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Abstract
The question of global existence versus finite-time singularity formation is con-
sidered for the generalized Constantin–Lax–Majda equation with dissipation
−Λσ, where Λ̂σ = |k|σ, both for the problem on the circle x ∈ [−π,π] and the
real line. In the periodic geometry, two complementary approaches are used to
prove global-in-time existence of solutions for σ ⩾ 1 and all real values of an
advection parameter a when the data is small. We also derive new analytical
solutions in both geometries when a= 0, and on the real line when a= 1/2,
for various values of σ. These solutions exhibit self-similar finite-time singu-
larity formation, and the similarity exponents and conditions for singularity
formation are fully characterized. We revisit an analytical solution on the real
line due to Schochet for a= 0 and σ= 2, and reinterpret it terms of self-similar
finite-time collapse. The analytical solutions on the real line allow finite-time
singularity formation for arbitrarily small data, even for values of σ that are
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greater than or equal to one, thereby illustrating a critical difference between
the problems on the real line and the circle. The analysis is complemented
by accurate numerical simulations, which are able to track the formation and
motion of singularities in the complex plane. The computations validate and
build upon the analytical theory.

Keywords: fluid dynamics, self-similar finite-time singularity formation,
complex singularities

Mathematics Subject Classification numbers: 35Q35
1. Introduction

In this paper we investigate global well-posedness and singularity formation for the general-
ized Constantin–Lax–Majda (gCLM) model with dissipation,

ω̃t =−auω̃x+ ω̃Hω̃− νΛσω̃, ω̃ ∈ R,x ∈ S or R, t> 0,

ux =Hω̃,

ω̃ (x, t)→ 0 for x→±∞ when x ∈ R,
ω̃ (x,0) = ω̃0 (x) .

(1)

The equation is considered on both the circle S for x ∈ [−π,π] and the real line R. Here H is
the usual Hilbert transform, which in the periodic case takes the form

Hf (x) = 1
2π

PV
ˆ π

−π

f(x ′)cot

(
x− x ′

2

)
dx ′,

while for the problem on the real line

Hf (x) = 1
π
PV
ˆ ∞

−∞

f(x ′)
x− x ′

dx ′.

The operator Λ is given by H∂x. The Hilbert transform has Fourier symbol

Ĥ=−isgn(k) ,

so that the symbols of Λ and Λσ are

Λ̂ (k) = |k|, Λ̂σ (k) = |k|σ.

Note that −Λ2 gives the usual diffusion operator ∂xx, and −Λσ represents a generalized dis-
sipation. The equation ux =Hω̃ defines u up to its mean, and we take the mean of u to equal
zero. The parameters a, σ and ν satisfy a ∈ R, σ ⩾ 0 and ν > 0.

Constantin et al [11] first introduced (1) with a= ν = 0 as a simple 1D model to study
finite-time singularity formation in the 3D incompressible Euler equations. It was later gen-
eralized by DeGregorio to include an advection term uω̃x. Okamoto et al [34] introduced the
generalized advection term auω̃x, with real parameter a, to investigate different relative weights
of advection and vortex stretching, ω̃Hω̃. This generalized advection is motivated by recent
studies of potential singularity formation in Euler and Navier–Stokes systems, which show
that advection can have an unexpected smoothing effect [20–22, 26, 33]. We will refer to the
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Okamoto et al model as the gCLM equation. A diffusion or viscosity term −Λ2ω̃ = ∂2
x ω̃ was

first introduced into the Constantin et almodel (with a= 0) by Schochet [36].When a=−1 the
gCLM equation with generalized dissipation is equivalent to the Cordoba–Cordoba–Fontelos
equation [13], which has been extensively studied. For σ> 2 one can interpret the term−νΛσω̃
in (1) as a hyperviscosity which is widely used in many applications, see e.g. [38], where
hyperviscosity is employed in high temperature plasmas.

The dissipative gCLM system (1) with σ= 2 can be considered as a 1Dmodel of the incom-
pressible Navier–Stokes equations, which are written in terms of the vorticity ω =∇× u as

∂tω+ u ·∇ω = ω ·∇u+ ν∇2ω, x ∈ R3 or S3, t> 0, (2)

u=∇× (−∆)
−1

ω. (3)

The second equation above is the Biot–Savart law, which in free-space has an equivalent rep-
resentation as a convolution integral

u(x, t) =
1
4π

ˆ
R3

(x− y)×ω (y, t)
|x− y|3

dy. (4)

The term ω ·∇u on the right-hand side of (2) is known as the vortex stretching term, and ∇u
can be represented via (4) as a matrix of singular integrals, which we denote by S(ω). The dis-
sipative gCLM equation with σ= 2 is obtained from (2)–(4) by replacing the advection term
u ·∇ω with auω̃x, the vortex stretching term S(ω)ω by its 1D analogue H(ω̃)ω̃, and the dif-
fusion term by ω̃xx. The Hilbert transform is the unique linear singular integral operator in 1D
that, like S(ω), commutes with translations and dilations [11]. This motivates the replacement
of S(ω) from the 3D equations withH(ω̃) in the 1D model.

Singularities to (1), when they occur, are generally found to be locally self-similar with the
form

ω̃ =
1
τβ
f(ξ ) , ξ =

x− x0
τα

, τ = tc− t, (5)

in a space-time neighborhood of (x0, tc), where tc > 0 is the singularity time, x0 ∈ R is its
location, and α, β are real similarity parameters. There are a number of results on finite-time
singularity formation in the inviscid problem for (1) with ν= 0, whichwe now briefly describe;
see [31] for a more complete review. In this case of ν= 0, one has that β= 1 while α depends
on a. Constantin et al [11] present a closed-form exact solution to the initial value problem
for (1) with a= 0. Their solution develops a singularity of the local form (5) withα= β = 1 for
a class of analytic initial data. Castro and Cordoba [7] prove finite-time blow-up for a< 0 using
a Lyapunov-type argument. For ϵ−small values of a> 0, Elgindi and Jeong [17] and Chen et al
[9] prove the existence of singularities of the form (5) with β= 1 and α approaching 1 in the
limit a→ 0+.

More recently, [8, 31] independently find an exact self-similar solution to the inviscid prob-
lem as a superposition of double-pole singularities for a= 1/2 with α= 1/3 and β= 1 ([31]
further show that, beyond the particular cases a= 0 and a= 1/2, no exact solutions as a super-
position of pole singularities exist). Lushnikov et al [31] also perform numerical simulations
over a wide range of a and find the existence of a critical value ac = 0.6890 . . . for which the
self-similar blow up of solutions changes character. More precisely, they find self-similar col-
lapse with α> 0 when a< ac for both x ∈ S andR, expanding self-similar blow up with α< 0
when ac < a⩽ 1 and x ∈ R, and ‘neither expanding nor collapsing’ blow-up with α= 0 when
ac < a⩽ 0.95 and x ∈ S (with the expectation that the latter behavior occurs for a going all
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the way up to, but not including, a= 1). Here the terminology ‘collapse’ or ‘wave collapse’
was first introduced in [43] in analogy with gravitational collapse, and is now widely used to
indicate that the solution shrinks in x as t→ tc while its amplitude diverges in that limit; see
[4, 10, 16, 25, 28, 40, 43] for a more general description. Existence of the expanding similarity
solution for x ∈ R and the ‘neither expanding nor collapsing’ similarity solution for x ∈ S are
proven in [8], [9], when a is near 1−. Analytical [23] and numerical [31] evidence is consistent
with global well-posedness when a⩾ 1 in the periodic problem, and a> 1 in the problem on
the real line. However, at present there is no proof of this for general analytic or C∞ initial
data.

Much less is known about solutions to (1) when there is nonzero dissipation. Schochet [36]
constructs an explicit solution on the real line for a= 0 and σ= 2, which blows up in finite
time. When a=−1, so that (1) is the Cordoba–Cordoba–Fontelos equation, finite time blow
up can occur for σ < 1/2 [24, 27, 39], although there is global well-posedness for sufficiently
small data [14]. Global well-posedness of the CCF equation for σ ⩾ 1 is shown in [13, 14, 24].
When a⩽−2 is even and σ= 1, global well-posedness for small data in the periodic setting
is shown in [42]. More recently, Chen [8] shows that for the problem on the real line, there
exists self-similar blow up when a is close to 1/2 and σ= 2, and global well-posedness for
σ ∈ [|a|−1,2] with a<−1. We note that for a>−1, there is no known coercive conserved
quantity for general initial data, which complicates attempts to prove global well-posedness.

The focus of this paper is to further investigate conditions under which (1) is well-posed
globally in time, for different values of the parameters a andσ.We find a surprising dependence
of the global well-posedness on the domain of x, i.e. whether it is S orR. In particular, we prove
that the initial value problem (1) with σ ⩾ 1 has global-in-time solutions for all sufficiently
small data and all a ∈ R, when the problem is considered on the periodic domain x ∈ S. These
solutions are analytic for t> 0.

We also present exact analytical solutions based on the method of ‘pole dynamics’ and dir-
ect numerical simulations to show this result does not hold on the real line x ∈ R. There are
numerous examples of pole dynamics solutions in both Hamiltonian and dissipative systems,
see e.g. [5, 29, 30, 37]. Our exact solutions for the problem on the real line form finite-time
singularities of the type (5) for initial data which is arbitrarily small in L2 and (with one excep-
tion) in L∞. They include: (1) a solution for a= 1/2 and σ= 1 expressed as the sum of a
complex conjugate (c.c.) pair of second order poles in ω, (2) solutions for a= 0 and σ= 1
expressed as the sum of one or two c.c. pairs of first order poles in ω, and (3) a solution for
a= 0 and σ= 0 expressed as the sum of a c.c. pair of first order poles in ω. We further revisit
and slightly correct a previous example due to Schochet for a= 0 and σ= 2, which forms
singularities in finite-time from arbitrarily small data, and reinterpret it as self-similar blow
up. Overall, the exact solutions display different similarity exponents α and β, depending on
the location and ‘strength’ (i.e. power or exponent) of their poles in the complex plane, and
whether they impinge on the real line with a nonzero or zero velocity.

Additionally, we find a new pole dynamics solution to the periodic problem for a= 0 with
‘marginal’ dissipation σ= 0. This solution consists of a c.c. pair of simple poles and can form
a finite-time singularity of the form (5) for data which is arbitrarily small in L2, but not neces-
sarily small in L∞. This supplies a lower bound in σ for which a global existence theory in
L2[−π,π] can apply, when ν is nonzero.

The analysis is complemented by accurate numerical simulations which confirm and build
upon the analytical results in the periodic and real line problems. As part of the numerics,
the formation and motion of singularities is tracked in the complex plane. When a singularity
reaches the real line (at time tc) a finite-time singularity of the form (5) occurs. We make use
of two methods to trace singularities in the complex plane. One is based on the asymptotic
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decay of Fourier amplitudes, which gives precise (quantitative) information on the singularity
that is closest to the real line. The other method, known as the AAA algorithm [32], utilizes
rational function approximation to obtain information on singularities beyond the one closest
to the real line.

Our analysis of the periodic problem makes use of two complementary approaches. We
first prove that when σ ⩾ 1, the solution exists globally in time for small initial data in the
periodic Wiener algebra, which describes the set of functions with Fourier coefficients in l1.
A consequence of the proof is that solutions are analytic at all positive times in a strip in the
complex plane that contains the real line, with the width of the strip growing linearly in time.
The proof employs the method of Duchon and Robert [15], who developed it to show the
existence of global vortex sheet solutions for certain types of small data. Other applications of
this method to show global existence are [1, 2].

We also prove global-in-time existence of mild solutions with small initial data in L2, when
σ> 1. A particular challenge in the proof is to obtain an exponential decay estimate for the
solution operator when t≫ 1. We are able to do this, but the result relies in an essential way on
the periodicity of the geometry. The proof guarantees that the solution at any time t> 0 exists
in Hγ for all 1/2< γ <min[1,σ− 1/2]. We further expect that solutions become analytic for
t> 0, even starting from rough L2 data. This can be shown using the approach of Grujić and
Kukavica [19], which has been used in several related problems to show analyticity of solutions
on a strip which grows initially like t1/σ (see e.g. [2]). We do not provide details, and instead
refer the interested reader to the relevant work.

The rest of this paper is organized as follows. After some mathematical preliminaries in
section 2, a solution operator is written in section 2.1 using the Duhamel representation.
Section 3 proves global existence for small periodic initial data with σ ⩾ 1 as a fixed point of
the Duhamel representation by using aWiener algebra approach. Section 4 proves global exist-
ence for small periodic initial data in L2 with σ> 1 using a mild solution approach. Section 5
focuses on the derivation of exact solutions on the real line and their relation to the self-similar
form (5). Section 6 derives an exact solution to the periodic problem for a= 0 and σ= 0 which
can develop a finite-time singularity for arbitrarily small data in L2. Section 7 presents numer-
ical results, with the numerical method described in section 7.1, numerical results for the peri-
odic problem given in section 7.2, and numerical results for the problem on the real line dis-
cussed in section 7.3. Concluding remarks are given in section 8. An appendix provides a proof
of inequality (12) used in the Wiener space analysis, and lemmas 4.1 and 4.3 used in the mild
solution analysis.

2. Preliminaries

By rescaling each of t and ω̃, we can eliminate ν from the problem. We therefore set ν= 1
without loss of generality, unless otherwise noted.

