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Abstract
We study an asymptotic model for the motion of capillary-gravity waves in a fluid with
non-Newtonian viscosity (known as odd viscosity). This model was one of three which were
introduced recently by Granero-Belinchón and Ortega; they showed that two of their models
were well-posed in Sobolev spaces and one was well-posed in analytic function spaces. For
the model previously shown to have analytic solutions, we improve the theory to establish
well-posedness in Sobolev spaces. This is accomplished through careful use of commutator
estimates.We discuss related applications of our approach using these commutator estimates.

Keywords Odd viscosity · Well-posedness · Model equation · Commutator estimates ·
Sobolev spaces · Non-Newtonian fluid

1 Introduction

We consider the free surface dynamics of a viscous two-dimensional incompressible fluid
bounded above by a free surface, subject to the effects of gravity and surface tension; notably,
the viscous effect we consider here is non-Newtonian, and is known as odd viscosity. Studies
of fluids that exhibit odd viscosity (or Hall viscosity) have been made since the work of
Avron, Seiler, and Zongraf [11]. They showed that the viscosity of quantum fluids with an
energy gap at zero temperature is non-dissipative. Other studies of systemswith odd viscosity
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effects include the motion of two-dimensional quantum Hall fluids [5, 36], vortex dynamics
[17], [38], polyatomic gases [25], and chiral active matter or chiral active fluids [12, 33].

While the free-surface problem for an incompressible fluid subject to the usual, Newtonian
viscosity (even viscosity) has been well-studied [7, 13, 14, 16, 21–24, 26, 30, 32, 35] the
corresponding problemwith odd viscosity has only recently been analyzed in certain cases. In
particular, the dynamics of surface waves with odd viscosity were studied in [2, 18], [19]. We
concern ourselves here with extending the results of [19], in which one-dimensional model
equations were developed for the odd viscosity capillary-gravity free surface problem, and
the initial value problem for these systems were shown to be well-posed in certain settings.
We now describe their models and results, and our extension.

Following the approach of [10, 17, 19], we consider a two-dimensional fluid occupying a
domain �(t) at each time, t . The Navier–Stokes equations with odd viscosity are

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇ p + ν0�u⊥, in �(t) × [0, T ],
∇ · u = 0, in �(t) × [0, T ],
∂ρ

∂t
+ ∇ · (uρ) = 0, in �(t) × [0, T ],

where as usual u and p denote the velocity and pressure of the fluid, respectively. The
parameters ν0 and ρ are the odd viscosity coefficient and the fluid density, respectively. The
region�(t) is bounded above by a free surface, and there is vacuum above (at zero pressure).
The Laplace-Young condition for the pressure, then, is that at the free surface, the pressure
is proportional to the curvature of the surface, with the constant of proportionality being the
positive, constant coefficient of surface tension.

We denote the domain as

�(t) = {(x, y) ∈ R × R : y < η(t, x)}
with free boundary of the form

�(t) = {(x, y) ∈ R × R : y = η(t, x)}
so that the function η(t, x) denotes the location of the free surface. Following the work of
Zakharov [39], there are two classical kinematic and dynamic boundary conditions on the
free surface �(t), and a harmonic function φ(t, x, y) such that u = ∇φ. Using the trace of
velocity potential,

ϕ(t, x, y) = φ(t, x, η(t, x))

the main dynamics of surface waves under the effect of gravity, capillary forces, and odd
viscosity, which is analogous to water waves with surface tension, can be written as
⎧⎪⎨
⎪⎩

�φ = 0, in �(t) × [0, T ]
ρ(φt − 1

2φ
2
x − 1

2φ
2
y + gη) = κ

ηxx
(1+η2x )

3/2 + 2ν0
(1+η2x )

1/2

(
ηt

(1+η2x )
1/2

)
x
, on �(t) × [0, T ]

ηt = −ηxφx + φy, on �(t) × [0, T ]
where g and κ denote the gravitational acceleration and the coefficient of surface tension.
Starting from this point, further reformulations may be made, and asymptotic expansions
developed. Making a multiscale expansion in the steepness of the wave, the authors of [19]
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develop the quadratic model

utt = −�u − β�3u + α0�utx + ε(−H((Hut )
2) + [H , u]�u)x

+ε(−α0[H , u]�utx + β[H , u]�3u)x , (1.1)

where � = H∂x , H is the Hilbert transform, and α0 and ε are positive constants. This is
one of three models developed in [19], and the modeling work there extends that in the prior
works [1, 9, 15, 18, 20] and [21]. The results in [19] include that the initial value problem for
(1.1) with analytic initial data is locally well-posed. In the present work, we improve this to
demonstrate well-posedness of the initial value problem for (1.1) with initial data in Sobolev
spaces. Clearly the commutator structure of the right-hand side of (1.1) is important, and we
achieve this improved result through application of a delicate commutator estimate. We now
state our main result:

