. It will especially be of
interest to determine whether there is indeed a sharp change in behavior of the
radius of analyticity, switching from a fractional power to linear growth. Some
limited studies have been made before on the radius of analyticity of solutions of
Burgers’ equation, such as [27], but more detailed studies seem to be called for.

We mention three motivations to obtain estimates for the radius of analiticity
of solutions of the Navier-Stokes system. The first is purely mathematical — this
carries information on the fine regularity of solutions and how it changes over time.
The second concerns numerical approximations. Galerkin approximations converge
exponentially fast, at a rate that is governed by the radius of analyticity, as was
observed first in for the Ginzburg-Landau system. Finally, we note that the
radius of analyticity gives a spatial scale where inertial and viscous dissipation are
in balance and is thus related to the transition scale between inertial and viscous
frequency ranges in turbulent flows, see [9].
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ANALYTICITY OF PERIODIC LEI-LIN SOLUTIONS OF NAVIER-STOKES 783

The plan of this paper is as follows. In Section[2] we state and prove Theorem
on existence, uniqueness, and continuous dependence of the Lei-Lin solution of
the three-dimensional Navier-Stokes equations on the torus. We present a detailed
argument, following the ideas outlined by Bae in [5] for the full-space case. In
Section [3] we state and prove Theorem [2] developing both the fractional-power and
linear bounds for the radius of analyticity of the solutions.

2. WELL-POSEDNESS

We will make frequent use of the Fourier coefficients of a periodic function, so
we will now be definite about what these Fourier coefficients are. We let the three-
dimensional torus T? be the cube [0, 27]3, with periodic boundary conditions. Given
a smooth periodic function, f, we may write

f@) =3 flkyet=.

-~

Alternatively, when convenient we may use the notation Ff(k) = f(k). The Fourier
coefficients are given by the formula

-~

7 = Gy [ @)=

Recall the following function space introduced in [23], adapted to the periodic
setting:

X ={ 7 e /(1) fi) =0 and I 1lx = 3 TP <o

iz

Here we have used the notation Z3 = Z3\ (0,0,0). As observed in [23], the space
X! is contained in BMO™!, the largest space in which well-posedness for 3D
Navier-Stokes with small initial data has been established, see [21]. In [5] two addi-
tional function spaces were introduced in order to establish existence of a solution
to the incompressible Navier-Stokes equations in R3. We adapt the definitions of
those function spaces to the periodic setting, while retaining the notation from [5]:

x1l= {f e D'(Ry x T) | (-,0) = 0 in D'(R,) and

kezs 12

_ At k)]
Ifll-s = 3 sup < oo},

o0
X ={feDRxT) (Il = 3 [ WIF R dt <oo
kez3 0
In [20] L. Jlali observed that, when the physical space is R instead of T3, there is
a difficulty with the Fourier reconstruction which prevents completeness of a space
which is similar to A!. We note that no such issue arises in our case since we
deal with periodic functions. In fact, it is easy to see that X—! and &1 are, both,
Banach spaces with norms || - ||x-: and || - || 1, respectively. We will need to work
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in the intersection of these spaces, X ! N X!. To simplify notation we introduce
the norm [|||| on X~1 N AL

lleell = Teall =2 + fleell 2

We consider the initial-value problem for the incompressible Navier-Stokes equa-
tions on T3 with viscosity u > 0, given by the system:

v+ (v-V)v=-Vp+pAv in (0,00) x T3,
(1) dive =0 in [0, 00) x T3,
v(0,+) = vo on {t =0} x T3,

In this section we will prove the existence of a mild solution v € X~ N &' to
with initial data vg € X~1, as long as v is sufficiently small. We begin with
the definition of a mild solution of (I) in X~! N X!. We use the notation P for the
Leray projector, P =1 — VA~ div.

Definition 1. Let v € X~!. We say that v € X~ N X! is a mild solution of
with initial data vg if

(2) v(t, ) = et g — /0 =98 [P div(v @ v)(s, )] ds.

To simplify notation in what follows we will write, throughout, Y = X~ n x*.
As previously noted, Y is a Banach space with the norm ||-|||.

We are now ready to state our well-posedness result for in ) for sufficiently
small initial data vo € X 1.

Theorem 1. Let vg € X~ 1. Then there evists g such that, if ||vol| x -1 < €0, then
there exists one and only one mild solution of the incompressible Navier-Stokes
equations with initial data vo and such that

vl < llvollx—1-
Furthermore, the solution v depends continuously on the initial data vo.

The proof of Theorem [1] relies on a key estimate in ). We state this estimate in
the lemma below.