Notice that for any periodic function f,we have
´
S fH( f) dx= 0.Also, uω̃x = (uω̃)x− ω̃Hω̃

has zero mean. Thus when σ> 0 the mean of ω̃ is preserved under the evolution (1) on the
circle. In the periodic problem, we make the decomposition ω̃ = ω+ωav, where ωav is the
mean of ω̃ and ω has zero mean. Substituting this decomposition in (1) yields

(ω+ωav)t+ au(ω+ωav)x = (ω+ωav)H (ω+ωav)−Λσ (ω+ωav) for x ∈ S, (6)

with u now being defined through ux =Hω; this is the same as the previous formula since
the periodic Hilbert transform of a constant function is equal to zero. Since (ωav)t = (ωav)x =
H(ωav) = Λσ(ωav) = 0 for σ > 0, we can rewrite (6) as
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ωt+ auωx = ωHω+ωavHω−Λσω for x ∈ S, (7)

with initial data ω(x,0) = ω0(x), which are used instead of the first and last equation in (1) for
the periodic problem. We continue to use (1) for the problem on the real line, but omit the tilde
from ω, with the understanding that when x ∈ R the function ω is allowed to have a nonzero
mean.

Notice the Hilbert transform also has the representation

Hω =−i(ω+ −ω−) , (8)

where ω = ω+ +ω− with ω+ analytic in the upper complex half-plane C+, and ω− is ana-
lytic in the lower complex half-plane C−. In the periodic problem, f+ =

∑
k>0 f̂ke

i kx and

f− =
∑

k<0 f̂ke
i kx are the projections onto the upper and lower analytic components of f,

respectively.

2.1. Solution operator in the periodic case

The solution to (7) can be written using the Duhamel representation

ω (·, t) = e−tLω0 +

ˆ t

0
e−(t−τ)L (−auωx+ωux)(·, τ) dτ, (9)

in which the operator L is defined by L= Λσω−ωavHω so that

e−tLf = F−1
(
e−t|k|σ−itωavsgn(k)̂f(k)

)
(10)

where F is the Fourier transform operator. It is helpful to rewrite (9) slightly; we do so by first
rewriting (7) using

uωx = (uω)x− uxω = (uω)x−ωHω,

leading to

ωt = (1+ a)ωHω− a(uω)x+ωavHω−Λσω.

We again rewrite this using Duhamel’s principle, finding

ω = e−tLω0 +

ˆ t

0
e−(t−τ)L [(1+ a)ωHω− a(uω)x

]
(·, τ) dτ. (11)

We use again the fact that for any periodic function f, the integral
´
S fH( f) dx= 0; introducing

the operator P0 to be the projection which zeroes out the mean of a periodic function, we have

P0
[
(1+ a)ωHω− a(uω)x

]
=
[
(1+ a)ωHω− a(uω)x

]
.

We then use this with (11) as the basis for introducing an operator T ,

T (ω) = e−tLω0 +

ˆ t

0
e−(t−τ)LP0

[
(1+ a)ωHω− a(uω)x

]
(·, τ) dτ.
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We will obtain solutions of the gCLM equation with dissipation by finding a fixed point of T .
As we have said above, we will do this twice, once in function spaces based on the Wiener
algebra, and once in L2-based Sobolev spaces.

3. Small global solutions in spaces based on the Wiener algebra

In this section we will prove global existence of small solutions when the initial data is taken
from the Wiener algebra. This uses an adaptation of the argument of Duchon and Robert used
to prove existence of small global vortex sheets [15]. The unregularized vortex sheet is an
elliptic problem in space-time, but the method has also been applied to parabolic problems in
[1, 2].

3.1. Function spaces and operators

We denote the periodic Wiener algebra as B0; this is the set of functions f : S→ R such that
the norm

∥ f∥B0 =
∑
k∈Z

| f̂(k) |

is finite.
For ϖ> 0 and θ ⩾ 0, we define the function space Bθ

ϖ to be the set of periodic functions
continuous in time with values in B0, such that the norm

∥h∥ϖ,θ =
∑
k∈Z

(1+ |k|θ) sup
t∈[0,∞)

eϖ t|k||ĥ(k, t)|

is finite. We will demonstrate that this is a Banach algebra. First, note that for all k ∈ Z, for all
j ∈ Z, we have

|k|θ ⩽max
{
1,2θ−1

}(
|k− j|θ + | j |θ

)
. (12)

(We prove this inequality in appendix A.1.) We denote C=max{1,2θ−1}. We compute the
norm of fg, for f ∈ Bθ

ϖ and g ∈ Bθ
ϖ :

∥ fg∥ϖ,θ =
∑
k∈Z

(1+ |k|θ) sup
t∈[0,∞)

eϖ t|k||(̂ fg)(k, t)|

⩽ C
∑

(k,j)∈Z2

(
1+ |k− j|θ + | j |θ

)[
sup

t∈[0,∞)

eϖ t|k−j|| f̂(k− j, t)|

][
sup

t∈[0,∞)

eϖ t| j ||ĝ( j, t)|

]
.

We sum first in k and then in j, finding

∥ fg∥ϖ,θ ⩽ C∥g∥ϖ,0∥ f∥ϖ,θ +C∥ f∥ϖ,0∥g∥ϖ,θ ⩽ 2C∥ f∥ϖ,θ∥g∥ϖ,θ.

For anyϖ> 0 and θ ⩾ 0, we let Bθ
ϖ,0 be the subspace of Bθ

ϖ of functions with zero mean.

We then define the integral operator I+ : Bθ
ϖ →Bθ+σ

ϖ,0 by

(
I+h
)
(·, t) =

ˆ t

0
e−(t−τ)LP0h(·, τ) dτ.

7
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We compute the operator norm of I+. The norm for Bθ+σ
ϖ,0 is the same as for Bθ+σ

ϖ , except
that the k= 0 mode is excluded from the summation. Therefore we have

∥I+h∥ϖ,θ+σ =
∑

k∈Z\{0}

(1+ |k|θ+σ) sup
t∈[0,∞)

eϖ t|k|
∣∣∣∣ˆ t

0
e−|k|σ(t−τ)−iωavsgn(k)(t−τ)ĥ(·, τ) dτ

∣∣∣∣ .
We use the triangle inequality and rearrange the exponentials, finding

∥I+h∥ϖ,θ+σ =
∑

k∈Z\{0}

(1+ |k|θ+σ) sup
t∈[0,∞)

e(ϖ|k|−|k|σ)t
ˆ t

0
e|k|

στ |ĥ(k, τ)| dτ.

We adjust factors of the weights, arriving at

∥I+h∥ϖ,θ+σ =
∑

k∈Z\{0}

(
1+ |k|θ+σ

1+ |k|θ

)(
sup

t∈[0,∞)

e(ϖ|k|−|k|σ)t·

·
ˆ t

0
e(|k|

σ−ϖ|k|)τ
[
(1+ |k|θ)eϖ|k|τ |ĥ(k, τ)|

]
dτ

)
.

We estimate this by taking the supremum two more times, once with respect to τ and once
with respect to k, and then rearranging:

∥I+h∥ϖ,θ+σ ⩽

 ∑
k∈Z\{0}

(1+ |k|θ) sup
τ∈[0,∞)

eϖ|k|τ |ĥ(k, τ)|


×

(
sup

k∈Z\{0}

(
1+ |k|θ+σ

1+ |k|θ

)
sup

t∈[0,∞)

e(ϖ|k|−|k|σ)t
ˆ t

0
e(|k|

σ−ϖ|k|)τ dτ

)
.

We identify the first factor on the right-hand side as simply being ∥h∥ϖ,θ, and we evaluate the
last integral and simplify. These considerations yield the following:

∥I+h∥ϖ,θ+σ ⩽ ∥h∥ϖ,θ

(
sup

k∈Z\{0}

(
1+ |k|θ+σ

1+ |k|θ

)
sup

t∈[0,∞)

1− e(ϖ|k|−|k|σ)t

|k|σ −ϖ|k|

)
.

The last denominator on the right-hand side is positive as long as σ ⩾ 1 andϖ< 1. With these
conditions, we may then ignore the negative term in the numerator, arriving at

∥I+h∥ϖ,θ+σ ⩽ ∥h∥ϖ,θ

(
sup

k∈Z\{0}

1+ |k|θ+σ

(1+ |k|θ)(|k|σ −ϖ|k|)

)
.

We then estimate this using 1⩽ |k|σ and simplifying, arriving at

∥I+h∥ϖ,θ+σ ⩽ ∥h∥ϖ,θ

1−ϖ
. (13)

We need an entirely analagous bound for the composition operator I+∂x. The above proof
of the estimate (13) works just the same to show that I+∂x maps Bθ

ϖ to Bθ+σ−1
ϖ , with the

estimate

∥I+∂xh∥ϖ,θ+σ−1 ⩽
∥h∥ϖ,θ

1−ϖ
. (14)

8
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We also need to demonstrate the boundedness of the semigroup, acting on B0. Letting h ∈
B0, we consider the norm of e−tLh :

∥e−tLh∥ϖ,0 = 2
∑
k∈Z

sup
t∈[0,∞)

eϖ t|k|e−|k|σ t|ĥ(k)|⩽ 2∥h∥B0 sup
k∈Z

sup
t∈[0,∞)

e(ϖ |k|−|k|σ)t.

With σ ⩾ 1 and ϖ < 1, we may estimate this as

∥e−tLh∥ϖ,0 ⩽ 2∥h∥B0 .

3.2. Existence of a solution

In the current notation, our operator T may be expressed as

T ω = e−tLω0 +
(
I+
[
(1+ a)ωHω− a(uω)x

])
(t) . (15)

A fixed point of (15) is a solution of the initial value problem for (7).
We see that if ω0 ∈ B0 and ifϖ< 1 and σ ⩾ 1, then T maps B0

ϖ to itself. We want to show
that there exists X⊆ B0

ϖ such that T is a contraction on X. We let X be the ball of radius r0
centered at e−tLω0, and we denote r1 = ∥ω0∥B0 .We will show that T is a contraction on X for
an appropriate choice of r0 and r1. Note that for any ω ∈ X, we have ∥ω∥ϖ,0 ⩽ r0 + r1.

We have two properties to establish: that T : X→ X, and that there exists λ ∈ (0,1) such
that for any ω1 ∈ X and for any ω2 ∈ X,

∥T (ω1 −ω2)∥ϖ,0 ⩽ λ∥ω1 −ω2∥ϖ,0. (16)

To show that T maps X to X, we let ω ∈ X be given, and we need to establish that∥∥I+ [(1+ a)ωHω− a(uω)x
]∥∥

ϖ,0
⩽ r0.

We immediately have

∥∥I+ [(1+ a)ωHω− a(uω)x
]∥∥

ϖ,0
⩽ |1+ a|

1−ϖ
(r0 + r1)

2
+ |a|∥I+ (uω)∥ϖ,1.

We then bound this as∥∥I+ [(1+ a)ωHω− a(uω)x
]∥∥

ϖ,0
⩽ |1+ a|

1−ϖ
(r0 + r1)

2
+

|a|
1−ϖ

(r0 + r1)∥u∥ϖ,0.

We also have ∥u∥ϖ,0 ⩽ ∥ω∥ϖ,0, so that

∥∥I+ [(1+ a)ωHω− a(uω)x
]∥∥

ϖ,0
⩽ |1+ a|+ |a|

1−ϖ
(r0 + r1)

2
.

Our first condition that r0 and r1 must satisfy, then, is

|1+ a|+ |a|
1−ϖ

(r0 + r1)
2 ⩽ r0. (17)

9
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Next, we work on establishing (16). To begin, we express the difference T (ω1 −ω2), doing
some adding and subtracting:

T (ω1 −ω2) =

ˆ t

0
e−(t−τ)L [(1+ a)ω1Hω1 − a(u1ω1)x

]
(·, τ) dτ

−
ˆ t

0
e−(t−τ)L [(1+ a)ω2Hω2 − a(u2ω2)x

]
(·, τ) dτ

= A1 +A2 +A3 +A4,

where the Ai are given by

A1 =

ˆ t

0
e−(t−τ)L [(1+ a)(ω1 −ω2)Hω1] (τ) dτ,

A2 =

ˆ t

0
e−(t−τ)L [(1+ a)ω2 (Hω1 −Hω2)] (·, τ) dτ,

A3 =−
ˆ t

0
e−(t−τ)La((u1 − u2)ω1)x (·, τ) dτ,

A4 =−
ˆ t

0
e−(t−τ)La

(
u2 (ω1 −ω2)x

)
(·, τ) dτ.

We may estimate these as follows:

∥A1∥ϖ,0 ⩽
|1+ a|
1−ϖ

(r0 + r1)∥ω1 −ω2∥ϖ,0,

∥A2∥ϖ,0 ⩽
|1+ a|
1−ϖ

(r0 + r1)∥ω1 −ω2∥ϖ,0,

∥A3∥ϖ,0 ⩽
|a|

1−ϖ
(r0 + r1)∥ω1 −ω2∥ϖ,0,

∥A4∥ϖ,0 ⩽
|a|

1−ϖ
(r0 + r1)∥ω1 −ω2∥ϖ,0.

We combine these estimates to find

∥T (ω1 −ω2)∥ϖ,0 ⩽
2(|1+ a|+ |a|)

1−ϖ
(r0 + r1)∥ω1 −ω2∥ϖ,0.

