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Abstract. We study dispersive models of fluid flow in viscoelastic vessels, derived in the study of blood flow. The unknowns
in the models are the velocity of the fluid in the axial direction and the displacement of the vessel wall from rest. We prove
that one such model has a well-posed initial value problem, while we argue that a related model instead has an ill-posed
initial value problem; in the second case, we still prove the existence of solutions in analytic function spaces. Finally, we
prove the existence of some periodic traveling waves.
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1. Introduction

We consider a fluid-structure interaction problem with a fluid flowing within a viscoelastic vessel, moti-
vated by hemodynamics. The specific models to be studied have been derived in [23], based on the prior
work [22]. As shown in Fig. 1, we consider an axisymmetric flow. The model equations begin from the
Navier–Stokes equations for incompressible flow, making a number of assumptions, such as laminar flow
with small viscosity.

The vessel containing the fluid is taken to have a given undisturbed radius r0(x), and we study the
displacement, η(x, t), of this; we call the total radius of the vessel, then, rw(x, t) = r0(x) + η(x, t). The
horizontal component of the fluid velocity is u(x, t); this is taken to be the horizontal velocity at a
particular distance between the centerline of the vessel and the outer wall. A classical Boussinesq system
of equations is derived, making assumptions on the scaling of the various velocities; this system is

ηt +
1
2
(r0 + η)ux + (r0 + η)xu = 0, (1.1)

[1 − ᾱr0xx]ut + (β̄η)x + uux − (4ᾱ + r0)r0
8

uxxt +
(3ᾱ + r0)r0x

2
(β̄η)xx

+κu − γ
(
β̄(r0xu +

r0
2

ux)x

)
= 0. (1.2)

There are a number of parameters here which must be described. First, ρ is the density of the fluid
while ρw is the density of the wall material, and h is the thickness of the wall. These are combined in
the parameter ᾱ = ρwh

ρ , measuring the relative densities of the wall and the fluid. The parameter E

measures elasticity of the wall, and then β̄ (which is a function of x rather than being constant) is given
by β̄(x) = Eh

ρr2
0(x)

. The parameters κ and γ are both viscosities, with κ being the fluid viscous frequency
parameter (i.e., the Rayleigh damping coefficient). We have said that the wall of the vessel is taken to be
viscoelastic, and γ measures the viscous properties of the wall.

Prior models have considered the vessel wall to be elastic, rather than viscoelastic [11,20,22]. However,
accurate modeling of the anatomy of blood vessels requires the more detailed (viscoelastic) description.
Specifically, as described in [8], there are three layers of a blood vessel, the tunica intima (inner layer),
tunica media (middle layer), and tunica externa (outer layer), and the smooth muscle cells in the tunica
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Fig. 1. Sketch of a vessel segment

media exhibit viscoelastic properties [28]. Furthermore, in some regimes, these viscoelastic properties are
dominant as compared to purely elastic effects [3]. Nevertheless, if one wished to consider a purely elastic
wall (as in the above references), our existence theorems are valid even without accounting for the viscous
properties of the wall, i.e., with γ = 0.

In the case that r0 is constant, the model simplifies considerably; notice that not only do derivatives
of r0 now vanish, but also β̄ becomes constant so that its derivatives now also vanish. The result is

ηt +
1
2
(r0 + η)ux + ηxu = 0, (1.3)

ut + β̄ηx + uux − (4ᾱ + r0)r0
8

uxxt + κu − γ
(
β̄

r0
2

uxx

)
= 0. (1.4)

We prove three main results in the present work. First, for the model (1.3), (1.4) with constant r0,
we demonstrate well-posedness of the initial value problem in Sobolev spaces. Notably, by contrast, we
provide evidence that the more general model (1.1), (1.2) instead has an ill-posed initial value problem.
That an initial value problem is ill-posed does not imply that there are no solutions, however. An example
of this is the classical vortex sheet initial value problem, which is known to be ill-posed in Sobolev spaces
[10]. Existence of solutions for the vortex sheet problem may be established in analytic function spaces
[13,27]. Similarly to [27], we prove existence of solutions for the initial value problem for (1.1), (1.2) in
analytic spaces based on the Wiener algebra, making use of an abstract Cauchy–Kowalevski theorem
[16]. The interested reader might also see [7,15] for other examples of model equations in free-surface
fluid dynamics for which solutions have been proved to exist in analytic function spaces, when the well-
posedness in spaces of finite regularity is in question.

The model (1.1), (1.2) is bidirectional, in that waves may propagate either to the left or the right.
The authors of [23] also derive unidirectional models, related to the Korteweg–de Vries equation and
the Benjamin–Bona–Mahony equation. These models are simpler and reduce to a single equation for η.
We consider the contrast in the bidirectional case between well-posedness when r0 is constant and likely
ill-posedeness when r0 is non-constant to be an interesting feature of the present work; this contrast
is not present in the unidirectional models, as (relying on results such as those of [1,2,6], or [12]) the
unidirectional models can be shown to be well-posed in either case. As the bidirectional models are
therefore more interesting, we restrict our studies to them.

In addition to developing the models we study here, the authors of [23] also studied properties of
traveling waves, including the case γ = κ = 0. For our third main result, then, we prove existence of such
waves. Specifically, we prove existence of periodic traveling waves of the system (1.3), (1.4) in the case
that γ = κ = 0. This is the doubly inviscid case, meaning that for the existence of traveling waves, we
neglect the viscous properties of the fluid and of the vessel wall. We prove this by a “bifurcation from a
simple eigenvalue” method, after studying the kernel of the linearized operator associated to (1.3), (1.4).
In general, this operator has a two-dimensional kernel, but when γ = κ = 0, we may enforce symmetry,
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reducing the dimension of the kernel to one. Analytical studies of the traveling waves in the more general
case, with the two-dimensional kernel, will be the subject of future work.

The plan of the paper is as follows. In Sect. 2, we prove well-posedness in Sobolev spaces of the
initial value problem for the system (1.3), (1.4); the main theorems of this section are Theorem 2.7
demonstrating existence, and Theorem 2.8 demonstrating uniqueness and continuous dependence on the
data. In Sect. 3, we give a calculation suggesting ill-posedness of the more general system (1.1), (1.2), and
then prove existence of solutions for this system in analytic function spaces by application of an abstract
Cauchy–Kowalevski theorem. The main theorem of Sect. 3 is Theorem 3.6. In Sect. 4, we prove existence
of periodic traveling waves for the system (1.3), (1.4) when κ = γ = 0; this is the content of Theorem 4.2.
We make some concluding remarks in Sect. 5.

2. Well-posedness in Sobolev spaces when r(x) is constant

In this section, we use the energy method to prove well-posedness in Sobolev spaces of the spatially
periodic initial value problem for the system (1.3), (1.4). We argue along the same lines as the second
other used for a toy model for the vortex sheet with surface tension in [5].

We recall the model (1.3), (1.4), and we rearrange terms as follows:

ηt = −1
2
r0ux − 1

2
ηux − ηxu,

ut =
(

1 − (4α + r0)r0
8

∂xx

)−1(
−βηx − uux − κu +

γβr0
2

uxx

)
.

We introduce an approximate system, giving equations for ηε
t and uε

t using mollifier operators Jε for any
approximation parameter ε > 0. (For a detailed description of mollifier operators and their properties,
the interested reader could consult Chapter 3 of [21]; it is enough to say that they are self-adjoint
smoothing operators and could be taken specifically to be truncation of the Fourier series at level 1/ε.)
Our approximate system is:

ηε
t = −1

2
r0u

ε
x − 1

2
ηεuε

x − Jε ((Jεη
ε
x)uε) , (2.1)

uε
t = A−1

(
−βηε

x − uεuε
x − κuε +

γβr0
2

uε
xx

)
, (2.2)

where A−1 =
[
1 − (4α+r0)r0

8 ∂xx

]−1

. The system (2.1), (2.2) is taken with initial conditions, namely

ηε(·, 0) = η0 ∈ Hs, uε(·, 0) = u0 ∈ Hs+1. (2.3)

Here, s ∈ N with s ≥ 2, and Hs = Hs(T) and Hs+1 = Hs+1(T) are the standard spatially periodic
L2-based Sobolev spaces, equipped with the usual norms.

We will show that given initial data η0 and u0, there exists a time interval [0, T ] (depending only on
the size of the data) such that there exists a solution (η, u) solving our initial value problem over the time
interval [0, T ]. Our first step is to apply the Picard Theorem on Banach spaces, which we now state [21].

