Physica D 447 (2023) 133682

journal homepage: www.elsevier.com/locate/physd — —

Contents lists available at ScienceDirect

Physica D

v [

Well-posedness of a two-dimensional coordinate-free model for the R

motion of flame fronts™
Shunlian Liu?, David M. Ambrose

4 School of Science, Hunan University of Technology, Zhuzhou, Hunan 412007, China

Check for
updates

b Department of Mathematics, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA

ARTICLE INFO ABSTRACT

Article history:

Received 6 April 2022

Received in revised form 21 November 2022
Accepted 6 February 2023

Available online 16 February 2023
Communicated by A. Mazzucato

Keywords:

Flame front
Well-posedness

Free boundary problem
Energy method
Coordinate-free

We study a two-dimensional coordinate-free model for the motion of flame fronts. The model specifies
the normal velocity of the interface in terms of geometric information, such as the mean curvature
and the Gaussian curvature of the front. As the tangential velocities do not determine the position
of the interface, we choose them to maintain a favorable parameterization. We choose this to be an
isothermal parameterization. After appropriately reformulating the equations of motion, we use the
energy method to prove short-time well-posedness in Sobolev spaces.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The Kuramoto-Sivashinsky equation is a weakly nonlinear
model equation for the motion of flame fronts [1,2]. It has been
widely studied in one spatial dimension [3-7]. In two spatial
dimensions, much work is either in the case of thin domains
so that one-dimensional dynamics dominate [8-11], or is
computational [12]. The second author and Mazzucato have es-
tablished some existence results for the two-dimensional Kuram-
oto-Sivashinsky equation without an assumption of thinness of
the domain [13,14].

While the Kuramoto-Sivashinsky equation has attracted much
interest, as we have said, it is a weakly nonlinear model and
with this comes some limitations. The biggest such limitation
is that the flame front must be a graph with respect to the
horizontal coordinates. In both one and two spatial dimensions,
Frankel and Sivashinsky introduced more general, coordinate-free
models of the motion of flame fronts [15,16]. These coordinate-
free models are fully specified by giving a formula for the nor-
mal velocity of the flame front in terms of the front’s intrinsic
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geometric information (such as its curvature). In addition to
developing the coordinate-free models, Frankel and Sivashin-
sky demonstrate how the one-dimensional and two-dimensional
Kuramoto-Sivashinsky equations may be derived from them.

In the decades since these coordinate-free models were intro-
duced, there has been some limited mathematical theory devel-
oped for them. Temperature effects were incorporated into the
one-dimensional model in [17]. A number of approximations to
this model were then made, including quasi-steady approxima-
tions and weakly nonlinear approximations, in a series of pa-
pers [18-21]. None of these papers developed rigorous analytical
theory for the full coordinate-free model of [17]. More recently,
the first rigorous theory for the one-dimensional coordinate-
free model of [15] was developed in [22] by the second author,
Hadadifard, and Wright; there, it is demonstrated that the one-
dimensional coordinate-free model is well-posed for small data,
and that solutions of the coordinate-free model and solutions
of the one-dimensional Kuramoto-Sivashinsky remain close if
their initial conditions are close (thus this is a validation theorem
for Kuramoto-Sivashinsky as a weakly nonlinear model). In the
present work, we give the first analytical theory for the two-
dimensional coordinate-free model of [16], proving a short-time
well-posedness result for data of arbitrary size in Sobolev spaces.

We believe that there are two reasons for the dearth of rig-
orous theory for the full coordinate-free models of [15-17]. First,
the models are not stated in evolutionary form, and instead are
given as formulas for the normal velocity of the flame front.
Second, even when one makes the effort to then restate the
model in evolutionary form, the equations of motion for the
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front involve high derivatives of curvature; this means that if
one were to attempt to evolve the Cartesian coordinates of the
flame front, the leading-order terms in the evolution equations
would be highly nonlinear. We deal with both of these diffi-
culties by adapting ideas originating in the numerical work of
Hou, Lowengrub, and Shelley for the motion of one-dimensional
vortex sheets with surface tension [23,24]. In this work, Hou,
Lowengrub, and Shelley observed that only the normal velocity
of the fluid interface was needed to provide for the motion
of the interface, as the tangential velocity could be artificially
chosen so as to enforce a preferred parameterization. They also
chose to evolve geometric dependent variables such as tangent
angle and arclength of the interface, as curvature is essentially
linear in terms of these variables, and curvature enters the prob-
lem through the Laplace-Young jump condition for the pressure.
Thus, in the one-dimensional case, the Hou, Lowengrub, Shelley
work demonstrates how one might work with a normal veloc-
ity related to the curvature of an interface. The second author
and Akers have adapted the numerical method of [23,24] to the
one-dimensional coordinate-free model of Frankel and Sivashin-
sky [15] in [25]. The second author and Masmoudi used the
ideas of [23,24] to prove well-posedness of the vortex sheet with
surface tension and related problems [26-29]. The second author
and Masmoudi then generalized these ideas for analysis of two-
dimensional fluid interface problems [30-32]. We may view the
present work as the adaptation of the analysis of the second
author and Masmoudi from these papers to prove well-posedness
of the two-dimensional coordinate-free model of [16].

The method by which we prove well-posedness of the initial
value problem for the two-dimensional coordinate-free model is
to first specify tangential velocities for the flame front; recall
that the normal velocity is the content of the model of [16].
We choose tangential velocities so as to maintain a favorable
parameterization, and as in [30-33], we choose an isothermal
parameterization. Having fully specified the velocity of the flame
front, we are able to write the evolution equations for the front,
and to write evolution equations for related quantities. In par-
ticular, we need the evolution of the mean curvature of the
front. This is because (again, as in the papers [30-33] for two-
dimensional fluid interface problems) we are able to make energy
estimates for the mean curvature, and we can use these estimates
to establish the regularity of the front itself. The energy estimates
we make are not for the mean curvature of the actual front, but
instead are performed in the context of an iterative scheme. We
set up an iterative approximation of the equations of motion
for the flame front, prove existence of solutions for the iterated
equations, demonstrate bounds on the solutions (by means of the
energy estimates for mean curvature) which are uniform with
respect to the iteration parameter, and then pass to the limit as
the iteration parameter goes to infinity, finding solutions of the
original problem.

