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We study a two-dimensional coordinate-free model for the motion of flame fronts. The model specifies
the normal velocity of the interface in terms of geometric information, such as the mean curvature
and the Gaussian curvature of the front. As the tangential velocities do not determine the position
of the interface, we choose them to maintain a favorable parameterization. We choose this to be an
isothermal parameterization. After appropriately reformulating the equations of motion, we use the
energy method to prove short-time well-posedness in Sobolev spaces.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The Kuramoto–Sivashinsky equation is a weakly nonlinear
odel equation for the motion of flame fronts [1,2]. It has been
idely studied in one spatial dimension [3–7]. In two spatial
imensions, much work is either in the case of thin domains
o that one-dimensional dynamics dominate [8–11], or is
omputational [12]. The second author and Mazzucato have es-
ablished some existence results for the two-dimensional Kuram-
to–Sivashinsky equation without an assumption of thinness of
he domain [13,14].

While the Kuramoto–Sivashinsky equation has attracted much
nterest, as we have said, it is a weakly nonlinear model and
ith this comes some limitations. The biggest such limitation

s that the flame front must be a graph with respect to the
orizontal coordinates. In both one and two spatial dimensions,
rankel and Sivashinsky introduced more general, coordinate-free
odels of the motion of flame fronts [15,16]. These coordinate-

ree models are fully specified by giving a formula for the nor-
al velocity of the flame front in terms of the front’s intrinsic
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geometric information (such as its curvature). In addition to
developing the coordinate-free models, Frankel and Sivashin-
sky demonstrate how the one-dimensional and two-dimensional
Kuramoto–Sivashinsky equations may be derived from them.

In the decades since these coordinate-free models were intro-
duced, there has been some limited mathematical theory devel-
oped for them. Temperature effects were incorporated into the
one-dimensional model in [17]. A number of approximations to
this model were then made, including quasi-steady approxima-
tions and weakly nonlinear approximations, in a series of pa-
pers [18–21]. None of these papers developed rigorous analytical
theory for the full coordinate-free model of [17]. More recently,
the first rigorous theory for the one-dimensional coordinate-
free model of [15] was developed in [22] by the second author,
Hadadifard, and Wright; there, it is demonstrated that the one-
dimensional coordinate-free model is well-posed for small data,
and that solutions of the coordinate-free model and solutions
of the one-dimensional Kuramoto–Sivashinsky remain close if
their initial conditions are close (thus this is a validation theorem
for Kuramoto–Sivashinsky as a weakly nonlinear model). In the
present work, we give the first analytical theory for the two-
dimensional coordinate-free model of [16], proving a short-time
well-posedness result for data of arbitrary size in Sobolev spaces.

We believe that there are two reasons for the dearth of rig-
orous theory for the full coordinate-free models of [15–17]. First,
the models are not stated in evolutionary form, and instead are
given as formulas for the normal velocity of the flame front.
Second, even when one makes the effort to then restate the
model in evolutionary form, the equations of motion for the
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ront involve high derivatives of curvature; this means that if
ne were to attempt to evolve the Cartesian coordinates of the
lame front, the leading-order terms in the evolution equations
ould be highly nonlinear. We deal with both of these diffi-
ulties by adapting ideas originating in the numerical work of
ou, Lowengrub, and Shelley for the motion of one-dimensional
ortex sheets with surface tension [23,24]. In this work, Hou,
owengrub, and Shelley observed that only the normal velocity
f the fluid interface was needed to provide for the motion
f the interface, as the tangential velocity could be artificially
hosen so as to enforce a preferred parameterization. They also
hose to evolve geometric dependent variables such as tangent
ngle and arclength of the interface, as curvature is essentially
inear in terms of these variables, and curvature enters the prob-
em through the Laplace–Young jump condition for the pressure.
hus, in the one-dimensional case, the Hou, Lowengrub, Shelley
ork demonstrates how one might work with a normal veloc-

ty related to the curvature of an interface. The second author
nd Akers have adapted the numerical method of [23,24] to the
ne-dimensional coordinate-free model of Frankel and Sivashin-
ky [15] in [25]. The second author and Masmoudi used the
deas of [23,24] to prove well-posedness of the vortex sheet with
urface tension and related problems [26–29]. The second author
nd Masmoudi then generalized these ideas for analysis of two-
imensional fluid interface problems [30–32]. We may view the
resent work as the adaptation of the analysis of the second
uthor and Masmoudi from these papers to prove well-posedness
f the two-dimensional coordinate-free model of [16].
The method by which we prove well-posedness of the initial

alue problem for the two-dimensional coordinate-free model is
o first specify tangential velocities for the flame front; recall
hat the normal velocity is the content of the model of [16].
e choose tangential velocities so as to maintain a favorable
arameterization, and as in [30–33], we choose an isothermal
arameterization. Having fully specified the velocity of the flame
ront, we are able to write the evolution equations for the front,
nd to write evolution equations for related quantities. In par-
icular, we need the evolution of the mean curvature of the
ront. This is because (again, as in the papers [30–33] for two-
imensional fluid interface problems) we are able to make energy
stimates for the mean curvature, and we can use these estimates
o establish the regularity of the front itself. The energy estimates
e make are not for the mean curvature of the actual front, but

nstead are performed in the context of an iterative scheme. We
et up an iterative approximation of the equations of motion
or the flame front, prove existence of solutions for the iterated
quations, demonstrate bounds on the solutions (by means of the
nergy estimates for mean curvature) which are uniform with
espect to the iteration parameter, and then pass to the limit as
he iteration parameter goes to infinity, finding solutions of the
riginal problem.
The plan of the paper is as follows. In Section 2 we specify

he model of [16] and we choose the tangential velocities for
he flame front. We also state our main theorem at the end
f Section 2. We explore the consequences of the equations of
otion of the surface for the evolution of geometric quantities

n Section 3. In Section 4, we then give some useful estimates
elated to commutators and to geometric quantities. In Section 5,
e prove our main theorem by introducing our iterative scheme,
arrying out the energy estimates for the iterates, and passing to
he limit.

. The equations of motion

We consider a two-dimensional flame front moving in three-
imensional space, with Cartesian coordinates

(α, β, t) = (x(α, β, t), y(α, β, t), z(α, β, t)).
2

ere, naturally, the two parameters along the surface are α and
, while t is time. We define a frame of normal and tangential
ectors,

ˆ1 =
Xα

|Xα|
, t̂2 =

Xβ

|Xβ |
, n̂ =

Xα × Xβ

|Xα × Xβ |
. (2.1)

The surface X moves according to normal velocity U and tangen-
tial velocities V1 and V2,

Xt = Un̂+ V1 t̂1 + V2 t̂2. (2.2)

he normal velocity will be specified in Section 2.1, and the
angential velocities will be specified in Section 2.2. We take an
nitial condition for the surface X, namely

(α, β, 0) = X0(α, β). (2.3)

he geometry we consider is horizontally doubly periodic. The
urface X at all times, including at the initial time, is such that

(α + 2π, β, t) = (2π, 0, 0)+ X(α, β, t),
(α, β + 2π, t) = (0, 2π, 0)+ X(α, β, t),

or all α and β .
We will now describe the surface and its curvature in terms

of the first and second fundamental forms; the interested reader
might refer to [34] for more background on these quantities.
We define the coefficients of the first fundamental form for the
surface X as

E = Xα · Xα, F = Xα · Xβ , G = Xβ · Xβ .

he coefficients of the second fundamental form for the surface
are

= −Xα · n̂α, M = −Xα · n̂β = −Xβ · n̂α, N = −Xβ · n̂β .