Theorem 2.1. (Picard Theorem). Let B be a Banach space, and let O ⊆ B be an open set. Let F : O → B
such that F is locally Lipschitz: ∀X ∈ O,∃λ > 0 and an open set U ⊆ O such that ∀Y,Z ∈ U ,

‖F (Y ) − F (Z)‖B ≤ λ ‖Y − Z‖B .

Then, ∀X0 ∈ O,∃ T > 0 and a unique X ∈ C1([−T, T ];O) such that X solves the initial value problem

dX

dt
= F (X), X(0) = X0.
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We will take O = B = Hs × Hs+1 and introduce the following lemma:

Lemma 2.2. Let (η0, u0) ∈ O be given. For any ε > 0, there exists Tε > 0 and (ηε, uε) ∈ C1([0, Tε];O)
such that (ηε, uε) satisfies (2.1), (2.2) and the initial conditions (2.3).

We omit the proof of Lemma 2.2; it follows immediately from the Picard Theorem and from properties
of mollifiers. Note that we only introduced two mollifier operators on the right-hand side of (2.1), and
none on the right-hand side of (2.2). For (2.1), this is because when solving (1.3) for ηt, if we consider
(η, u) ∈ Hs × Hs+1, then the only unbounded term is ηxu. (We have included two instances of Jε to be
able to achieve a balance when integrating by parts in the energy estimates to follow.) For (2.2), when
solving (1.4) for ut and again considering (η, u) ∈ Hs × Hs+1, there are no unbounded terms (because of
the presence of the operator A−1).

2.1. Energy estimate

Next, we will show that there exists T > 0 and ε0 > 0 such that for all ε ∈ (0, ε0), the solutions (ηε, uε)
are elements of C([0, T ];O). In order to complete the proof, we will use the following ODE theorem [21]:

Theorem 2.3. (Continuation Theorem for ODEs). Let B be a Banach space and Ω ⊆ B be an open set
and F : Ω → B be locally Lipschitz continuous. Let X0 = (η0, u0) ∈ Ω and X = (η, u) be the solution of
initial value problem:

dX

dt
= F (X), X(0) = X0,

and let T > 0 be the maximal time such that X ∈ C1([0, T ]; Ω). Then either T = ∞ or T < ∞ with X(t)
leaving the set Ω as t → T .

In order to use Theorem 2.3, we need to prove that the norm of (ηε, uε) may be controlled uniformly
with respect to ε. We establish this in the following lemma using the energy method.

Lemma 2.4. Let (η0, u0) ∈ O. There exists T > 0 such that for all ε ∈ (0, 1], the initial value problem
(2.1), (2.2), (2.3) has a solution (ηε, uε) ∈ C([0, T ],O).

Proof. Let ε ∈ (0, 1] be given. We know there exists Tε > 0 and (ηε, uε) ∈ C1([−Tε, Tε];O), which solves
the regularized initial value problem. Now, we will show that these solutions can be continued until a
time T , with T being independent of ε.

We define an energy E(t) = E0(t) + E1(t) + E2(t) to be

E0(t) =
1
2

2π∫

0

(ηε)2 + (uε)2dx,

E1(t) =
1
2

2π∫

0

(∂s
xηε)2dx,

E2(t) =
1
2

2π∫

0

(∂s+1
x uε)2dx.

Of course, this energy is equivalent to the square of the Hs-norm of ηε plus the square of the Hs+1-norm
of uε. We will show that the time derivative of the energy is bounded in terms of the energy, as long as
s ≥ 2.
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We begin with showing dE0
dt is bounded appropriately, so we calculate

dE0

dt
=

2π∫

0

ηε(ηε
t ) + uε(uε

t) dx. (2.4)

Substituting (2.1) and (2.2) into (2.4), we have

dE0

dt
=

2π∫

0

ηε

(
−1

2
r0u

ε
x − 1

2
ηεuε

x − Jε ((Jεη
ε
x)uε)

)
dx

+

2π∫

0

uε

(
1 − (4α + r0)r0

8
∂xx

)−1(
−βηx − uux − κu +

γβr0
2

uxx

)
dx.

We may then immediately bound this as

dE0

dt
≤ c

(
‖ηε‖H0 ‖uε‖H1 + ‖ηε‖H0 ‖ηε‖H0 ‖uε‖H2

+ ‖ηε‖H0 ‖ηε‖H2 ‖uε‖H0 + ‖uε‖H0 ‖ηε‖H0 + ‖uε‖3H0 + ‖uε‖2H0 + ‖uε‖2H0

)
.

Therefore, dE0
dt satisfies the following energy estimate as long as s ≥ 2:

dE0

dt
≤ c(E + E

3
2 ).

Now, we turn to E1; taking its time derivative, we have

dE1

dt
=

2π∫

0

(∂s
xηε)(∂s

xηε
t) dx. (2.5)

Substituting (2.1) into (2.5), we have

dE1

dt
= −r0

2

2π∫

0

(∂s
xηε)(∂s+1

x uε) dx − 1
2

2π∫

0

(∂s
xηε)∂s

x[ηεuε
x] dx

+

2π∫

0

(∂s
xJεη

ε)∂s
x[(Jεη

ε
x)uε] dx =

3∑
k=1

Ψk. (2.6)

In the formula for Ψ3, we have already used that the mollifier operator Jε is self-adjoint. We will show
each Ψk in (2.6) is bounded in terms of the energy, E.

Since the energy is equivalent to the sum of the square of the Hs-norm of ηε and the square of the
Hs+1-norm of uε, the bound

Ψ1 ≤ cE (2.7)

is immediate. For Ψ2, we immediately may bound it as

Ψ2 ≤ ‖∂s
xηε‖0‖∂s

x (ηεuε
x) ‖0 ≤ ‖ηε‖s‖ηεuε

x‖s.

Since s ≥ 1, we may use the Sobolev algebra property, finding

Ψ2 ≤ c‖ηε‖2s‖uε‖s+1 ≤ cE
3
2 . (2.8)
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Now, we turn to the third term, Ψ3, on the right-hand side of (2.6). Using the product rule to expand
derivatives, Ψ3 can be rewritten as follows:

Ψ3 = −
2π∫

0

(∂s
xJεη

ε)
s∑

k=0

(
s

k

)
(∂k+1

x Jεη
ε)(∂s−k

x uε) dx. (2.9)

The most singular term on the right-hand side of (2.9) is the k = s term, for which all derivatives fall on
ηε. Thus, we decompose (2.9) as

Ψ3 = −
2π∫

0

(∂s
xJεη

ε)(∂s+1
x Jεη

ε)(∂xuε) dx

−
2π∫

0

(∂s
xJεη

ε)
s−1∑
k=0

(
s

k

)
(∂k+1

x Jεη
ε)(∂s−k

x uε) dx. (2.10)

The first term on the right-hand side of (2.10) can be integrated by parts, arriving at

Ψ3 =
1
2

2π∫

0

(∂s
xJεη

ε)2(∂2
xuε) dx

−
2π∫

0

(∂s
xJεη

ε)
s−1∑
k=0

(
s

k

)
(∂k+1

x Jεη
ε)(∂s−k

x uε) dx. (2.11)

We see then that the right-hand side of (2.11) involves at most s derivatives of ηε and at most s + 1
derivatives of uε; this implies

Ψ3 ≤ cE3/2. (2.12)

Combining (2.7), (2.8), and (2.12), we have

dE1

dt
≤ c(E + E3/2).

Just as dE0
dt and dE1

dt are bounded by the energy, we will also show dE2
dt is bounded by E. Taking the

derivative of E2 with respect to time, we have

dE2

dt
=

1
2

2π∫

0

(∂s+1
x uε)(∂s+1

x uε
t)dx. (2.13)

Substituting (2.2) into (2.13) leads to the following sum:

dE2

dt
= −1

2

2π∫

0

(
∂s+1

x uε
) (

∂s+1
x A−1βηε

x

)
dx

− 1
2

2π∫

0

(
∂s+1

x uε
) (

∂s+1
x A−1(uεuε

x)
)

dx − 1
2

2π∫

0

(
∂s+1

x uε
) (

∂s+1
x A−1κuε

)
dx

+
1
2

2π∫

0

(
∂s+1

x uε
)(

∂s+1
x A−1 γβr0

2
uε

xx

)
dx =

4∑
k=1

Ωk. (2.14)
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We begin to estimate the first term in the summation in (2.14). We can bound both factors in L2 :

Ω1 ≤ c
∥∥∂s+1

x uε
∥∥

L2

∥∥∂s+2
x A−1ηε

∥∥
L2 .

We recall that A−1 smoothes by two derivatives, leading us to find

Ω1 ≤ c ‖uε‖Hs+1 ‖ηε‖Hs .