Thus, our second condition which r0 and r1 must satisfy is

2(|1+ a|+ |a|)
1−ϖ

(r0 + r1)< 1. (18)

10
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To demonstrate that (17) and (18) may be satisfied, we take r1 = r0, and we will choose r1.
In this case, (17) becomes

r1 ⩽
1−ϖ

4(|1+ a|+ |a|)
, (19)

while (18) becomes

r1 <
1−ϖ

4(|1+ a|+ |a|)
. (20)

Of course (20) implies (19).
We have proved the following theorem:

Theorem 3.1. Let a ∈ R, ωav ∈ R, and σ ⩾ 1 be given. Let ω0 ∈ B0 be given, such that ω0 has
zero mean and such that ∥ω0∥B0 <

1
4(|1+a|+|a|) . Let ϖ ∈ (0,1) be given such that ∥ω0∥B0 <

1−ϖ
4(|1+a|+|a|) . Then the initial value problem for (7) with initial data ω0 has a unique solution

ω ∈ B0
ϖ.

We make a few remarks on theorem 3.1. Since the solution is in B0
ϖ withϖ > 0, we know

automatically that the solution exists for all t ∈ [0,∞), and that the solution is analytic at all
positive times with radius of analyticity at least ϖ t. Next, we notice that the value of a does
not matter as far as whether we can get global existence of a solution, except that it does affect
the maximum allowable size of the data; specifically, for larger |a|, we need to take the data
smaller. As noted above, ϖ is the rate at which analyticity is gained; if we want this to be
larger, the data must be taken smaller. Finally we note that the value of ωav does not affect the
allowable size of the data or the rate at which analyticity is gained.

4. Mild solutions with data in L2

In this section we complement theorem 3.1 with another theorem on existence of small global
solutions, now taking initial data in L2. In this approach, we will need more detailed mapping
properties for the semigroup associated to the diffusive term than in the Wiener algebra case;
we establish these properties in section 4.2 below.

4.1. Function spaces and preliminary lemmas

Throughout we use the notation L2,Hs etc. to denote the spaces L2[−π,π], Hs[−π,π] (with
periodic boundary conditions) and so forth.We consider data and solutions with finite L2 norm,
i.e. finite energy. Hence, it will be convenient to work with the norm in homogeneous Sobolev
spaces Ḣs, defined by

∥f∥2Ḣs =
∞∑

k=−∞

|k|2s |̂f(k) |2, s ∈ R.

Note that if f ∈ L2 then f ∈ Ḣs if and only if f ∈ Hs. We denote the subspace of functions in L2

with zero mean as

11
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L̊2 =

{
f ∈ L2 |

ˆ π

−π

f dx= 0

}
.

If a function f has zero mean, then by Poincare’s inequality ∥f∥L2 ⩽ c∥fx∥L2 so that Ḣ1 ⊂ L̊2. In
particular, ∥Hω∥L2 = ∥ω+ +ω−∥L2 ⩽ c∥ωx∥L2 , but note that if a function f has nonzero mean
its L2 norm cannot in general be bounded by the L2 norm of its derivative.

In the fixed point analysis, we make use of the adapted space

Xη
∞ =

{
ω : S× [0,∞)→ R | ω ∈ L∞([0,∞);L2), sup

0<t<∞
tη/σ∥ω∥Ḣη <∞

}
,

where σ> 0 and η > 0, with norm

∥ω∥Xη
∞ =max

(
sup

0<t<∞
∥ω∥L2 , sup

0<t<∞
tη/σ∥ω∥Ḣη

)
.

The factor of tη/σ is motivated by the estimate in lemma 4.2 below with s= η and r= 0.
We will make use of the following elementary result, which is proven in the appendix:

Lemma 4.1. Let q̂> 0, 0⩽ α̂ < 1, and let β̂ and δ̂ be nonnegative numbers with 0⩽ α̂+ β̂ ⩽ 1
and 0⩽ β̂+ δ̂ < 1. Then there exists a positive constant C such that

ˆ t

0

e−q̂(t−τ)

(t− τ)
α̂

tδ̂

τ β̂+δ̂
dτ < C, (21)

where C is independent of t ∈ [0,∞).

4.2. Operator estimates

We estimate the smoothing properties of the semigroup e−tL for t> 0. First, it is clear that

∥e−tLf∥Ḣs =

(∑
k∈Z

|k|2se−2t|k|σ |̂f|2
)1/2

⩽ ∥f∥Ḣs . (22)

Let s,r ∈ R with 0⩽ r< s. We next estimate ∥e−tLf∥Ḣs in terms of the Ḣr norm of f :

Lemma 4.2. Let f ∈ L2, t> 0 and define the positive number p= (s− r)/σ for σ> 0. Then

∥e−tLf∥Ḣs ⩽ Ce−t/2
(
1+ t−p

)
∥f∥Ḣr , (23)

where C is a positive constant that depends only on p.

Proof. Using (10), we write (after multiplying and dividing by |k|2r),

∥e−tLf∥2Ḣs =
∞∑

k=−∞

|k|2(s−r)|k|2re−2t|k|σ |̂fk|2

⩽ ∥|k|s−re−t|k|σ∥2l∞∥f∥2Ḣr . (24)

12
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The first factor above is now estimated. Define g(κ) = κpe−t1/2κ for κ⩾ 0 and let Cσ,s,r =

[(s− r)/σe](s−r)/σ . The maximum of g occurs at κ= κm = p
t1/2 , at which point g(κm) =

Cσ,s,rt−p/2. Set κ= |k|σt1/2 and substitute into the definition of g to find |k|s−re−t|k|σ ⩽
Cσ,s,rt−p, which when used in (24) and taking square roots gives

∥e−tLf∥Ḣs ⩽ Cσ,s,r t
−p∥f∥Ḣr for t> 0. (25)

If t> p, the estimate above can be improved. In this case, the wavenumber km at which the
maximum of g occurs is less than one. Since the minimum (nonzero) wavenumber in our
periodic problem is k= 1, for this range of t the maximum of g occurs at km = 1 or κm = t1/2,
at which point g(κm) = tp/2e−t. Since tp/2e−t ⩽ C1/2

σ,s,re−t/2, it follows that

∥e−tLf∥Ḣs ⩽ C1/2
σ,s,re

−t/2∥f∥Ḣr for t> p. (26)

The estimate (23) follows from combining (25) and (26).

We also need to estimate ∥e−tLf∥Ḣs in terms of ∥f∥L1 to bound some of the nonlinear terms.
We start by deriving a bound on ∥e−tLf∥L2 in terms of ∥f∥L1 . From Plancherel’s theorem and
the Young–Haussdorf inequality,

∥e−tLf∥L2 ⩽max
k

|̂fk|∥e−tρ(·)∥l2

⩽ ∥f∥L1∥e−tρ(·)∥l2 , (27)

where ρ(k) = |k|σ. Note that if f has zero mean then the k= 0 term can be omitted from the l2

norm in (27). An elementary estimate of this l2 norm is proven in the appendix:

Lemma 4.3. Assume σ> 0. Then there exists a constant C> 0 that is independent of t (but
which may depend on σ) such that

∥e−tρ(·)∥2l2 ⩽ 1+Ce−t
(
1+ t−1/σ

)
, (28)

∥e−tρ(·)∥2l20 ⩽ Ce−t
(
1+ t−1/σ

)
, (29)

for t> 0.

Note that here we have introduced the set of sequences ℓ20, where a sequence {ak}∞k=−∞ is
in ℓ20 if it is in ℓ2 and if also a0 = 0; in (29), we use this to mean that we simply exclude the
k= 0 term when calculating the norm.

The above lemma applied to (27) immediately yields the estimate

Lemma 4.4. Let f ∈ L2 and σ> 0. Then f is in L1 and

∥e−tLf∥L2 ⩽
[
1+Ce−t

(
1+ t−1/σ

)]1/2
∥f∥L1 , (30)

for t> 0, where C is a constant that is independent of t. If f has zero mean, then the first 1
in (30) can be omitted, per the comments following (27).

13
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We now use the above result to estimate ∥e−tLf∥Ḣs in terms of ∥f∥L1 . We first apply (23) to
the function e−tL/2f with operator e−tL/2 and r= 0, s> 0 to find

∥e−tLf∥Ḣs ⩽ Ce−t/4
(
1+ (t/2)−s/σ

)
∥e−tL/2f∥L2 .

We next use (30) to bound the L2-norm above in terms of the L1-norm to obtain the following
lemma.

Lemma 4.5. Let s> 0. Under the same conditions as in lemma 4.4 we have

∥e−tLf∥Ḣs ⩽ Ce−t/4
(
1+ t−(2s+1)/2σ

)
∥f∥L1 ,

where C is a constant independent of t.

In our global existence proof for small L2 data in section 4.3 below, we will make use of
the following estimate on the Sobolev norm of a product of two functions, which is a straight-
forward generalization of an exercise in [18].

Lemma 4.6. Let s> 1/2 and m ∈ [0,s]. Let f ∈ Ḣm and g ∈ Ḣs be given. Then fg ∈ Ḣm and
∥fg∥Ḣm ⩽ c∥f∥Ḣm∥g∥Ḣs .

4.3. Global existence for small data in L2

We construct solutions of the initial value problem for (7) by demonstrating the existence of a
fixed point of the operator T in (11). The main result is

Theorem 4.7. Let ω0 ∈ L2 and σ> 1. Let ηm =min(1,σ− 1/2). There exists ϵ> 0 small
enough such that if ∥ω0∥L2 < ϵ, then the initial value problem for (7) with initial data ω0 has
a unique solution ω in Xη

∞ for 1/2< η < ηm.

Remark. Theorem 4.7 gives solutions in Hη at positive times, with η > 0, starting from L2

initial data. As is usually the case for parabolic evolutions, this gain of regularity can be boot-
strapped to find that solutions are actually C∞ at positive times. We expect more than this, as
we expect solutions to in fact be analytic at positive times, as was demonstrated for the solu-
tions of theorem 3.1. We do not include a proof of analyticity the solutions of theorem 4.7,
but we expect that the corresponding argument from [2], which itself followed the argument
of [19], would be effective.

Proof of theorem 4.7. We first show that T : Xη
∞ → Xη

∞. Througout the proof, we employ the
notation ≲ to denote ⩽ C with C> 0 independent of ω, ω0, and t.

Decompose the map T in (11) into its linear part e−tLω0, which is called the ‘trend,’ and the
nonlinear part

´ t
0 e

−(t−τ)L [−a(uω)x+(1+ a)ωHω] (·, τ) dτ , which is called the ‘fluctuation.’
The trend is bounded as follows. First use (22) to see that ∥e−tLω0∥L2 ≲ ∥ω0∥L2 , then apply (25)
with s= η and r= 0 to find tη/σ∥e−tLω0∥Ḣη ≲ ∥ω0∥L2 . It immediately follows that e−tLω0 ∈
Xη
∞ with ∥e−tLω0∥Xη

∞ ≲ ∥ω0∥L2 .
We next bound the norm of the fluctuation, with the terms−a(uω)x and (1+ a)ωHω in (11)

treated separately. First consider the L2 norm of the contribution from −a(uω)x. Since deriv-
atives and L commute as Fourier multipliers on the circle, we have

14
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∥∥∥∥ˆ t

0
e−(t−τ)L [−a(uω)x] dτ∥∥∥∥

L2
≲
ˆ t

0
∥e−(t−τ)L (uω)∥Ḣ1 dτ.

The right hand side is bounded by applying lemma 4.2 with s= 1 and r= η (which requires
0⩽ η < 1) followed by lemma 4.6 (which further requires η > 1/2) to obtain

ˆ t

0
∥e−(t−τ)Luω∥Ḣ1 dτ.≲

ˆ t

0
e−(t−τ)/2

[
1+(t− τ)

− 1−η
σ

]
∥uω∥Ḣη dτ

≲
ˆ t

0
e−(t−τ)/2

[
1+(t− τ)

− 1−η
σ

]
∥u∥Ḣη∥ω∥Ḣη dτ

≲
ˆ t

0
e−(t−τ)/2

[
1+(t− τ)

− 1−η
σ

]
∥ω∥L2

τ
η
σ ∥ω∥Ḣη

τ
η
σ

dτ

≲

ˆ t

0
e−(t−τ)/2

[
1+(t− τ)

− 1−η
σ

]
τ

η
σ

dτ

∥ω∥2Xη
∞

≲ ∥ω∥2Xη
∞
. (31)

In the above estimate we have used ∥u∥Ḣη ≲ ∥ω∥L2 , which holds for η < 1. The integral in the
second-to-last inequality is bounded for σ ⩾ 1 and the assumed range of η by applying lemma
4.1 with q̂= 1/2, α̂= (1− η)/σ, β̂ = η/σ, and δ̂ = 0.

We next use lemma 4.2 (with s= η+ 1 and r= η) and lemma 4.6 to estimate the Ḣη norm
for 1/2< η < 1:∥∥∥∥ˆ t

0
e−(t−τ)L [−a(uω)x] dτ∥∥∥∥

Ḣη

≲
ˆ t

0
∥e−(t−τ)L (uω)∥Ḣη+1 dτ

≲
ˆ t

0
e−(t−τ)/2

[
1+(t− τ)

− 1
σ

]
∥uω∥Ḣη dτ

≲
ˆ t

0
e−(t−τ)/2

[
1+(t− τ)

− 1
σ

]
∥u∥Ḣη∥ω∥Ḣη dτ

≲ 1

t
η
σ

ˆ t

0
e−(t−τ)/2

[
1+(t− τ)

− 1
σ

]
∥ω∥L2

(tτ)
η
σ ∥ω∥Ḣη

τ
η
σ

dτ

≲ 1

t
η
σ

ˆ t

0
e−(t−τ)/2

[
1+(t− τ)

− 1
σ

]
t
η
σ

τ
η
σ

dτ

∥ω∥2Xη
∞

≲ 1

t
η
σ

∥ω∥2Xη
∞
. (32)

In the above estimate, we have again used ∥u∥Ḣη ≲ ∥ω∥L2 . The integral in the second-to-last
inequality is bounded for σ> 1 and the assumed range of η by applying lemma 4.1 with q̂=
1/2, α̂= 1/σ, β̂ = 0, and δ̂ = η/σ.