The plan of the paper is as follows. In Section 2 we specify
the model of [16] and we choose the tangential velocities for
the flame front. We also state our main theorem at the end
of Section 2. We explore the consequences of the equations of
motion of the surface for the evolution of geometric quantities
in Section 3. In Section 4, we then give some useful estimates
related to commutators and to geometric quantities. In Section 5,
we prove our main theorem by introducing our iterative scheme,
carrying out the energy estimates for the iterates, and passing to
the limit.

2. The equations of motion

We consider a two-dimensional flame front moving in three-
dimensional space, with Cartesian coordinates

X(a, B, t) = (x(a, B, t), y(a, B, 1), z(, B, 1)).

Physica D 447 (2023) 133682

Here, naturally, the two parameters along the surface are o and

B, while t is time. We define a frame of normal and tangential

vectors,

A N X . Xe x X

poXe e X 5 XexXs (2.1)
1Xa | X5l 1Xo x Xl

The surface X moves according to normal velocity U and tangen-

tial velocities V; and V5,

X; = Uh + Vit! + V,t2. (2.2)

The normal velocity will be specified in Section 2.1, and the
tangential velocities will be specified in Section 2.2. We take an
initial condition for the surface X, namely

X(a, B,0) = Xo(a, B). (2.3)
The geometry we consider is horizontally doubly periodic. The
surface X at all times, including at the initial time, is such that
X(o + 27, B, t) = (27,0, 0) + X(a, B, t),
X(et, B+ 27, t) = (0,27, 0) + X(a, B, t),
for all @ and B.

We will now describe the surface and its curvature in terms
of the first and second fundamental forms; the interested reader
might refer to [34] for more background on these quantities.

We define the coefficients of the first fundamental form for the
surface X as

E =Xy Xo,

The coefficients of the second fundamental form for the surface
X are

L:_on'ﬁaa

F=X, X5, G=Xz X

M=—X, fig=—Xg-flo. N=—Xg-fig.
(24)

In terms of the first and second fundamental forms, the mean
curvature is then

EN + GL — 2FM
T T 2AEG—F?)
The Gaussian curvature is given by
LN — M?
1= B _F

We will be choosing an isothermal parameterization for the
flame front, meaning

E=G,  F=0, (2.5)

for all («, B) and for all t. To enforce this parameterization, we
will assume the initial surface X, is parameterized accordingly,
and then the tangential velocities V; and V, will be chosen so
as to maintain the parameterization at positive times. The au-
thors and Masmoudi have used this parameterization to good
effect in a number of problems in interfacial fluid dynamics [30-
33]. The implications of this choice for V; and V, are detailed
in Section 2.2. Using an isothermal parameterization, the mean
curvature and Gaussian curvature simplify to
L+N LN — M?
2E 2
Also, it will be useful to note that with an isothermal parameter-
ization, the surface X satisfies

AX = 22X, x Xg. (2.7)

)

(2.6)

We mention that with the geometry under consideration,
namely that the flame front is doubly periodic, a global isothermal
parameterization may be found [35]. Thus we are not making a
restrictive assumption on the class of initial data.
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2.1. The normal velocity

The normal velocity for the flame front is developed in [16] as

o? o
U:—]+(1—U)K—<]+7>K2+<?—50’2—20‘>K3

+2(0% + 1)g+ (2002 + 80 — 4)kq — 0%(0 + 3)Ask. (2.8)

The parameter o satisfies o > 1; this allows the term (1 — o)k
to destabilize the front at low frequencies, leading to nontrivial
dynamics (as in the Kuramoto-Sivashinsky equation [12]). The
operator As indicates the Laplace-Beltrami operator of the front.
We use the formula for the Laplace-Beltrami operator found in
the appendix of [36],

1 (Eulg —Fuo,> 1 (Guo, —Fu,g>
Asu = + .
VEG—-F2\VEG—F2); ~EG—F2*\VEG—F2/,
If we have an isothermal parameterization with E = Gand F = 0,
then the Laplace-Beltrami operator simplifies to

_ Uaa + Upp
= 5 .
We define W(«, q) and 7 as

0'2 (73
Wk,q) =1 -0k — <]+7>K2+<?—502—26>K3

+2(0” + 1)g + (200° + 80 — 4)kq, (2.9)
=02 +3)>0.

With these definitions, we may rewrite the normal velocity as
U=—-1tAx/E+W(k,q)— 1. (2.10)

As we have said in the introduction, the model of Frankel
and Sivashinsky developed in [16] consists of the specification
of the normal velocity of the flame front in terms of its intrinsic
geometric information. That is, (2.8) (or equivalently (2.10)) is the
model under consideration. One contribution of the present work
is to rewrite this model as a system of evolution equations for
the position of the flame front. This requires setting a parame-
terization of the front, which itself consists of two steps: setting
the initial parameterization, and defining tangential velocities
to maintain the chosen parameterization. The definition of the
tangential velocities is the subject of the next subsection.

Asu

2.2. The tangential velocities and choice of parameterization

As we have said, while the normal velocity comes from the
physical problem, the tangential velocities may be freely chosen
so as to enforce a favored parameterization. That is, moving the
surface tangent to itself does not change the location of the
surface.

The tangential velocities may be determined by using (2.2)
together with the time derivative of (2.5), E; = G; and F; = 0. This
is the same choice made for the motion of a vortex sheet in three-
dimensional fluids by the second author and Masmoudi, and the
calculation of the tangential velocities may be found in [31]. The
result is that the tangential velocities V4, V; satisfy

Vi Vs _UL-N)

(\/E)a (ﬁ)ﬁ_ E ’ (211)
(V1> +(Vz) _2UM (2.12)
VE)y \VE), E '

Then, if V; and V; satisfy (2.11) and (2.12), and if the initial
surface X, satisfies (2.5), then at positive times the surface will
satisfy (2.5). We will prove well-posedness of the initial value
problem (2.2), (2.3), with V; and V, enforcing the isothermal
parameterization and U given by (2.8).