Thus, we have Ω1 bounded by the energy:

Ω1 ≤ cE
1
2
2 E

1
2
1 ≤ cE.

Next, we turn to the second summand on the right-hand side of (2.14), Ω2. We again bound each of the
two factors in L2 :

Ω2 ≤ c
∥∥∂s+1

x uε
∥∥

L2

∥∥∂s+1
x A−1(uεuε

x)
∥∥

L2 .

Again using that A−1 smoothes by two derivatives, we have

Ω2 ≤ c ‖uε‖Hs+1 ‖uεuε
x‖Hs−1 .

Using the Sobolev algebra property, this yields the desired bound, namely

Ω2 ≤ cE
3
2 .

We move on to Ω3, and estimate it similarly, finding

Ω3 ≤ c ‖∂s
xuε‖L2 ‖∂s

xuε‖L2 ,

which implies

Ω3 ≤ cE.

Lastly, we estimate Ω4. For the second factor in Ω4, we use again that A−1 is smoothing by two derivatives.
These considerations yield the bound

Ω4 ≤ c
∥∥∂s+1

x uε
∥∥

L2

∥∥∂s+1
x uε

∥∥
L2 ≤ cE.

We have now established
∑4

k=1 Ωk ≤ c(E +E
3
2 ). Thus, we arrive at the corresponding bound for dE2

dt ,

dE2

dt
≤ c

(
E + E

3
2

)
,

and also for dE
dt ,

dE

dt
=

dE0

dt
+

dE1

dt
+

dE2

dt
≤ c

(
E + E

3
2

)
. (2.15)

We let d > 0 be such that E(0) ≤ d. We ask on what interval of values of t we may guarantee that
E(t) ≤ 2d; for such values of t, we have

dE

dt
≤ c

(
E + E

3
2

)
≤ c

(
2d + (2d)

3
2

)
.

This implies that on an interval on which E ≤ 2d,

E ≤ c
(
2d + (2d)

3
2

)
t + d.

Thus, we can conclude that E(t) ≤ 2d for all t satisfying

t ∈
⎡
⎣0,

d

c
(
2d + (2d)

3
2

)
⎤
⎦ .

As this time interval is independent of ε, this completes the proof. �
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Remark 2.5. We used several times above that the operator A−1 is smoothing by two derivatives. To be
more precise, since we are in the spatially periodic case we may use the Fourier series to see that A−1 is
a bounded linear operator between any space H� and H�+2. This is immediate because the A operator
here has constant coefficients. In Sect. 3, we will need to use an analogous operator, but in the more
general case of non-constant coefficients. This will be more involved, and understanding this inverse on
certain function spaces (exponentially weighted Wiener algebras) will be a significant focus of Sect. 3.

2.2. Well-posedness of the initial value problem

In this section, we establish the three elements of well-posedness (existence, uniqueness, and continuous
dependence upon the initial data) for the initial value problem for the non-mollified system (1.3), (1.4).
We begin with existence and will at the same time establish regularity of the solution. In demonstrating
the highest regularity (that the solution is continuous in time with values in Hs × Hs+1), we rely on the
following elementary interpolation inequality; the proof of this may be found many places, one of which
is [4].

Lemma 2.6. (Interpolation Inequality) Let s′ ≥ 0 and s ≥ s′ be given. There exists c > 0 such that for
every f ∈ Hs, the following inequality holds:

‖f‖Hs′ ≤ c ‖f‖1− s′
s

H0 ‖f‖ s′
s

Hs .

The following is our existence theorem.

Theorem 2.7. Let s ∈ N such that s ≥ 2 be given. Let η0 ∈ Hs and u0 ∈ Hs+1 be given. Let T > 0 be
as in Lemma 2.4. Then there exists (η, u) ∈ C([0, T ];Hs × Hs+1) which solves the initial value problem
(1.3), (1.4) with data η(·, 0) = η0, u(·, 0) = u0.

Proof. The energy estimate we have established shows that (ηε, uε) is uniformly bounded in C([0, T ] :
Hs × Hs+1), with this T being independent of ε. This implies that (ηε

t , u
ε
t) is uniformly bounded with

respect to ε in L∞ ×L∞ as well, when s ≥ 2. This implies that the sequence (ηε, uε) is an equicontinuous
family, and thus by the Arzela–Ascoli theorem there exists a subsequence (which we do not relabel)
(ηε, uε) which converges uniformly to some (η, u) ∈ (C([0, 2π] × [0, T ]))2. We now establish regularity of
this (η, u) and that (η, u) is a solution of the non-regularized initial value problem.

Since the sequence (ηε, uε) is uniformly bounded with respect to both ε and t in Hs ×Hs+1, and since
the unit ball of a Hilbert space is weakly compact, for any t ∈ [0, T ] we may find a weak limit in Hs×Hs+1.
Clearly this limit must again equal (η, u), and thus we conclude that for every t, (η(·, t), u(·, t)) ∈ Hs ×
Hs+1, and that (η, u) ∈ L∞([0, T ];Hs × Hs+1).

Since (ηε, uε) converges to (η, u) in (C([0, 2π] × [0, T ]))2, the convergence also holds in C([0, T ];H0 ×
H0). Then using the uniform bound on (ηε, uε) provided by the proof of Lemma 2.4, and also using
Lemma 2.6, we see that the convergence also holds in C([0, T ];Hs′ × Hs′+1), for any 0 ≤ s′ < s.

We have concluded so far that the limit (η, u) ∈ C([0, T ];Hs′ × Hs′+1) ∩ L∞([0, T ];Hs × Hs+1). We
can in fact show that (η, u) ∈ C([0, T ];Hs × Hs+1), but we will delay this until after showing that (η, u)
solves the unregularized initial value problem.

To show that (η, u) satisfies the appropriate system, we use the fundamental theorem of calculus on
the approximate solutions,

ηε(·, t) = η0 +

t∫

0

−r0
2

uε
x − 1

2
ηεuε

x − Jε ((Jεη
ε
x)uε) dτ,

uε(·, t) = u0 +

t∫

0

A−1

[
−βηε

x − uεuε
x − κuε +

γβr0
2

uε
xx

]
dτ.
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We have established sufficient regularity to pass to the limit under the integrals, and thus we have

η(·, t) = η0 +

t∫

0

[
−r0

2
ux − 1

2
ηux − ηxu

]
dτ,

u(·, t) = u0 +

t∫

0

A−1

[
−βηx − uux − κu +

γβr0
2

uxx

]
dτ.

Taking the derivative of these equations with respect to time, we see that (η, u) does indeed satisfy the
unregularized initial value problem.

We now may demonstrate (η, u) ∈ C([0, T ];Hs × Hs+1). By a standard argument (see, for example,
the proof of Theorem 3.4 of [21]), the uniform bound on solutions and the continuity in time in Hs′ ×Hs

for all 0 ≤ s′ < s implies weak continuity in time, i.e., (η, u) ∈ CW ([0, T ];Hs × Hs+1). Since weak
convergence plus convergence of the norm implies convergence in a Hilbert space, all that remains to
show, then, is continuity of the Hs × Hs+1 norm with respect to time. To establish continuity of the
norm, it is enough to establish right-continuity at the initial time, t = 0. The general case (i.e., continuity
of the norm at times other than the initial time) follows by considering any other time to be a new initial
time; by uniqueness of solutions, which is part of the content of Theorem 2.8, the solution starting from
some time t∗ ∈ [0, T ) is the same as the solution we have already found starting from t = 0. In this way,
establishing right-continuity of the norm at the initial time demonstrates right-continuity of the norm at
any time in [0, T ). Left-continuity of the norm follows from time-reversibility of the equations.

So, as we have said, all that remains to establish is right-continuity of the Hs × Hs+1 norm of the
solution at t = 0. Weak continuity implies

lim inf
t→0+

‖(η, u)‖Hs×Hs+1 ≥ ‖(η0, u0)‖Hs×Hs+1 . (2.16)

Similarly, for any t ∈ [0, T ], we have

lim sup
ε→0+

‖(ηε(·, t), uε(·, t))‖Hs×Hs+1 ≥ ‖(η(·, t), u(·, t))‖Hs×Hs+1 .

Then, the energy estimate (2.15) implies

‖(η0, u0)‖Hs×Hs+1 ≥ lim sup
t→0+

lim sup
ε→0+

‖(ηε(·, t), uε(·, t))‖Hs×Hs+1

≥ lim sup
t→0+

‖(η(·, t), u(·, t))‖Hs×Hs+1 . (2.17)

Combining (2.16) and (2.17), we have the conclusion. This completes the proof of the theorem. �

Now, we will seek to establish the uniqueness of solutions (η, u), and continuous dependence on the
initial data.