(2.4)

n terms of the first and second fundamental forms, the mean
urvature is then

=
EN + GL− 2FM

2(EG− F 2)
.

The Gaussian curvature is given by

q =
LN −M2

EG− F 2 .

We will be choosing an isothermal parameterization for the
flame front, meaning

E = G, F = 0, (2.5)

or all (α, β) and for all t . To enforce this parameterization, we
ill assume the initial surface X0 is parameterized accordingly,
nd then the tangential velocities V1 and V2 will be chosen so

as to maintain the parameterization at positive times. The au-
thors and Masmoudi have used this parameterization to good
effect in a number of problems in interfacial fluid dynamics [30–
33]. The implications of this choice for V1 and V2 are detailed
in Section 2.2. Using an isothermal parameterization, the mean
curvature and Gaussian curvature simplify to

κ =
L+ N
2E

, q =
LN −M2

E2 . (2.6)

Also, it will be useful to note that with an isothermal parameter-
ization, the surface X satisfies

∆X = 2κXα × Xβ . (2.7)

We mention that with the geometry under consideration,
namely that the flame front is doubly periodic, a global isothermal
parameterization may be found [35]. Thus we are not making a
restrictive assumption on the class of initial data.
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.1. The normal velocity

The normal velocity for the flame front is developed in [16] as

= −1+ (1− σ )κ −

(
1+

σ 2

2

)
κ2

+

(
σ 3

3
− 5σ 2

− 2σ
)

κ3

+ 2(σ 2
+ 1)q+ (20σ 2

+ 8σ − 4)κq− σ 2(σ + 3)∆Sκ. (2.8)

he parameter σ satisfies σ > 1; this allows the term (1 − σ )κ
o destabilize the front at low frequencies, leading to nontrivial
ynamics (as in the Kuramoto–Sivashinsky equation [12]). The
perator ∆S indicates the Laplace–Beltrami operator of the front.
e use the formula for the Laplace–Beltrami operator found in

he appendix of [36],

Su =
1

√
EG− F 2

(
Euβ − Fuα
√
EG− F 2

)
β

+
1

√
EG− F 2

(
Guα − Fuβ
√
EG− F 2

)
α

.

f we have an isothermal parameterization with E = G and F = 0,
hen the Laplace–Beltrami operator simplifies to

Su =
uαα + uββ

E
.

e define W (κ, q) and τ as

(κ, q) = (1− σ )κ −

(
1+

σ 2

2

)
κ2

+

(
σ 3

3
− 5σ 2

− 2σ
)

κ3

+ 2(σ 2
+ 1)q+ (20σ 2

+ 8σ − 4)κq, (2.9)

τ = σ 2(σ + 3) > 0.
With these definitions, we may rewrite the normal velocity as

U = −τ∆κ/E +W (κ, q)− 1. (2.10)

As we have said in the introduction, the model of Frankel
and Sivashinsky developed in [16] consists of the specification
of the normal velocity of the flame front in terms of its intrinsic
geometric information. That is, (2.8) (or equivalently (2.10)) is the
odel under consideration. One contribution of the present work

s to rewrite this model as a system of evolution equations for
he position of the flame front. This requires setting a parame-
erization of the front, which itself consists of two steps: setting
he initial parameterization, and defining tangential velocities
o maintain the chosen parameterization. The definition of the
angential velocities is the subject of the next subsection.

.2. The tangential velocities and choice of parameterization

As we have said, while the normal velocity comes from the
hysical problem, the tangential velocities may be freely chosen
o as to enforce a favored parameterization. That is, moving the
urface tangent to itself does not change the location of the
urface.
The tangential velocities may be determined by using (2.2)

ogether with the time derivative of (2.5), Et = Gt and Ft = 0. This
s the same choice made for the motion of a vortex sheet in three-
imensional fluids by the second author and Masmoudi, and the
alculation of the tangential velocities may be found in [31]. The
esult is that the tangential velocities V1, V2 satisfy(
V1
√
E

)
α

−

(
V2
√
E

)
β

=
U(L− N)

E
, (2.11)(

V1
√
E

)
β

+

(
V2
√
E

)
α

=
2UM
E

. (2.12)

Then, if V1 and V2 satisfy (2.11) and (2.12), and if the initial
urface X0 satisfies (2.5), then at positive times the surface will
atisfy (2.5). We will prove well-posedness of the initial value
roblem (2.2), (2.3), with V1 and V2 enforcing the isothermal

parameterization and U given by (2.8).
We will discuss solvability of this elliptic system in Section 4.
3

2.3. The main result

We take s ∈ Z, with s ≥ 6. In the calculations which follow
in the next several sections, we will sometimes state that our
reasoning is valid because s is ‘‘sufficiently large;’’ this simply
refers to this fact that s ≥ 6. Let c0 be a positive constant. We
define an open subset Oc0 ⊆ Hs+2, such that for every X ∈ Oc0 ,
the following condition holds:

E(α, β) > c0.

Theorem 2.1. We assume that the surface X0 ∈ Oc0 is globally
parameterized by isothermal coordinates (namely (2.5) holds). Then,
there exist a time T > 0 and a unique solution X ∈ C

(
[0, T ),O c0

2

)
f the Cauchy problem⎧⎨⎩ Xt = Un̂+ V1 t̂1 + V2 t̂2,

U = −τ∆κ/E +W (κ, q)− 1,
X(t = 0) = X0.

(2.13)

emark 1. When we say X ∈ Hs, this means that X(α, β) −
α, β, 0) is actually in Hs, since the surface X is doubly periodic.

. Geometric identities and evolution of geometric quantities

In this section, we first give some useful geometric identities.
e then study the regularity of E and X, and find evolution

quations for E and κ . Versions of these equations and further
iscussion may be found in [31].

.1. Geometric identities

We will frequently need to differentiate the normal and tan-
ential vectors to the front, so formulas for these derivatives (in
he context of our isothermal parameterization) will be helpful.
he derivatives of the normal and tangential vectors satisfy the
ollowing:

n̂α = −
L

E1/2 t̂
1
−

M
E1/2 t̂

2,

n̂β = −
M
E1/2 t̂

1
−

N
E1/2 t̂

2,

t̂1α = −
Eβ

2E
t̂2 +

L
E1/2 n̂,

t̂1β =
Eα

2E
t̂2 +

M
E1/2 n̂,

t̂2α =
Eβ

2E
t̂1 +

M
E1/2 n̂,

t̂2β = −
Eα

2E
t̂1 +

N
E1/2 n̂.

These formulas are all directly verifiable by using (2.1), (2.5), and
the definitions of the first and second fundamental forms. For
instance, to compute t̂1α , we first note that t̂1α · t̂1 = 0, so that

t̂1α = (t̂1α · t̂2)t̂2 + (t̂1α · n̂)n̂.

We then substitute t̂1 = Xα/E1/2, and arrive at

t̂1α =
(Xαα · t̂2)

E1/2 t̂2 +
(Xαα · n̂)

E1/2 n̂ =
(Xαα · Xβ )

E
t̂2 +

L
E1/2 n̂

= −
(Xα · Xα)β

2E
t̂2 +

L
E1/2 n̂ = −

Eβ

2E
t̂2 +

L
E1/2 n̂.