Lemma 1. Let F, G € Y. Consider the self-adjoint bilinear operator B : Y x ) —
Y given by

(3) B(F,G) = f t et=)A P div(F @ G)(s,-)] ds.
Then
1
(4) IB(F,G)|| <C (1 + ;) NE G-

Proof. The proof of this lemma involves calculations which are very similar to those
in [5] (2.2) to (2.10)], adapted to the periodic case.

We must show that both ||B(F,G)| x-: and ||B(F,G)| x: are bounded by the
right-hand side of (4).
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Let us begin with ||B(F,G)||x-1. Consider the k-th Fourier coefficient, k € Z2,
of B(F,G):

3

) BEG K = [ erie-is > (1~ k) Ko o) s

t 3
:/ eIk Y (1 ”32 )k 3" Fi(s,0)Gj(s,k — £) ds.

0 ij=1

Therefore we have

6) |BEG®K]| s f ke =R S |Fi(s, 0)]1G5 (s, k — 0)] ds.

i,j=1¢cE?

Since k € Z3, we may multiply the right-hand side of (6) by 1/|k|. We will also
use the bound

lk—e |4
1< B L
I L e

for every £ € Z3, £ # k. We then obtain that:

1l | = —p(t—s) k|2
0 & |FEGR| 5 7 [ e S 3 1R, OIG s,k - 0] ds

i,j=1¢cE?

<c/ ZZ|F3€||G33k 0)] ds

1,j=1 ¢k

ey > [ (uc 0135, - P20 )'+|f||ﬁ(s,f)|W) ds

i,j=1¢cz? f;ék

|F s,£) |]
< k—1{ k—1£)| d
<oy ¥ nggt i ), k=G, ko) ds

i,7=1¢cE3 {#£k

+ sup M[|€||Fs£|dsl.

0<s<t |k — ¢
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We now take the sup,~ followed by the 37, ;s in (7) to find:

IB(F,G)||x-1 = Z s;lg F ‘B (t,k)‘

t

ey Y %

keZ? i,j=1LcE3 i#k

F, (s,9)
Supl i l/ |k — £||Gj(sk £)| ds

s=0

+sup |G';I s, k—1¥) |
s=0 |k €|

= y su |F3€)| m &, m 5
-3 (Z p e Z/ m|G (s, m)] &

cezs °2°0 mezd

|£||F s, 0)| ds]

Z/ [EI1Ei(s, £)] ds (Z sup lGJ|;|m)|

Lez? czs 520

< CFllx-[1Gllxr + CllGlx-1[|F [l < CUFIGI-

Note that, in the calculation above, we made use of the change of variables
m==k— £

Next, we will estimate || B(F, G)| x:. We multiply the k-th Fourier coefficient of
B(F,G), k € Z3, by |k| and we use (5) and (6) to find:

(8) k| |B (F,G)(t, k < Cf |k |2e—r(t=)kI* Z > IFi(s,0)1Gj(s, k — £)] ds.

i,j=1£cZ?

Let us integrate (8) in time over R and exchange the order of integration. With
this we obtain:

| M[EES) @) a

<cf f |k[2e—r(t=9)IkI* Z ST IE(s,0)|1Gj(s,k — )] dt ds

i,j=1£cZ?

C/ ZZ|F3€||stk 0)| ds.

i,j=1¢cZ?
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Finally, summing in k € Z3 we deduce:

IB(F, G)r = Z/ K| BFG) (¢, )] at

keZ?
c
<Z ZZ|F3£||GJ.sk £)| ds
kEE"‘ i,j=14eZ3

>0y v [ (Ik 01 5, - 501

kezs H =1 0T bk

~ Gi(s, k—¢
¥ |2||m(s,f)|%) ds

C > |Fi(s, )|
< =
Yy ¥ [i‘i%’ i / Ik — €1 (s, k - 0)] ds

keZ3 i,j=1LcE3 i#k

|G';I s,k —1¥) |
+sup —> 1~

Sup & —1] |£||F s, 0)| ds]

C C
< — IFllx—lIGllx: + — ||G||x—1 [Fll% < = IENIGII-
7 7 7
This concludes the proof of the lemma. O

The following classical abstract result is the standard tool to prove small data
well-posedness results for mild solutions of Navier-Stokes.

Lemma 2. Let (X, ||-||x) be a Banach space. Assume that B: X x X — X is a
continuous bilinear operator and let n > 0 satisfy 1 > ||Bl|xxx—x. Then, for any
xo € X such that

dnflzollx <1,

there exists one and only one solution to the equation

1
z = zo + B(z,z) with ||z < o

Moreover, |||J:|||x < 2|||£’0|||x-

The hypotheses in Lemma [2] imply that the map z — Tz = zp + B(z,z) is a
contraction in {z eX ||z < %} and, thus, has a fixed point. See also p. 37,
Lemma 1.2.6] and [4]12].