Theorem 2.8. Let (η0, u0) ∈ Hs × Hs+1 and (η∗
0 , u

∗
0) ∈ Hs × Hs+1 be given. Let K > 0 be given such

that

‖(η0, u0)‖Hs×Hs+1 < K, ‖(η∗
0 , u

∗
0)‖Hs×Hs+1 < K.

Let T > 0 be such that there is a solution (η, u) ∈ C([0, T ];Hs × Hs+1) solving (1.3), (1.4) with initial
data η(·, 0) = η0, u(·, 0) = u0 and such that there is a solution (η∗, u∗) ∈ C([0, T ];Hs × Hs+1) solving
(1.3), (1.4) with initial data η(·, 0) = η∗

0 , u(·, 0) = u∗
0, and such that

sup
t∈[0,T ]

‖(η(·, t), u(·, t))‖Hs×Hs+1 ≤ K, sup
t∈[0,T ]

‖(η∗(·, t), u∗(·, t))‖Hs×Hs+1 ≤ K.

Then there exists c > 0, depending only on K and s, such that for any s′ ∈ [0, s),
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sup
t∈[0,T ]

‖(η(·, t) − η∗(·, t), u(·, t) − u∗(·, t))‖Hs′ ×Hs′+1

≤ c (‖(η0 − η∗
0 , u0 − u∗

0)‖H0×H1)1−s′/s
. (2.18)

In particular, solutions of the initial value problem for (1.3), (1.4) are unique.

Proof. We define an energy for the difference of the two solutions, Z, as

Z(t) =

t∫

0

(η − η∗)2 + (u − u∗)2 + (ux − u∗
x)2 dx.

We will estimate the growth of Z. Its time derivative is

dZ(t)
dt

= 2

t∫

0

(η − η∗)(ηt − η∗
t ) + (u − u∗)(ut − u∗

t ) + (ux − u∗
x)(ux − u∗

x)t dx.

We expand the time-derivatives as follows:

(ηt − η∗
t ) = −r0

2
(ux − u∗

x) − 1
2
(ηux − η∗u∗

x) − (ηxu − η∗
xu∗) =

3∑
k=1

zk,

(ut − u∗
t ) = A−1

[
β(ηx − η∗

x) + (uux − u∗u∗
x) + κ(u − u∗) − γβr0

2
(uxx − u∗

xx)
]

=
7∑

k=4

zk,

(ux − u∗
x)t = (ut − u∗

t )x =
7∑

k=4

(zk)x.

Thus, we have

dZ(t)
dt

= 2

t∫

0

[
(η − η∗)

3∑
k=1

zk + (u − u∗)
7∑

k=4

zk + (ux − u∗
x)

7∑
k=4

(zk)x

]
dx. (2.19)

We begin by estimating the first term. Bounding each factor in L2, we have

2

t∫

0

(η − η∗)(z1)dx ≤ c ‖η − η∗‖L2 ‖z1‖L2 .

Since ‖z1‖L2 ≤ c ‖u − u∗‖H1 , we also have ‖z1‖L2 ≤ cZ(t)
1
2 . This then implies

2

t∫

0

(η − η∗)(z1)dx ≤ cZ(t).

Next, we look at the term involving z2. We again bound each factor in L2 :

2

t∫

0

(η − η∗)(z2)dx ≤ c ‖η − η∗‖L2 ‖z2‖L2 .

Here we may bound ‖z2‖L2 as follows:

‖z2‖L2 ≤ 1
2

‖(ηux + (η∗ux − η∗ux) − η∗u∗
x)‖L2 .
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Using the triangle inequality, this may be bounded as

‖z2‖L2 ≤ c ‖ηux − η∗ux‖L2 + c ‖η∗ux − η∗u∗
x‖L2 .

We may bring out ux from the first term and η∗ from the second term:

‖z2‖L2 ≤ c ‖η − η∗‖L2 ‖ux‖L∞ + c ‖η∗‖L∞ ‖u − u∗‖H1 .

By Sobolev embedding, since s ≥ 1, we have ‖ux‖L∞ ≤ c ‖u‖Hs+1 and ‖η∗‖L∞ ≤ c ‖η‖Hs . We therefore
have

‖z2‖L2 ≤ c(‖u‖Hs+1 + ‖η‖Hs)Z(t)
1
2 .

Using the uniform bound on the solutions, we then have

2

t∫

0

(η − η∗)(z2)dx ≤ cZ(t).

Next, we will look at the third term. We begin by adding and subtracting in z3,

z3 = η∗
xu∗ + (η∗

xu − η∗
xu) − ηxu.

We integrate by parts once, finding

2

t∫

0

(η − η∗)(z3)dx = −2

t∫

0

(η − η∗)(η∗)(u∗
x − ux)dx − 2

t∫

0

1
2
(η − η∗)2(ux) dx.

This may then be bounded as

2

t∫

0

(η − η∗)(z3)dx

≤ c ‖η − η∗‖L2 ‖η∗‖L∞ ‖u∗ − u‖H1 + c ‖η − η∗‖2L2 ‖ux‖L∞ .

Again using Sobolev embedding and the uniform bound, we have

2

t∫

0

(η − η∗)(z3)dx ≤ cZ(t).

To complete the proof, it is sufficient to prove

‖zk‖H1 ≤ cZ(t)
1
2 , for k = 4, 5, 6, 7.

We begin with z4. Recall A−1 is smoothing by two derivatives. We may then say

‖z4‖H1 ≤ c ‖η − η∗‖H0 ≤ cZ(t)
1
2 .

To estimate ‖z5‖H1 , we begin by adding and subtracting,

‖z5‖H1 =
∥∥A−1(uux + (u∗ux − u∗ux) − u∗u∗

x)
∥∥

H1 .

We use the triangle inequality and ‖·‖H1 ≤ ‖·‖H2 , so that we have

‖z5‖H1 ≤ ∥∥A−1(uux − u∗ux)
∥∥

H2 +
∥∥A−1(u∗ux − u∗u∗

x)
∥∥

H2 .

Using the smoothing effect of A−1, this becomes

‖z5‖H1 ≤ c ‖u − u∗‖H0 ‖ux‖L∞ + c ‖u∗‖L∞ ‖ux − u∗
x‖H0 .

Using the definition of Z(t), Sobolev embedding, and the uniform bound, we conclude

‖z5‖H1 ≤ cZ(t)
1
2 .
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Proceeding similarly, we also have

‖z6‖H1 ≤ cZ(t)
1
2 and ‖z7‖H1 ≤ cZ(t)

1
2 .

Hence, we may conclude that (2.19) is bounded as follows:

dZ(t)
dt

≤ cZ(t).

By Gronwall’s inequality, we therefore have that Z(t) ≤ ectZ(0) ≤ ecT Z(0). Together with Lemma 2.6,
this implies (2.18). Uniqueness follows by taking Z(0) = 0, as this implies Z(t) = 0 for t > 0. �

3. Existence by the Cauchy–Kowalevski theorem

In this section, we prove an existence theorem for the system (1.1), (1.2), making use of an abstract
Cauchy–Kowalevski theorem. This uses function spaces of analytic functions based on the Wiener algebra.
We take this approach to proving existence because it is not clear that the system is well-posed in spaces
of finite regularity, i.e., Sobolev spaces.

Consider the following simplified system, which is based upon the system (1.1), (1.2) with r0x �= 0,
keeping only the terms with the most derivatives, and simplifying to the constant coefficient case:

ηt = −ux, ut − uxxt = −ηxx. (3.1)

This system is ill-posed, as can be demonstrated with a calculation in Fourier space, which we now
perform.

To begin, we take the second time derivative of η, finding

ηtt = ∂3
x(1 − ∂2

x)−1η.

With the representation η =
∑

k ηkeikx, we have that the symbol of ∂x is ik, and the coefficients ηk then
satisfy

ηk,tt = − ik3

1 + k2
ηk.

If we set k = N > 0, then one solution for ηN is

ηN = exp
{

t

(
1 − i√

2

)
N3/2

√
1 + N2

}
. (3.2)

One sees from (3.2) the source of the ill-posedness: similarly to solutions of the backward heat equation,
the exponential growth rate is unbounded as N → ∞. Linear combinations of solutions for the Fourier
coefficients of the form (3.2) can be made, arriving at real-valued solutions for η, namely

ηN (x, t) = c sin
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

, (3.3)

for some c ∈ R. (Note that as an alternative to working through the Fourier series derivation of the
formula (3.3), it is also straightforward to verify that this ηN , along with the corresponding function uN ,
solves the system (3.1); see “Appendix A” for details.) We let s ≥ 0, and we may then choose c = c(N, s)
so that ‖ηN (·, 0)‖Hs = 1/N. Then, at time t > 0, since c sin

(
Nx − t N3/2√

2+2N2

)
is simply a translate of

ηN (·, 0), the norm becomes

‖ηN (·, t)‖Hs =
etN3/2/

√
2+2N2

N
.
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Letting a sequence of times tN be defined as

tN =
√

2 + 2N2 ln(N)
N3/2

,

we see that tN → 0 as N → ∞, and also that at the times tN we have

‖ηN (·, tN )‖Hs = 1.