A different method is required to bound the fluctuation associated with the term (1+
a)ωHω in (11). We first bound the L2 norm of this fluctuation by applying lemma 4.4 with the
first 1 in (30) omitted (since the integrand has zero mean) to obtain
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∥∥∥∥ˆ t

0
e−(t−τ)L (1+ a)ωHω dτ

∥∥∥∥
L2
≲
ˆ t

0
e−

t−τ
2

[
1+(t− τ)

− 1
2σ

]
∥ωHω∥L1 dτ

≲
ˆ t

0
e−

t−τ
2

[
1+(t− τ)

− 1
2σ

]
∥ω∥L2∥Hω∥L2 dτ

≲
ˆ t

0
e−

t−τ
2

[
1+(t− τ)

− 1
2σ

]
∥ω∥2L2 dτ

≲ ∥ω∥2Xη
∞
, (33)

where we have used Hölder’s inequality, ∥Hω∥L2 = ∥ω∥L2 and lemma 4.1 with α̂= 1/2σ and
β̂ = δ̂ = 0 to bound the integral.

We next use lemma 4.5 to similarly bound the Ḣη norm of this fluctuation:∥∥∥∥ˆ t

0
e−(t−τ)L (1+ a)ωHω dτ

∥∥∥∥
Ḣη

≲
ˆ t

0
e−

t−τ
4

[
1+(t− τ)

− 2η+1
2σ

]
∥ωHω∥L1 dτ

≲
ˆ t

0
e−

t−τ
4

[
1+(t− τ)

− 2η+1
2σ

]
∥ω∥L2∥Hω∥L2 dτ

≲ 1

t
η
σ

ˆ t

0
e−

t−τ
4

[
1+(t− τ)

− 2η+1
2σ

]
∥ω∥L2

(tτ)η/σ ∥ω∥Ḣη

τη/σ
dτ

≲ 1

t
η
σ

ˆ t

0
e−

t−τ
4

[
1+(t− τ)

− 2η+1
2σ

]
τ

η
σ

t
η
σ dτ

∥ω∥2Xη
∞

≲ 1

t
η
σ

∥ω∥2Xη
∞
. (34)

In the above estimate, we have used ∥Hω∥L2 = ∥ω∥L2 ≲ ∥ω∥Ḣη (since ω has zero mean). The
integral in the second-to-last inequality is bounded for σ> 1 and η < σ− 1/2 by applying
lemma 4.1 with α̂= (2η+ 1)/2σ, β̂ = 0, and δ̂ = η/σ.

Combining the bound on the trend with (31) and (34) yields:

∥T (ω)∥Xη
∞ ⩽ A

(
∥ω0∥L2 + ∥ω∥2Xη

∞

)
, (35)

for some constant A> 0. We similarly may establish a Lipschitz estimate on T in Xη
∞:

∥T (ω1)−T (ω2)∥Xη
∞

=

∥∥∥∥ˆ t

0
e−(t−τ)L{−a(u1ω1 − u2ω2)x+(1+ a)(ω1Hω1 −ω2Hω2)

}
dτ

∥∥∥∥
Xη
∞

=

∥∥∥∥ˆ t

0
e−(t−τ)L{−a [u1 (ω1 −ω2)+ (u1 − u2)ω2]x

+(1+ a) [ω1 (Hω1 −Hω2)+ (ω1 −ω2)Hω2]} dτ

∥∥∥∥
Xη
∞

⩽ A
(
∥ω1∥Xη

∞
+ ∥ω2∥Xη

∞

)
∥ω1 −ω2∥Xη

∞
,

where we have repeated the analysis leading to (31)–(34) to obtain the last inequality, and A
is the constant in (35).

Let BM denote the ball
{
ω : ∥ω∥Xη

∞ <M
}
, and set M̃= ∥ω0∥L2 . We will determine M and

M̃ so that T is a contraction on BM. From (35), T will be a mapping from BM into BM if
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AM̃+AM2 <M, which can be arranged by choosingM< 1/(2A) and M̃<M/(2A). T is auto-
matically a contraction on BM under these conditions on M,M̃, since

∥T (ω1)−T (ω2)∥Xη
∞ ⩽ 2AM∥ω1 −ω2∥Xη

∞ , ω1, ω2 ∈ BM.

Thus by the Contraction Mapping theorem, there is a unique fixed point ω of the map T in
BM. By a standard continuation argument, the solution is unique in Xη

∞.

5. Exact solutions for the problem on the real line

We now consider the Constantin–Lax–Majda problem (1) on the real line x ∈ R. We derive
several new analytical solutions and revisit the exact solution of Schochet [36]. These solutions
exhibit self-similar finite-time singularity formation from arbitrarily small data, in contrast to
the periodic problem. In this section the viscosity parameter ν is mostly retained so that we
may compare analytical solutions for ν > 0 with inviscid solutions derived in [31].

5.1. Schochet’s solution for a= 0 and σ= 2

Schochet [36] constructs a solution to (1) in the case a= 0 and σ= 2 by the method of pole
dynamics.

To describe his solution, introduce the operator P+ which projects onto upper analytic func-
tion space, i.e. P+f = f+. Apply P+ to (1) with a= 0 to obtain

ω+t =−iω2
+ + νω+xx, (36)

where x is now considered complex. Since ω is real for x ∈ R, its lower analytic component
satisfies ω−(x, t) = ω+(x̄, t) for x ∈ C−. Note that for x ∈ R, ω = ω+ +ω− = 2Re[ω+]. If an
upper analytic function ω+ satisfies (36) and vanishes at infinity, then 2Re[ω+] satisfies (1).

Schochet looks for solutions of the form (using his notation)

ω+ (x, t) =
1
2

{
A(t)

x− x1 (t)
+

B(t)

[x− x1 (t)]
2 +

C(t)
x− x2 (t)

+
D(t)

[x− x2 (t)]
2

}
. (37)

Substituting into (36) and equating like-power poles yields

A(t) =−K±νi/

(
[x1 (0)− x2 (0)]

2 − 5
3
K±νt

)1/2

(38)

B(t) =−12νi, C(t) =−A(t) , D(t) = B(t) , (39)

in which K± = 24(3±
√
6) (correcting the value of K± = 12(6±

√
6) given in [36]) and

x1 (t) =
1
2

[
x1 (0)+ x2 (0)+

(
[x1 (0)− x2 (0)]

2 − 5
3
K±νt

)1/2
]
, (40)

x2 (t) =
1
2

[
x1 (0)+ x2 (0)−

(
[x1 (0)− x2 (0)]

2 − 5
3
K±νt

)1/2
]
. (41)

Here x1(0),x2(0) ∈ C− and K± can be chosen to have either sign.
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As long as x1(t) and x2(t) both remain in the lower half-plane, the real part of (37) yields a
smooth (analytic) solution to (1) for x ∈ R. This smooth solution has finite kinetic energy

EK =

ˆ ∞

−∞
u2 (x) dx.

However, Schochet shows that for all x1(0) and x2(0) in the lower half-plane and either choice
of sign in K±, the solution blows up in finite time. His argument is based on adding and sub-
tracting (40) and (41) to obtain

x1 (t)+ x2 (t) = x1 (0)+ x2 (0) , (42)

[x1 (t)+ x2 (t)]
2 = [x1 (0)+ x2 (0)]

2 − 5
3
K±νt. (43)

Let xj(t) = ξj(t)+ iηj(t) for j = 1,2. Then by (42), η1(t)+ η2(t) = constant, and the real part
of (43) implies that |η1(t)− η2(t)| →∞ as t→∞. It follows that one of η1(t) or η2(t) must
cross zero in finite time, at which point the solution blows up.

The solution (37) can be made to have arbitrarily small initial data in either the L2 or L∞

norm by taking Im xj(0)≪ 0 for j = 1,2. Therefore, it provides an example of finite-time blow
up starting from arbitrarily small data for the problem on the real line.

5.1.1. Self-similar form of Schochet’s solution. Schochet’s exact solution gives self-similar
blow up for any initial data. For example, consider his solution with initial data x1(0) and
x2(0) on the negative imaginary axis, Im[x2(0)]< Im[x1(0)]< 0. Then ω is odd about x= 0. It
is easy to see that the solution for ω(x, t) blows up at time

tc =−12
5
x1 (0)x2 (0)

K±ν
(44)

and that the blow up is asymptotically self-similar in a space-time neighborhood of t= tc and
x= 0, i.e. as x→ 0 and t→ tc

ω (x, t)≃− 24ṽ

(tc− t)2
ξ

(ξ2 + ṽ2)2
+O(tc− t)−1

, (45)

where the similarity variable ξ and ṽ are given by

ξ =
x

tc− t
, ṽ=− 5i

12
K±ν

x1 (0)+ x2 (0)
.

Figure 1 shows the exact time-dependent solution for ω with initial singularity positions
x1(0) =−i,x2(0) =−2i and ν= 1. The solution is plotted using similarity variables ω(x, t) ∗
(tc− t)2 versus ξ = x/(tc− t) at the six times tc− t= 10−k,k= 2, . . . ,7, and is found to
approach a single universal profile. Indeed only three separate profiles are distinguishable,
with the four curves for k= 4 to 7 that are closest to tc all plotting on top of each other. The
open circles show the asymptotic self-similar profile (45) which is approached by the time-
dependent solution as t→ tc.
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Figure 1. Exact solution of Schochet for x1(0) =−i, x2(0) =−2i, ν= 1, and K+ =

24(3+
√
6) plotted using similarity variables ω(x, t) ∗ (tc− t)2 versus ξ, for tc− t=

10−k,k= 2, . . . ,7 (solid cuves). The asymptotic similarity solution (45) is shown by
open circles.

5.2. Exact solution for a= 1/2 and σ= 1

When a= 1/2 and σ= 1 a new solution to (1) is found using the method of pole dynamics.
Following the analysis of [31] in the inviscid case ν= 0, we look for a solution of the form

ω (x, t) = i ω−2 (t)

(
1

[x− x0 − i vc (t)]
2 −

1

[x− x0 + i vc (t)]
2

)
, (46)

for which

u(x, t) = ω−2 (t)

(
1

x− x0 − i vc (t)
+

1
x− x0 + i vc (t)

)
, (47)

Hω (x, t) = −ω−2 (t)

(
1

[x− x0 − i vc (t)]
2 +

1

[x− x0 + i vc (t)]
2

)
, (48)

and Λω (x, t) = 2 ω−2 (t)

(
1

[x− x0 − i vc (t)]
3 +

1

[x− x0 + i vc (t)]
3

)
. (49)

Formulas (47) and (48) follow from (8) and ux =Hω, while (49) is a consequence of Λ =
H∂x. Here vc, ω−2 and x0 are real with vc > 0 and ω−2 ̸= 0. The vorticity (46) is analytic in
a strip |Im x|< vc(t) in the complex plane and has double poles at x− x0 =±i vc(t). The pure
imaginary amplitude i ω−2(t) implies that ω is real and odd for x ∈ R.

We substitute the ansatz (46) into (1) (or equivalently the upper analytic component ω+

of (46) into the analog of (36) for a= 1/2 and σ= 1) and equate like-power poles. Note that the
leading order 1/[x− x0 ± i vc(t)]4 poles cancel out when a= 1/2, which motivates that choice
for a (other choices of a are not consistent with a pole dynamics solution of the form (46)).
After multiplication by (x− x0 + ivc) · (x− x0 − ivc) we obtain an equation which has only
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single and double poles with spatially independent coefficients. Setting the coefficients of the
double poles to zero gives

dvc (t)
dt

=−
(
ω−2 (t)
4vc (t)

− ν

)
. (50)

with initial data vc(0)> 0. Setting the coefficients of the single poles to zero and using (50) to
eliminate v ′c(t) gives

dω−2 (t)
dt

=
ω−2

2 (t)
4v2c (t)

. (51)

with initial data ω−2(0). Note that (50) and (51) reduce to the equations derived in [31] for the
inviscid case when ν= 0. It is easily verified that (46)–(51) provide an exact solution of the
problem (1) on the real line. In the following we set ν= 1, which as noted earlier is equivalent
to rescaling ω and t.

It is instructive to define Ω= ω−2/vc and rewrite the system (50) and (51) as

dΩ
dt

=
Ω

vc

(
Ω

2
− 1

)
, (52)

dvc
dt

= 1− Ω

4
. (53)

Clearly, Ω(t) = 2 is an unstable equilibrium solution to (52), for which vc(t) = (t+ c)/2 is the
corresponding solution to (53), where c ∈ R is an arbitrary constant. In terms of the original
variables, this solution is

vc (t) =
1
2
(t+ c) , ω−2 (t) = (t+ c) , c ∈ R is a constant. (54)

A second equilibrium solution to (52) is Ω(t) = 0, for which vc(t) = t+ c is the corresponding
solution to (53). This equilibrium is stable and an attractor for all solutions with dataΩ(0)< 2.

The above discussion implies that blow up of (46) is determined solely by the sign of the
data Ω(0)− 2. More precisely, (1) there is finite-time blow up with vc(t)→ 0 when Ω(0)> 2,
and (2) the solution is analytic and vc(t) is increasing for all t> 0 when Ω(0)⩽ 2.