Theorem 1.1 Let θ > 0 be given. Let (u0, u1) ∈ H3.5+θ (R) × H2+θ (R) be given. There
exists T > 0 and a unique solution u of the initial value problem for (1.1), with u(0, x) = u0
and ut (0, x) = u1 such that

(u, ut ) ∈ C0([0, T ], H3.5+θ (R) × H2+θ (R)).

The plan of the paper is as follows: we provide some preliminary results, including our
commutator estimates, in Sect. 2.We prove existence of solutions in Sect. 3, and prove unique-
ness and continuous dependence in Sect. 4. We make some concluding remarks in Sect. 5.

2 Commutator Estimates and Preliminaries

In this section we present lemmas, especially commutator estimates, which will be useful to
us throughout the sequel. We first define the L2−based Sobolev spaces, Hs .

Definition 2.1 For s ∈ R, Hs(R) is the space of tempered distributions u such that their
Fourier transform, û, is locally integrable and

‖u‖2Hs (R) := 1

(2π)

∫
〈ξ 〉2s ∣∣û(ξ)

∣∣2 dξ < ∞,

where 〈ξ 〉 = √
1 + ξ2. We also define the Fourier multiplier operator J through its symbol,

Ĵ f (ξ) = 〈ξ 〉 f̂ (ξ).

Wewill need an elementary interpolation lemma for Sobolev spaces, which we now state.
The spatially periodic version appears in [6] among other places, and there is no essential
difference in the version on the real line.

Lemma 2.1 Let s′ ≥ 0 and s ≥ s′ be given. There exists c > 0 such that for every f ∈ Hs,

the following inequality holds:

‖ f ‖Hs′ ≤ c‖ f ‖1−
s′
s

H0 ‖ f ‖
s′
s
Hs .

The Hilbert transform on R may be defined via its symbol as follows:

Ĥ f (ξ) = −isgn(ξ) f̂ (ξ).
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Of course, there is also the representation of the Hilbert transform as a singular integral,

H f (x) = 1

π
PV

∫ ∞

−∞
f (x ′)
x − x ′ dx

′.

Details on the Hilbert transform and the equivalence of these definitions may be found many
places, such as [34].

Throughout the presentwork,many commutators of the form [H , φ] f = H(φ f )−φH( f )
will need to be estimated. The next two lemmas contain the estimates which we will use to
bound such commutators.

Lemma 2.2 Let s ≥ 0 be given. Let σ > 1/2 be given. For any φ ∈ Hs(R) and f ∈ Hσ ,

the commutator [H , φ] f is in Hs, with the estimate

‖[H , φ] f ‖Hs ≤ C‖φ‖Hs‖ f ‖Hσ .

We next give a somewhat generalized version of Lemma 2.2 in Lemma 2.3.

Lemma 2.3 Let s ≥ 0 be given, and let γ ∈ R and σ ∈ R satisfy γ ≥ 0 and σ > 1/2. For
any φ ∈ Hs+γ and f ∈ Hσ−γ , we have

‖[H , φ] f ‖Hs ≤ C‖φ‖Hs+γ ‖ f ‖Hσ−γ .

We also need a lemma about the commutator of powers of J and multiplication by a
smooth function.

Lemma 2.4 Let s > 3/2 be given. For any φ ∈ Hs(R) and f ∈ Hs−1, the commutator
[J s, φ] f is in L2, with the estimate

‖[J s, φ] f ‖L2 ≤ C‖φ‖Hs‖ f ‖Hs−1 .

To prove the above three Lemmas, we first need introduce the following useful lemma.

Lemma 2.5 Assume that F(ξ, η) is piecewise continuous function, and let

TF ( f , g)(ξ) =
∫

F(ξ, η) f (η)g(ξ − η) dη, f , g ∈ C0.

If there exists M > 0 such that either∫
|F(ξ, η)|2 dη ≤ M2 for all ξ (2.1)

or ∫
|F(ξ, η)|2 dξ ≤ M2 for all η (2.2)

holds, then TF : L2 × L2 → L2, with the estimate

‖TF ( f , g)‖L2 ≤ M‖ f ‖L2‖g‖L2 .