We will discuss solvability of this elliptic system in Section 4.
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2.3. The main result

We take s € Z, with s > 6. In the calculations which follow
in the next several sections, we will sometimes state that our
reasoning is valid because s is “sufficiently large;” this simply
refers to this fact that s > 6. Let ¢y be a positive constant. We
define an open subset O, C H*2, such that for every X e Ocy»
the following condition holds:

E(a, B) > co.

Theorem 2.1. We assume that the surface Xq € O, is globally
parameterized by isothermal coordinates (namely (2.5) holds). Then,

there exist a time T > 0 and a unique solution X € C ([0, T), @)
of the Cauchy problem
X, = Ut + Vit! 4+ W2,
U= —1Ax/E+W(k,q)—1,
X(t = 0) = Xo.

(2.13)

Remark 1. When we say X € H?, this means that X(«, 8) —
(e, B, 0) is actually in H?, since the surface X is doubly periodic.

3. Geometric identities and evolution of geometric quantities

In this section, we first give some useful geometric identities.
We then study the regularity of E and X, and find evolution
equations for E and «. Versions of these equations and further
discussion may be found in [31].

3.1. Geometric identities

We will frequently need to differentiate the normal and tan-
gential vectors to the front, so formulas for these derivatives (in
the context of our isothermal parameterization) will be helpful.
The derivatives of the normal and tangential vectors satisfy the
following:

. L, M,
e = "pipt "R
. M. N
ng = El/Zt - El/Zt ’
o Eg . L .
t =24+ i,
2E EY/2
i = Ey -
B 2F E12
~ Eg . M
2 _ BB A
=gt TEa™
~ Ey A N .
L A
2E E1/2

These formulas are all directly verifiable by using (2.1), (2.5), and
the definitions of the first and second fundamental forms. For
instance, to compute t!, we first note that t! - t' = 0, so that

B =@ 28+ @ Wi

We then substitute t' = X, /E'/2, and arrive at

2 A
21 (Xaa -t )Az (xaa 'n),\ _ (Xaa 'Xﬁ)'\z L .
="fp U+ =" Ut
__(xa'xa)ﬁEZ LA__EiAZ Lﬁ
B 2E EV2" " 2E E12

The remaining formulas are similar, and we omit the details.
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3.2, Gain of regularity for E and X

In the estimates we will be making, we will be using the mean
curvature, «, as our primary dependent variable. We will make
estimates for « in the Sobolev space H®. We then need to infer
regularity for X and E. We will be able to conclude that X is
(s + 2)-times differentiable (specifically, we will say X € H**?
which will mean that X — («, 8, 0) is actually in the space H**2).
It may appear at first glance, then, that E € H*!, but we may
infer higher regularity and find in fact that E € H**? as well. This
gain is a consequence of the isothermal parameterization.

The gain of one derivative for E may be seen by calculating
AE. Recalling that E = X, - X, = Xp - Xg and X, - Xg = 0, we
have

AE = 2(Xap - Xup) = 2(Xao - Xpp)- (3.1)

So, if X is in H**2, then the right-hand side of (3.1) is in H*. We
conclude that E is also in H*2. We have proved the following
lemma.

Lemma 3.1. If (X — («, B8, 0)) € H*? then E is in H**2.

(We remark that this gain of regularity is related to Gauss’s
Theorema egregium, and we also remark that there is a similar
gain of regularity for E;.) Finally, we mention that regularity of
X may be inferred from the regularity of « through the formula
(2.7).

3.3. Evolution of E and «

As we have said, we will perform energy estimates for the
mean curvature, ; as such, we must develop the evolution equa-
tion satisfied by «. The evolution equation for « can be inferred
from (2.2), using the formula for « in (2.6) with the definitions of
the first and second fundamental coefficients. For the moment, a
convenient way to write the evolution equation for the curvature
is

_ AUl v V2
(VEk) = 2ﬁ+ﬁ(ﬁma+ﬁ<x/§w

+UM2+ L <V1>+ N (Vz) (32)
VE 2VE\VE/), 2VE\VE/s '
Further details of the derivation of (3.2) may be found in [31].
Of course, to fully specify k;, we also must have an evolution
equation for E. Such an evolution equation for E may be inferred
from (2.2), using the definition E = X, - X,, or alternatively
E = Xz - Xg. We therefore have the evolution equation

UL VzEﬁ UN VlEDt
E =2VE( Vi, — — =2VE(Vy 5 — — :
¢ [(],a «/E+ ZE) (2.;3 \/E—i_ ZE)

(3.3)

Since x; = (VEk)/vE — Ew/2E, using (3.2) and (3.3), we
conclude that the evolution of « is given by the following:
AU W UM?

V
_ AU LY R+ (e, + I
Kt 2E+E( K)+E( K)g + £

N L <V1> +N(Vz>
2E\VE/, 2E\VE/
K UL WE

(U )
VvE VE 2E

Using (2.10) to substitute for U, we have the evolution of « as
being

T Ak AW(k,q) Vi V2
= ——A (S5 ) + 2 VR, + 2(VE
Kt 5F (E)—i- 2E +E(f/c)+E(fK)ﬂ
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+UM2+L Vi +N Vs
E 26\VE/, 2E\VE/,

K v UL + VzEﬂ
\/E 1,a \/E 2E .

4. Preliminary estimates and useful formulas

In this section we record some basic estimates which will be
useful a number of times. Before doing so, we define the operator
A to be the operator with symbol A(k) = |k|. This can also be
represented using the Riesz transforms H; and Hs, as we also have
the formula A = H;9d, + H,d3. The Riesz transforms may either
be defined in terms of their symbols or as singular integrals [37].
For any £ > 0, we define the Sobolev space H’ to be the space of
functions for which the norm

Flle = (IF1% + 1A% 1%) "

is finite. Notice that A% = —A.
The first lemma concerns commutators; as usual, the commu-
tator notation means [A, B]f = ABf — BAf.

Lemma 4.1. Lets > 1. Iff € H*? and g € H**!, then [A?, flg is
in H®, with the estimate

1A%, Flgls < cllf llss2llgllsta-

Proof. Notice that
[A%.f]e = —A(fe) + fAg = —gAf —2Vf - Vg.