The remaining formulas are similar, and we omit the details.
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.2. Gain of regularity for E and X

In the estimates we will be making, we will be using the mean
urvature, κ , as our primary dependent variable. We will make
stimates for κ in the Sobolev space Hs. We then need to infer
egularity for X and E. We will be able to conclude that X is
(s + 2)-times differentiable (specifically, we will say X ∈ Hs+2

hich will mean that X− (α, β, 0) is actually in the space Hs+2).
t may appear at first glance, then, that E ∈ Hs+1, but we may
nfer higher regularity and find in fact that E ∈ Hs+2 as well. This
ain is a consequence of the isothermal parameterization.
The gain of one derivative for E may be seen by calculating

E. Recalling that E = Xα · Xα = Xβ · Xβ and Xα · Xβ = 0, we
ave

E = 2(Xαβ · Xαβ )− 2(Xαα · Xββ ). (3.1)

o, if X is in Hs+2, then the right-hand side of (3.1) is in Hs. We
onclude that E is also in Hs+2. We have proved the following
emma.

emma 3.1. If (X− (α, β, 0)) ∈ Hs+2 then E is in Hs+2.

(We remark that this gain of regularity is related to Gauss’s
Theorema egregium, and we also remark that there is a similar
gain of regularity for Et .) Finally, we mention that regularity of
X may be inferred from the regularity of κ through the formula
(2.7).

3.3. Evolution of E and κ

As we have said, we will perform energy estimates for the
mean curvature, κ; as such, we must develop the evolution equa-
tion satisfied by κ . The evolution equation for κ can be inferred
from (2.2), using the formula for κ in (2.6) with the definitions of
he first and second fundamental coefficients. For the moment, a
onvenient way to write the evolution equation for the curvature
s
√
Eκ)t =

∆U

2
√
E
+

V1
√
E
(
√
Eκ)α +

V2
√
E
(
√
Eκ)β

+
UM2

√
E

+
L

2
√
E

(
V1
√
E

)
α

+
N

2
√
E

(
V2
√
E

)
β

. (3.2)

urther details of the derivation of (3.2) may be found in [31].
f course, to fully specify κt , we also must have an evolution
quation for E. Such an evolution equation for E may be inferred
rom (2.2), using the definition E = Xα · Xα , or alternatively
= Xβ · Xβ . We therefore have the evolution equation

t = 2
√
E
(
V1,α −

UL
√
E
+

V2Eβ

2E

)
= 2

√
E
(
V2,β −

UN
√
E
+

V1Eα

2E

)
.

(3.3)

ince κt = (
√
Eκ)t/

√
E − Etκ/2E, using (3.2) and (3.3), we

onclude that the evolution of κ is given by the following:

t =
∆U
2E

+
V1

E
(
√
Eκ)α +

V2

E
(
√
Eκ)β +

UM2

E

+
L
2E

(
V1
√
E

)
α

+
N
2E

(
V2
√
E

)
β

−
κ
√
E

(
V1,α −

UL
√
E
+

V2Eβ

2E

)
.

Using (2.10) to substitute for U , we have the evolution of κ as
being

κt = −
τ

∆

(
∆κ

)
+

∆W (κ, q)
+

V1 (
√
Eκ)α +

V2 (
√
Eκ)β
2E E 2E E E

4

+
UM2

E
+

L
2E

(
V1
√
E

)
α

+
N
2E

(
V2
√
E

)
β

−
κ
√
E

(
V1,α −

UL
√
E
+

V2Eβ

2E

)
.

4. Preliminary estimates and useful formulas

In this section we record some basic estimates which will be
useful a number of times. Before doing so, we define the operator
Λ to be the operator with symbol Λ̂(k) = |k|. This can also be
epresented using the Riesz transforms H1 and H2, as we also have
the formula Λ = H1∂α + H2∂β . The Riesz transforms may either
be defined in terms of their symbols or as singular integrals [37].
For any ℓ > 0, we define the Sobolev space Hℓ to be the space of
functions for which the norm

∥f ∥ℓ =
(
∥f ∥2L2 + ∥Λℓf ∥2L2

)1/2
is finite. Notice that Λ2

= −∆.
The first lemma concerns commutators; as usual, the commu-

tator notation means [A, B] f = ABf − BAf .

Lemma 4.1. Let s > 1. If f ∈ Hs+2 and g ∈ Hs+1, then [Λ2, f ]g is
in Hs, with the estimate

∥[Λ2, f ]g∥s ≤ c∥f ∥s+2∥g∥s+1.

Proof. Notice that[
Λ2, f

]
g = −∆(fg)+ f∆g = −g∆f − 2∇f · ∇g.

The Sobolev space Hs(Td) is an algebra for s > d/2; since we are
dealing with d = 2 and since s > 1, we do indeed have that Hs is
an algebra. We therefore have

∥ − g∆f ∥s ≤ c∥g∥s∥∆f ∥s ≤ c∥f ∥s+2∥g∥s

and

∥ − 2∇f · ∇g∥s ≤ c∥∇f ∥s∥∇g∥s ≤ c∥f ∥s+1∥g∥s+1.

This completes the proof of the lemma. □

We next have another commutator estimate, which is a ver-
sion of a standard Sobolev product estimate [38–40]; the authors
previously used it in [33] as well.

Lemma 4.2. For s > 0, then

∥[Λs, f ]g∥ ≤ C (∥∇f ∥L∞∥g∥s−1 + ∥f ∥s∥g∥L∞) .

Next we give a standard elementary interpolation estimate.

Lemma 4.3. For 0 < m < s, and f ∈ Hs, then

∥Λmf ∥ ≤ ∥Λsf ∥m/s
∥f ∥1−m/s

The proof of Lemma 4.3 can be found in many places, such
as [26]; see also [41].

For the final result of this section, we comment on the regu-
larity of the velocities U , V1, and V2.

Lemma 4.4. If (X− (α, β, 0)) ∈ Hs+2, E ∈ Hs+2 and κ ∈ Hs, then
U ∈ Hs−2 and Vi ∈ Hs−1.

Proof. Recall that

U + 1 = −τ∆κ/E +W (κ, q).

We immediately get U ∈ Hs−2 when κ and q are in Hs
; this uses

the definition of W in (2.9) and the fact that Hs is an algebra for
s > 1.
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Turning to V1 and V2, we apply ∂α to (2.11) and we apply ∂β

o (2.12), and then add the results. It follows that V1 satisfies

∆

(
V1
√
E

)
=

(
U(L− N)

E

)
α

+

(
2UM
E

)
β

.

hat this Poisson equation is solvable is immediate since our
patial domain is T2 and the right-hand side has zero mean (this
is evident since the right-hand side is a sum of derivatives);
the solvability may be seen in Fourier space. With the assumed
regularities of X and E, and the demonstrated regularity for U , we
ave V1 ∈ Hs−1. Similarly, we have V2 ∈ Hs−1 since(

V2
√
E

)
= −

(
U(L− N)

E

)
β

+

(
2UM
E

)
α

.

he interested reader could find more on the solution of Poisson
quations in doubly periodic geometry (using a potential theory
pproach) in [42]. □

. Well-posedness

In this section we prove Theorem 2.1, showing that the two-
imensional coordinate-free model for the motion of flame fronts
s well-posed. We will use an iteration method. In Section 5.1, we
set up an iterated system of evolution equations. We then set up
a general linear Cauchy problem in Section 5.2, and demonstrate
energy estimates for this problem in Section 5.3. In Section 5.4
we then use the results of Sections 5.2 and 5.3 to show that
he iterates in our iteration scheme obey bounds uniform with
espect to the iteration parameter. We use the uniform bounds
o take the limit of the sequence of iterates, and demonstrate
hat this limit solves the original system, in Section 5.5. We
hen discuss uniqueness and continuous dependence in 2.1 in
Section 5.6.