The proof of Lemma 2.5 may be found in [28], where this appears as Lemma 2.1.
Since Lemma 2.2 follows immediately fromLemma 2.3, we only give the proof of Lemma

2.3.
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Proof (The proof of Lemma 2.3) To compute the Hs-norm of the commutator, we first write
the formula for 〈ξ 〉s ̂[H , φ] f (ξ) :

〈ξ 〉s ̂[H , φ] f (ξ) =
∫ (

(2π)−1〈ξ 〉s(isgn(ξ) − isgn(η))φ̂(ξ − η) f̂ (η)
)
dη.

We multiply and divide:

〈ξ 〉s ̂[H , φ] f (ξ) =
∫ (

(2π)−1〈ξ 〉s(isgn(ξ) − isgn(η))〈ξ − η〉−s−γ 〈η〉−σ+γ

〈ξ − η〉s+γ 〈η〉σ−γ φ̂(ξ − η) f̂ (η)
)
dη.

Define F(ξ, η) = (2π)−1〈ξ 〉s(isgn(ξ) − isgn(η))〈ξ − η〉−s−γ 〈η〉−σ+γ , and furthermore,
make the auxiliary definitions φ1(ξ) = 〈ξ 〉s+γ φ̂(ξ) and f1(ξ) = 〈ξ 〉σ−γ f̂ (ξ).

We wish to apply Lemma 2.5, so we begin to verify that condition (2.1) is satisfied:∫
|F(ξ, η)|2dη =

∫ ∣∣(2π)−1〈ξ 〉s(isgn(ξ) − isgn(η))〈ξ − η〉−s−γ 〈η〉−σ+γ
∣∣2 dη.

Notice that sgn(ξ) − sgn(η) is nonzero only when ξ and η have opposite signs. Then, we
have |ξ − η| = |ξ | + |η| ≥ |ξ | and also |ξ − η| = |ξ | + |η| ≥ |η|. With this in mind, we
continue: ∫

|F(ξ, η)|2dη ≤ C
∫ ∣∣〈ξ 〉s〈|ξ | + |η|〉−s−γ 〈η〉γ 〈η〉−σ

∣∣2 dη

≤ C
∫

〈η〉−2σ dη ≤ M2.

Here, we have used the inequality 〈ξ 〉s〈|ξ | + |η|〉−s−γ 〈η〉γ ≤ 1 for s ≥ 0 and γ ≥ 0, and
the fact that the final integral converges for σ > 1

2 .

Therefore, we apply Lemma 2.5, finding∥∥∥〈ξ 〉s ̂[H , φ] f (ξ)

∥∥∥
L2

≤ M‖φ1‖L2‖ f1‖L2 ≤ M‖φ‖Hs+γ ‖ f ‖Hσ−γ .

This completes the proof of the Lemma 2.3. 
�
Proof of Lemma 2.4 We first expand the Fourier transform of the commutator [J s, φ] f :

̂[J s, φ] f (ξ) =
∫ (

(2π)−1(〈ξ 〉s − 〈η〉s)φ̂(ξ − η) f̂ (η)
)
dη.

Define the function g(w) = 〈w〉s , and let real numbers a and b be given. Then for some
θ ∈ (0, 1), we have g(b) − g(a) = g′(a + θ(b − a))(b − a). This implies the following:

|g(b) − g(a)| = |g′(a + θ(b − a))(b − a)| = |s〈a + θ(b − a)〉s−2(a + θ(b − a))(b − a)|
≤ s|〈a + θ(b − a)〉s−1(b − a)| ≤ s〈2max{a, θ(b − a)}〉s−1|b − a|
≤ s2s〈max{a, θ(b − a)}〉s−1|b − a| ≤ s2s(〈a〉s−1 + 〈b − a〉s−1)|b − a|.

Thus, from |〈ξ 〉s − 〈η〉s | ≤ C |ξ − η|(〈ξ − η〉s−1 + 〈η〉s−1) ≤ C〈ξ − η〉s +C〈η〉s−1〈ξ − η〉,
we have

̂[J s, φ] f (ξ)

≤ C
∫

〈ξ − η〉s φ̂(ξ − η) f̂ (η) dη + C
∫

〈η〉s−1〈ξ − η〉φ̂(ξ − η) f̂ (η) dη. (2.3)
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Let σ > 1/2 be given. We multiply and divide the first integrand on the right-hand side of
(2.3) by 〈η〉σ , and wemultiply and divide the second integrand by 〈ξ −η〉σ . To apply Lemma
2.5 to the first integral on the right-hand side of (2.3), we let F be given by F(ξ, η) = 〈η〉−σ ,

and find that (2.1) is satisfied:∫
|F(ξ, η)|2dη =

∫
〈η〉−2σ dη ≤ C .