The Sobolev space H5(T¢) is an algebra for s > d/2; since we are
dealing with d = 2 and since s > 1, we do indeed have that H® is
an algebra. We therefore have

I —gAflls < cliglslAflls < cllf ls+21lgls

and

I =2Vf - Vgls < cllVFlsIVElls < cllf ls+1llglls+1-
This completes the proof of the lemma. O

We next have another commutator estimate, which is a ver-
sion of a standard Sobolev product estimate [38-40]; the authors
previously used it in [33] as well.

Lemma 4.2. For s > 0, then

I0A% Flgl < C (IVFlleliglls—1 + If Islg i) -
Next we give a standard elementary interpolation estimate.

Lemma 4.3. For 0 <m < s, and f € H®, then
[ATFI < [ ASFI™>1f 1

The proof of Lemma 4.3 can be found in many places, such
as [26]; see also [41].

For the final result of this section, we comment on the regu-
larity of the velocities U, Vi, and V5.

Lemma 44. If (X —(a, 8,0)) € H*2, E € H*? and « € H?, then
UeH2andV; € H 1.

Proof. Recall that

U+ 1= —1Ax/E+W(k,q).

We immediately get U € H~2 when « and q are in H®; this uses
the definition of W in (2.9) and the fact that H® is an algebra for
s> 1.
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Turning to V; and V5, we apply 9, to (2.11) and we apply dg
to (2.12), and then add the results. It follows that V; satisfies

2(5) = (7). (),

That this Poisson equation is solvable is immediate since our
spatial domain is T2 and the right-hand side has zero mean (this
is evident since the right-hand side is a sum of derivatives);
the solvability may be seen in Fourier space. With the assumed
regularities of X and E, and the demonstrated regularity for U, we
have V; € H*~!. Similarly, we have V, € H*! since

a(%)-- (7)),

The interested reader could find more on the solution of Poisson
equations in doubly periodic geometry (using a potential theory
approach) in [42]. O

5. Well-posedness

In this section we prove Theorem 2.1, showing that the two-
dimensional coordinate-free model for the motion of flame fronts
is well-posed. We will use an iteration method. In Section 5.1, we
set up an iterated system of evolution equations. We then set up
a general linear Cauchy problem in Section 5.2, and demonstrate
energy estimates for this problem in Section 5.3. In Section 5.4
we then use the results of Sections 5.2 and 5.3 to show that
the iterates in our iteration scheme obey bounds uniform with
respect to the iteration parameter. We use the uniform bounds
to take the limit of the sequence of iterates, and demonstrate
that this limit solves the original system, in Section 5.5. We
then discuss uniqueness and continuous dependence in 2.1 in
Section 5.6.

5.1. The iterated system

We now set up iterated evolution equations for X and «. We
take initial data X, € H**?, such that the surface has a global
isothermal parameterization with Eg = Xoq - X0« = Xog - Xog > Co,
for some constant ¢y > 0. Of course, in taking a global isothermal
parameterization for Xo, we also have Xqq - Xog = 0.

We initialize the iterative scheme with the initial iterate being
the flat surface X° = (a, 8,0). Then E® = 1, and ¥ = 0.
Then clearly the initial iterates are C*°. Similarly we also have the
other quantities corresponding to X°, namely L°, M°, N°, and ¢°,
with these all being C*. Recall that these quantities are defined
through (2.4) and (2.6), using X° as the surface. We then also may
define U° through (2.10), using «°, E°, and ¢°. Then (V?, VJ) is
determined by solving the following system,

(V?>_(Vz°) _ V=N
VE), \VEO),  E° 7

(v?) +<v2°> _2U°M°_O
VEO )y \VEY/, EC '

That this elliptic system is solvable follows as in the proof of
Lemma 4.4. Specifically, we can apply 9, to the first equation
and dg to the second equation, and add and subtract the two
equations to find Poisson equations. The Poisson equations are
solvable since the spatial domain is T? and the right-hand sides
have zero mean. Of course, this solution is V) = V) = 0.

Assume that for some | > 0 we have already constructed
(X!, k!, EY), and these are all C* functions. We then compute the
related quantities

1 1 1 1
fu X, o1 Xp o X, x X

TIX Xyl X x X[

)
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I _xl .4l
I'=X, m,

q]_ LlNl_(MI)2
KL XK, X)) — (X, - X2

I Al
M :Xaﬂ-n,

To begin finding the next iterates, we construct «'*1 to solve
the linear Cauchy problem

T AKI+1
Kt = T (T) +Ql, (5.1)
where Q! is given by
AW ¢ V! A
I _ > 2 1! 22 1,1
Q = S +E1 (x/I:TK)a—i-E, («/EK)ﬂ
JMW+U(W>+W<%)
B o \VE), T\ Ve,
I Iyl lEl
K I U'L VzEﬁ
- (vm - =t ) (5.2)

and with initial condition x*1|,_g = yko. Here, x; is a smoothing
operator, which projects onto Fourier modes with wavenumbers
at most |I|. We see that the data for «'*! is therefore infinitely
smooth for all I; as long as the previous iterates are infinitely
smooth, we will have «'*!, being the solution of a linear parabolic
equation, is infinitely smooth as well. After we demonstrate that
this problem is solvable, we can then define U as

Ul+1 — __L_AKH—I/EI + W(Kl, ql) —1.

(5.3)

We next determine (Vi™', Vi) by solving the system

(W’“) ~ (vz’“) _UMNY At o NY
Lo 2 I - !
B

VE! VE! E! (E"?
(5.4)
Vl+1 Vl+1 zuH»lMl 2A H»lMl
O) () = =25 gl (5.5)
VE! 5 VE! E! (E"?
Here, the functions f}, f are defined by
(W(k', ¢") — 1)(L' — N
fi= = , (5.6)
2W(', q") — )M
h==——g— (5.7)

These equations can be combined to more clearly have solvable
Poisson equations,

A Vit'\  (rAkM( = NY) 2T A MY
VE __< (ETP >_< (ET? ),3

+ (e + (s (5.8)
A v\ (rAdtI - N 2t At IM!
VE ‘( (ETP %_( (E'? >a
— (D + e (5.9)

As discussed in the proof of Lemma 4.4, these Poisson equations
are solvable since the spatial domain is T? and the right-hand
sides have zero mean. Specifically, the solvability is clear in
Fourier space. Furthermore, we mention that since «*' and the
previous iterates are all C*, all of these quantities such as U'*!
and V™! are as well.