5.1. The iterated system

We now set up iterated evolution equations for X and κ . We
take initial data X0 ∈ Hs+2, such that the surface has a global
isothermal parameterization with E0 = X0α ·X0α = X0β ·X0β > c0,
for some constant c0 > 0. Of course, in taking a global isothermal
parameterization for X0, we also have X0α · X0β = 0.

We initialize the iterative scheme with the initial iterate being
the flat surface X0

= (α, β, 0). Then E0
= 1, and κ0

= 0.
Then clearly the initial iterates are C∞. Similarly we also have the
other quantities corresponding to X0, namely L0, M0, N0, and q0,
with these all being C∞. Recall that these quantities are defined
through (2.4) and (2.6), using X0 as the surface. We then also may
define U0 through (2.10), using κ0, E0, and q0. Then (V 0

1 , V 0
2 ) is

etermined by solving the following system,

V 0
1

√
E0

)
α

−

(
V 0
2

√
E0

)
β

=
U0(L0 − N0)

E0 = 0,(
V 0
1

√
E0

)
β

+

(
V 0
2

√
E0

)
α

=
2U0M0

E0 = 0.

That this elliptic system is solvable follows as in the proof of
Lemma 4.4. Specifically, we can apply ∂α to the first equation
and ∂β to the second equation, and add and subtract the two
equations to find Poisson equations. The Poisson equations are
solvable since the spatial domain is T2 and the right-hand sides
have zero mean. Of course, this solution is V 0

1 = V 0
2 = 0.

Assume that for some l ≥ 0 we have already constructed
(Xl, κ l, E l), and these are all C∞ functions. We then compute the
related quantities

t̂1,l =
Xl

α

l , t̂2,l =
Xl

β

l , n̂l
=

Xl
α × Xl

β

l l ,

|Xα| |Xβ | |Xα × Xβ |

5

Ll = Xl
αα · n̂l, N l

= Xl
ββ · n̂l, M l

= Xl
αβ · n̂l,

ql =
LlN l

− (M l)2

(Xl
α · Xl

α)(Xl
β · Xl

β )− (Xl
α · Xl

β )2
.

To begin finding the next iterates, we construct κ l+1 to solve
the linear Cauchy problem

κ l+1
t = −

τ

2E l ∆

(
∆κ l+1

E l

)
+ Q l

1, (5.1)

here Q l
1 is given by

l
1 =

∆W (κ l, ql)
2E l +

V l
1

E l

(√
E lκ l

)
α
+

V l
2

E l

(√
E lκ l

)
β

+
U l(M l)2

E l +
Ll

2E l

(
V l
1

√
E l

)
α

+
N l

2E l

(
V l
2

√
E l

)
β

−
κ l

√
E l

(
V l
1,α −

U lLl
√
E l

+
V l
2E

l
β

2E l

)
, (5.2)

nd with initial condition κ l+1
|t=0 = χlκ0. Here, χl is a smoothing

perator, which projects onto Fourier modes with wavenumbers
t most |l|. We see that the data for κ l+1 is therefore infinitely

smooth for all l; as long as the previous iterates are infinitely
smooth, we will have κ l+1, being the solution of a linear parabolic
equation, is infinitely smooth as well. After we demonstrate that
this problem is solvable, we can then define U l+1 as

U l+1
= −τ∆κ l+1/E l

+W (κ l, ql)− 1. (5.3)

We next determine (V l+1
1 , V l+1

2 ) by solving the system(
V l+1
1
√
E l

)
α

−

(
V l+1
2
√
E l

)
β

=
U l+1(Ll − N l)

E l = −τ
∆κ l+1(Ll − N l)

(E l)2
+ f l1,

(5.4)(
V l+1
1
√
E l

)
β

+

(
V l+1
2
√
E l

)
α

=
2U l+1M l

E l = −τ
2∆κ l+1M l

(E l)2
+ f l2. (5.5)

Here, the functions f l1, f
l
2 are defined by

f l1 =
(W (κ l, ql)− 1)(Ll − N l)

E l , (5.6)

l
2 =

2(W (κ l, ql)− 1)M l

E l . (5.7)

These equations can be combined to more clearly have solvable
Poisson equations,

∆

(
V l+1
1
√
E l

)
= −

(
τ∆κ l+1(Ll − N l)

(E l)2

)
α

−

(
2τ∆κ l+1M l

(E l)2

)
β

+ (f l1)α + (f l2)β , (5.8)(
V l+1
2
√
E l

)
=

(
τ∆κ l+1(Ll − N l)

(E l)2

)
β

−

(
2τ∆κ l+1M l

(E l)2

)
α

− (f l1)β + (f l2)α. (5.9)

s discussed in the proof of Lemma 4.4, these Poisson equations
re solvable since the spatial domain is T2 and the right-hand

sides have zero mean. Specifically, the solvability is clear in
Fourier space. Furthermore, we mention that since κ l+1 and the
previous iterates are all C∞, all of these quantities such as U l+1

and V l+1
i are as well.

We define the next iterate of the surface, Xl+1, in a few stages.
To begin we let Zl+1

1 be the solution of the initial value problem

(Z )l+1
= U l+1n̂l

+ V l+1 t̂1,l + V l+1 t̂2,l, (Z )l+1
| = χ X . (5.10)
1 t 1 2 1 t=0 l 0
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ere, we understand that χl applied to X0 truncates the Fourier
series of X0 − (α, β, 0). We therefore again have that Xl is in C∞

for all l. Substituting for U l+1 using Eq. (5.3), we can write this as

(Z1)l+1
t = (−τ∆κ l+1/E l)n̂l

+ V l+1
1 t̂1,l + V l+1

2 t̂2,l + Q l
2, (5.11)

where Q l
2 is given by

Q l
2 = (W (κ l, ql)− 1)n̂l. (5.12)

We will have one more intermediate variable Zl+1
2 , which is given

by solving the elliptic equation

∆Zl+1
2 − Zl+1

2 = 2κ l(Zl+1
1 )α × (Zl+1

1 )β − Zl+1
1 . (5.13)

Note that this formula is based upon Eq. (2.7). Now we are ready
to construct Xl+1 by solving the following elliptic equation (again
influenced by (2.7)),

∆Xl+1
− Xl+1

= 2κ l(Zl+1
2 )α × (Zl+1

2 )β − Zl+1
1 . (5.14)

Finally, we will define E l+1 also by solving an elliptic equation,

∆E l+1
−E l+1

= 2(Xl+1
αβ ·Xl+1

αβ −Xl+1
αα ·Xl+1

ββ )−
1
2
(Xl+1

α ·Xl+1
α +Xl+1

β ·Xl+1
β ).

(5.15)

Note that this equation is based upon (3.1) as well as the fact that
in an isothermal parameterization, we have E =

1
2Xα ·Xα +

1
2Xβ ·

β . Again, all of the quantities we have defined as the (l + 1)-st
iterates are C∞.

Remark 2. Note that for any of the versions of the iterated
surfaces, they are not expected to be parameterized isothermally.
The isothermal parameterization of the solution will be recovered
after taking the limit as l → ∞.