For the second integral on the right-hand side of (2.3), we let F(ξ, η) = 〈ξ − η〉σ , and we
see that (2.2) is satisfied:∫

|F(ξ, η)|2dη =
∫

〈ξ − η〉−2σ dξ ≤ C .

Therefore, we have

̂[J s, φ] f (ξ) ≤ C(‖φ‖Hs‖ f ‖Hσ + ‖φ‖Hσ+1‖ f ‖Hs−1)

To complete the proof of the Lemma 2.4, we only need to set σ = s−1 > 1/2 since s > 3/2.

�

3 Existence

In this section we prove existence of solutions for the initial value problem for the model Eq.
(1.1). We first prove existence of solutions for a mollified system, making use of the Picard
theorem. We then establish an energy estimate and use this to show that all the solutions (for
different values of the mollification parameter) exist uniformly in time. After this, we are able
to pass to the limit as the regularization vanishes, arriving at a solution of the non-mollified
system.

3.1 The Approximate System

The scalar Eq. (1.1) will be viewed as a system
⎧⎨
⎩
ut = v,

vt = −�u − β�3u + α0�vx + ε(−H((Hv)2) + [H , u]�u)x
+ε(−α0[H , u]�vx + β[H , u]�3u)x .

(3.1)

We now introduce the mollifier χρwith the parameter ρ: this is a classical mollifier, regular-
izing through convolution. As such, χρ is a real multiplier in Fourier space, and therefore
is self-adjoint and commutes with derivatives and Hilbert transforms. A detailed discus-
sion of mollifiers and their properties may be found in Chapter 3 of [29]. We introduce our
approximate problem:

⎧⎨
⎩
ut = χ2

ρv,

vt = −χρ�χρu − βχρ�3χρu + εχρ(−H((χρHv)2) + [H , χρu]�u)x
+α0χρ�χρ vx + εχρ(−α0[H , χρu]�vx + β[H , χρu]�3u)x ,

(3.2)

with the initial data (u0, u1) ∈ H3.5+θ (R)×H2+θ (R), for some θ > 0. For the approximate
Cauchy problem, we have local existence and uniqueness by the Picard Theorem. Without
loss of generality, from now we fix α0 = 1, ε = 1.
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Proposition 3.1 Let β > 0 be a constant, and for any θ > 0,(u0, u1) ∈ H3.5+θ (R) ×
H2+θ (R) be initial data for Eq. (3.2) with u(0, x) = u0, v(0, x) = u1.Then, there exists a
time Tρ > 0 and a unique solution

(uρ, vρ) ∈ C1([0, Tρ]; H3.5+θ (R) × H2+θ (R)).

Proof Since χρ is a smoothing opertator, it is easy to check that the right hand side of system
(3.2) is locally Lipschtiz from H3.5+θ (R) × H2+θ (R)) to itself. By the Picard theorem, for
any ρ > 0, there is Tρ > 0, such that the system (3.2) has a unique solution (uρ, vρ) ∈
C1([0, Tρ]; H3.5+θ (R) × H2+θ (R)). 
�

3.2 Uniform Estimates and Existence

We have demonstrated the existence of solutions to the mollified system. We would like to
pass to the limit as ρ → 0+. However, we cannot do this yet, as the size of the time interval
guaranteed to exist in Proposition 3.1 could go to zero as ρ vanishes. Our next step is to prove
an energy estimate, uniformly in ρ, for the solutions (uρ, vρ).

Proposition 3.2 Let β > 0 be given. Let θ > 0 and ρ > 0 be given. Let (uρ, vρ) ∈
C1([0, Tρ]; H3.5+θ (R) × H2+θ (R)) be a solution of (3.1), with initial conditions (u0, u1).
Then there exist T0 > 0, independent of ρ, such that for all t ∈ (0, T0)

‖(uρ, vρ)‖H3.5+θ (R)×H2+θ (R) ≤ 2‖(u0, u1)‖H3.5+θ (R)×H2+θ (R).

Proof Recall the evolution for (u, v),⎧⎨
⎩
ut = χ2

ρv,

vt = −χρ�χρu − βχρ�3χρu + χρ(−H((χρHv)2) + [H , χρu]�u)x
+χρ�χρ vx + χρ(−[H , χρu]�vx + β[H , χρu]�3u)x .

We define the energy E = E0 + E1, with

E0(t) = 1

2
‖u‖2L2 + 1

2

∫
R

u�u + β(�u)�2u dx

+
∫

(J 2+θu)J 2+θ�u + β(J 2+θ�u)J 2+θ�2u dx,

E1(t) = 1

2
‖v‖2L2 + 1

2

∫
R

(J 2+θ v)2 dx .