We define the next iterate of the surface, X'+, in a few stages.
To begin we let Z']+1 be the solution of the initial value problem

(Zl)l[+l — Ul+lﬁl+V{+1E]’l+vzl+]f2’[, (Zl)l+]|t=0 — XIXO- (510)
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Here, we understand that y; applied to X, truncates the Fourier
series of Xq — (e, B, 0). We therefore again have that X! is in C*®
for all I. Substituting for U'*! using Eq. (5.3), we can write this as

(21)lt+1 — (—'L'AKH—]/EI)ﬁI + V1l+1EL1 + V2H~1f2,l + Qz’a (511)
where QJ is given by
Q) = (W(x', ¢")— DA". (5.12)

We will have one more intermediate variable Z’2+1, which is given
by solving the elliptic equation

AZEY 75 = 2il (2, x (2 — 2. (5.13)
Note that this formula is based upon Eq. (2.7). Now we are ready
to construct X! by solving the following elliptic equation (again
influenced by (2.7)),

AXPT - X = 2 (25, x (2L — Zi (5.14)

Finally, we will define E*" also by solving an elliptic equation,

1
AEH_EHT — 2(X$1-XLEI—XL+J .xggl)_i(xéﬂ.xgl_i_xgl_Xigﬂl
(5.15)

Note that this equation is based upon (3.1) as well as the fact that
in an isothermal parameterization, we have E = X, - X, + 1 X5 -
Xjp. Again, all of the quantities we have defined as the (I 4- 1)-st
iterates are C*.

Remark 2. Note that for any of the versions of the iterated
surfaces, they are not expected to be parameterized isothermally.
The isothermal parameterization of the solution will be recovered
after taking the limit as [ — oo.

5.2. A linear Cauchy problem

To deal with the iterated system, we study the well-posedness
of the linearized Cauchy problem for «'*! and Z\'. More pre-
cisely, we will consider the linear Cauchy problems for 1 and Y,
where 7 satisfies the evolution equation

T An
w—ra(2)+a.

5.16
2E E ( )

with initial condition n|;—¢ =
equation

Y = (—tAn/E)a+ Vit' + Vot® 4 Q.

no, and Y satisfies evolution

(5.17)

with initial condition Y|;—o = Y,. The tangential velocities V; and
V, solve

() ()
2

Here, Qq, Qa, f1, and f5 are given nonhomogeneous terms. We
are assuming here that ¢ > 0 and that there is a given surface
X and function E. The functions L, M, and N are the second
fundamental coefficients of X, and the vectors t!, fi are the unit
tangent and normal vectors to X. As we have discussed several
times, the tangential velocities may be solved for by applying d,
to (5.18) and dg to (5.19), and adding and subtracting to arrive at
Poisson equations. The Poisson equations may then be solved, as
discussed in the proof of Lemma 4.4.
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5.3. The a priori estimate

The iterative scheme which we set up involves the solution
of a sequence of linear equations, all of the form (5.16)-(5.19).
Bounds for the solutions of these equations are therefore fun-
damental to our existence proof. We now establish the needed
estimates.

Theorem 5.1. Suppose that there exists T > 0 such that for every
jeN

E € C([0, T1, ) () C'([0, T1, H),

X e C([0, T1, )| C'(10, T1, H),
and
0; € [%([0, T], H)), Q; € [2([0, T], H'), f; € [*([0, T], H').

Assume there exists C;, > 0 such that for all t € [0, T], we
have E(-,t) > Co > 0. Let initial data (no,Yo) be given such
that no € H' and Yo € H! for every j € N. Then there exist
a constant m > 0 and a unique solution to the Cauchy problem
n € C([0, T, H) N L*([0, T], H"*?) and Y € C([0, T], HY) for every
Jj, such that the bounds

t rm”AH»Zn”Z t 4
llnll§+/ f‘)dt’geaomoﬂf‘f‘/ — Qi dt’>,
0 o mt

(5.20)

t
IY)Z <e“ (||Yo||§ + Clinoll2 + c/ lQilZ, + Q2
0

+ A2, + 1Rl dt/) ) (5.21)
are satisfied for all t € [0, T]. The constant C depends on the
functions E, X, Q1, Q2, f1, and f, only through the norms

E € C([0, T1, H**) () C'([0, T1, H*™?),

X e C([0, T1, H**) () C'(10, 1, H*2),
and
Q; € IL*([0, T1, H72), Q, € L*([0, T1, H%), fi € L*([0, T], H*™").

Remark 3. We note that we have assumed that the functions E,
X, and so on are C*°, which will ensure that all integrals below
converge. However we will only rely on the regularity specified
at the end of the theorem for estimates, i.e. while our E may
be C*°, the size of ||n|lys will only depend on its norm ||E||ys+2-
The corresponding statement is true for the rest of the given
quantities X, Q;, f;. That is, all constants which are denoted by
C in what follows may be expressed in terms of these norms of
X and E, and the given functions Qq, Q, fi, and f>, as well as the
parameters of the problem such as t.

Proof. The proof of well-posedness for the Cauchy problem for
(5.16) and (5.17) follows classical steps, namely approximation,
existence for the approximate problems, establishing uniform
estimates, passage to the limit, and establishing further estimates
for uniqueness and continuous dependence. By far the most im-
portant and most interesting of these steps is the uniform bound,
and this will be the focus of our presentation here. We will give
the relevant energy estimate, and omit the other details.

We will first establish the energy estimate for . We define the
energy

£ =& + &,
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with & = 2||r]||0 and & = 2||A577||2 In what follows, we will
be taking the time derivative of Ey and E;. We may exchange
the time derivative and the integral because all of the iterates
are, as we have mentioned several times, C*. The relevance of
this is that the integrals of the time derivatives are absolutely
convergent, and this justifies the exchange.

To begin, we take the time derivative of &:

d&
4 / / nne dadp.