5.2. A linear Cauchy problem

To deal with the iterated system, we study the well-posedness
of the linearized Cauchy problem for κ l+1 and Zl+1

1 . More pre-
isely, we will consider the linear Cauchy problems for η and Y,
here η satisfies the evolution equation

t = −
τ

2E
∆

(
∆η

E

)
+ Q1, (5.16)

with initial condition η|t=0 = η0, and Y satisfies evolution
quation

t = (−τ∆η/E)n̂+ V1 t̂1 + V2 t̂2 + Q2, (5.17)

with initial condition Y|t=0 = Y0. The tangential velocities V1 and
V2 solve(

V1
√
E

)
α

−

(
V2
√
E

)
β

= −τ
∆η(L− N)

(E)2
+ f1, (5.18)(

V1
√
E

)
β

+

(
V2
√
E

)
α

= −τ
2∆ηM
(E)2

+ f2. (5.19)

Here, Q1, Q2, f1, and f2 are given nonhomogeneous terms. We
are assuming here that τ > 0 and that there is a given surface
X and function E. The functions L, M , and N are the second
fundamental coefficients of X, and the vectors t̂i, n̂ are the unit
angent and normal vectors to X. As we have discussed several
times, the tangential velocities may be solved for by applying ∂α

o (5.18) and ∂β to (5.19), and adding and subtracting to arrive at
oisson equations. The Poisson equations may then be solved, as
iscussed in the proof of Lemma 4.4.
6

5.3. The a priori estimate

The iterative scheme which we set up involves the solution
of a sequence of linear equations, all of the form (5.16)–(5.19).
Bounds for the solutions of these equations are therefore fun-
damental to our existence proof. We now establish the needed
estimates.

Theorem 5.1. Suppose that there exists T > 0 such that for every
j ∈ N,

E ∈ C([0, T ],H j)
⋂

C1([0, T ],H j),

∈ C([0, T ],H j)
⋂

C1([0, T ],H j),

nd

1 ∈ L2([0, T ],H j),Q2 ∈ L2([0, T ],H j), fi ∈ L2([0, T ],H j).

ssume there exists C0 > 0 such that for all t ∈ [0, T ], we
ave E(·, t) ≥ C0 > 0. Let initial data (η0,Y0) be given such
hat η0 ∈ H j and Y0 ∈ H j for every j ∈ N. Then there exist
constant m > 0 and a unique solution to the Cauchy problem
∈ C([0, T ],H j) ∩ L2([0, T ],H j+2) and Y ∈ C([0, T ],H j) for every

, such that the bounds

η∥2s+

∫ t

0

τm∥Λs+2η∥20

4
dt ′ ≤ eCt

(
∥η0∥

2
s +

∫ t

0

4
mτ

∥Q1∥
2
s−2 dt ′

)
,

(5.20)

∥Y∥2s ≤ eCt
(
∥Y0∥

2
s + C∥η0∥

2
s + C

∫ t

0
∥Q1∥

2
s−2 + ∥Q2∥

2
s

+∥f1∥2s−1 + ∥f2∥2s−1 dt ′
)

, (5.21)

re satisfied for all t ∈ [0, T ]. The constant C depends on the
unctions E, X, Q1, Q2, f1, and f2 only through the norms

∈ C([0, T ],Hs+2)
⋂

C1([0, T ],Hs−2),

∈ C([0, T ],Hs+2)
⋂

C1([0, T ],Hs−2),

nd

1 ∈ L2([0, T ],Hs−2),Q2 ∈ L2([0, T ],Hs), fi ∈ L2([0, T ],Hs−1).

emark 3. We note that we have assumed that the functions E,
, and so on are C∞, which will ensure that all integrals below
onverge. However we will only rely on the regularity specified
t the end of the theorem for estimates, i.e. while our E may
e C∞, the size of ∥η∥Hs will only depend on its norm ∥E∥Hs+2 .
he corresponding statement is true for the rest of the given
uantities X, Qi, fi. That is, all constants which are denoted by
in what follows may be expressed in terms of these norms of
and E, and the given functions Q1, Q2, f1, and f2, as well as the
arameters of the problem such as τ .

roof. The proof of well-posedness for the Cauchy problem for
5.16) and (5.17) follows classical steps, namely approximation,
xistence for the approximate problems, establishing uniform
stimates, passage to the limit, and establishing further estimates
or uniqueness and continuous dependence. By far the most im-
ortant and most interesting of these steps is the uniform bound,
nd this will be the focus of our presentation here. We will give
he relevant energy estimate, and omit the other details.

We will first establish the energy estimate for η. We define the
nergy

= E + E ,
0 1
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F
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˜

z
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ith E0 =
1
2∥η∥

2
0 and E1 =

1
2∥Λ

sη∥20. In what follows, we will
e taking the time derivative of E0 and E1. We may exchange
he time derivative and the integral because all of the iterates
re, as we have mentioned several times, C∞. The relevance of

this is that the integrals of the time derivatives are absolutely
convergent, and this justifies the exchange.

To begin, we take the time derivative of E0:
dE0
dt

=

∫∫
ηηt dαdβ.

he evolution equation for η, (5.16), involves up to fourth deriva-
ives of η, second derivatives of E, and zero derivatives of Q1.
Since s is sufficiently large (recall that we have assumed s ≥ 6),
E and its first two derivatives are bounded by assumption. With
s sufficiently large, up to the fourth derivatives of η are bounded
by E , and Q1 is bounded in Hs−2. We therefore may immediately
conclude
dE0
dt

≤ C(E + ∥Q1∥
2
s−2).

We next take the time derivative of E1,
dE1
dt

= −τ

∫∫
(Λsη)Λs

(
∆

2E

(
∆η

E

))
dαdβ

+

∫∫
(Λs+2η)(Λs−2Q1) dαdβ. (5.22)

or the second term on the right-hand side of (5.22), we have
sed the fact that Λ is a self-adjoint operator (which can be seen
rom its symbol in Fourier space).

We first deal with the first term on the right-hand side of
5.22). Recalling that ∆ = −Λ2, and pulling 1

E through Λ2

(incurring a commutator), we have∫∫
(Λsη)Λs

(
∆

2E

(
∆η

E

))
dαdβ

=

∫∫
(Λsη)Λs

(
Λ2

2E

(
Λ2η

E

))
dαdβ

=

∫∫
(Λs+2η)Λs−2

(
Λ4η

2E2

)
dαdβ

+

∫∫
(Λs+2η)Λs−2

(
1
2E

[
Λ2,

1
E

]
Λ2η

)
dαdβ.

e then incur another commutator, this time pulling 1
2E2

through
s−2

; this yields∫
(Λsη)Λs

(
∆

2E

(
∆η

E

))
dαdβ

=

∫∫
1

2E2 (Λ
s+2η)2 dαdβ

+

∫∫
(Λs+2η)

[
Λs−2,

1
2E2

]
(Λ4η) dαdβ

+

∫∫
(Λs+2η)Λs−2

(
1
2E

[
Λ2,

1
E

]
Λ2η

)
dαdβ.