Straightforward calculations from (46) show that

∥ω (x, t)∥L∞ =
3
√
3

4
Ω(t)
vc (t)

, ∥ω (x, t)∥L2 =
√
π

Ω(t)√
vc (t)

.

It is therefore possible to obtain finite-time blow up starting from arbitrarily small data, as
measured by either the L2 norm or L∞ norm, by taking Ω(0)> 2 and vc(0)≫ 1.

During blow up (Ω(0)> 2), the first term on the right-hand-side of (50) (or equival-
ently (52)) grows rapidly over time, and the solution asymptotically approaches

vc (t) = (tc− t)1/3 ṽc, ω−2 (t) =
4ṽ2c

3(tc− t)1/3
, (55)

in a space-time neighborhood of the singularity x→ x0 and t→ tc, where ṽc > 0 and tc > 0
are two arbitrary real constants. Numerical solutions illustrating this behavior are shown in
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Figure 2. Evolution of ω−2(t) and vc(t) for decreasingΩ(0) = ω−2(0)/vc(0). (a) Finite
time blow up forΩ(0) = 3.0, (b) global existence forΩ(0) = 2.0, solid lines have slope
1 and 1/2, (c) global existence for Ω(0) = 0.5, solid line has slope 1.

figure 2(a). The vorticity (46) with vc(t) and ω−2(t) given by (55) is an exact solution of the
inviscid problem ν= 0 [31], and can be written in the self-similar form

ω (x, t) =− 1
tc− t

16ṽ3cξ

3(ξ2 + ṽ2c)
2 , (56)

where

ξ =
x− x0

(tc− t)1/3
.

Numerical solutions to (50) and (51) in the stable case Ω(0)⩽ 2 are shown in figures 2(b)
and (c). These are plotted in the original variables ω−2 and vc. Figure 2(b) shows the solution
for Ω(0) = 2 (cf (54)), while figure 2(c) shows it for Ω(0) = 0.5. In the latter, Ω(t)∼ 0 and
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vc(t)∼ t for t≫ 1, as is verified analytically from (52) and (53). Here, the function ω−2(t)
tends to a constant as t→∞.

Finally, it is noted that we have been able to integrate (52) and (53) and obtain a solution
in implicit form as

√
Ω− 2
2Ω

+
1

2
√
2
tan−1

√
Ω− 2
2

= c1t+ c2 (57)

where c1 and c2 are constants. While it is not possible to obtain an explicit solution for Ω,
the limit Ω→∞ (or equivalently t→ tc) is easily computed with the result that Ω(t)∼ (tc−
t)−2/3 in this limit. This gives from (53) that vc(t)∼ (tc− t)1/3 and henceω−2(t)∼ (tc− t)−1/3

when t→ tc. Thus, the similarity scalings for the blow up solution (55) are recovered from the
implicit solution (57).

In summary, the analytical solutions derived here for a= 1/2 and σ= 1 exist globally
in time and are smooth (analytic) for initial data ω(x,0) of the form (46) with Ω(0) =
ω−2(0)/vc(0)⩽ 2. When Ω(0)> 2, there is finite-time blow up, and by taking vc(0) large,
the blow-up can be made to occur from arbitrarily small data ∥ω(·,0)∥L2 or ∥ω(·,0)∥L∞ .

5.3. Exact solution for a= 0 and σ= 1

Another new solution can be found by the method of pole dynamics when a= 0 and σ= 1.
We look for a solution to (1) in the form of two poles as

ω (x, t) =
ω−1 (t)
x− ivc (t)

+
ω̄−1 (t)
x+ iv̄c (t)

. (58)

This is easily seen to result in a solution

ω−1 (t) = ω−1 (0) , vc (t) = (ω−1 (0)+ ν) t+ vc (0) , (59)

where ω−1(0) and vc(0) are arbitrary complex constants (in contrast to section 5.2, in which
the corresponding constants are real) with Re[vc(0)]> 0. Note that

(a) If ω−1(0) =−ν then the solution (58) and (59) is time-independent.
(b) If Re[ω−1(0)]>−ν then the solution (58) and (59) exists for all t> 0 because the poles

moves away from the real axis.
(c) If Re[ω−1(0)]<−ν then the solution (58) and (59) exists until t= tc > 0, where

tc =− Re [vc (0)]
Re [ω−1 (0)]+ ν

(60)

is the collapse time (i.e. the time when the poles reach the real axis). Using (58)–(60) we
find that at t= tc, both poles impinge on the real axis with spatial location given by

x= xc := ivc (tc) =
Im [ω−1 (0)]Re [vc (0)]
Re [ω−1 (0)]+ ν

− Im [vc (0)] . (61)

If ω−1(0) ̸=−ν then we can rewrite (58)–(61) in a self-similar form

ω (x, t) =
i

tc− t

(
ξ+ + iν
ξ− ξ+

− ξ− − iν
ξ− ξ−

)
, (62)
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where

ξ± =
±ivc (0)− xc

tc

are positions of poles in the complex plane of ξ and

ξ :=
x− xc
tc− t

(63)

is the self-similar variable. Equation (62) is the analog of equation (30) in [31], which describes
self-similar blow up in the inviscid problem. The solution (62) belongs to the general self-
similar form (5) with α= β = 1.

From (58) we can directly compute norms

∥ω (x, t)∥L∞ =
|ω−1 (t) |+ |Im [ω−1 (t)] |

Re [vc (t)]
, ∥ω (x, t)∥L2 =

√
2π

|ω−1 (t) |√
Re [vc (t)]

.

Both of the norms can be made arbitrarily small for the initial data of the collapsing solu-
tion (62) by choosing Re[vc(0)] large enough.

The solution (58) and (59) has infinite kinetic energy EK(tc) on the line x ∈ R for general
values of the parameters ω−1(0) and vc(0). An exception in which EK is finite occurs for
ω−1(0) = ω̄−1(0) and vc(0) = v̄c(0), i.e. for purely real values of ω−1(0) and vc(0) in the
solution (58).

We can also consider a solution with two pairs of poles as

ω (x, t) =
ω−1,1 (t)
x− ivc,1 (t)

+
ω̄−1,1 (t)
x+ iv̄c,1 (t)

+
ω−1,2 (t)
x− ivc,2 (t)

+
ω̄−1,2 (t)
x+ iv̄c,2 (t)

(64)

in which the poles are located at x= ivc,1(t), x= ivc,2(t) and their complex conjugate points.
Here we assume that Re[vc,1(0)]> 0 and Re[vc,2(0)]> 0. Plugging (64) into (58) and equating
the most singular terms (which are proportional to (x− ivc,1(t))−2 and (x− ivc,2(t))−2 at x=
ivc,1(t) and x= ivc,2(t)) results in

dvc,1 (t)
dt

= ν+ω−1,1 (t) (65)

and

dvc,2 (t)
dt

= ν+ω−1,2 (t) . (66)

Collecting now the next most singular terms which are proportional to (x− ivc,1(t))−1 and
(x− ivc,2(t))−1 at x= ivc,1(t) and x= ivc,2(t) results in

dω−1,1 (t)
dt

=
2ω−1,1 (t)ω−1,2 (t)
vc,1 (t)− vc,2 (t)

(67)

and

dω−1,2 (t)
dt

=
2ω−1,1 (t)ω−1,2 (t)
vc,2 (t)− vc,1 (t)

=−dω−1,1 (t)
dt

. (68)
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Substitution of (64)–(68) into the governing equation (1) reveals that they are identically satis-
fied. A solution of the system (65)–(68) follows from the observation that dω−1,2(t)

dt =− dω−1,1(t)
dt

from (67) and (68), so that

c0 := ω−1,1 (t)+ω−1,2 (t) = ω−1,1 (0)+ω−1,2 (0) . (69)

Together with (65) and (66), this implies that d[vc,1(t)+vc,2(t)]dt = 2ν+ c0, i.e. vc,2(t) =−vc,1(t)+
(2ν+ c0)t+ vc,1(0)+ vc,2(0). Thus we reduce the system (65)–(68) from four ordinary differ-
ential equations (ODEs) to two ODEs for vc,1(t) and ω−1,1(t), which is easily solved. The
solution of the system (65)–(68) for c0 ̸= 0 is

ω−1,1 (t) =
c0
2
+

1
2

c1 +
c20t

vc,1(0)−vc,2(0)√
1+ 2c1t

vc,1(0)−vc,2(0)
+

c20t
2

(vc,1(0)−vc,2(0))2

,

ω−1,2 (t) =−ω−1,1 (t)+ c0,

vc,1 (t) =
c0
2
t+ νt+

vc,1 (0)− vc,2 (0)
2

√
1+

2c1t
vc,1 (0)− vc,2 (0)

+
c20t

2

(vc,1 (0)− vc,2 (0))
2

+
vc,1 (0)+ vc,2 (0)

2
,

vc,2 (t) =−vc,1 (t)+ (2ν+ c0) t+ vc,1 (0)+ vc,2(0),

where c0 is given by equation (69), c1 := ω−1,1(0)−ω−1,2(0), and we assumed a principle
branch of the square root.

For c0 = 0, when ω−1,1(0) =−ω−1,2(0), the solution of the system (65)–(68) is

ω−1,1 (t) =−ω−1,2 (t) =
ω−1,1 (0)√

1+ 4ω−1,1(0)t
vc,1(0)−vc,2(0)

,

vc,1 (t) = νt+
vc,1 (0)− vc,2 (0)

2

√
1+

4ω−1,1 (0) t
vc,1 (0)− vc,2 (0)

+
vc,1 (0)+ vc,2 (0)

2
,

vc,2 (t) =−vc,1 (t)+ 2νt+ vc,1 (0)+ vc,2 (0) . (70)

The above solutions develop a finite-time singularity on the real line of x at t= tc provided
Re[vc,1(tc)] = 0 or Re[vc,2(tc)] = 0. By relabeling complex singularities if necessary, we can
assume without loss of generality that x= ivc,1(t) reaches the real line first (ahead of x=
ivc,2(t)) thus resulting in collapse. (It remains an open question whether it is possible to have
vc,1(tc) = vc,2(tc), thus creating a higher order singularity at t= tc.) Then for t→ tc− and in a
small spatial neighborhood of x= ivc,1(tc), the solution (64) is dominated by singularities at
x= ivc,1(t) and x=−iv̄c,1(t), so that (64) reduces to

ω (x, t)≃ ω−1,1 (t)
x− ivc,1 (t)

+
ω̄−1,1 (t)
x+ iv̄c,1 (t)

. (71)

Generically the singularity at t= tc located at x= ivc,1(t) hits the real line Im(x) = 0 with a

nonzero vertical velocity dRe[vc,1(t)]
dt

∣∣∣
t=tc

< 0. Then for t→ tc− the solution (71) can be fur-

ther reduced using the Taylor series approximation vc,1(t) = iIm[vc,1(tc)]+ v ′c,1(tc)(t− tc)+
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O(t− tc)2 (here v ′c,1(tc) :=
dvc,1(tc)

dt ) and neglecting the O(t− tc)2 term. We also assume that
ω−1,1(tc) ̸= 0 and replace ω−1,1(t) by ω−1,1(tc) to obtain from (71)

ω (x, t)≃ ω−1,1 (tc)
x+ Im [vc,1 (tc)]− i(t− tc)v ′c,1 (tc)

+
ω̄−1,1 (tc)

x+ Im [vc,1 (tc)]+ i(t− tc) v̄ ′c,1 (tc)
.

This has the self-similar form (5) with α= β = 1.
A special situation occurs when Re[v ′c,1(tc)] = 0. In that case v ′c,1(t) = iIm[v ′c,1(tc)]+

O(tc− t), which corresponds to the pole singularity hitting the real line of x with vanishing
vertical velocity. In that case equation (71) turns into

ω (x, t)≃ ω−1,1 (tc)

x+ Im [vc,1 (tc)]+ Im
[
v ′c,1 (tc)

]
(t− tc)− i

2 (t− tc)
2 v ′ ′c,1 (tc)

+
ω̄−1,1 (tc)

x+ Im [vc,1 (tc)]+ Im
[
v ′c,1 (tc)

]
(t− tc)+ i

2 (t− tc)
2 v̄ ′ ′c,1 (tc)

. (72)

This occurs, for example, when ω−1,1(0) =−ω−1,2(0) = K, whereK< 0 is a real number, and

Re [vc,2 (0)]
Re [vc,1 (0)]

=

(
K− ν

K+ ν

)2

, Im [vc,1 (0)] = Im [vc,2 (0)] = 0.

In this case, tc = K2−ν2

4Kν2 Re[vc,2(0)− vc,1(0)].
Interestingly, the solution (72) has a different self-similar scaling than (62) and (63), with

α= β = 2.Direct numerical simulations in section 7.3.3 show this type of self-similar collapse
is unstable to perturbations, as might be expected.

The solution (64), similar to (58), may have arbitrarily small L∞ and L2 norms at t= 0 if we
chooseRe[vc,1(0)] andRe[vc,2(0)] large enough. These norms simplify in the case Im[vc,1(0)] =
Im[vc,2(0)] = 0, e.g. in which

∥ω (x, t)∥L2

=
√
2π

√
|ω−1,1 (t) |2
vc,1 (t)

+
|ω−1,2 (t) |2
vc,2 (t)

+
4(Re [ω−1,1 (t)]Re [ω−1,2 (t)]+ Im [ω−1,1 (t)] Im [ω−1,2 (t)])

vc,1 (t)+ vc,2 (t)
.