The evolution equation for 7, (5.16), involves up to fourth deriva-
tives of 7, second derivatives of E, and zero derivatives of Q;.
Since s is sufficiently large (recall that we have assumed s > 6),
E and its first two derivatives are bounded by assumption. With
s sufficiently large, up to the fourth derivatives of 1 are bounded
by &, and Q; is bounded in H*~2, We therefore may immediately
conclude

d&y
E <CE+ 1O ”?72)

We next take the time derivative of &,

w= o Jema (G (F))
+ / / (A29)(A52Qy) dad.

For the second term on the right-hand side of (5.22), we have
used the fact that A is a self-adjoint operator (which can be seen
from its symbol in Fourier space).

We first deal with the first term on the right-hand side of
(5.22). Recalling that A = —A?, and pulling ; through A2
(incurring a commutator), we have

flieon (3 (3) oo
= [[urna (5 () dest
_ //(AS+277)A5_2 <‘;1;2> do d,B
1 1
+ f/(A5+2n)AS_2 (ZE |:A2 E}A%) dadp.

We then incur another commutator, this time pullmg
A72; this yields

e (2)
=// %(Asﬂnf dadf
+ [[arm [AH, %} (A'n) dadp
+ //(AS“n)AS*2 (% [AZ, %] A2n> dadB.

By Lemma 4.2, for sufficiently large s, we have

AS 2 1 A47) <c \v4 i
" 2E? 0o 2E2 )|,
+ H ||A477||L°°>
2E2 s
< clinlissr < cClinllo + 114 nllo)-
And, by Lemma 4.1, we have

[ (ae [ 2] )

(5.22)

55z through

1A% lls-3

< cllA®nlis-1 < cllinllo + 1145 o).
0
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s+1 1
By Lemma 4.3, | A*1nllo < cl|A**2nllg7 Inllg™. By first applying
Holder’s inequality and then Young’s 1nequa11ty (with parameter
n > 0 to be chosen), we have

[[ a2 2::2] (%) dac

= C||77||s+2 14527l 57 + cllnlloll A llo

As+2 2
|| nllg 4 ce.

In just the same way, we have

‘/ (AS+277)A572 <% |:A2, %] AZn)

We make our first conclusion that

A (A
_rf/(Asn)As<2E< ”)) dadp
s+2 2
<-1 // i(A“Zn)Z dadg + 2ellA" nllg +Cre. (5.23)
2E2 n

For the second term on the right-hand side of (5.22), by Young's
inequality, we have

‘// (AS+2n) AS_ZQ]dO(dﬂ <

Now we make the conclusion that

3] 4522
@ __ (A2 dadp + 202l
f f (A7 dap 4 2

+ CE+ n||Q1||$72/r.

We know E > 0,and E € L*° when s > 1. Then there exists m > 0
such that —ﬁ < —m. Now we take n = 4/m. Then

As+2 2
Al

| Al n nlQil;
n T

de  Tm|| A2
dt 4
By Gronwall’s inequality, it follows that

t s+2..12
nTml|lA
S(t)-i—/ ecte-) IMIA Ml
0 4

t 4 ,
<e“ (8(0) +/ —e Q2 dt/) .
0 mrt

. ’ !
Moreover, since e<‘~t) > 1 and e~ < 1, we have

trmll ASF2p12 t 4
£(t) +/ M dr’ < e <£(O)+/ f||Q1||§7z dt,) .
0 4 o mt

Now we will do the energy estimate for
according to (5.17). We define energy

4 2
f Cg "F ||Q1 ”5_2'
mt

Y, where Y evolves

E=&+4&,
with & = 1|12 and & = 1| A°Y||2. To begin, we take the time
derivative of &;:

dz,
50 f/y Y, dadp.

The evolution equation for Y involves up to second derivatives
of n, zero derivatives of E, first derivatives of X (through the
tangent and normal vectors), zero derivatives of V; and V,, and
zero derivatives of Q,. Recall that the energy bounds s derivatives
of 1, and that the constants in our bound are allowed to depend
upon up to s+ 2 derivatives of E and X. Also recalling that s > 6,
using the evolution of Y and the estimates of Section 4, we may
immediately conclude

0 ~
o SCE+ 03 4+ 1Q2 15 + I3y + 215 )-
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Next, we take the time derivative of &, and make a use of
Young's inequality:

dE
=1 / [ ASY - AY, dadB

:/f ASY - AS((—t An/E)a + Vit + Vot? + Qy) dadp

TmIIAs“nIIO

<= 10 // ASY - AS(Vqt! + V,t?) dadB
+ IIQJIIS + CE+Clinl?.

Since V; and V, solve the elliptic system (5.18), (5.19), for suffi-
ciently large s we have

[A°(ViE" + Vat®)llo < cTlInllss1 + c(fills—1 + Ifzlls=1)

< ct(lInllo + 145" nllo) + c(lfills—1 + [Lfalls—1)-
By first applying Holder’s inequality and then Young’s inequality,
we have

V/ ASY - AS(Vqt! + Vot?) dadB

14°Y o (cCllmllo + 1A% 2nll0) + c(fills—1 + Ifalls-1))

Tm| A3
= IR
We may now make the conclusion that

dg _ o wml| APl
o SCEt 2+ CUIQIZ + IAlIZ + 121174 + lImlI2).

By Gronwall’s inequality, it follows

- - t AS+2 2
gty < e <5(0)+/ Tmil A nllg dt’
0

IA

+ CE+ C(If1 112 L lInl2).

4
t

+ / ClIQaIS + IAllE=y + W25y + Il dt’) :

0

Using our estimate for 7, (5.20), we have

(t)<ecr< +c/ 1Q2 112 + I 12, + I l2 1dt)

t
+ 4 (Cea (ll’)o”? +/ 7||Q1 12, dt,))
0

<e (( )+ limoll +C/ Qa2 + If 17

ORI, + QR dt’) .

This concludes the proof of the theorem. O
5.4. Estimates for the iteration scheme

To prove that the sequences of iterations converge, we will
need the following lemma.