First, we take the time derivative of 1
2‖u‖L2 , finding d

dt
1
2

∫
R
u2 dx ≤ E . Second, we take the

time derivative of ‖v‖2
L2 :

d

dt

1

2

∫
R

v2 dx =
∫
R

vvt dx =
∫
R

v
(−χρ�χρu − βχρ�3χρu

)
dx +

∫
R

v(χρ�χρvx ) dx

+
∫
R

vχρ

(
(−H((χρHv)2) + [H , χρu]�u)x + (−[H , χρu]�vx + β[H , χρu]�3u)x

)
dx .

Using the fact that χρ is self-adjoint and commutes with �, we find∫
R

vχρ(−�χρu − β�3χρu) dx =
∫
R

ut (−�u − β�3u) dx

= −1

2

d

dt

∫
R

u�u + β(�u)�2u dx .
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Taking similar steps, we may also calculate the following:
∫
R

v(χρ�χρvx ) dx =
∫
R

(�1/2χρv)∂x (�
1/2χρv) dx = 0,

∫
R

vχρ(−H((χρHv)2)x dx = −
∫
R

(Hχρv)x (Hχρv)2 dx = −1

3

∫
R

(Hχρv)3x dx = 0.

We then must estimate three commutator terms. We usually estimate commutators using
the smoothing properties given by the lemmas of Sect. 2. However, for the first of these, we
do not need the smoothing properties, and it may be estimated directly as

∥∥([H , χρu]�u)x
∥∥
L2(R)

≤ C‖u‖2H2(R)
.

For the other two commutators, however, we must use Lemma 2.3. Taking σ = γ = 1, and
s = 1, we apply this lemma to find

‖ − ([H , χρu]�vx )x‖L2(R) ≤ C‖χρu‖H2(R)‖�vx‖L2(R) ≤ C‖u‖H2‖v‖H2(R).

We again use Lemma 2.3 for the third commutator, again with σ = γ = 1 and s = 1, finding

‖([H , χρu]�3u)x‖L2(R) ≤ C‖χρu‖H2(R)‖�3u‖L2(R) ≤ C‖u‖2H3(R)
.

Consolidating these calculations, we arrive at the bound

d

dt

1

2

∫
R

v2 + u�u + β(�u)�2u dx ≤ CE3/2

Third, we take the time derivative of 1
2

∫
R
(J 2+θ v)2dx :

d

dt

1

2

∫
R

(J 2+θ v)2 dx =
∫
R

(J 2+θ v)J 2+θχρ(−�χρu − β�3χρu) dx

+
∫
R

(J 2+θ v)J 2+θχρ�χρvx dx −
∫
R

(J 2+θ v)J 2+θχρH((χρHv)2)x dx

+
∫
R

(J 2+θ v)J 2+θχρ

([H , χρu]�u − [H , χρu]�vx + β[H , χρu]�3u
)
x dx . (3.3)

We will now estimate the various terms on the right-hand side of (3.3).
The first term of the right-hand side of (3.3) may be rewritten by recognizing an exact

time derivative, namely
∫
R

(J 2+θ v)J 2+θχρ(−�χρu − β�3χρu) dx

=
∫
R

(J 2+θut )J
2+θ (−�u − β�3u) dx = − d

dt

1

2∫
R

(J 2+θu)J 2+θ�u + β(J 2+θ�u)J 2+θ�2u dx .

The second term of the right-side of (3.3) equals zero, since
∫
R

(J 2+θ v)J 2+θχρ�χρvx dx =
∫
R

(J 2+θχρ�1/2v)∂x (J
2+θχρ�1/2v) dx = 0.
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The third term of the right-side of the Eq. (3.3) may be rewritten to bring out a commutator:

−
∫
R

(J 2+θ v)J 2+θχρH((Hχρv)2)x dx

=
∫
R

(J 2+θ Hχρv)J 2+θ ((Hχρv)2)x dx =
∫
R

(J 2+θ Hχρv)J 2+θ (2HχρvHχρvx ) dx

=
∫
R

2Hχρv(J 2+θ Hχρv)(J 2+θ Hχρv)x + 2J 2+θ Hχρv[J 2+θ , Hχρv]Hχρvx dx

= −
∫
R

Hχρvx (J
2+θ Hχρv)2 dx + 2

∫
R

J 2+θ Hχρv[J 2+θ , Hχρv]Hχρvx dx .