5.4. Exact solution for a= 0 and σ= 0

Another solution can be found by the method of pole dynamics when a= 0 and σ= 0. In this
case Λ0ω = ω. We look for a solution to (1) in the form of two simple poles as

ω (x, t) =
ω−1 (t)
x− ivc (t)

+
ω̄−1 (t)
x+ iv̄c (t)

, (73)

where ω−1(0) and vc(0) are arbitrary complex constants with Re[vc(0)]> 0.
From (73) we directly compute norms

∥ω (x, t)∥L∞ =
|ω−1 (t) |+ |Im [ω−1 (t)] |

Re [vc (t)]
, ∥ω (x, t)∥L2 =

√
2π

|ω−1 (t) |√
Re [vc (t)]

.
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Substituting (73) into (1) we get the following equations:

dω−1 (t)
dt

=−νω−1 (t) ,
dvc (t)
dt

= ω−1 (t) ,

and their solution:

ω−1 (t) = ω−1 (0)e
−νt, vc (t) =

ω−1 (0)
ν

(
1− e−νt

)
+ vc (0) , (74)

which for ν= 0 reduces to

ω−1 (t) = ω−1 (0) , vc (t) = ω−1 (0) t+ vc (0) . (75)

For the case ν= 0 we always have a collapsing solution (even for arbitrarily small data in
L∞ and L2 norms) if Re[ω−1(0)]< 0, since Re[vc(tc)] = 0 at tc =

Re[vc(0)]
−Re[ω−1(0)]

. This solution is
equivalent to (32) in [31], which describes self-similar blow up in the inviscid problem.

Note that for ν > 0 equation (74) indicate either global existence of the solution (73) or a
collapsing solution depending on initial values of ω−1(0) and vc(0):

(a) If Re[ω−1(0)]>−νRe[vc(0)] then Re[vc(t)]> 0 for all t> 0 and the solution (73) and (74)
exists for any t> 0.

(b) If Re[ω−1(0)] =−νRe[vc(0)] then Re[vc(t)] = Re[vc(0)]e−νt → 0 as t→∞, and the solu-
tion (73) and (74) exists for all t> 0 because the poles approach the real axis exponentially
in time. They approach the real line at the point

x= xc := Re [ivc (∞)] =−Im [vc (∞)] =− Im [ω−1 (0)]
ν

− Im [vc (0)] , (76)

and ∥ω(x, t)∥L∞ = ∥ω(x,0)∥L∞ = const> 0, ∥ω(x, t)∥L2 ∼ e−νt/2 → 0 as t→∞.
(c) If Re[ω−1(0)]<−νRe[vc(0)] then the solution (73) and (74) exists until the collapse time

tc =−1
ν
ln

(
1+

νRe [vc (0)]
Re [ω−1 (0)]

)
, (77)

at which the poles reach the real axis. Here ∥ω(x, t)∥L∞ ,∥ω(x, t)∥L2 →∞ as t→ tc
since ω−1(tc) ̸= 0 and Re[vc(tc)] = 0. Most importantly, collapse occurs even when the
initial norm ∥ω(x,0)∥L2 is made arbitrarily small by taking small vc(0). In contrast,
∥ω(x,0)∥L∞ > ν, i.e. the L∞ norm is bounded from below.

Using (74)–(77) we find that at t= tc, both poles cross the real axis at the location

x= xc := ivc (tc) =−Im [vc (tc)] =
Im [ω−1 (0)]
Re [ω−1 (0)]

Re [vc (0)]− Im [vc (0)] ,

with the complex velocity of the first pole being

v ′c (tc) = ω−1 (tc) = ω−1 (0)e
−νtc = ω−1 (0)

(
1+

νRe [vc (0)]
Re [ω−1 (0)]

)
.

Since vc(tc) = iIm[vc(tc)], we have that in a space-time neighborhood of the singularity x→ xc
and t→ tc the solution (74) asymptotically approaches
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ω−1 (t) = ω−1 (tc)+O(tc− t) ,vc (t) = iIm [vc (tc)]−ω−1 (tc)(tc− t)+O(tc− t)2 ,

and the solution (73) can be written in a self-similar form

ω (x, t) =
i

tc− t

(
ξ+

ξ− ξ+
− ξ−

ξ− ξ−

)
+O(1) , (78)

where

ξ+ =−iω−1 (tc) , ξ− = iω̄−1 (tc) ,

are positions of poles in the complex plane of the self-similar variable ξ (cf. (63)).Equation (78)
is a viscous analog of equation (30) in [31], which describes self-similar blow up in the inviscid
problem. The solution (78) belongs to the general self-similar form (5) with α= β = 1.

The kinetic energy EK(t) =
´
u2(x, t)dx in (a), (b) scales like EK(t)∼ e−2νt as t→∞,

whereas in (c) EK(tc) is finite for any complex values of the parameters ω−1(0) and vc(0),
in contrast to the a= 0,σ = 1 case.

6. Exact solution to the periodic problem for a= 0 and σ= 0

In this section we adapt the analysis of section 5.4 to obtain an exact analytical solution in the
periodic geometry. We take a= 0, σ= 0, ν > 0, in which case (7) becomes

ωt = ωHω− νω. (79)

We take initial data with zeromean on x ∈ [−π,π], which is then preserved under the evolution.
Using the Hilbert transform representation (8) we can rewrite (79) as:

ω−t = iω2
− − νω−, (80)

where ω− is analytic in the lower half-plane C−. We look for a solution to (80) in the form of
a single pole in tan( x2 )-space:

ω− (x, t) = ω−1 (t)

[
1

tan
(
x
2

)
− ivc (t)

− 1
−i− ivc (t)

]
, (81)

where ω−1(0) and vc(0) are arbitrary complex constants with Re[vc(0)]> 0. The term
1

−i−ivc(t)
is subtracted so that ω−(x, t) is chosen to have zero mean value on x ∈ [−π,π],´ π

−π
ω−(x, t)dx= 0. We supplement ω−(x, t) from (81) with ω+(x, t) = ω−(x̄, t) to get a real-

valued solution ω = ω− +ω+ of (79).
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From (81) we compute norms

∥ω (x, t)∥L∞ =
|ω−1 (t) | − Im [ω−1 (t)]

Re [vc (t)]
+ 2

Im [ω−1 (t)] (1+Re [vc (t)])− Im [vc (t)]Re [ω−1 (t)]

(Im [vc (t)])
2 +(1+Re [vc (t)])

2 ,

∥ω (x, t)∥L2 = 2
√
π

|ω−1 (t) |√
Re [vc (t)]

(
(Im [vc (t)])

2 +(1+Re [vc (t)])
2
) ,

∥ω (x, t)∥B0 =
|ω−1 (t) |
Re [vc (t)]

(√
(Im [vc(t)])2 +(1−Re [vc(t)])2

(Im [vc(t)])2 +(1+Re [vc(t)])2
+ 1

)
. (82)

Substituting (81) to (80) we get the following equations:

dω−1 (t)
dt

=−νω−1 (t)+
2ω2

−1 (t)

1+ vc (t)
,

dvc (t)
dt

= ω−1 (t) ,

and their solution:

ω−1 (t) = ω−1 (0)e
−νt

(
1− e−νt0

1− e−ν(t+t0)

)2

,vc (t) =
ω−1 (0)

ν

(1− e−νt0)(1− e−νt)

1− e−ν(t+t0)
+ vc (0) ,

(83)

where eνt0 = 1− ν(1+vc(0))
ω−1(0)

is complex valued in general.
Equation (83) for ν= 0 reduce to:

ω−1 (t) =
ω−1 (0)(

1− ω−1(0)
1+vc(0)

t
)2 , vc (t) =

vc (0)+
ω−1(0)
1+vc(0)

t

1− ω−1(0)
1+vc(0)

t
. (84)

For the case ν= 0 we always have a collapsing solution (even for arbitrarily small data) at
t= tc with collapse location

x= xc = 2tan−1 (ivc (tc)) = 2tan−1 (−Im [vc (tc)]) , (85)

since vc(∞) =−1< 0 for any ω−1(0).
We have Re[vc(tc)] = 0 at time

tc =
X+

√
4|ω−1 (0) |2Re [vc (0)] (|vc (0) |2 + 1+ 2Re [vc (0)])+X2

2|ω−1 (0) |2
, (86)

X= Re [ω−1 (0)]
(
1+ Im [vc (0)]

2 −Re [vc (0)]
2
)
− 2Im [ω−1 (0)] Im [vc (0)]Re [vc (0)] .

For purely real vc(0) and ω−1(0) equations (85) and (86) reduce to

tc =−vc (0)(1+ vc (0))
ω−1 (0)

, xc = 0 for ω−1 (0)< 0,

tc =
1+ vc (0)
ω−1 (0)

, xc =±π for ω−1 (0)> 0.
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The solution (81) and (84) is a periodic analog of equation (32) in [31], which describes self-
similar blow up in the inviscid problem for x ∈ R. The solution (81) with ω(x, t) = ω−(x, t)+
ω−(x̄, t) belongs to the general self-similar form (5) with α= β = 1.

When ν > 0 the same analysis as (a)–(c) in section 5.4 can be done. In this case (83) gives
either global existence of the solution (81) or a collapsing solution depending on initial values
ofω−1(0) and vc(0). For simplicity, we assume thatω−1(0) and vc(0) are purely real. Then (82)
becomes

∥ω (x, t)∥L∞ =
|ω−1 (t) |
vc (t)

, ∥ω (x, t)∥L2 = 2
√
π

|ω−1 (t) |√
vc (t)(1+ vc (t))

,

∥ω (x, t)∥B0 =
|ω−1 (t) |
vc (t)

(
|1− vc (t) |
1+ vc (t)

+ 1

)
. (87)

Rewriting the second equation of (83) we get

vc (t) =
ω−1 (0)(1− e−νt)+ νvc (0)(1+ vc (0))
−ω−1 (0)(1− e−νt)+ ν (1+ vc (0))

,

from which we can conclude that:

(a) If −νvc(0)(1+ vc(0))< ω−1(0)< ν(1+ vc(0)) then 0< vc(t)<∞ for all t> 0 and the
solution (81) and (83) exists for any t> 0.

(b1) If ω−1(0) =−νvc(0)(1+ vc(0)) then ω−1(t),vc(t)∼ e−νt → 0 as t→∞, and the solu-
tion (81) and (83) exists for all t> 0 because the poles approach the real line at xc = 0
exponentially in time.

(b2) Ifω−1(0) =−ν(1+ vc(0)) thenω−1(t),vc(t)∼ eνt →∞ as t→∞, and the solution (81)
and (83) exists for all t> 0 because the poles approach the real line at xc = 2tan−1(i∞) =
±π exponentially in time.
In both (b1) and (b2) cases ∥ω(x, t)∥L∞ ,∥ω(x, t)∥B0/2→ ν > 0, ∥ω(x, t)∥L2 ∼ e−νt/2 → 0
as t→∞.

(c1) If ω−1(0)<−νvc(0)(1+ vc(0)) then the solution (81) and (83) exists until the collapse
time tc (when the poles reach the real axis at vc(tc) = 0, xc = 0), where

tc =
1
ν
ln

(
ω−1 (0)

ω−1 (0)+ νvc (0)(1+ vc (0))

)
.

Using (87), we get that blow up occurs for any initial data satisfying

∥ω (x,0)∥L∞ > ν (1+ vc (0))> ν, ∥ω (x,0)∥L2 > 2ν
√
π vc (0),

∥ω (x,0)∥B0 > 2ν, if vc (0)< 1, ∥ω (x,0)∥B0 > 2νvc (0) , if vc (0)⩾ 1.

We therefore see that ∥ω(x,0)∥L2 can be made arbitrarily small by choosing small enough
vc(0), but ∥ω(x,0)∥L∞ and ∥ω(x,0)∥B0 cannot be made similarly small.

(c2) If ω−1(0)> ν(1+ vc(0)) then the solution (81) and (83) exists until the collapse time tc
(when the poles reach the real axis at vc(tc) =∞, xc =±π), where

tc =
1
ν
ln

(
ω−1 (0)

ω−1 (0)− ν (1+ vc (0))

)
.
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Using (87), we get that blow up occurs for any initial data satisfying

∥ω (x,0)∥L∞ > ν

(
1+

1
vc (0)

)
> ν, ∥ω (x,0)∥L2 > 2ν

√
π

vc (0)
,

∥ω (x,0)∥B0 > 2
ν

vc (0)
, if vc (0)< 1, ∥ω (x,0)∥B0 > 2ν, if vc (0)⩾ 1,

We again see that ∥ω(x,0)∥L2 (but not ∥ω(x,0)∥L∞ and ∥ω(x,0)∥B0) can be made arbitrarily
small by choosing large enough vc(0).

In both (c1) and (c2), the collapse is self-similar and the solution (81) together with
ω(x, t) = ω−(x, t)+ω−(x̄, t) belongs to the general self-similar form (5) with α= β = 1 and
∥ω(x, t)∥L∞ ,∥ω(x, t)∥L2 →∞ as t→ tc, since in (c1) ω−1(tc) ̸= 0 and vc ∼ (tc− t), in (c2)
ω−1 ∼ (tc− t)−2 and vc ∼ (tc− t)−1.

Similarly to the real line solution, the kinetic energy EK(t) =
´
u2(x, t)dx in (a), (b1), (b2)

scales likeEK(t)∼ e−2νt as t→∞, whereas in (c1), (c2)EK(tc) is finite for any complex values
of the parameters ω−1(0) and vc(0).