Lemma 5.2. The family of iterates (X', E!, k') are defined for all |
and there exist T > 0 and positive constants Cy, C1, G, C3 and Cy
such that for all I,

E'>C >0, |X,xX,|>C>0, (5.24)
lle'llcogo,ryshsy < C1s (5.25)
X!l coro.rrms+2) + 1E' I cogo.yms+2y < G (5.26)
”atKIHCO([O,T];HS*“) <G, (5.27)
19eX | coggo,rycas2) + 13eE" Nl coggo,ryzps—2) < Ca- (5.28)
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Proof. We proceed by induction. We take Cyp = ¢o/2. We will
determine appropriate values for C;, C;, C3, and C4 as we go.
Given the definition of our initial iterates, the needed bounds are
satisfied for (X°, E?, «©). Assume that (X, E', «!) satisfies (5.24),
(5.25) (5.26), (5.27) and (5. 28) By the definition of Q1 in (5. 2)
applying s—2 derivatives to Q1 involves at most s-derivatives of «'
and at most (s + 2)-derivatives of X!, and at most s-derivatives of
E'. Thus ||Q] llcqo. 1y ms-2y < C(Co, C1, Gz), with this constant being
independent of I. (In fact, in what follows, all constants of the
form C(Cy, Cq, G3), or C(Cy, Cq, G5, C3) are independent of L.) By the
result of our energy estimates, (5.20), k't satisfies

t s+2,.1+1 2
Tm|| A’k S
I 102 + f AT Ol g
0 4
< 0@ g |? + C(Co. 1, Cy)re 012,

Hence taking C; = 2||«g||s, we may take T small enough so that

t s+2, . 1+1 2
4174812 Tm|| AT (S P
I O 05) +/(; —— 20 dt' < (.

: (5.29)

Inspecting the definitions offl, fz, and Q2 in (5.6), (5.7), and
(5.12), we see that we may bound these as ||Q2||C([0 Es) <

C(Co, C1, G2) and [fll¢o.ep:5-1y < C(Co, C1, G2). Using (5.21), the
estimate of Z|"" is then

1ZE ()12 < e T2 1io |2+ X0 12) +C(Co, C1, Cp )t -1,

Hence we may again choose T sufficiently small so that
||Z’]+1 lcro.m1:15) < 2(11Xolls + llkolls). Solving the elliptic Eqgs. (5.13)
and (5.14), we then have X" e C°([0, T]; H**?) and

1Z5" o, yms+1y < CUXolls, llkolls),

X" eqoryns2) < CUXolls. llxcolls)-

Then, solving the elliptic Eq. (5.15), we have E"! e C°([0, T]; H*?)
with estimate

1
IE" Neqorpms+2) < CUXolls, liolls)

We may then take C; = 2C(||Xolls, lI40lls), and we see that the
estimate (5.26) holds.

Using the inductive hypotheses and the bound (5.29), we may
then bound the right-hand side of (5.1), finding

19e () ls—a < C(Co. Cr. C)(1 + [l (E)]s)

< C(Co, C1, G)(1 4 Cy).
We may similarly bound the right-hand side of (5.10), finding
||3t ”C([O 52y < C(Co, C1, G2).

Taking C3 such that C3 > C(Co, C1, G3)(1 + C;), we have the
estimate (5.27).

Taking the time derivative of (5.13) and (5.14), we may con-
clude that

18X N cqro.rp:m5-2) < C(Co. C1, G, C3).

Similarly, taking the time derivative of (5.15), we may conclude
the bound

18" Ml co.rms—2) < C(Co, Cru Ca, G).
We then may take C4 to be such that C4 > C(GC, Cq, Gy, C3),
getting the estimate (5.28).

Notice that when s is sufficiently large so that H=2 C [,

t
()] > Eo — f BEf1(¢") dt’
0

> g — tCy
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and

IXLF(6) x X5 (0)]

t
= 1X70) x X100 = [ 0.6 % X e = o (G
0

So, we can take T small enough such that c¢ — TC4 > Cp and
co — TC4C, > Cy. This completes the proof of the lemma. O

5.5. The limit of the iterated system

In this section we take the limit of (a subsequence of) our
iterates. Since the spatial domain, T?, is compact, we may do so
by the Arzela-Ascoli theorem.

Since the iterates «', Z} are uniformly bounded in H® and H**2,
respectively, and since the time derivatives «! and X! involve (as
the most singular terms) four derivatives of !, we see that /ctl
and (Z’] ); are bounded, uniformly with respect to («, 8, t) and
also I. Furthermore /., «p, (Z}), and (Z) are similarly uni-
formly bounded with respect to («, 8, t) and I. We conclude that
k' and Z| are bounded equicontinuous families. By the Arzela-
Ascoli theorem, there is a subsequence (which we do not relabel)
and limits « and Z; such that «! converges uniformly to « and
Z’1 converges uniformly to Z;. With this uniform convergence,
we immediately conclude that the convergence also holds in
C([0, TT; L*(T?)).

We next use the interpolation lemma, Lemma 4.3, to find con-
vergence in more regular spaces. Specifically, for any s’ € (0, s),
convergence in C([0, T]; L?) and boundedness in C([0, T]; H®) im-
plies that «! converges to « in C([0, T]; HS’) and Z’1 converges to
Z,in C([0, T]; HS/). Then, from (5.13) we have

le+1 — _(] _ A)71 (ZKI(le-%—l)a % (Zl1+l)}3 _ Zl1+1) ,

and we can pass to the limit on the right-hand side in H !
finding that ZI2 converges to Z, in C([0, T]; H**1), where

AZy — 7y = 2k(Z1) X (Z1)g — Z4.

Similarly, t/hen, by (5.14), we find that X' converges to X in
C([0, T]; H® *?), where

AX—X = ZK(Zz)a X (22)5 — Z1.

We then are able to similarly pass to the limit in (5.15), finding
that E! converges to E in C([0, T]; H* +2), where E satisfies

AE —E = 2(Xap - Xop — Xoo - Xpp) — (Xo - Xo + Xp - Xp).