The first term on the right-hand sidemay be immediately bounded using Sobolev embedding:∫
R
Hχρvx (J 2+θ Hχρv)2dx ≤ CE3/2.For the second termon the right-hand side, by Lemma

2.4 we have

2
∫
R

(J 2+θ Hχρv)[J 2+θ , Hχρv]Hχρvx dx ≤ C‖v‖H2+θ ‖[J 2+θ , Hχρv]Hχρvx‖L2

≤ C‖v‖2H2+θ ‖χρvx‖H1+θ ≤ CE3/2.

Thus the third term of the right-side of (3.3) may be bounded as

−
∫
R

(J 2+θ v)J 2+θχρH((Hχρv)2)x dx ≤ CE3/2.

The fourth term on the right-side of (3.3) may be bounded as∫
R

(J 2+θχρv)J 2+θχρ

([H , χρu]�u − [H , χρu]�vx + β[H , χρu]�3u
)
x dx

≤ C‖v‖H2+θ

(‖[H , χρu]�u‖H3+θ + ‖[H , χρu]�vx‖H3+θ + β‖[H , χρu]�3u‖H3+θ

)
.

By Lemma 2.2, we have ‖[H , χρu]�u‖H3+θ ≤ C‖u‖H3+θ ‖�u‖σ for any σ > 1/2; we may
take σ = 1. We use Lemma 2.3 to bound the other two commutators; taking σ = 1

2 + θ ,
γ = 1

2 , and s = 3 + θ , we have

‖[H , χρu]�vx‖H3+θ ≤ C‖u‖H3.5+θ ‖�vx‖H θ ≤ C‖u‖H3.5+θ ‖v‖H2+θ ,

‖[H , χρu]�3u‖H3+θ ≤ C‖u‖H3.5+θ ‖�3u‖H θ ≤ C‖u‖2H3.5+θ .

Now, we can conclude that

dE

dt
≤ C(E3/2 + E).

The conclusion of the proposition now follows. 
�
Proposition 3.3 There exists 0 ≤ T1 ≤ T such that {(uρ, vρ)} is a Cauchy sequence in
C0([0, T1]; H1.5(R) × L2(R)).

We omit the proof of Proposition 3.3 because the proof is entirely similar to the proof
of uniqueness, which we provide in the subsequent section. Both results require estimating
the norm of a difference; for Proposition 3.3, we estimate the norm of two solutions with
different values of the regularization parameter. For uniqueness, by contrast, we estimate
the norm of two solutions with possibly different initial data. The only difference is that the
proof of Proposition 3.3 requires dealing with terms involving χρ1 −χρ2 . The following fact
allows these to be estimated in a straightforward way.
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Lemma 3.1 For any 0 < ρ1 < ρ2 and m > 0, we have

‖χρ1 − χρ2‖Hμ→Hμ−m ≤ Cρm
2 .

3.3 Remaining Details

In theprevious subsection,wehaveproved the existenceof a limit (u, v) inC0([0, T ]; H1.5(R)

× L2(R)). It remains to show that this limit (u, v) satisfies the non-mollified system, and
that it has the same regularity as the initial data. We begin by establishing almost the highest
regularity.

The sequence (uρ, vρ) is uniformly bounded with respect to both ρ and t in H3.5+θ (R)×
H2+θ (R). The unit ball of the Hilbet space is weakly compact, so there exists a weak limit
along a subsequence, and this weak limit must clearly be (u, v). This implies (u, v) ∈
L∞([0, T ]; H3.5+θ (R) × H2+θ (R)). By the basic interpolation result (Lemma 2.1), for any
s < 2, it is true that (u, v) ∈ C0([0, T ]; Hs+1.5+θ (R) × Hs+θ (R)).

This is enough regularity to conclude that the limit satisfies the non-mollified system. To
see this, we may represent the mollified solutions as

uρ = u0 +
∫ t

0
χ2

ρvρ ds,

vρ = u1 +
∫ t

0
−χρ�χρu

ρ − βχρ�3χρu
ρ ds

+
∫ t

0
χρ

(−H((χρHvρ)2) + [H , χρu
ρ]�uρ

)
x + χρ�χρvρ

x ds

+
∫ t

0
χρ

(−[H , χρu
ρ]�vρ

x + β[H , χρu
ρ]�3uρ

)
x ds.