This is lack of continuous dependence on the initial data—we have demonstrated that ηN can initially
be arbitrarily small, and also be of unit size arbitrarily fast, by taking N sufficiently large.

The above rigorously demonstrates ill-posedness of the toy linear model (3.1). We then view this as a
heuristic argument suggesting ill-posedness of the system (1.1), (1.2) (with non-constant r0) in Sobolev
spaces. Furthermore, while the derivation of the model in [23] is based an asymptotic expansion of the
velocity potential, Boussinesq models are frequently derived by instead making long-wave approximations;
in such a long-wave model, one typically expects coefficients like r0(x) to be homogenized in the long-
wave limit, see for instance [14] for an example of this phenomenon in the case of long-wave limits of
polyatomic lattices. In this sense, while the system (1.1), (1.2) is more general, the system (1.3), (1.4)
may be more fundamental.

3.1. The abstract Cauchy–Kowalevski theorem of Kano and Nishida

The following abstract Cauchy–Kowalevski theorem is proved by Kano and Nishida [16]; other, related
abstract Cauchy–Kowalevski theorems may be found in [9,24,25].

Theorem 3.1. (Cauchy–Kowalevski Theorem). Let {Bρ}ρ≥0 be a scale of Banach spaces, such that for
any ρ, Bρ is a linear subspace of B0. Suppose that

Bρ ⊂ Bρ′ , ‖·‖ρ′ ≤ ‖·‖ρ for ρ′ ≤ ρ, (3.4)

where ‖·‖σ denotes the norm of Bσ for any σ ≥ 0. We assume the following conditions:
(H1) There exist constants R > R0 > 0, T > 0, and ρ0 > 0, such that for any 0 ≤ ρ′ < ρ < ρ0,
(z, t, s) �→ F (z, t, s) is a continuous operator of

{z ∈ Bρ : ‖z‖ρ < R} × {0 ≤ t ≤ T} × {0 ≤ s ≤ T} into Bρ′ .

(H2) For every ρ < ρ0, F (0, t, s) is a continuous function of t with values in Bρ and satisfies with a fixed
constant K,

‖F (0, t, s)‖ρ ≤ K

ρ0 − ρ
.

(H3) For any 0 ≤ ρ′ < ρ < ρ0 and all z, z̃ ∈ Bρ, with ‖z‖ρ < R, ‖z̃‖ρ < R, F satisfies the following for
all t, s in [0, T ],

‖F (z, t, s) − F (z̃, t, s)‖ρ′ ≤ C ‖z − z̃‖ρ

ρ − ρ′

with a constant C independent of {t, s, z, z̃, ρ, ρ′}.
If (H1)–(H3) hold, there exists a positive constant λ such that we have the unique continuous solution of

z(t) = z0(t) +

t∫

0

F (z(s), t, s) ds, (3.5)

for all 0 < ρ < ρ0 and |t| < λ(ρ0 − ρ), with value in Bρ.
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Remark 3.2. We have stated the conclusion as in [16], but it can be rephrased in a way we will find more
helpful. The existence of λ and the conditions 0 < ρ < ρ0 and |t| < λ(ρ0 − ρ) are equivalent to the
existence of an upper bound on the time of existence for solutions. Namely, the solution can be continued
to a time t > 0 as long as there exists a value ρ ∈ (0, ρ0) such that t < λ(ρ0 − ρ). Thus, the solution
exists on the interval [0, T ), where T = λρ0. In Theorem 3.6, rather than concluding the existence of λ,
we will conclude the existence of T .

Remark 3.3. The form of Eq. (3.5) that Kano and Nishida consider is clearly intended to allow for semi-
groups from linear operators, such as would appear in a parabolic problem. In our intended application,
we have no such semigroup present, so we do not need both variables s and t. In particular, adapting the
initial value problem for the system (1.1), (1.2) to the form (3.5), we get F = (F1, F2), where F1 and F2

are given by (suppressing dependence on the spatial variable)

F1((η(s), u(s)), t, s) = −1
2
(r0 + η(s))ux(s) − (r0 + η(s))xu(s), (3.6)

F2((η(s), u(s)), t, s) = A−1

[
− (β̄η(s))x − u(s)ux(s) − (3ᾱ + r0)r0x

2
(β̄η(s))xx − κu(s)

+γβ̄
(
r0xu(s) +

r0
2

ux(s)
)]

. (3.7)

Here, the operator A is given by

Af =
[
1 − ᾱr0xx − (4ᾱ + r0)r0

8
∂2

x

]
f.

We will use the exponentially weighted Wiener algebras as our spaces Bρ; given ρ ≥ 0, we say f ∈ Bρ

if and only if

‖f‖ρ =
∑
k∈Z

eρ|k||f̂k| < ∞,

where {f̂k} are the Fourier coefficients of f. These spaces satisfy (3.4). Furthermore, these spaces are
Banach algebras, so that if f ∈ Bρ and g ∈ Bρ, then fg ∈ Bρ, with

‖fg‖ρ ≤ ‖f‖ρ‖g‖ρ. (3.8)

These spaces also have the Cauchy estimate; if 0 ≤ ρ′ < ρ, then for all f ∈ Bρ,

‖∂xf‖ρ′ ≤ e

ρ − ρ′ ‖f‖ρ. (3.9)

Now, we move on to show that abstract Cauchy–Kowalevski theorem applies to our system (1.1),
(1.2), by showing that F1, F2 given in (3.6), (3.7) satisfy the hypothesis (H1)–(H3). Before verifying
the hypotheses (H1)–(H3), it is important to understand the action of the operator A−1 on the scale of
spaces Bρ; we consider this inverse operator next in Sect. 3.2, and then verify (H1)–(H3) in Sect. 3.3. In
bounding the inverse operator, we necessarily make some assumptions on the function r0. We will show
that the assumptions on r0 may be satisfied by furnishing a family of examples in Sect. 3.4.

3.2. The inverse operator

In the analysis of Sect. 2, we used the fact that (1−∂2
x)−1 is a bounded linear operator from Hs to Hs+2;

it of course is also a bounded linear operator from Bρ to itself, for any ρ. The inverse operator we must
deal with, however, is more complicated than (1 − ∂2

x)−1, as we now have to account for non-constant
coefficients.
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We begin by rewriting A to factor out the function multiplying ∂2
x,

A = g1
[
g2 − ∂2

x

]
,

where the functions g1 and g2 are given by

g1 =
(4ᾱ + r0)r0

8
, g2 =

8(1 − ᾱr0xx)
(4ᾱ + r0)r0

.

We make the following assumptions on g1 and g2 (of course, these are really assumptions about the
function r0).
(H4) We assume g1 > 0 and there exists ρ0 > 0 and c0 > 0 such that ∂j

xg−1
1 ∈ Bρ0 for j ∈ {0, 1, 2},

g2 ∈ Bρ0 , and ∥∥∥∥
g2 − c0

c0

∥∥∥∥
ρ0

< 1. (3.10)

We will focus now on inverting g2 − ∂2
x. We make the decomposition g2 − ∂2

x = A1 + A2, where

A1 = g2 − c0, A2 = c0 − ∂2
x.

As we are interested in (A1 +A2)−1, we invert the identity A1 +A2 = (1+A1A
−1
2 )A2 to find the formula

(A1 + A2)−1 = A−1
2 (1 + A1A

−1
2 )−1.

It is easily verified that, for any 0 ≤ ρ ≤ ρ0, A−1
2 is bounded from Bρ to itself, with operator norm

1/c0. This implies that A1A
−1
2 is also bounded from Bρ to itself, with

‖A1A
−1
2 ‖Bρ→Bρ

≤
∥∥∥∥

g2 − c0
c0

∥∥∥∥
ρ

≤
∥∥∥∥

g2 − c0
c0

∥∥∥∥
ρ0

.

Thus by (3.10), the operator norm of A1A
−1
2 is strictly less than 1. The operator 1+A1A

−1
2 can therefore

be inverted by Neumann series. We conclude that A−1 is well-defined as a bounded linear operator
mapping Bρ to Bρ. We have proved the following lemma.