By Lemma 4.2, for sufficiently large s, we have[
Λs−2,

1
2E2

]
Λ4η


0
≤ c

(∇ ( 1
2E2

)
L∞

∥Λ4η∥s−3

+

 1
2E2


s−2

∥Λ4η∥L∞

)
≤ c∥η∥s+1 ≤ c(∥η∥0 + ∥Λs+1η∥0).

nd, by Lemma 4.1, we have

Λs−2
(

1
[
Λ2,

1
]

Λ2η

) ≤ c∥Λ2η∥s−1 ≤ c(∥η∥0 + ∥Λs+1η∥0).
2E E 0

7

By Lemma 4.3, ∥Λs+1η∥0 ≤ c∥Λs+2η∥
s+1
s+2
0 ∥η∥

1
s+2
0 . By first applying

Hölder’s inequality and then Young’s inequality (with parameter
n > 0 to be chosen), we have⏐⏐⏐⏐∫∫ (Λs+2η)

[
Λs−2,

1
2E2

]
(Λ4η) dαdβ

⏐⏐⏐⏐
≤ c∥η∥

1
s+2
0 ∥Λs+2η∥

2s+3
s+2
0 + c∥η∥0∥Λs+2η∥0 ≤

∥Λs+2η∥20

n
+ CE.

In just the same way, we have⏐⏐⏐⏐∫∫ (Λs+2η)Λs−2
(

1
2E

[
Λ2,

1
E

]
Λ2η

)
dαdβ

⏐⏐⏐⏐ ≤ ∥Λs+2η∥20

n
+ CE.

e make our first conclusion that

τ

∫∫
(Λsη)Λs

(
∆

2E

(
∆η

E

))
dαdβ

≤ −τ

∫∫
1

2E2 (Λ
s+2η)2 dαdβ +

2τ∥Λs+2η∥20

n
+ CτE. (5.23)

or the second term on the right-hand side of (5.22), by Young’s
nequality, we have∫∫ (

Λs+2η
)
Λs−2Q1dαdβ

⏐⏐⏐⏐ ≤ τ∥Λs+2η∥20

n
+

n∥Q1∥
2
s−2

τ
.

Now we make the conclusion that

dE
dt

≤ −τ

∫∫
1

2E2 (Λ
s+2η)2 dαdβ +

3τ∥Λs+2η∥20

n
+ CE + n∥Q1∥

2
s−2/τ .

e know E > 0, and E ∈ L∞ when s > 1. Then there exists m > 0
uch that − 1

2E2
≤ −m. Now we take n = 4/m. Then

dE
dt

+
τm∥Λs+2η∥20

4
≤ CE +

4
mτ

∥Q1∥
2
s−2.

By Grönwall’s inequality, it follows that

E(t)+
∫ t

0
eC(t−t ′) τm∥Λs+2η∥20

4
dt ′

≤ eCt
(
E(0)+

∫ t

0

4
mτ

e−Ct ′
∥Q1∥

2
s−2 dt ′

)
.

Moreover, since eC(t−t ′)
≥ 1 and e−Ct ′

≤ 1, we have

E(t)+
∫ t

0

τm∥Λs+2η∥20

4
dt ′ ≤ eCt

(
E(0)+

∫ t

0

4
mτ

∥Q1∥
2
s−2 dt ′

)
.

Now we will do the energy estimate for Y, where Y evolves
according to (5.17). We define energy

E = Ẽ0 + Ẽ1,

with Ẽ0 =
1
2∥Y∥

2
0 and Ẽ1 =

1
2∥Λ

sY∥20. To begin, we take the time
derivative of Ẽ0:

dẼ0
dt

=

∫∫
Y · Yt dαdβ.

The evolution equation for Y involves up to second derivatives
of η, zero derivatives of E, first derivatives of X (through the
tangent and normal vectors), zero derivatives of V1 and V2, and
ero derivatives of Q2. Recall that the energy bounds s derivatives
f η, and that the constants in our bound are allowed to depend
pon up to s+ 2 derivatives of E and X. Also recalling that s ≥ 6,

using the evolution of Y and the estimates of Section 4, we may
immediately conclude

dẼ0
≤ C(Ẽ + ∥η∥2 + ∥Q2∥

2
+ ∥f1∥2 + ∥f2∥2 ).
dt s s s−1 s−1
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Next, we take the time derivative of Ẽ1, and make a use of
Young’s inequality:

dẼ1
dt

=

∫∫
ΛsY · ΛsYt dαdβ

=

∫∫
ΛsY · Λs((−τ∆η/E)n̂+ V1 t̂1 + V2 t̂2 + Q2) dαdβ

≤
τm∥Λs+2η∥20

8
+

∫∫
ΛsY · Λs(V1 t̂1 + V2 t̂2) dαdβ

+ ∥Q2∥
2
s + C Ẽ + C∥η∥2s .

Since V1 and V2 solve the elliptic system (5.18), (5.19), for suffi-
ciently large s we have

∥Λs(V1 t̂1 + V2 t̂2)∥0 ≤ cτ∥η∥s+1 + c(∥f1∥s−1 + ∥f2∥s−1)
≤ cτ (∥η∥0 + ∥Λs+2η∥0)+ c(∥f1∥s−1 + ∥f2∥s−1).

By first applying Hölder’s inequality and then Young’s inequality,
we have⏐⏐⏐⏐∫∫ ΛsY · Λs(V1 t̂1 + V2 t̂2) dαdβ

⏐⏐⏐⏐
≤ ∥ΛsY∥0

(
c(∥η∥0 + ∥Λs+2η∥0)+ c(∥f1∥s−1 + ∥f2∥s−1)

)
≤

τm∥Λs+2η∥20

8
+ C Ẽ + C(∥f1∥2s−1 + ∥f2∥2s−1 + ∥η∥2s ).

e may now make the conclusion that

dẼ
dt

≤ C Ẽ +
τm∥Λs+2η∥20

4
+ C(∥Q2∥

2
s + ∥f1∥2s−1 + ∥f2∥2s−1 + ∥η∥2s ).

By Grönwall’s inequality, it follows

E(t) ≤ eCt
(
Ẽ(0)+

∫ t

0

τm∥Λs+2η∥20

4
dt ′

+

∫ t

0
C∥Q2∥

2
s + ∥f1∥2s−1 + ∥f2∥2s−1 + ∥η∥2s dt ′

)
.

Using our estimate for η, (5.20), we have

E(t) ≤ eCt
(
Ẽ(0)+ C

∫ t

0
∥Q2∥

2
s + ∥f1∥2s−1 + ∥f2∥2s−1 dt ′

)
+ eCt

(
CeCt

(
∥η0∥

2
s +

∫ t

0

4
mτ

∥Q1∥
2
s−2 dt ′

))
≤ eCt

(
Ẽ(0)+ ∥η0∥

2
s + C

∫ t

0
∥Q2∥

2
s + ∥f1∥2s−1

+ ∥f2∥2s−1 + ∥Q1∥
2
s−2 dt ′

)
.

his concludes the proof of the theorem. □

.4. Estimates for the iteration scheme

To prove that the sequences of iterations converge, we will
eed the following lemma.

emma 5.2. The family of iterates (Xl, E l, κ l) are defined for all l
nd there exist T > 0 and positive constants C0, C1, C2, C3 and C4
uch that for all l,
l
≥ C0 > 0, |Xl

α × Xl
β | ≥ C0 > 0, (5.24)

κ l
∥C0([0,T ];Hs) ≤ C1, (5.25)

Xl
∥C0([0,T ];Hs+2) + ∥E l

∥C0([0,T ];Hs+2) ≤ C2, (5.26)

∂tκ
l
∥C0([0,T ];Hs−4) ≤ C3, (5.27)