Similar exact solutions can be derived with one pair of simple poles in tan( x2 )-space for
a= 0, σ = 1, and one pair of double poles for a= 1/2, σ = 0,1, as periodic analogues of
exact solutions on the real line. Details are left for future work.

7. Numerical results

We present the results of direct time-dependent numerical simulations of (1) in both the peri-
odic and real-line geometries. The numerical results are consistent with the analytical theory
on global existence for small data in the periodic setting, and further indicate that finite-time
singularities can form for sufficiently large data. They also are in quantitative agreement with
the exact solutions presented in sections 5 and 6, and give information on the stability of those
solutions.

7.1. Numerical method

Weprovide a brief description of the numerical method and the procedure for tracking complex
singularities. More details are given in [31]. In the periodic case, (1) is numerically solved for
x ∈ S= [π,π] using a pseudo-spectral Fourier method based on the representation

ω (x, t) =
N−1∑
k=−N

ω̂k (t)e
ikx

in terms of 2N Fourier modes. Derivatives along with the periodic Hilbert trans-
form and the dissipation term are computed by wavenumber multiplication in Fourier
space. Time stepping is performed using an 11-stage explicit Runge-Kutta method
of 8th order [12] with adaptive time step determined by the condition ∆t= CFL ·
min[∆x/(amaxx |u(x, t)|),1/maxx |ux(x, t)|,(∆x)σ/ν], where ∆x= π/N and the numerical
constant CFL is chosen as 1/16,1/32 or 1/64. This condition ensures numerical stability and
that the error in time-stepping is near round-off.

The decay of the Fourier spectrum is checked at the end of every time step, and if |ωk(t)| is
larger than numerical round-off at |k| ∼ N, the simulation is ‘rewound’ one time step backward,
N increased by a factor of 2 via zero padding (i.e. Fourier interpolation), and the time step is

30



Nonlinearity 37 (2024) 025004 D M Ambrose et al

adjusted before time-stepping is continued. Rewinding helps avoid accumulation of error from
the tails of the spectrum not being fully resolved.

To compute on the infinite domain, we make a change of variable

x= tan
(q
2

)
, (88)

which maps (−π,π) in q to (−∞,∞) in x. The transformed equations are [31]

ωt =−a(1+ cosq)uωq+ω [Hqω+Cqω]− ν [(1+ cosq)∂qHq]
σ
ω,

(1+ cosq)uq = [Hqω+Cqω] , q ∈ (−π,π) , (89)

whereHq is the periodic Hilbert transform in q

Hqf(q) =
1
2π

PV
ˆ π

−π

f(q ′)cot

(
q− q ′

2

)
dq ′,

and the constant Cqω is determined by

Cqω =− 1
2π

ˆ π

−π

ω (q ′) tan

(
q ′

2

)
dq ′,

so that Hqω(±π)+Cqω = 0.
A pseudo-spectral method similar to that used for the periodic case is then employed to

solve (89), using the Fourier representation in q space

ω (q, t) =
N−1∑
k=−N

ω̂k (t)e
ikq

and a modified adaptive time-step condition ∆t= CFL ·min[∆q/(amaxq |(1+
cosq)u(q, t)|),1/maxq |(1+ cosq)uq(q, t)|,maxq |ω(q, t)|/maxq |ν[(1+ cosq)∂qH]σω(q, t)|].
For x ∈ R we only consider cases in which σ is a non-negative integer, so that the dissipation
term can be easily computed by wavenumber multiplication in Fourier space.

Two complementary methods are employed to detect singularities in the complex plane.
The first method uses a least squares fit of the asymptotic Fourier decay

|ω̂k (t) | ≈ C(t)
e−δ(t)|k|

|k|p(t)
(90)

for |k| ≫ 1 [6], where C(t), δ(t)> 0 and p(t) are fitting parameters. The value of δ(t) gives
the distance at time t of the (single) closest complex singularity in ω to the real line, and
p(t) is related to the type or power of singularity. If the closest singularity to the real line
has the power law form (q− qc)−γ , then δ = |Im(qc)| and p= 1− γ. On the infinite domain
with the additional transform (88), the fitting (90) provides the distance of the closest complex
singularity of ω to the real line in q-space. To find the distance to the closest singularity in
x-space, we use δx = tanh(δ/2), when |Re(qc)|= 0 and δx = coth(δ/2), when |Re(qc)|=±π.

This type of Fourier fitting procedure for tracking complex singularities was originally pro-
posed by Sulem et al [41] and extended in [3, 35]. For more details about the version employed
here, see [31].

The second method for detecting complex singularities makes use of analytical continu-
ation based on rational interpolants. Specifically, we employ a modified version of the AAA
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algorithm originally due to Nakatsukasa et al [32]. This has the advantage of providing a struc-
ture of complex singularities beyond the one closest to the real line, although |Im(qc)| and γ
can be determined more accurately by Fourier fitting than via the AAA algorithm. See section
10 of [31] for more details on the AAA algorithm employed here.

7.2. Periodic problem

Figure 3 gives an illustrative example of finite-time collapse in the case of the periodic problem
with parameter values a= 1/2, σ= 1 and ν= 1, for two-mode initial data

ω0 (x) = iA

(
1(

tan
(
x
2

)
− i
)2 − 1(

tan
(
x
2

)
+ i
)2
)

=−A(sinx+ sin(2x)/2) . (91)

The top-left panel plots a scaled solution ω(x/|xmax|)/maxx |ω| versus x/|xmax| at different
times in the evolution. The solution curves approach a universal self-similar profile f(ξ) in
a space-time neighborhood of the collapse point. This verifies the self-similar nature of the
collapse. The top-right panel show the spectrum ω̂k of the solution at t= 1.1536657 and
fit by (90). We choose an interval of k somewhere between 1/4 and 1/3 of the full length
of the spectrum to obtain the best balance between numerical precision and asymptotic or
large-k behavior in the data. The fit p≈−1 indicates the presence of a persistent double-
pole in C for this periodic geometry, similar to the exact solution in the infinite geometry (cf
section 5.2). The bottom-left panel presents a log-log plot of δx(t) = δ(t), the distance of the
closest singularity to the real line, versus tc− t (δx(t) versus raw time tfinal − t is also shown,
where tfinal < tc is the final simulation time). The linear behavior in this log-log plot indic-
ates an algebraic approach of the singularity toward the real line when t is near tc, and a least
squares fit to δx(t)∼ C(tc− t)α gives the similarity parameterα≈ 1/3. The bottom-right panel
shows a log–log plot of maxx |ω| versus tc− t, which shows maxx |ω|(t)∼ C/(tc− t)β beha-
vior near the singularity time. To estimate tc and β, we found it most accurate and reliable to
fit to maxx |ω|(t)∼ C/(tc− t)β using the last quarter of k-space data for |ω|(t). This fit gives
tc ≈ 1.15 and similarity parameter β≈ 1. Note that the maximum value maxq |ω(q, t)| of the
numerical solution increases from an initial value∼10 up to ∼109 at the final simulation time
tfinal.

The fitted values of α and β are the same as for the exact solution on the real line (55)
and (56). This is expected, since the local form of a collapsing similarity solution does not
depend on the far-field boundary conditions, i.e. whether they are posed on x ∈ R or S. Notably,
collapse is only observed for A⩾ 3.47, and the numerics suggest that there is global existence
when A⩽ 3.46, as illustrated in figure 4.

The singularity structure inC, as determined by the AAA algorithm, consists of two double
poles at x=±iδ and two branch cuts coming out of them vertically. There are also two more
branch points at x=±π ± iδ2 with δ2 > δ. This singularity structure, as well as the similarity
exponents α and β, are the same as in the problem without dissipation [31]. However, the
collapse takes longer to develop when there is dissipation, e.g. tc = 1.15367 compared to tc =
0.491637 in the inviscid problem when A= 4. A more important distinction is that collapse
can occur in the inviscid problem for any amplitude A, with the collapse time found to scale
like tc ∼ 1/A.

The dependence of the critical initial amplitude A for blow up on the dissipation exponent
σ, starting from initial data (91), is shown in table 1. The critical amplitude decreases with
σ, as expected, but most importantly for all values of σ in the table we find that there is no
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Figure 3. Evolution of the collapsing periodic solution with parameters a= 1/2,
σ= 1, ν= 1 and two-mode initial data (91) with A= 4. Top-left: scaled solution
ω(x/|xmax|)/maxx |ω| versus x/|xmax| (where xmax > 0 is the location of maxx |ω|) at
different times in the evolution. Top-right: spectrum log |ω̂k| versus k at t= 1.1536657
and fit by (90). Bottom-left: log–log plot of δx(t) = δ(t), the distance of the closest
singularity to the real line, versus tfinal − t (in blue) and tc− t (in yellow) and fit to
δx(t)∼ C(tc− t)α,α≈ 1/3. Bottom-right: log-log plot of maxx |ω| versus tc− t and the
fit maxx |ω|(t)∼ C/(tc− t)β , tc ≈ 1.15367,β ≈ 1.

blow up for sufficiently small data. This differs from the inviscid problem, in which blow up
can occur for arbitrarily small amplitude. Of course, the absence of a blow up for σ< 1 and
sufficiently small data could be the consequence of restricting to the particular class of initial
conditions (91). In fact, for a= 0, σ = 0, ν > 0 we have established in section 6 that blow
up occurs for arbitrarily small data of type (81) in the L2 norm (but not in L∞ or B0 norms).
That data contains a pair of simple poles in the finite complex plane. Additional numerical
simulations have been performed with the data (81) which (1) validates the analytical solution
described in section 6 in cases (a)–(c2) and confirms the formulas for tc, xc and ∥ω(x, t)∥L∞ ,
∥ω(x, t)∥L2 , ∥ω(x, t)∥B0 , EK(t); and (2) shows that blow up for this data does not occur when
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Figure 4. Evolution of maxx |ω|(t) and of the distance to the closest singularity δx(t)
from the real line in x-space for the periodic solution with parameters a= 1/2, σ= 1,
ν= 1 and two-mode initial data (91) with A= 3.46.

Table 1. Critical amplitude A for blow up starting from initial data (91) in the periodic
problem with ν= 1. The blow up is of collapsing type (i.e. with α> 0) for a= 0, 1/2,
and neither collapsing nor expanding type (i.e. with α= 0) for a= 0.8.

a σ No blow up Blow up

2 A⩽ 18.4 18.5⩽ A
1 A⩽ 4.53 4.54⩽ A

0 1/2 A⩽ 2.35 2.35⩽ A
0 A⩽ 1.33 1.34⩽ A
−1/2 A⩽ 0.81 0.82⩽ A

2 A⩽ 5.49 5.50⩽ A
1 A⩽ 3.46 3.47⩽ A

1/2 1/2 A⩽ 2.64 2.65⩽ A
0 A⩽ 1.96 1.97⩽ A
−1/2 A⩽ 1.42 1.43⩽ A

2 A⩽ 6.66 6.67⩽ A
1 A⩽ 4.73 4.74⩽ A

0.8 1/2 A⩽ 4.01 4.02⩽ A
0 A⩽ 3.42 3.43⩽ A
−1/2 A⩽ 2.93 2.94⩽ A

σ ⩾ 1 and the data is sufficiently small in the L2, L∞ and B0 norms. This is consistent with
the analytical theory.

Examination of the solution at other values of a and σ ⩾ 1 gives results that are consist-
ent with theorems 3.1 and 4.7, namely, that finite-time singularity formation in the periodic
problem does not occur for sufficiently small data when using initial conditions of type (81)
or (91).
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7.3. Problem on the real line

In contrast to the periodic case, the problem on the real line can exhibit finite-time blow up for
arbitrarily small data.

7.3.1. Schochet’s solution for a= 0, σ= 2. We have numerically computed the solution to
the initial value problem (1) on x ∈ R using Schochet’s initial condition. The initial singularity
locations are taken on the negative imaginary axis inC, e.g. x1(0) =−i,x2(0) =−2i, and data
for ω = 2Re(ω+) is specified as in (37), with A(0),B(0),C(0),D(0) given by (38) and (39).
We use the corrected values K± = 24(3±

√
6). In all cases we observe singularity motion

exactly as given by (40) and (41). We also observe self-similar collapse which scales precisely
as predicted by (45), with collapse time given by (44). This verifies the corrected form of
Schochet’s solution, and shows that it is stable to discretization and round-off errors. Crucially,
this solution develops finite time singularities from arbitrarily small data.

Perturbations of Schochet’s initial data, for example by slightly altering some of the coeffi-
cients K± or A(0) through D(0), leads to the formation of additional branch points/cuts in the
complex singularity structure. In particular, we observe the formation of a branch cut between
the initial two double poles at x1(t) and x2(t) in each of ω+ and ω− when t> 0. Despite the
change in the complex singularity structure, the solution exhibits the same self-similar blow-
up as described by (45), with similarity exponents α= 1 and β= 2. For small perturbations in
the data, the value of tc is only slightly perturbed from (44).

7.3.2. Solutions for a= 1/2, σ= 1. Numerical computations of the initial value problem for
a= 1/2 and σ= 1 using double pole data of the form (46) have also been performed. These
give results that are in complete quantitative agreement with the analytical solution described
in section 5.2. In particular, we find that the complex singularity pattern for t> 0 consists of
two double poles as described by (46). We also find that there is blow up with the local self-
similar form (56) when Ω(0) = ω−2(0)/vc(0)⩾ 2, and global existence with ω−2(t)→ 0 and
vc(t)→ t+ c when Ω(0)< 2, identical to figure 2. This numerically validates the analysis of
section 5.2, and further shows that the analytical solution derived there is stable to discretiza-
tion and round-off errors. We have additionally verified that this solution develops finite time
singularities from arbitrarily small data as measured by the L2 or L∞ norms of ω, by taking
the imaginary singularity location vc(0) large while retaining Ω(0)> 2.