Lemma 3.4. Assume (H4). For all ρ satisfying 0 ≤ ρ ≤ ρ0, A−1 is a well-defined bounded linear operator
mapping from Bρ to Bρ.

We also have the following corollary.

Corollary 3.5. Assume (H4). For any 0 ≤ ρ′ < ρ ≤ ρ0, the operators A−1∂x and A−1∂2
x are bounded from

Bρ to Bρ′ , with the estimates

‖A−1∂j
xf‖ρ′ ≤ c‖f‖ρ

ρ − ρ′ , j ∈ {1, 2}.

Proof. We focus on the case j = 2, as the other case is simpler. We write A−1 = (g2 − ∂2
x)−1g−1

1 , and for
f ∈ Bρ0 , we have

A−1∂2
xf = (g2 − ∂2

x)−1g−1
1 ∂2

xf

= (g2 − ∂2
x)−1

[
(∂2

x(g−1
1 f) − 2(∂xg−1

1 )(∂xf) − (∂2
xg−1

1 )f
]
.

We then add and subtract, finding

A−1∂2
xf = (g2 − ∂2

x)−1
[(

∂2
x − g2

) (
g−1
1 f

)]
+ (g2 − ∂2

x)−1(g2g−1
1 f)

− 2(g2 − ∂2
x)−1

(
(∂xg−1

1 )(∂xf)
)− (g2 − ∂2

x)−1
(
(∂2

xg−1
1 )f

)
.

The first term on the right-hand side simplifies, and this becomes

A−1∂2
xf = −g−1

1 f + (g2 − ∂2
x)−1(g2g−1

1 f)

− 2(g2 − ∂2
x)−1

(
(∂xg−1

1 )(∂xf)
)− (g2 − ∂2

x)−1
(
(∂2

xg−1
1 )f

)
.
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There are four terms on the right-hand side, three of which involve zero derivatives of f and one of which
involves ∂xf. All operators applied here either to f or to ∂xf are bounded, and we may then use the
inequalities (3.4) and (3.9) to reach the conclusion. �

As we have said, we will discuss functions r0 which satisfy (H4) in Sect. 3.4.

3.3. Verifying the hypotheses

We are now in a position to state our existence theorem for the initial value problem for the system (1.1),
(1.2).

Theorem 3.6. Assume that r0 satisfies (H4). Furthermore, assume r0, r0x, β̄, and β̄x are all in Bρ0 . Let
η0 ∈ Bρ0 and u0 ∈ Bρ0 be given. Then there exists T > 0 such that there exists a solution (η, u) of the
initial value problem (1.1), (1.2) with initial conditions η(·, 0) = η0, u(·, 0) = u0, on the time interval
[0, T ). At each time t ∈ [0, T ], each of η(·, t) and u(·, t) belong to the space Bρ for all 0 ≤ ρ < ρ0

(
1 − t

T

)
.

Proof. With the estimates we have established, it is immediate that F = (F1, F2) maps Bρ to Bρ′ , for
0 < ρ′ < ρ < ρ0. This establishes (H1). Next, clearly (H2) is automatically satisfied, as F ((0, 0), t, s) = 0.
What remains, then, is to establish (H3).

To begin to verify (H3), we consider F1((η, u), t, s) − F1(η̃, ũ), t, s),∥∥∥∥−
r0
2

(ux − ũx) − 1
2
(ηux − η̃ũx) − (ηxu − η̃xũ)

∥∥∥∥
ρ′

≤
∥∥∥−r0

2
(ux − ũx)

∥∥∥
ρ′

+
∥∥∥∥

1
2
(ηux − η̃ũx)

∥∥∥∥
ρ′

+ ‖−r0x(u − ũ)‖ρ′ + ‖ηxu − η̃xũ‖ρ′

≤ I + II + III + IV.

The first term, I, is readily bounded using the Cauchy estimate (3.9),

I ≤ c ‖u − ũ‖ρ

ρ − ρ′ .

For the second term, II, we add and subtract, and use the algebra property (3.8),

II ≤ 1
2

‖ηux − η̃ux + η̃ux − η̃ũx‖ρ′

≤ 1
2

‖ux‖ρ′ ‖η − η̃‖ρ′ +
1
2

‖η̃‖ρ′ ‖ux − ũx‖ρ′ .

We may then apply the Cauchy estimate (3.9), finding

II ≤ c · ‖η − η̃‖ρ + ‖u − ũ‖ρ

ρ − ρ′ .

The third and fourth terms, III + IV, may be estimated similarly, using the assumption on r0x for the
estimate for III,

III + IV ≤ c · ‖η − η̃‖ρ + ‖u − ũ‖ρ

ρ − ρ′ .

We now consider F2. Specifically, we estimate F2((η, u), t, s) − F2((η̃, ũ), t, s) :

‖F2((η, u), t, s) − F2((η̃, ũ), t, s)‖ρ′ ≤ V + VI + VII + VIII + IX + X,

where

V =
∥∥A−1∂x(β̄(η − η̃))

∥∥
ρ′ ,
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VI = ‖A−1(uux − ũũx)‖ρ′ ,

VII =
∥∥∥∥A−1

(
(3ᾱ + r0)r0x

2
∂2

x(β̄(η − η̃))
)∥∥∥∥

ρ′
,

VIII = κ‖A−1(u − ũ)‖ρ′ ,

IX = γ‖A−1(β̄r0xu)‖ρ′ ,

X =
γ

2
‖A−1(β̄r0∂x(u − ũ))‖ρ′ .

We will omit some details, but each of V , VI, VII, VIII, IX, and X is bounded appropriately. We will
demonstrate the estimate for a few terms, specifically for V , VI and X. The remaining terms are similar.

By Corollary 3.5 and (3.8), and by assumption on β̄, we have

V ≤ c‖β̄‖ρ‖ηx − η̃x‖ρ

ρ − ρ′ ≤ c‖ηx − η̃x‖ρ

ρ − ρ′ .

For VI, we notice uux = 1
2∂x(u2). Thus, we may write

VI =
1
2

∥∥A−1∂x(u2 − ũ2)
∥∥

ρ′ .

We then use Corollary 3.5, finding

VI ≤
c
∥∥u2 − ũ2

∥∥
ρ

ρ − ρ′ .

Application of the algebra property (3.8) then yields

VI ≤ c‖u − ũ‖ρ

ρ − ρ′ .

The final term for which we will provide details is X. We write

β̄r0(ux − ũx) = ∂x

(
β̄r0(u − ũ)

)− (β̄r0)x(u − ũ),

and we bound X as

X ≤ c‖A−1∂x(β̄r0(u − ũ))‖ρ′ + c‖A−1((β̄r0)x(u − ũ))‖ρ′ = X1 + X2.

We use Corollary 3.5, the algebra property (3.8), and our assumptions on r0 and β̄ to bound X1, finding

X1 ≤
c
∥∥β̄r0(u − ũ)

∥∥
ρ

ρ − ρ′ ≤ c‖u − ũ‖ρ

ρ − ρ′ .

For X2, we use Lemma 3.4, the algebra property (3.8), and our assumptions on r0 and β̄ to find

X2 ≤ c‖(β̄r0)x(u − ũ)‖ρ′ ≤ c‖u − ũ‖ρ ≤ c‖u − ũ‖ρ

ρ − ρ′ .

The remaining terms are similar. This concludes the proof. �

3.4. A family of examples

Of course we wish to show that the set of functions which satisfy (H4) is nonempty; it is trivially nonempty
since constant functions r0 satisfy it. Going further, we wish to show that there are also non-constant
functions which satisfy (H4). To this end, we now demonstrate a simple family of functions r0 which
satisfy (H4).

Let R0 > 0; we consider r0 = R0 + ε sin(x), for sufficiently small ε. First, clearly, for sufficiently small
ε, we have g1 > 0, as required. Second, we see that for any ρ ≥ 0, the function 8(1 − ᾱ)r0xx is in Bρ.
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We next demonstrate that there exist values of ρ > 0 such that 1
r0

∈ Bρ. We denote ψ = 1
r0

, and let
the Fourier coefficients of ψ be denoted as ψ̂k. We adapt this argument from the proof of Theorem IX.13
in [26].

Clearly, ψ has analytic extension to a strip of width N > 0 in the complex plane, for some N > 0
(we can even explicitly calculate this N if so desired); we call this extension ψ̃. For any given ρ such that
0 < ρ < N, we denote by ψρ the function such that ψρ(x) = ψ̃(x+iρ), and we denote its Fourier coefficients
as ψ̂ρk. Since ψρ is a bounded function on the torus, of course there exists C > 0 such |ψ̂ρk| ≤ C. By
the Cauchy Integral Theorem, we have ψ̂k = e−ρkψ̂ρk. Thus, for k ≥ 0, we have |ψ̂k| ≤ Ce−ρ|k|. Negative
values of k can be treated similarly. This implies that for any 0 ≤ ρ′ < ρ, we have ψ ∈ Bρ′ . Since ρ may
be taken arbitrarily close to N, we conclude that for any ρ ∈ (0, N), we have ψ ∈ Bρ.