Since we have established that (uρ, vρ) converges to (u, v) in C0([0, T ]; H3.5+θ̃ (R) ×
H2+θ̃ (R)) for some θ̃ > 0, we have uniform convergence of the integrands. We therefore
may pass to the limit under the integral, finding

u = u0 +
∫ t

0
v ds,

v = u1 +
∫ t

0
−�u − β�3u + (−H((Hv)2) + [H , u]�u

)
x + �vx ds

+
∫ t

0

(−[H , u]�vx + β[H , u]�3u
)
x ds.

Setting t = 0 we see that the initial conditions are satisfied, and differentiating with respect
to t, we see that (u, v) satisfies the non-mollified system.

All that remains is the highest regularity in time. That is, we now prove that the solution
(u, v) is continuous in time in H3.5+θ (R) × H2+θ (R). To show continuity in time in, we
must show that for any t∗ ∈ [0, T ], we have

lim
t→t∗

‖u(t, ·) − u(t∗, ·)‖H3.5+θ + ‖v(t, ·) − v(t∗, ·)‖H2+θ = 0.

Note that the above limit is a one-sided limit when t∗ = 0 or t∗ = T . We know that the space
H3.5+θ (R) × H2+θ (R) is a Hilbert space. To establish convergence in a Hilbert space, it is
sufficient to establish weak convergence, plus convergence of the norm. We omit the details
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of this, as the argument is identical to the corresponding argument in [27] for hydroelastic
waves, or the corresponding argument in Chapter 3 of [29] for the incompressible Euler
equations.

The proof of the existence portion of Theorem 1.1 is now complete.

4 Uniqueness and Continuous Dependence

We assume that we have two solutions (u, ut ) and (u′, u′
t ) of (1.1) in the space H

3.5+θ (R)×
H2+θ (R), and we estimate the difference in a lower regularity space, H1.5(R)× L2(R). This
space is chosen to be high enough so that the estimates have positive powers of derivatives,
but low enough so that the terms can be bounded by ‖u‖H3.5+θ and ‖ut‖H2+θ . The estimates
for (u − u′, ut − u′

t ) in H1.5(R) × L2(R), we will be very similar to the energy estimate
above in the existence proof.

Theorem 4.1 Let θ > 0 and T0 > 0 be given. Let both (u, ut ) and (u′, u′
t ) be in

C0([0, T0]; H3.5+θ (R)× H2+θ (R)) and satisfy (1.1), with initial data (u0, u1) and (u′
0, u

′
1),

respectively. Then the following estimate is satisfied:

‖(u, ut ) − (u′, u′
t )‖L∞([0,T0];H1.5(R)×L2(R))

≤ C‖(u0, u1) − (u′
0, u

′
1)‖H1.5(R)×L2(R).

Proof We define the difference δu = u − u′, and then we also have δut = ut − u′
t . We recall

that we have fixed α0 = 1 and ε = 1. The equation satisfied by (δu, δut ) is

δutt = −�δu − β�3δu + �δutx

+(−H((Hut + Hu′
t )(Hδut )) + [H , δu]�u + [H , u′]�δu)x

+(−[H , δu]�utx − [H , u′]�δutx + β[H , δu]�3u + β[H , u′]�3δu)x .

We define the energy for the difference, Ed :

Ed(t) = 1

2
‖δut‖2L2 + 1

2
‖δu‖2L2 + 1

2

∫
R

(δu)�δu + β(�δu)�2δu dx .

We will estimate the growth of this energy, leading to a Grönwall argument.
First, we take the time derivative of ‖δut‖2L2 :

d

dt

1

2

∫
R

(δut )
2dx =

∫
R

(δut )(δutt ) dx

=
∫
R

(δut )(−�δu − β�3δu) dx +
∫
R

(δut )(�δutx ) dx

+
∫
R

δut
(−H((Hut + Hu′

t )(Hδut )) + [H , δu]�u + [H , u′]�δu
)
x dx

+
∫
R

δut
(−[H , δu]�utx − [H , u′]�δutx + β[H , δu]�3u + β[H , u′]�3δu

)
x dx .

We first recognize an exact time derivative,
∫
R

δut (−�δu − β�3δu)dx = −1

2

d

dt

∫
R

(δu)(�δu) + β(�δu)(�2δu) dx .

123



Journal of Dynamics and Differential Equations

Then we notice an exact spatial derivative, which integrates to zero:∫
R

(δut )(�δutx ) dx = 1

2

∫
R

∂x ((�
1/2δut )

2) dx = 0.

Now we estimate the remaining terms. We next have the following:∫
R

δut (−H((Hut + Hu′
t )(Hδut ))xdx

= −
∫
R

(Hδut )x (Hut + Hu′
t )(Hδut )dx = 1

2

∫
R

(Hδut )
2(Hut + Hu′

t )xdx

≤ C‖(Hut + Hu′
t )x‖L∞(R)‖Hδut‖2L2(R)

≤ C‖δut‖2L2(R)
.