We now conclude that « and Z; satisfy the appropriate evolu-
tion equations. Integrating (5.1) with respect to time, we have

t T At N ,
t=o+/o (‘25'(‘,r')“< (- 1) )*Q‘("”) ar

We have established enough regularity to pass to the limit on
both the left-hand side and the right-hand side of this equation.
To pass to the limit on the right-hand side, we need uniform
convergence to exchange the limit as [ goes to infinity with the
time integral. Fortunately, the convergences we have established,
such as ! — « in C([0, T]; HS/) for any s’ € (0, s) with s fixed
(recall we have taken s > 6) is sufficient to be able to conclude
this needed uniform convergence. We conclude

. t T Ax(-, t) , ,
K(',t)—lco-i-/o <_2E(-,t/)A< B 0) >+Q1(',t)) dt’.

This immediately implies (-, 0) = g, and differentiating with
respect to time, we have

‘L’A Ak 4o
kKt =——A|— .
! 2F E 1

) = i
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In just the same way, we may pass to the limit in the evolution
equation for Zlf“], (i.e. we integrate (5.10) with respect to time,
pass to the limit, and then differentiate with respect to time)
finding

(Z1) = (—t Ak /E) + Vit' + Vot? + Q.
We must also prove that the following relations hold:

L+N
K= —.
2E

(5.30)

We omit the details of the proof here as all of the details demon-
strating (5.30) are included in Section 5.4 of [43]. (Like the present
work, [43] also uses the isothermal parameterization and iterative
scheme of [31]. Therefore, after taking the limit of the iterates,
they demonstrate that exactly the relationships given in (5.30)
hold.)

The higher regularity of the solution X must still be estab-
lished. We have already shown that the solutions are continuous
in time in a low norm, and the boundedness in a high norm
together with the interpolation result Lemma 4.3 implies that
X e C([0, T]; H‘/”) for any s’ < s. All that remains to show is that
X e %[0, T]; H**?). We do not include the remaining details,
but this can be done by adapting the corresponding argument for
regularity of solutions for the Navier-Stokes equations in Chapter
3 of [44].

Zi=Z, =X, E=X,X,=XzXp, XoXg=0,

5.6. Uniqueness and continuous dependence

In this section we sketch the proof uniqueness of solutions
and continuous dependence of solutions upon the initial data. The
proof relies on energy estimates very similar to those in the proof
of Theorem 5.1.

We assume that there exists a time T > 0 such that both X and
X’ are elements of C°([0, T), ©) which solve the Cauchy problem
(2.13). We denote by (8X, é«) the difference (X — X', k — «’), and
define an energy functional

1 1 1 1
D= S I8klg + 5 1425k g + = 15XIlg + =1 A%8XI[5. (5.31)
2 2 2 2
We also denote SE =E —E', U = U — U’, §V; = V; — V/, and so
on.
We can write evolution equations for X and &« as follows:

§X; = SURA + (SV1 )t + (8V2)E + Ry, (5.32)
where the remainder R; is defined as
Ry = Vi(t' — ") + Vo(€ — %) + U — ), (5.33)
and
S — T A Adk R (5.34)
= UE 2 '
where the remainder R, is defined as
Ro=——a(2) 4 Za(2) ra-q (5.35)
>~ 27 E 2000\ F 1T ‘
We have the formula
AW(k,q) VW v,
=— "Y1 (VEk)y+ —=(VE
o} 5 T g WE + T (VEK)
U(M)z L Vi N V,
+ +—(—=) +x(—=
E 26\VE), 26E\VE/,
K UL VzEﬁ)
(Vi — — + : (5.36)
JE ( YOVE 2

and naturally Q; is defined accordingly.
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To begin, we estimate §X in H* using (2.7). Specifically, we
may take the difference of (2.7), finding

ASX = 28k (Xy x Xp) + 2k'(8Xy x Xp) + 26'(X], x 8Xg). (5.37)
This then implies
16X13 < C(lIdk|l1 + I16X]I2). (5.38)

Then using (5.37) again, but then substituting the result of (5.38),
we find

16Xll4 = ClI8k [l2 + 16Xl3) < C(lI8« Iz + [18X]|2).

We similarly get an estimate for §E by considering differences in
(3.1); the result is

I6Ella < CllsXlla < C(lI8k ]Iz + [18X]|2).

It is immediate that we may bound R; in H® by the energy,
IR ||?J < (D, since R, includes only first derivatives of §X. We
furthermore may bound R, in H® in terms of the energy as
||R2||f, < (D; this requires a number of routine estimates for
differences, For instance, to estimate W(«x, q) — W(x’, ') requires
writing
0.2

W(k,q)—W(k,q)=(1—0)8k — (1 + 2) Sk(k +«')

3
+ (% —5¢% — 20) Sic(kc* 4 ki’ + 1)+ 2(0* 4+ 1)8q

+ (20020 — 4)(qdk + K'8q).
We may then estimate this as
Wk, q) — W(x', q")llo < CD.

The corresponding estimate for §U then follows, as does the
estimate for §V;, and so on.

Now we are in a position to take the time derivative of D,
finding

dD
= // SkcSkr + (A%8k) A28k dad

+ / / SX8X; + (A28X)(A%8X,) dadB.

We then substitute from the evolution equations for é« and 38X,
and we use the fact that A is self-adjoint, and the estimates
we have already established. These considerations lead us to the
bound

dD 2 2 T Adk
+ / f (A*SK)R; dadp

+ //(A4(SX) (SUR + (8V)E' + (8V2)P? + Ry) doed + CD.

Then, as in the proof of Theorem 5.1, the first term on the right-
hand side may be written as a negative term which controls
A%*8k (the remainder is a commutator which may be bounded,
as in (5.23)). For the second term on the right-hand side we
may use Young’s inequality, bounding the resulting term (A%« )?
by the previous term (making use of the negative sign in the
previous term). The remaining term from Young's inequality is
zero derivatives of R%, which we have already argued is bounded
by the energy. Similarly for the third term on the right-hand side,
we have already argued that it is bounded in terms of the energy.
We are able to conclude the bound

dD
— =,

o (5.39)
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which immediately implies via Gronwall’s inequality that

D(t) < D(0)e". (5.40)
With D(0) = 0, then this implies the solution of Cauchy problem
(2.13) is unique.

The bound (5.40) also implies continuous dependence on the
initial data, in a low norm (i.e., with X measured in H*). Using
Lemma 4.3, since the solutions we have proved to exist are
bounded with X in H**2, then for any s’ € (0, s), this also implies
continuous dependence in HE 2,
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