Proof of Theorem [1l We begin by fixing vy € X 1.
According to Definition |1/ we seek v € ) such that

9) v = e"*2lvg] — B(v,v),

where we are using the notation introduced in Lemma [1] (3).
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We can use Lemma [2] with (X = Y, ||]|) and zo = e**?[vg]. According to our
1
key estimate in Lemma (1] we may take n = C (1 + —) . Therefore, we have: if
7
1
(10) 1c (1 T E) 1€ woll|ll < 1

then there is one and only one v € Y, |vf| < p/[2C(1 + p)], which solves (9).
Furthermore, the solution satisfies

(11) llvll < 2{[[ e [wo] |-
The proof of Theorem [1/is concluded once we observe that
A [ug](t, k) = e 5y k),

so that we easily obtain

(12) €A o] || < (1 + ﬁ) ool .

Next we show the continuous dependence of the solution on initial data. To this
end let us choose ug and vg € X! such that
2

1\? 1
(13) 4C (1 + —) ||’U.0||X—l < ]. and 40 (1 + _) ||TJ'0||X—1 < ]..
p p

From we conclude that is satisfied for both uy and vy. Let u, v € Y be
the unique solutions of (3) with initial data ug, vg, respectively. Then we have

u—v = e ug] — e vo] — B(u, u) + B(v,v)
= " ug — vg) — B(u — v, u + v),

where we have used that B is self-adjoint and bilinear.
It follows from Lemmallland from that

1 1
1) Jlu-oll < (1 + ;) o — vollx—1 + € (1 + ;) e = oll (k] + ol -
Putting together and we find
1
(15) lull + ol < 2 (1 + ;) (luoll -1 + ool x—2).

Therefore, substituting (15) in leads to

2
1 1
= ol < (1 4 ;) o — vollx 1 +2C (1 T ;) (ol -1 + lvollx—1) Il — vl

This then implies
(16)

2
1 1
(1 e (1 N ;) (luollx—s + ||"U0||X—1)) = ol < (1 4 ;) o — vollx .

The hypotheses we made on the initial data ug, vo, namely (13), imply that

1 2
120 (1 N ;) (lwollx -1 + [vollx 1) > 0.
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ANALYTICITY OF PERIODIC LEI-LIN SOLUTIONS OF NAVIER-STOKES 789

Thus, continuity with respect to initial data follows from (16). We note in passing
that this is not (necessarily) uniform continuity.
O

Remark 1. We note that the smallness condition on the initial data, with respect

to the viscosity u, is:
2

B
4C(1+ p)?’

This smallness condition contrasts with that obtained in [23], where it was only
necessary to have |lvo|lx-1 < p.

||‘U'|:|||x—1 < gg <

3. BOUNDS ON THE RADIUS OF ANALYTICITY OF SOLUTIONS

Our second result concerns analyticity of the solution obtained in Theorem
We follow the strategy set forth by Lemarié-Rieusset in Theorem 24.3], finding
our refined estimate for the radius of analyticity by using two different exponential
weights.

Theorem 2. Let vo € X~ 1. For any a € (0,1), there exists g9 such that, if
|lvollx-1 < €0, then the solution found in Theorem [1lwith initial data vo is analytic,
with radius of analyticity R, > max{u\/t, aut}, In fact it holds that

BpﬁlDl'ﬂ +

e 1Ply| S fluollx-+,

where | D| is the operator whose Fourier multiplier is 3 o, |ki|, k € Z°.

Proof. Fix vg € X! and v = v(t,z) the unique mild solution of (I), with initial
data vy, constructed in Theorem (1| According to the definition of a mild solution,
Definition [1] v satisfies the identity in (2)):

v(t, ) = eM g — /0 =98 [P div(v @ v)(s, )] ds.

