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ABSTRACT. Time-dependent mean field games are a coupled system of a for-
ward parabolic and backward parabolic partial differential equation. Station-
ary solutions are of interest, and then naturally the forward-backward struc-
ture in time becomes irrelevant. Forward-forward mean field games have been
introduced with the rationale that they may be used to straightforwardly com-
pute such stationary solutions. We perform some numerical simulations to
find that typically stationary solutions of mean field games are unstable to the
forward-forward evolution, i.e. frequently only trivial solutions can be found
in this way. We then ask whether there are situations in which one would
have reason to believe that the stationary solutions would be stable, and we
use the exchange-of-stability phenomenon in bifurcation theory to give a class
of examples for which the forward-forward solutions do converge to nontrivial
stationary solutions as time increases.

1. Introduction. Ever since their development by Lasry and Lions in [20] and
[21], and by Caines, Huang, and Malhalmé in [18] and [19], mean field games have
become valuable tools for efficiently modeling the large-scale interaction of many
agents. In a mean field game, a continuum of agents, assumed to be rational in the
sense that their logic is interchangeable, engage in a continuous-in-time competi-
tion. An evolving utility function u(t,x) reflects the satisfaction experienced by a
representative agent found in state z at time ¢.

The agent with trajectory X; uses the optimal control ¢(¢, z) to maximize u(t, X;)
continuously in time, while responding to the relative state of the other agents,

2020 Mathematics Subject Classification. Primary: 91A16, 35B32; Secondary: 34C23, 35K40,
35Q89.

Key words and phrases. Stationary solutions, mean field games, forward-forward mean field
games, bifurcation theory, spectral methods.

DMA gratefully acknowledges support from the National Science Foundation through grants
DMS-1907684 and DMS-2307638.

*Corresponding author: David M. Ambrose.

48


http://dx.doi.org/10.3934/jdg.2023014
mailto:js4837@dragons.drexel.edu
mailto:jwb326@dragons.drexel.edu
mailto:luke.brown@jhuapl.edu
mailto:dma68@drexel.edu

BIFURCATION THEORY AND FORWARD-FORWARD MEAN FIELD GAMES 49

subject to a Gaussian white noise representing environmental uncertainty. The
resulting trajectory obeys the SDE

dXt == C(t,Xt)dt+O'th (1)

where ¢ > 0. To model the interaction of IV agents traditionally, a coupled system
of N Hamilton-Jacobi equations would need to be solved simultaneously, yielding
a utility function u’(t) reflecting the satisfaction of agent i at time t € [0,7] for
each player. The innovation of mean field games is that one may sort the agents
by state variable = (in our case, x is a spatial variable representing a position on
T) and, borrowing techniques from Statistical Mechanics, take the mean-field limit,
reducing the model to a system of two PDE’s: a Hamilton-Jacobi-Bellman (HJB)
equation that governs u(t, ), solved backwards in time from a terminal utility u”,
and a Fokker-Planck equation, solved forwards in time from an initial density m?°,
that governs the density m(t, x) of agents whose trajectory is governed by (1). That
is, by taking a statistical, rather than an atomic approach, one may use mean field
games to simplify the modeling of large-scale player interactions. For a more general
treatment of mean field game models, we direct the reader to [22]. The resulting
general form of the mean field games system of partial differential equations is

(2)

—Up — vAu + H(t, T, m, VU) = 07
my — vAm + le(me(t7 x,m, vu)) = O’

where the nonlinearity # is known as the Hamiltonian, and where #,, represents
the derivative of H with respect to the p-variables when # is regarded as a function
H = H(t,x, q,p). This system is then augmented with initial data for m and terminal
data, specified at some time T° > 0, for u. The length of the time interval, T, is
known as the time horizon.

In what follows, we examine one-dimensional mean field games with congestion,
in which high-density regions are more costly for agents to traverse than low-density
regions. We will pay the most attention to the following one-dimensional form of
the mean field game system (2) given by Achdou and Porretta in [1], typical of a
congestion model:

wlf
—u; — VAU + %(JZNL)O =V(t,x,m),

_ 3
m; — vAm — div {ml(Z;ﬂZ)j Vu} =0. (3)

The data for the system is then
w(T,z) =ul (), m(0,z) = m°(x).

Notice that the time-dependent system (3) has a forward-backward structure: the
equation for m is a forward parabolic equation and is taken with initial data, while
the equation for u is backward parabolic, and is taken instead with terminal data.
Since m will be a probability distribution, we note that we are interested exclusively
in solutions for which m > 0. Observe that in (3), |Vu(t, z)| represents the expected
marginal utility for the agent in state x at time ¢, and it is scaled by (m + )~
to reflect the fact that the agent is unsatisfied at a point where m(¢,z) is high
relative to its surroundings. Observe also that if we let 1 = 0, one runs the risk
of obtaining singularities when m(t,z) = 0. In [1], the authors prove the existence
of weak solutions of (3) in the case that p > 0, along with the existence of weak
subsolutions in the case that p = 0.