Small perturbations of the initial data (46) have no effect on the complex singularity pattern
of the self-similar part of the collapsing solution near t→ tc. Blow up continues to follow
the self-similar form (56) with α= 1/3 and β= 1 and two double poles being the closest
singularity to the real line.

7.3.3. Solutions for a= 0, σ= 1. We performed numerical computations for the initial value
problem with a= 0 and σ= 1 and initial data of the form (58) containing a pair of simple
poles. The computations validate (i.e. agree quantitatively) with the analytical solution (59)
described in section 5.3 by showing (1) global existence ifRe(ω−1(0))>−ν, (2) stationarity if
ω−1(0) =−ν and (3) collapse with self-similar form (5) and α= β = 1 if Re(ω−1(0))<−ν.

We also performed numerical computations for the initial value problem with a= 0 and
σ= 1 using initial data of the form (64) which contains two pairs of simple poles. We con-
sidered the two cases ω−1,1(0)+ω−1,2(0) ̸= 0 and ω−1,1(0)+ω−1,2(0) = 0. The computa-
tions agree quantitatively with the analytical solutions described in section 5.3. We are able to
observe self-similar blow up in the form (5) with α= β = 1 and with α= β = 2 (see figure 5).
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Figure 5. Evolution of maxx |ω|(t) and δx(t) during numerical simulations with a= 0,
σ= 1, ν= 1 and initial data (64), which contains two pairs of simple poles. The
initial pole positions and amplitudes are vc,1(0) = 0.1,vc,2(0) = 0.9 and ω−1,1(0) =
−ω−1,2(0) = K. Top: K=−1.9, global existence of the solution. Middle: K=−2.1,
self-similar collapse in the form (5) with α= β = 1. Bottom: K=−2, self-similar col-
lapse in the form (5) with α= β = 2. Note that in the case of collapse, data for maxx|ω|
and δx(t) display linear behavior (with slope β and α, respectively) when plotted versus
tc− t.

However, the latter type of blow up is unstable, in the sense that arbitrarily small perturbations
of the initial data transform it into blow up of type (5) with α= β = 1 or lead to no collapse
at all (see the top of figure 5).
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Also we have found and checked numerically that the initial condition w0(x) = 2iA(1/(x−
iVc)2 − 1/(x+ iVc)2)with two double poles, whereA,Vc > 0 are real numbers, leads to similar
solutions. Each of the double poles splits into two single poles at t= 0, one of which initially
moves toward the real line while the other one moves away. This initial condition could be
obtained from (64) as a limit ϵ→ 0 of

ω−1,1 (t= 0) =−ω−1,2 (t= 0)∼−A
ϵ
, vc,1 (t= 0)∼ Vc− ϵ, vc,2 (t= 0)∼ Vc+ ϵ.

Substitution of this initial data into the solution (70) gives

ω−1,1 (t) =−ω−1,2 (t) =−
√
A
2t
,vc,1 (t) = νt−

√
2At+Vc,vc,2 (t) = νt+

√
2At+Vc.

If A> 2νVc, this solution leads to self-similar blow up in the form (5) with α= β = 1 at
time tc = (A− νVc−

√
(A− νVc)2 − (νVc)2)/ν2. At the time t= tc the lower poles cross the

real axis at x= xc = 0, so that vc,1(tc) = 0, with nonzero velocity v ′c,1(tc)< 0.
If A= 2νVc, this solution provides a self-similar blow up with α= β = 2 at the time tc =

A/2= νVc, when the lower pole approaches the real axis at x= xc = 0 with zero velocity
v ′c,1(tc) = 0.

For A< 2νVc, the solution exists for all t> 0 since the lower pole does not reach the real
axis.

7.3.4. Solutions for a= 0, σ= 0. We performed numerical computations for the initial value
problem with a= 0 and σ= 0 and initial data of the form (73) containing a pair of simple
poles. The computations validate (i.e. agree quantitatively) with the analytical solution (74)
described in section 5.4 which exhibits global existence if Re[ω−1(0)]>−νRe[vc(0)]), steady
states if Re[ω−1(0)] =−νRe[vc(0)], and self-similar collapse with α= β = 1 if Re[ω−1(0)]<
−νRe[vc(0)]. We have also numerically confirmed all other formulas and claims made in
section 5.4 regarding tc, xc and ∥ω(x, t)∥L∞ , ∥ω(x, t)∥L2 , ∥ω(x, t)∥B0 , EK(t).

8. Conclusion

We have shown global-in-time existence of solutions to the generalized Constantin–Lax–
Majda equation with dissipation, in the case of small data in the periodic geometry, for σ ⩾ 1
and any a. This extends previous results on global existence theory from a subset of the range
a⩽−1 to all a. Our analysis is by two complementary approaches. The first result, theorem
3.1, proves that the solution exists globally in time for σ ⩾ 1 and sufficiently small data as
measured by the Wiener norm ∥ω∥B0 . Furthermore, the solution is analytic in a strip in C con-
taining the real line for any t> 0. The theorem also gives a lower bound on the critical initial
magnitude of vorticity (in the Wiener norm) for global existence.

Our second main result, theorem 4.7, shows global-in-time existence for small periodic
data in L2 when σ> 1. The proof shows the solution at any time t> 0 exists in Hγ for all
1/2< γ <min[1,σ− 1/2]. Following the approach of [19], this solution is also expected to
be analytic in a strip in the complex plane for t> 0.

The analytical theory is complemented by numerical computations for different a and σ.
The numerics are able to track the formation and motion of singularities in the complex plane.
Computations in the periodic geometry for σ ⩾ 1 are always found to indicate global existence
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of solutions when the initial vorticity is below a critical amplitude. This is in agreement with
the analytical theory. On the other hand, the numerics shows that finite-time blow up can occur
for sufficiently large amplitude data. We derive a new exact analytical solution in the periodic
geometry for a= 0 and σ= 0 which forms finite-time singularities for arbitrarily small L2 data
(but not for arbitrarily small data in L∞ or theWiener space B0). This result is suggestive of the
existence in the periodic geometry of a critical value of σ, belowwhich there can be singularity
formation for arbitrarily small data.

In contrast, the problem on the real line can exhibit finite-time singularity formation for
arbitrarily small data as measured by the L2 or L∞ norm of ω, at least for σ = 0, 1, and 2 at
various a. This is established by the derivation of new exact analytical solutions for a= 0 and
1/2. The new solutions exhibit interesting dynamics, which are further explored by numerical
simulation. We also revisit an analytical solution derived by Schochet [36] for a= 0 and σ= 2,
which leads to finite-time singularity formation for arbitrarily small data. A minor correction
is made to the solution (after which the analytical results agree with numerical computations)
and the solution is reinterpreted from the standpoint of self-similar blow up.

In future work, we will provide a comprehensive numerical investigation of finite-time
singularity formation for a wide range of a in both the periodic and real-line problems. Of
particular interest is the effect of the dissipation on the critical parameter ac which separates
self-similar collapsing solutions from expanding and ‘neither collapsing nor expanding’ solu-
tions observed in the problemwithout dissipation [31]. Another interesting question is whether
σ= 1 is the optimal lower bound for which global existence for small data can be guaranteed.
A related question for the problem on the real line is whether there exists a value of σ greater
than 2 for which one can guarantee global existence for small data. These questions are left
for future work.
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Appendix

A.1. Proof of the inequality (12)

Given θ > 0, we want to find C⩾ 0 such that for all ( j,k) ∈ Z2, we have

|k|θ ⩽ C
(
|k− j|θ + | j |θ

)
.
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First, note that if k= 0, the inequality is satisfied for any C⩾ 0.We now focus on the case
k ̸= 0. Notice that if k ̸= 0 then also |k− j|θ + | j |θ ̸= 0. The value C may then be taken to be
the maximum of

|k|θ

|k− j|θ + | j |θ
=

1∣∣1− j
k

∣∣θ + ∣∣ jk ∣∣θ .
We define z= j/k, and we seek to find the maximum value for z ∈ R of the function

f(z) =
1

|1− z|θ + |z|θ
.

We consider this in three regions. First, if z⩾ 1, then

f(z) =
1

(z− 1)θ + zθ
.

We note the values f(1) = 1 and limz→∞ f(z) = 0. We compute

f ′ (z) =−θ
(z− 1)θ−1

+ zθ−1(
(z− 1)θ + zθ

)2 .
If f ′(z) = 0, then (z− 1)θ−1 =−zθ−1, and this equation has no solutions on [1,∞). Therefore
the maximum of f for z ∈ [1,∞) is attained at z= 1, and is f(1) = 1.

Next we consider 0⩽ z⩽ 1. On this domain, the function f becomes

f(z) =
1

(1− z)θ + zθ
.

The boundary values on this domain are f(0) = 1 and f(1) = 1.We take the derivative, finding

f ′ (z) =−θ
−(1− z)θ−1

+ zθ−1(
(1− z)θ + zθ

)2 .

Setting f ′(z) = 0, we find a critical point at z= 1/2. At this point, we have the function value
f(1/2) = 2θ−1. So, for z ∈ [0,1], we have f(z)⩽max{1,2θ−1}.

Finally, we let z ∈ (−∞,0]; on this domain, f is given by

f(z) =
1

(1− z)θ +(−z)θ
.

On this domain the boundary values are f(0) = 1 and limz→−∞ f(z) = 0. The derivative of f is

f ′ (z) =−θ
−(1− z)θ−1 − (−z)θ−1(

(1− z)θ +(−z)θ
)2 .

Setting f ′(z) = 0, we find the equation (1− z)θ−1 =−(−z)θ−1. There are no solutions of this,
so the maximum of f on the present domain is attained at z= 0, and is f(0) = 1.

Overall, we have demonstrated that (12) holds with C=max{1,2θ−1}.
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A.2. Proof of lemma 4.1

Denote the integrand in (21) as J(t, τ), and decompose the integral as

ˆ t

0
J(t, τ) dτ =

(ˆ 1

0
+

ˆ t

1

)
J(t, τ) dτ.

= I1 + I2

For t⩽ 2 (say), the integral can be bounded by a constant that is independent of t. This follows
by using |e−q̂(t−τ)|⩽ 1 and making the change of variable θ = τ/t which gives

ˆ t

0
J(t, τ) dτ ⩽ t1−α̂−β̂

ˆ 1

0

1

(1− θ)
α̂
θβ̂+δ̂

dθ,

which is bounded for 0⩽ α̂ < 1, 0⩽ α̂+ β̂ ⩽ 1, 0⩽ β̂+ δ̂ < 1 and 0⩽ t⩽ 2.
Therefore, w.l.o.g. assume t> 2. To bound I1, note that e−q̂(t−τ) ⩽ e−q̂(t−1) on the integra-

tion interval and make the change of variable θ = τ/t to obtain

I1 ⩽ e−q̂(t−1)t1−α̂−β̂

ˆ 1/t

0

1

(1− θ)
α̂
θβ̂+δ̂

dθ

⩽ 2α̂e−q̂(t−1)t1−α̂−β̂

ˆ 1/t

0

1

θβ̂+δ̂
dθ

⩽ 2α̂

1− β̂− δ̂
e−q̂(t−1)tδ̂−α̂,

where we have used 1/(1− θ)α̂ ⩽ 2α̂ on θ ∈ [0,1/t] when t⩾ 2. Hence I1 < C for t> 2. To
bound I2, note that in the integration interval τ β̂ > 1 and make the change of variable v= t− τ
to obtain

I2 ⩽
ˆ t−1

0

e−q̂v

vα̂
1(

1− v
t

)δ̂ dτ

=

(ˆ (t−1)/2

0
+

ˆ t−1

(t−1)/2

)
e−q̂v

vα̂
1(

1− v
t

)δ̂ dv

= J1 + J2.

J1 is bounded as

J1 ⩽
(
1
2
+

1
2t

)−δ̂ ˆ ∞

0

e−q̂v

vα̂
dv

⩽ C,
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while J2 satisfies the estimate

J2 ⩽
(
t− 1
2

)−α̂

e−q̂( t−1
2 )
ˆ t−1

(t−1)/2

dv(
1− v

t

)δ̂
⩽ 2α̂e−q̂( t−1

2 ) t

1− δ̂

⩽ C.

Hence I2 < C for t> 2, and the result follows.

A.3. Proof of lemma 4.3

Let Ht(k) = e−2t|k|σ , and assume σ> 0. Then

∑
k∈Z

Ht (k) = 1+ 2
∞∑
k=1

Ht (k)

⩽ 1+ 2

(
Ht (1)+

ˆ ∞

1
Ht (k) dk

)
. (92)

Substitute u= 2tkσ into the integral in (92) and estimate it as

ˆ ∞

1
Ht (k) dk=

(2t)−1/σ

σ

ˆ ∞

2t
e−uu1/σ−1 du

⩽ Ct−1/σe−t. (93)

The second inequality follows from elementary estimates.
Substitute (93) and Ht(1) = e−2t into (92) to obtain∑

k∈Z
e−2t|k|σ ⩽ 1+ 2

(
e−2t+Ce−tt−1/σ

)
(94)

which can be easily simplified to obtain the final form (28). Finally, note that if the k= 0 term
in the norm ∥e−tρ(·)∥l2 is omitted, which in turn implies that the first 1 in (92), (94), and (28)
can be omitted.
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