A similar argument naturally applies to the function 1
(4ᾱ+r0)

, and to derivatives of 1
r0

. Finally, by the
algebra property for the Bρ spaces, we conclude that there exists ρ0 > 0 such that ∂j

xg−1
1 and g2 are all

in Bρ0 .
Next we consider existence of the constant c0 such that (3.10) holds. Denoting K0 = 8

(4ᾱ+R0)R0
, we

see that as ε → 0, for any c0 ∈ (0,K0), we have∥∥∥∥
g2 − c0

c0

∥∥∥∥
ρ0

→ K0 − c0
c0

.

As long as c0 ∈ (0, K0
2 ), for sufficiently small ε, we see that (3.10) holds.

We have therefore demonstrated that the set of functions r0 satisfying (H4) is nontrivial. In The-
orem 3.6, we also made the further assumption that r0, r0x, β̄, and β̄x are all in Bρ0 . Clearly these
properties hold as well (recall that β̄ is proportional to ψ2) for our family of examples.

4. Existence of periodic traveling waves

In this section, we establish the existence of periodic traveling waves for the system (1.3), (1.4). We will
do this in the case κ = γ = 0. We prove existence by means of the following local bifurcation theorem
[29]:

Theorem 4.1. (Bifurcation Theorem). Let H′ and H be Hilbert spaces, and let (η0, u0) ∈ H′. Let U be an
open neighborhood of (η0, u0) in H′. Suppose
(B1) The map φ: U × R → H is C2.
(B2) For all c ∈ R, φ((η0, u0), c) = 0.
(B3) For some c0, L(c0) := ∂(η,u)φ((η0, u0), c) has a one-dimensional kernel and has zero Fredholm index.
(B4) If h′ ∈ H′ spans the kernel of L(c0) and h∗ ∈ H spans the kernel of L∗(c0), then 〈h∗, ∂cL(c0)h′〉H �=

0.

If these four conditions hold, then there exists a sequence {(ηn, un), cn}n∈N ⊂ H′ × R with
a. limn→∞ ((ηn, un), cn) = ((η0, u0), c0).
b. (ηn, un) �= (η0, u0) for all n ∈ N and
c. φ((ηn, un, )cn) = 0.

We will use Theorem 4.1 to prove the following theorem:

Theorem 4.2. There exists a non-zero sequence {(ηn(x, t), un(x, t))}n∈N such that for all n, for all t,
ηn ∈ H1(T), un ∈ H3(T), and there exists a sequence of real numbers cn such that for all n, the functions
(ηn, un) constitute a nontrivial traveling wave solution of (1.3), (1.4) with speed cn. There exists c∞ such
that as n → ∞, cn → c∞ and (ηn, un) → (0, 0). Furthermore, at each time, each of ηn and un are even
with zero mean.
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The rest of this section is the proof of Theorem 4.2. Specifically, we now demonstrate that the condi-
tions (B1), (B2), (B3), and (B4) hold for the traveling wave equations for (1.3), (1.4). This will be the
content of Sects. 4.1, 4.2 and 4.3.

4.1. The mapping, (B1), and (B2)

Part of establishing that (B1) holds is specifying the function spaces and the mapping to be studied. We
begin by defining the space H′. We consider symmetric solutions, so we let

H′ := H1
e,0 × H3

e,0

where for any s,

Hs
e,0 :=

⎧
⎨
⎩f ∈ Hs : f is even and

M∫

0

f(x)dx = 0

⎫
⎬
⎭ .

We recall that Hs indicates the spatially periodic L2-based Sobolev space of index s. As our choice of
spaces shows, we will look for solutions η and u where both are even functions and have zero mean value.

We now give the traveling wave ansatz,

η = η(x − ct), u = u(x − ct),

for some c ∈ R. With this ansatz, and with parameter values κ = 0 and γ = 0, then the system (1.3),
(1.4) becomes

−cη′ +
1
2
r0u

′ +
1
2
ηu′ + η′u = 0, (4.1)

−cu′ + βη′ + uu′ +
c(4α + r0)r0

8
u′′′ = 0. (4.2)

The mapping φ(η, u) is given by the left-hand sides of (4.1), (4.2).
The space H′ maps to odd functions under φ. Therefore, we take the codomain H to be

H := L2
odd × L2

odd.

With these definitions, (B1) and (B2) clearly hold, with the trivial solutions being η = u = 0 for any
c ∈ R.

4.2. The linearized operator and (B3)

We linearize the system about the equilibrium η = 0, u = 0. The linearization of the η equation is

η′
1 =

r0
2c

u′
1, (4.3)

which we may integrate, using the fact that our function spaces specify zero mean, finding

η1 =
r0
2c

u1.

We turn to the u equation, which linearizes as

c(4α + r0)r0
8

u′′′
1 − cu′

1 + βη′
1 = 0. (4.4)
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The system (4.3), (4.4) is our linearized system, and the left-hand sides define our linearized operator,
L. To investigate the dimension of the kernel and Fredholm properties, we rearrange the equations.
Substituting η′

1 from (4.3) in (4.4), and dividing by the leading coefficient, we arrive at

u′′′
0 +

(
8β

2c2(4α + r0)
− 8

(4α + r0)r0

)
u′
0 = 0. (4.5)

The third-order differential Eq. (4.5) has characteristic polynomial

ξ3 +
(

8β

2c2(4α + r0)
− 8

(4α + r0)r0

)
ξ = 0. (4.6)

We seek periodic solutions, for a fixed periodicity M , i.e., solutions satisfying

η(x + M, t) = η(x, t), u(x + M, t) = u(x, t), ∀x.

To have such periodic solutions, the cubic polynomial in (4.6) must have two pure imaginary roots, which
we call ±iB, and one real root, which we call D :

(r − iB)(r + iB)(r − D) = r3 − Dr2 + B2r − DB2. (4.7)

With such roots, there would be two independent spatially periodic solutions of (4.5),

v1 = cos(Bx), v2 = sin(Bx).

Compatibility of our spatial period, M, and the wavelength require the existence of k ∈ N such that
2πk

B
= M. (4.8)

We now address the question of whether the roots of the cubic polynomial are in the desired form. We
match coefficients in (4.7) to the coefficients of the cubic polynomial on the right-hand side of (4.6) so
that we can find any restrictions on the parameters. Notice that (4.6) doesn’t have an r2 term, so D = 0.
Continuing, we let

B2 =
(

8β

2c2(4α + r0)
− 8

(4α + r0)r0

)
. (4.9)

We can see that we may take B to be real (and positive) if

c2 <
βr0
2

.

Let M be given; then, if c satisfies (4.9), to also satisfy (4.8), c must be given by

c2 =
8βr0M

2

16M2 + 8π2k2(4α + r0)r0
. (4.10)

That is, given a choice of M , there are infinitely many values c (one corresponding to each k ∈ N), which
give a nontrivial periodic kernel for L. Henceforth, we will take M = 2π.

Moreover, here we can define the linear operator ∂(η,u)φ((η0, u0), c):

L(c)(η0, u0) =
(

∂x − r0
2c∂x

0 ∂3
x + B2∂x

)(
η0
u0

)

Given any k0 ∈ N, with k0 �= 0, with the choice M = 2π, the formula (4.10) for c becomes

c0 =
(

4βr0
k2
0r0(4α + r0) + 8

) 1
2

.

Then, the possible kernel functions of L(c0) are:

z1 = cos(k0x) + i sin(k0x) and z2 = cos(k0x) − i sin(k0x).
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Recall that we are considering the domain H′ : H1
e,0 × H3

e,0; therefore, we may eliminate odd functions
from the kernel. As a result, we have a one-dimensional kernel of L(c0) :

kerL(c0) =
{

span{h′}| h′ =
( r0

2c0
cos(k0x)

cos(k0x)

)
∈ H′

}
.

Now, we need to show that the Fredholm index of the linear operator L(c0) is zero. For L(c0) to be
Fredholm, the following must hold:

• ker(L(c0)) is finite dimensional,
• coker(L(c0)) is finite dimensional, and
• Range(L(c0)) is closed.

If L(c0) is Fredholm, the index of L(c0) is

Ind(L(c0)) = dim(kerL(c0)) − dim(cokerL(c0)).