We will prove Theorem [2]in two steps, first by estimating e"ViDPly ||| and then

|||e“-“t|D |v|||. We follow the same ideas and calculations set forth for the v/t rate
of gain of analyticity in the proof of [5] Theorem 1.3]; we extend this to the linear
growth rate of the radius of analyticity in Section[3.2]

3.1. Using uv/t in the exponential weight. To bound

Vi= e"‘/ﬂmv, so that:

e“‘/ﬂmv”l we introduce

t
Vi) = et VDI gt [vo] — / et VDI gu(t=s)A [Pdiv(v @ v)(s,)] ds
0

— MVUD| guta [vo]

t
(17) _[ HVEID| u(t—s5)A [Pdiv(e—uﬁll?lvl @e_#ﬁlDlvl)(S,')] ds.
0
Let us introduce, for F', G € Y,
B =B(F,G)
t
(18) —_ f eHVE|D| gu(t—s)A [IF’ div(e #V3IPIF @ e~ #V3IPIG) (s, )] ds.
0
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Then we will show that V! € ) is a solution of
V1= enVHPIentAly ) + BV, V).
We begin by observing that erViD lertAyg) € Y. To this end note that the k-th
Fourier coefficient of e#VHPlentA[y] k€ Z3, is

F (em/lelqu-\ [t'u]) (t, k) = Bm/flkl—#tlklzﬁn(k)'

We introduce the auxiliary function

2

(19) a(z) =z — %z ,
<

and we note that for all z € R, we have a(z) < 3.

Therefore we deduce the bound

(20)  |F (APl A o] (1, )| = eV B g k)] < e B i (k).

In fact we can take ¢ = /2,
It follows from (20), in the same way as for (12), that

2
VD] gt Ay 1 |H <ec (1 + —) lvollx -1
7

—

Next we treat the bilinear term B, defined through (I8). As in (5), we have
- t 3 k
B(F, G)(t; k) = — f e#v’f|k|—#(t—s)|k|2 Z (1 — Wkg) k_;,'
0 <
i,7=1

x F ((e_'“‘/lelF),-(e_“‘/lelG)j) (s, k) ds

t 3
_ VE|k|—p(t—s)|k|? k ) )
= [emamonent S5 (1o k),

0 ij=1
X Z e_“ﬁlflfk(s,ﬂ)e_“ﬁlk_flé;(s, k—£) ds.
LeZ?

Rearranging factors of exponentials we have

—

B(F,G)(t,k)
t 3 k
— (Vt|k|—/3|k|— % (t—s) |k|?) ,— & (t—s)|k|? A )
_ /0 o | k%), S (1 lklzkt) k;

i,j=1

x Z erVE(RI—lE =Tk B (5. ﬂ)é}(s,k — ) ds.

£ez?

We may bound two of these exponential factors by constants. First, note that
since for all k, £ € Z3, the triangle inequality implies |k| < |£| + |k — £|, we have

enVs(kl=ll—lk—£) < 1,

Then, note that, using the auxiliary function introduced in (19), we can rewrite the
first exponential factor as follows:
et (VEk|—Vslk|=3(t=9)[k[*) — gula(vk])—a(V/s[k])],
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ANALYTICITY OF PERIODIC LEI-LIN SOLUTIONS OF NAVIER-STOKES 791

If s|k|? is such that a(y/s|k|) > 0, then a(Vt|k|)—a(v/s|k|) < a(Vt|k|) < . If instead
s|k|? is such that a(y/s|k|) < 0, then since t > s we have a(v/t|k|) < a(y/s|k|). Then
a(vtlk|) — a(+/3|k|) < 0. In either case, we have, for all s, t > 0 and k € Z3,
a(VEK) — a(y5lK) < 3

With these considerations we now have

— t 3
(21) |B(F,G)(t.K) S f [kle™ SEMN S 7 N7 IFi(s, k= 0)]1G(s,6)] | ds.
0 i,j=1¢€z
This is the same estimate as in (6), with 4/2 in place of p. We then follow the

remainder of the proof of Lemmalllto conclude that, indeed, B is a bilinear operator
from ) x ) into Y and

|BeF.@)|| < iFmiG.

We can now apply the abstract result in Lemma (2] together with the estimate
(20) to conclude that there exists one and only one solution W, such that [|W||| <
(2|B|)"1, of equation (I7), also satisfied by V!. Let w = e #*VUPIW. Then it
is easy to check that w satisfies the same equation as v, namely (2), and ||w|| <
IW || < (2||B||)~!. Revisiting the statement of Lemma [2] we see that it is possible
to substitute ||B|| by || B|| + ||B| by simply taking smaller initial data vy. Then
llewll < [2(1B|+ IBI)]~* < [2]|B]]] "2, so we conclude that w = v. Hence, W = V1,
Furthermore, we have

|| = [V 5 Hoollx—,

as desired.