∂ Xl
∥ + ∥∂ E l

∥ ≤ C . (5.28)
t C0([0,T ];Hs−2) t C0([0,T ];Hs−2) 4

8

roof. We proceed by induction. We take C0 = c0/2. We will
etermine appropriate values for C1, C2, C3, and C4 as we go.
iven the definition of our initial iterates, the needed bounds are
atisfied for (X0, E0, κ0). Assume that (Xl, E l, κ l) satisfies (5.24),
5.25) (5.26), (5.27) and (5.28). By the definition of Q l

1 in (5.2),
applying s−2 derivatives to Q l

1 involves at most s-derivatives of κ l

and at most (s+ 2)-derivatives of Xl, and at most s-derivatives of
E l. Thus ∥Q l

1∥C([0,T ];Hs−2) ≤ C(C0, C1, C2), with this constant being
independent of l. (In fact, in what follows, all constants of the
form C(C0, C1, C2), or C(C0, C1, C2, C3) are independent of l.) By the
result of our energy estimates, (5.20), κ l+1 satisfies

∥κ l+1(t)∥2s +
∫ t

0

τm∥Λs+2κ l+1(s)∥20
4

dt ′

≤ eC(C0,C1,C2)t∥κ0∥
2
s + C(C0, C1, C2)teC(C0,C1,C2)t .

Hence taking C1 = 2∥κ0∥s, we may take T small enough so that

∥κ l+1(t)∥2C([0,T ];Hs) +

∫ t

0

τm∥Λs+2κ l+1(s)∥20
4

dt ′ ≤ C2
1 . (5.29)

Inspecting the definitions of f l1, f
l
2, and Q l

2 in (5.6), (5.7), and
5.12), we see that we may bound these as ∥Q l

2∥C([0,t];Hs) ≤

(C0, C1, C2) and ∥f li ∥C([0,t];Hs−1) ≤ C(C0, C1, C2). Using (5.21), the
stimate of Zl+1

1 is then

Zl+1
1 (t)∥2s ≤ eC(C0,C1,C2)t (∥κ0∥

2
s +∥X0∥

2
s )+C(C0, C1, C2)teC(C0,C1,C2)t .

ence we may again choose T sufficiently small so that
Zl+1
1 ∥C([0,T ];Hs) ≤ 2(∥X0∥s+∥κ0∥s). Solving the elliptic Eqs. (5.13)

nd (5.14), we then have Xl+1
∈ C0([0, T ];Hs+2) and

∥Zl+1
2 ∥C([0,T ];Hs+1) ≤ C(∥X0∥s, ∥κ0∥s),

Xl+1
∥C([0,T ];Hs+2) ≤ C(∥X0∥s, ∥κ0∥s).

hen, solving the elliptic Eq. (5.15), we have E l+1
∈ C0([0, T ];Hs+2

ith estimate

E l+1
∥C([0,T ];Hs+2) ≤ C(∥X0∥s, ∥κ0∥s)

e may then take C2 = 2C(∥X0∥s, ∥κ0∥s), and we see that the
stimate (5.26) holds.
Using the inductive hypotheses and the bound (5.29), we may

hen bound the right-hand side of (5.1), finding

∂tκ
l+1(t)∥s−4 ≤ C(C0, C1, C2)(1+ ∥κ l+1(t)∥s)

≤ C(C0, C1, C2)(1+ C1).

e may similarly bound the right-hand side of (5.10), finding

∂tZl+1
1 ∥C([0,T ];Hs−2) ≤ C(C0, C1, C2).

aking C3 such that C3 ≥ C(C0, C1, C2)(1 + C1), we have the
stimate (5.27).
Taking the time derivative of (5.13) and (5.14), we may con-

lude that

∂tXl+1
∥C([0,T ];Hs−2) ≤ C(C0, C1, C2, C3).

imilarly, taking the time derivative of (5.15), we may conclude
he bound

∂tE l+1
∥C([0,T ];Hs−2) ≤ C(C0, C1, C2, C3).

e then may take C4 to be such that C4 ≥ C(C0, C1, C2, C3),
etting the estimate (5.28).
Notice that when s is sufficiently large so that Hs−2

⊆ L∞,

E l+1(t)| ≥ E0 −
⏐⏐⏐⏐∫ t

∂tE l+1(t ′) dt ′
⏐⏐⏐⏐ ≥ c0 − tC4
0
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nd

Xl+1
α (t)× Xl+1

β (t)|

|Xl+1
α (0)× Xl+1

β (0)| −
∫ t

0
∂τ (Xl+1

α (s)× Xl+1
β )(t ′) dt ′ ≥ c0 − tC4C2

o, we can take T small enough such that c0 − TC4 ≥ C0 and
0 − TC4C2 ≥ C0. This completes the proof of the lemma. □

5.5. The limit of the iterated system

In this section we take the limit of (a subsequence of) our
iterates. Since the spatial domain, T2, is compact, we may do so
by the Arzela–Ascoli theorem.

Since the iterates κ l, Zl
1 are uniformly bounded in Hs and Hs+2,

respectively, and since the time derivatives κ l
t and Xl

t involve (as
the most singular terms) four derivatives of κ l, we see that κ l

t
and (Zl

1)t are bounded, uniformly with respect to (α, β, t) and
also l. Furthermore κ l

α , κ l
β , (Zl

1)α and (Zl
1)β are similarly uni-

formly bounded with respect to (α, β, t) and l. We conclude that
κ l and Zl

1 are bounded equicontinuous families. By the Arzela–
Ascoli theorem, there is a subsequence (which we do not relabel)
and limits κ and Z1 such that κ l converges uniformly to κ and
Zl
1 converges uniformly to Z1. With this uniform convergence,

we immediately conclude that the convergence also holds in
C([0, T ]; L2(T2)).

We next use the interpolation lemma, Lemma 4.3, to find con-
vergence in more regular spaces. Specifically, for any s′ ∈ (0, s),
convergence in C([0, T ]; L2) and boundedness in C([0, T ];Hs) im-
plies that κ l converges to κ in C([0, T ];Hs′ ) and Zl

1 converges to
Z1 in C([0, T ];Hs′ ). Then, from (5.13) we have

Zl+1
2 = −(1− ∆)−1 (2κ l(Zl+1

1 )α × (Zl+1
1 )β − Zl+1

1

)
,

and we can pass to the limit on the right-hand side in Hs′−1

finding that Zl
2 converges to Z2 in C([0, T ];Hs′+1), where

∆Z2 − Z2 = 2κ(Z1)α × (Z1)β − Z1.

Similarly, then, by (5.14), we find that Xl converges to X in
C([0, T ];Hs′+2), where

∆X− X = 2κ(Z2)α × (Z2)β − Z1.

e then are able to similarly pass to the limit in (5.15), finding
hat E l converges to E in C([0, T ];Hs′+2), where E satisfies

E − E = 2(Xαβ · Xαβ − Xαα · Xββ )− (Xα · Xα + Xβ · Xβ ).