Here, we have used the fact that H and ∂x are both skew-adjoint, and we have recognized a
perfect spatial derivative and then integrated by parts; we then used Sobolev embedding. It
remains to estimate the commutator terms. We let θ̃ be given such that θ̃ ∈ (0,min{ 12 , θ}).
Applying Lemma 2.3 with σ = θ̃ + 1

2 > 1/2, γ = 1/2 and s = 1, we have the following
estimates:

‖([H , δu]�u)x‖L2(R) ≤ C‖δu‖H1.5(R)‖�u‖H θ̃ (R)
≤ C‖δu‖H1.5(R),

‖([H , u′]�δu)x‖L2(R) ≤ C‖u′‖H1.5(R)‖�δu‖H θ̃ (R)
≤ C‖δu‖H1.5(R),

‖(−[H , δu]�utx )x‖L2(R) ≤ C‖δu‖H1.5(R)‖�utx‖H θ̃ (R)
≤ C‖δu‖H1.5(R),

‖([H , δu]�3u)x‖L2(R) ≤ C‖δu‖H1.5(R)‖�3u‖H θ̃ (R)
≤ C‖δu‖H1.5(R).

Then, again applying Lemma 2.3 with σ = θ̃ + 1
2 > 1/2 but now with γ = 5

2 + θ̃ ,s = 1,
we have our remaining estimates:

‖(−[H , u′]�δutx )x‖L2(R) ≤ C‖u′‖H3.5+θ̃ (R)
‖�δutx‖H−2(R) ≤ C‖δut‖L2(R),

‖([H , u′]�3δu)x‖L2(R) ≤ C‖u′‖H3.5+θ̃ (R)
‖�3δu‖H−2(R) ≤ C‖δu‖H1.5(R).

All that remains is to take the time derivative of 1
2‖δu‖2

L2 :

d

dt

1

2

∫
R

δu2dx =
∫
R

δuδutdx ≤ ‖δu‖L2‖δut‖L2 .

Consolidating all of the above calculations, we have found the estimate

dEd

dt
≤ CEd .

Grönwall’s inequality now implies the conclusion. 
�

5 Discussion

We have proved that the initial value problem for the model (1.1) is well-posed for initial
data in Sobolev spaces, improving the result of [19], in which it was demonstrated to have
solutions with analytic data. Two other models were considered in [19].

In the model (1.1), if one neglects terms of size O(εα0) and O(εβ), then one arrives at
the model

utt = −�u − β�3u + α0�utx + ε[−H((Hut )
2) + [H , u]�u]x . (5.1)
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In [19], it was shown that the initial value problem for (5.1) is well-posed in Sobolev spaces,
specifically with (u, ut )|t=0 ∈ H4.5 × H3. While we do not provide the details, we are able
to provide a uniform bound for approximate solutions of this initial value problem in the
space H1.5 × H0. At this level of regularity one would not find a classical solution, but still
a suitable notion of weak solution, or even a classical solution at lower regularity than that
demonstrated in [19], could be proved to exist.

Another model developed in [19] is for unidirectional waves, and is given by

2ut + α0�ut = 1

ε
(ux + Hu + (α0 − β)Huxx )

+H((�u)2) − [H , u]�u + (α0 − β)[H , u]�3. (5.2)

The initial value problem for (5.2) was shown in [19] to be well-posed with initial data in
H3. The method of the present work is able to lower this threshold to H2.5+θ for any θ > 0.

Another possible direction to extend the present results is to consider forces other than
surface tension at the wave surface, such as elastic forces. The authors and collaborators have
previously studied hydroelastic waves in Newtonian fluids in a series of papers [3, 4, 8, 27].
Such models have been also studied by a number of other researchers, and stem from model
equations developed by Plotnikov and Toland [31, 37]; including the hydroelastic force can
model situations such as an ice sheet on the fluid surface. If one were interested in allowing
the hydroelastic force on the surface of the non-Newtonian fluid, the resulting model would
use the pressure at the free surface being given by

P = τ
∂x√
1 + η2x

∂x√
1 + η2x

(
ηxx

(1 + η2x )
3/2

)
.

Developing the models along the lines of (1.1), (5.1), and (5.2) using this formula for the
pressure instead of theLaplace-Young condition (inwhich the jump in pressure is proportional
to the curvature), one arrives at models for which the initial value problems can be shown to
be well-posed in Sobolev spaces, arguing along the lines of our main theorem.
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