Notice we have already shown the first condition: the dimension of the kernel of L(c0) is one-dimensional.
We will show the dimension of the kernel of L(c0) is same as the dimension of the cokernel of L(c0), so
Ind(L(c0)) becomes zero.

We begin by demonstrating that the kernel of the adjoint of L(c0) is one-dimensional. The adjoint of
L(c0) is given by

L∗(c0)(η1, u1) =
( −η′

1
r0
2c0

η′
1 − u′′′

1 − k0
2u′

1

)
.

Now, we will find kernel of L∗, as a subset of H : L2
odd × L2

odd. Notice when η′
1 = 0, we have η1 = 0.

Then the equation r0
2c0

−u′′′
1 −k0

2u′
1 = 0 becomes −u′′′

1 −k0
2u′

1 = 0. This is a third-order linear differential
equation with characteristic polynomial −r3 − k0

2r = 0, and the roots of this are r = 0 and r = ±ik0.
On our domain H, then, the kernel becomes

kerL∗(c0) =
{

span{h∗} | h∗ =
(

0
sin(k0x)

)
∈ H

}
.

Hence, ker(L∗(c0)) is one-dimensional. It remains to establish that this is the same as the dimension of
the cokernel.

Now, we move on to prove that the range of L(c0) is closed. Recall that L(c0) maps H′ to H. We
introduce the decompositions H′ = Xk0 ⊕ X̃ and H = Yk0 ⊕ Ỹ , where Xk0 and Yk0 are given by

Xk0 = span
{(

cos(k0x)
0

)
,

(
0

cos(k0x)

)}
,

Yk0 = span
{(

sin(k0x)
0

)
,

(
0

sin(k0x)

)}
,

and X̃ and Ỹ are the complementary subspaces. The operator L(c0) maps Xk0 to Yk0 and maps X̃ to Ỹ .
We will now show L(c0) � X̃ is bijective.

Since ker(L(c0)) ⊆ Xk0 , we see that L(c0) � X̃ has only trivial kernel and is thus injective. We need
to show it is surjective as well. That is, we will show

∀y ∈ Ỹ , ∃x ∈ X̃ such that L(c0)x = y. (4.11)

To do so, we consider the inverse of L̂(c0),

Γ̂(k) =
1

k4 − k2k0
2

(−i |k|3 + i |k| k02 r0
2c0

· i |k|
0 i |k|

)
.
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Notice the denominator is nonzero when k �= 0 and k �= k0; the remaining wavenumbers correspond to
X̃. To show (4.11), we will demonstrate

∀y ∈ Ỹ , ∃ x ∈ X̃ s.t Γ(y) = x.

That is, we will demonstrate that Γ[Ỹ ] = X̃.

We consider the four components of the operator as Γ̂ij , where i, j ∈ {1, 2},

Γ̂1,1(k) =
1

i |k| ,

Γ̂1,2(k) =
−i r0

2c0

|k|3 − |k| k2
0

,

Γ̂2,1(k) = 0,

Γ̂2,2(k) =
−i

|k|3 − |k| k2
0

.

Notice Γ̂1,1 is smoothing by one derivative since its symbol behaves like k−1 when k → ∞, while Γ̂1,2 and
Γ̂2,2 are smoothing by three derivatives since their symbols behave like k−3 as k → ∞. Of course, Γ̂2,1 is
simply the zero operator. Furthermore, all four symbols are pure imaginary, and thus map odd functions
to even functions. Thus, we have that the Γ̂ij are bounded linear operators between the following spaces:

Γ̂1,1 : L2
odd → H1

e,0,

Γ̂1,2 : L2
odd → H1

e,0,

Γ̂2,1 : L2
odd → H3

e,0,

Γ̂2,2 : L2
odd → H3

e,0.

This implies that Γ is a bounded mapping from Ỹ → X̃. The existence of this inverse implies L(c0)[X̃] =
Ỹ .

The range of L(c0) is therefore equal to L(c0)[Xk0 ]⊕Ỹ . Since Ỹ is closed and Xk0 is finite-dimensional,
we conclude that the range of L(c0) is closed. This also implies that the dimension of the cokernel of
L(c0) is equal to the dimension of ker(L∗(c0)). Therefore, we have demonstrated that L(c0) is Fredholm,
with Fredholm index zero. We have now established (B3).

4.3. Establishing (B4)

Next, we will show that 〈h∗, ∂cL(c0)h′〉H is nonzero. Taking the derivative of L with respect to c, and
evaluating at c0, we have:

∂cL(c0) =

(
0 r0

2c20
∂x

0 −8β
c30(4α+r0)

∂x

)
.

Then we apply this to h′, computing

∂cL(c0)h′ =

(
0 r0

2c20
∂x

0 −8β
c30(4α+r0)

∂x

)( r0
2c0

cos(k0x)
cos(k0x)

)
=

( − r0k0
2c20

sin(k0x)
8βk0

(4α+r0)c30
sin(k0x)

)
.
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Then, taking the inner product with h∗, we find

〈h∗, ∂cL(c0)h′〉H =

〈(
0

sin(k0x)

)
,

( − r0k0
2c20

sin(k0x)
8βk0

(4α+r0)c30
sin(k0x)

)〉

H

=
8βk0

(4α + r0)c30

M∫

0

sin2(k0x)dx �= 0,

with this being nonzero since β and k0 are nonzero. Hence, we have proved (B4) and we may apply
Theorem 4.1, completing the proof of Theorem 4.2.

5. Discussion

We mention here a few future directions for this line of analysis. First, while we have given an argument
that the system (1.1), (1.2) has an ill-posed initial value problem when r0 is non-constant, we have
not rigorously demonstrated ill-posedness. Generally speaking, ill-posedness can be more challenging
to prove than well-posedness, and most often this is approached by demonstrating lack of continuous
dependence on the initial data. Now that we have demonstrated a family of solutions for the general
problem in Sect. 3, it is possible that a detailed analysis of these solutions could yield insight into a lack
of continuous dependence on the data.

There are of course also future directions regarding traveling waves. We have proved the existence
of periodic traveling waves in the case κ = γ = 0. This restriction on the parameters leads to a one-
dimensional kernel of the linearized operator, which is a hypothesis of Theorem 4.1. In the general case,
the kernel is two-dimensional. We have considered applying one-dimensional bifurcation theorems with
two-dimensional kernels such as [17,18], but have found that the conditions of these theorems are not
satisfied by our system. Considering a genuinely two-dimensional bifurcation will be the subject of future
work.

Additionally, there are other models of fluid flow in viscoelastic vessels, such as the work of [8]. Analysis
of further models, and comparison of features of solutions across different models, is another direction
for future work. Asymptotic models such as the system (1.3), (1.4) should also be validated, in the sense
that it should be proved that solutions of the model equation and solutions of the full equations (i.e.,
the Navier–Stokes equations) remain close, if they begin with the appropriately scaled, equivalent initial
data. There is a long history of validation results for model equations in free-surface fluid dynamics [19],
and extending such results to the present setting will be valuable to understand the sense in which these
models are indeed a good approximation to the phenomena under consideration.
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Appendix A: Explicit solution of the toy linear model

In this appendix, we demonstrate an explicit solution of the toy linear model (3.1). We have already
stated the formula for η = ηN in (3.3). The corresponding formula for u is

u =
cN1/2

√
2 + 2N2

sin
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

+
cN1/2

√
2 + 2N2

cos
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

.

We then immediately have

ηt = − cN3/2

√
2 + 2N2

cos
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

+
cN3/2

√
2 + 2N2

sin
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

= −ux.

Therefore, the first equation in (3.1) is satisfied.
We next calculate the time derivative of u :

ut = − cN2

2 + 2N2
cos
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

+
cN2

2 + 2N2
sin
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

+
cN2

2 + 2N2
sin
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

+
cN2

2 + 2N2
cos
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

.

This simplifies considerably, as the first and fourth terms on the right-hand side cancel and the second
and third terms combine, yielding simply

ut =
cN2

1 + N2
sin
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

.

We then take two derivatives of this with respect to x, finding

uxxt = − cN4

1 + N2
sin
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

.

Finally, we compute

ut − uxxt =
cN2 + cN4

1 + N2
sin
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

= cN2 sin
(

Nx − t
N3/2

√
2 + 2N2

)
etN3/2/

√
2+2N2

= −ηxx.

This is the second equation in (3.1), so our calculation is complete.
We have mentioned before that ‖ηN (·, 0)‖Hs → 0 as N → ∞. We finally note that it is straightforward

to check that also ‖uN (·, 0)‖Hs → 0 as N → ∞, using our given definition of c, the definition of u = uN ,
the fact that sin and cos functions are translates of each other, and that Sobolev norms are invariant
under translation.
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