3.2. Using at in the exponential weight. Let us fix a € (0,1). We now address
the bound on |||e°"“t|D|v|”. To this end introduce V2 = ¢*#Ply, 5o that:

t
V2(t,) = e*HHPlehtAy] — f e HUDI =2 P Qiv (v @ v)(s, )] ds
0
:Bapt|D|ep.t.&[,U0]

t
—/ e@Ht| D] gu(t—s)A [Pdiv(e_““lele ®6_“’”|D|V2)(3, )] ds.
0
Let us introduce, for F', G € Y,
B =B(F,G)
t
(22) =_ / e~ aHt| D] pu(t—s)A [IPdiv(e_O"“lelF ® B_QF‘lelG)(sj )] ds.
0
As before we will show that V2 € ) is a solution of
V2 = eont|D| gutA [vo] + B(VZ,V2).

We begin by bounding e**YPle#*A[yg] in V. The k-th Fourier coefficient of
et DlentAly 1k € Z3, is

F (gamlDle“t‘&[‘Uo]) (t, k) :ea,utlkle—ptlklﬂﬁo(k)

— eontlk|—aptlk|® —(1—a)ut|k| Bo(k).
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Then, in view of the constraint on «, we note that the exponent of the first factor
on the right-hand side satisfies

aptlk| — aputlk* = aput|k| (1 - [k|) <0,

for all k € Z3 (we are using here the discreteness of the Fourier variable, which is
not possible in the R? setting of [5]).
Therefore we deduce the bound

(23) | (Pl A o)) (1, k)| < == oy ).
It follows from (23), in the same way as for (12), that

1
eit| D| ot A [Uu] m S (1 + m) ||T"0||X—1'

Next we treat the bilinear term B, defined through (22). As in (5)), we have

k
(1 - Wk*') &

X ]:((e_o‘“le|F)g(e_a“3|D|G)j)(s,k) ds

t 3 k
— _ | pomtlk|—p(t—s)|k|? (1 — _ké) ki
J 2\ et

X 3 emom By (s, e m G 5,k — ) ds.
fcZ3

(24)

—

3
B(F,G)(t, k) = - /t gontH-u(t-lk? 3

0 i,j=1

Again we rearrange exponential factors, finding

( ¥ )(tik)
t 3 k
- _ ceput| k| —ocps| k| —ap(t—s) k] ,—(1—e)p(t—s)|k] _ ) .
/0 e e “221 (1 |k|2k%) k;

X Z e““s(lkl_lgl_lk_gl)ﬁ(s,f)é}(&,k —£) ds.
LeZ?

As before, we may bound two of the exponentials. First, we again have |k| <
€] + |k — £, so
gons((k|=[el=[k=£]) < q

Next observe that
(25) aptlk| — aps|k| — au(t — s)|k|* = ap(t — s)|k| (1 - [k]) <0,

for all k € Z3, since 0 < s < t. (Note that (25) once again uses discreteness of the
Fourier variable.) This implies

2
eChtlk|—ops|k|—cpu(t—s)|k| <1
With these considerations we now have
e — 3

t
IB(F,G)(t,k)| S ] |kle=(Amemt=ak | 5™ N F (s, k — 0)]|Gy(s,0)] | ds.

i,j=1f£cZ3
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This estimate is in the same spirit as (21), from which we can conclude that B is
a bilinear operator from ) x ) into Y and

B G < IENIGI-

We can once more apply the abstract result in Lemma [2] together with the
estimate (23) and use the same argument as we did for V! to conclude that

21| = ||V 5 oo+,

as desired.

We now comment on how these bounds imply the claimed bound for the radius of
analyticity. For any f € X!, we have immediately that f(t,-) € X! for any t > 0.
Using the elementary fact that convergent series are bounded, from e#V*P lu(t, ) €
X!, we have the existence of C' > 0 such that |e*V!PI5(t, k)|/|k| < C, for all ¢
and k. Rearranging, this becomes [3(t, k)| < C|kle=#V¥|| Then for all b < v/,
we have e?!*![5(t, k)| < C|k|e®#VDIKI Since the right-hand side is in £2, the left-
hand side is also in £2. Then by the periodic analogue of Theorem 1X.13 in [26], we
conclude that v is analytic with radius of analyticity at least p+/t. We may repeat
the argument on e®#t/Ply as this is also in the space X!, finding that v is analytic
with radius of analyticity at least aut.

This concludes the proof of Theorem [2]

O

We make two final remarks. First, that the maximum size of initial data, &g,
guaranteed to exist from Theorem 2] vanishes in the limit & — 17. So, the faster the
linear rate at which one wishes to gain analyticity, the smaller the data one must
take. This is clear from the dependence on « in the right-hand side of (24), as this
quantity is relevant in the abstract result Lemma 2] Second, that the optimality of
the lower bounds obtained, both in the present work and in its predecessors, is an
interesting issue, which is left open.
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