We now conclude that κ and Z1 satisfy the appropriate evolu-
ion equations. Integrating (5.1) with respect to time, we have

l+1(·, t) = κ l+1
⏐⏐⏐⏐
t=0

+

∫ t

0

(
−

τ

2E l(·, t ′)
∆

(
∆κ l+1(·, t ′)
E l(·, t ′)

)
+ Q l

1(·, t
′)
)

dt ′.

e have established enough regularity to pass to the limit on
oth the left-hand side and the right-hand side of this equation.
o pass to the limit on the right-hand side, we need uniform
onvergence to exchange the limit as l goes to infinity with the
ime integral. Fortunately, the convergences we have established,
uch as κ l

→ κ in C([0, T ];Hs′ ) for any s′ ∈ (0, s) with s fixed
recall we have taken s ≥ 6) is sufficient to be able to conclude
his needed uniform convergence. We conclude

(·, t) = κ0 +

∫ t

0

(
−

τ

2E(·, t ′)
∆

(
∆κ(·, t ′)
E(·, t ′)

)
+ Q1(·, t ′)

)
dt ′.

This immediately implies κ(·, 0) = κ0, and differentiating with
respect to time, we have

κt = −
τ

∆

(
∆κ

)
+ Q1.
2E E a

9

In just the same way, we may pass to the limit in the evolution
equation for Zl+1

1 , (i.e. we integrate (5.10) with respect to time,
pass to the limit, and then differentiate with respect to time)
finding

(Z1)t = (−τ∆κ/E)n̂+ V1 t̂1 + V2 t̂2 + Q2.

e must also prove that the following relations hold:

1 = Z2 = X, E = Xα ·Xα = Xβ ·Xβ , Xα ·Xβ = 0, κ =
L+ N
2E

.

(5.30)

We omit the details of the proof here as all of the details demon-
strating (5.30) are included in Section 5.4 of [43]. (Like the present
work, [43] also uses the isothermal parameterization and iterative
scheme of [31]. Therefore, after taking the limit of the iterates,
they demonstrate that exactly the relationships given in (5.30)
hold.)

The higher regularity of the solution X must still be estab-
lished. We have already shown that the solutions are continuous
in time in a low norm, and the boundedness in a high norm
together with the interpolation result Lemma 4.3 implies that
X ∈ C([0, T ];Hs′+2) for any s′ < s. All that remains to show is that
X ∈ C0([0, T ];Hs+2). We do not include the remaining details,
but this can be done by adapting the corresponding argument for
regularity of solutions for the Navier–Stokes equations in Chapter
3 of [44].

5.6. Uniqueness and continuous dependence

In this section we sketch the proof uniqueness of solutions
and continuous dependence of solutions upon the initial data. The
proof relies on energy estimates very similar to those in the proof
of Theorem 5.1.

We assume that there exists a time T > 0 such that both X and
X′ are elements of C0([0, T ),O) which solve the Cauchy problem
(2.13). We denote by (δX, δκ) the difference (X−X′, κ − κ ′), and
define an energy functional

D =
1
2
∥δκ∥20 +

1
2
∥Λ2δκ∥20 +

1
2
∥δX∥20 +

1
2
∥Λ2δX∥20. (5.31)

e also denote δE = E − E ′, δU = U − U ′, δVi = Vi − V ′

i , and so
on.

We can write evolution equations for δX and δκ as follows:

Xt = δUn̂+ (δV1)t̂1 + (δV2)t̂2 + R1, (5.32)

here the remainder R1 is defined as

1 = V1(t̂1 − t̂′1)+ V2(t̂2 − t̂′2)+ U(n̂− n̂′), (5.33)

and

δκt = −
τ

2E
∆

(
∆δκ

E

)
+ R2, (5.34)

where the remainder R2 is defined as

R2 = −
τ

2E
∆

(
∆κ

E

)
+

τ

2E ′
∆

(
∆κ

E ′

)
+ Q1 − Q ′

1. (5.35)

e have the formula

1 =
∆W (κ, q)

2E
+

V1

E
(
√
Eκ)α +

V2

E
(
√
Eκ)β

+
U(M)2

E
+

L
2E

(
V1
√
E

)
α

+
N
2E

(
V2
√
E

)
β

+
κ
√
E

(
V1,α −

UL
√
E
+

V2Eβ

2E

)
, (5.36)

nd naturally Q ′ is defined accordingly.
1
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To begin, we estimate δX in H4 using (2.7). Specifically, we
may take the difference of (2.7), finding

∆δX = 2δκ(Xα × Xβ )+ 2κ ′(δXα × Xβ )+ 2κ ′(X′

α × δXβ ). (5.37)

This then implies

∥δX∥3 ≤ C(∥δκ∥1 + ∥δX∥2). (5.38)

Then using (5.37) again, but then substituting the result of (5.38),
we find

∥δX∥4 ≤ C(∥δκ∥2 + ∥δX∥3) ≤ C(∥δκ∥2 + ∥δX∥2).

We similarly get an estimate for δE by considering differences in
(3.1); the result is

∥δE∥4 ≤ C∥δX∥4 ≤ C(∥δκ∥2 + ∥δX∥2).

It is immediate that we may bound R1 in H0 by the energy,
∥R1∥

2
0 ≤ CD, since R1 includes only first derivatives of δX. We

furthermore may bound R2 in H0 in terms of the energy as
∥R2∥

2
0 ≤ CD; this requires a number of routine estimates for

differences, For instance, to estimate W (κ, q)−W (κ ′, q′) requires
riting

(κ, q)−W (κ, q′) = (1− σ )δκ −

(
1+

σ 2

2

)
δκ(κ + κ ′)(

σ 3

3
− 5σ 2

− 2σ
)

δκ(κ2
+ κκ ′

+ κ ′2)+ 2(σ 2
+ 1)δq

(20σ 2
8 σ − 4)(qδκ + κ ′δq).

We may then estimate this as

∥W (κ, q)−W (κ ′, q′)∥0 ≤ CD.

The corresponding estimate for δU then follows, as does the
stimate for δVi, and so on.
Now we are in a position to take the time derivative of D,

inding

dD
dt

=

∫∫
δκδκt + (Λ2δκ)Λ2δκtdαdβ

+

∫∫
δXδXt + (Λ2δX)(Λ2δXt ) dαdβ.

e then substitute from the evolution equations for δκ and δX,
nd we use the fact that Λ is self-adjoint, and the estimates
e have already established. These considerations lead us to the
ound
dD
dt

≤

∫∫
(Λ2δκ)Λ2

(
−

τ

2E
∆

(
∆δκ

E

))
dαdβ∫∫

(Λ4δκ)R2 dαdβ∫∫
(Λ4δX)

(
δUn̂+ (δV1)t̂1 + (δV2)t̂2 + R1

)
dαdβ + CD.

hen, as in the proof of Theorem 5.1, the first term on the right-
and side may be written as a negative term which controls
4δκ (the remainder is a commutator which may be bounded,
s in (5.23)). For the second term on the right-hand side we
ay use Young’s inequality, bounding the resulting term (Λ4δκ)2
y the previous term (making use of the negative sign in the
revious term). The remaining term from Young’s inequality is
ero derivatives of R2

2, which we have already argued is bounded
y the energy. Similarly for the third term on the right-hand side,
e have already argued that it is bounded in terms of the energy.
e are able to conclude the bound

dD
≤ CD, (5.39)
dt
10
which immediately implies via Grönwall’s inequality that

D(t) ≤ D(0)eCt . (5.40)

With D(0) = 0, then this implies the solution of Cauchy problem
2.13) is unique.

The bound (5.40) also implies continuous dependence on the
initial data, in a low norm (i.e., with X measured in H4). Using
Lemma 4.3, since the solutions we have proved to exist are
bounded with X in Hs+2, then for any s′ ∈ (0, s), this also implies
continuous dependence in Hs′+2.
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