50 JOSHUA SIN, JOHN W. BONNES, LUKE C. BROWN AND DAVID M. AMBROSE

In addition to time-dependent solutions, stationary solutions of mean field games
systems are frequently of interest; among other reasons, stationary solutions have
in some cases been shown to give the limit of time-dependent solutions as the time
horizon, T, goes to infinity [6], [7]. For congestion-type mean field games, stationary
solutions have previously been proved to exist in the works [9], [10], [13], [14], [15].
Rather than being purely stationary, solutions are frequently taken to be relatively
stationary, in the sense that while m is taken to satisfy m; = 0, the equation for
u becomes u; = A for some fixed A € R. The relatively stationary version of the
system (3) is then

—vAu + % (JZ;L[;Q =V(t,z,m) + ),

—vAm — div {ml(rvnﬂ;: Vu} =0.

(4)

Numerical methods have been developed for computing stationary solutions of
mean field games [3], [4]. As an alternative to these methods, forward-forward mean
field games were introduced and studied in a series of papers [11], [12], [16], [17],
with the stated purpose of being able to compute stationary solutions as steady-
states of the forward-forward system. This has the advantage that computing solu-
tions of parabolic initial value problems is in general a straightforward proposition,
which can be accomplished with standard methods such as Runge-Kutta timestep-
ping and spectral computation of spatial derivatives. The forward-forward system
corresponding to (4) is

5
u — vAu + % [Vul_ V(t,x,m),

B (mtp)e s (5)
my — vAm — div {ml(zlqﬂu)a Vu} =0.
Then, a solution of (4) is a solution of (5) in which u; = —X and m; = 0.

Unfortunately, the forward-forward problem has proven to be difficult to use for
the stated purpose of finding nontrivial stationary solutions of the mean field games
system. In [16], it is shown that for certain Hamiltonians, the forward-forward
system always converges to the trivial state. Subsequently, in [12], it is shown
that traveling wave solutions exist for the forward-forward system with certain
Hamiltonians. This implies that for these problems, one may choose initial data for
which the problem does not converge at all to a stationary state. In general, it is
entirely possible that nontrivial stationary solutions of the mean field games system
may be unstable to the forward-forward evolution.

If one can expect the stability of the nontrivial stationary solutions, however,
then we may expect the forward-forward evolution to be able to reach these. We
take advantage of the “exchange-of-stability” phenomenon in bifurcation theory to
find stationary solutions expected to be stable to the forward-forward evolution.
Bifurcation theory has previously been used to prove existence of some stationary
mean field games solutions in [8].

We will demonstrate the effectiveness of forward-forward mean field games for
computing stationary solutions in the case that stationary solutions arise from a
bifurcation by considering the following one-dimensional case of (3):

2
1wz 1
Utum+2(m+u)27<mL)a

(6)
my — Mgy — <(W7Zf;)2) =0.
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We consider the spatially periodic case, in which € T = R/LZ, for fixed periodicity
length L.

The paper is organized as follows: In Section 2, we will give an overview of the
numerical method employed for the forward-forward system and give an overview
of some computations unrelated to solutions arising from bifurcations. In Section
3, we will prove a bifurcation theorem for the relatively stationary version of (6).
Guided by this theoretical result, we will then compute such relatively stationary
solutions in Section 4.

2. Numerical method and equilibria of the Evangelista and Gomes model.
The numerical method we implement consists of a spectral method to compute
the spatial derivatives A and 3., together with a fourth-order Runge-Kutta time
integration. Given a smooth function f : T — R, one generates f using the Fast
Fourier Transform (FFT) and computes

472

af=-r () weFen] @ n=r|(F) kit @

using the Inverse Fast Fourier Transform (IFFT). We have implemented this scheme
for the forward-forward mean field games system in Python as well as in Matlab.

This algorithm produces time-dependent solutions of the forward-forward system.
As we have noted, if these solutions converge to equilibria, then the equilibria are
also stationary solutions of the standard backward-forward system. We therefore
generate solutions with the intention of numerically obtaining nontrivial equilibria
of the original problem. We therefore also need to discuss the criterion we implement
to determine whether a stationary solution has been reached. At the jth time-step
we compute

16y = tog (Jutty )~ by o

where the L? norm is computed in the zero-mean subspace L2 (i-e., we subtract the
mean of the function before computing the L? norm) to account for the mean-shift
u; = A in the solution of the time-reversed HJB equation. One may neglect to
renormalize by At because our experiments all use the same step-size, At = 1074,
In the numerical evidence we present, we shall include the convergence plots that
show K; over time, with the threshold K; = —10 corresponding to the point at
which we agree a limit has been obtained.

2.1. Sample preliminary calculations. Our investigation began with the fol-
lowing forward-forward system, based on the study of stationary congestion games
n [10]. Let

H(w,p) = (L+p*)"2  V(e,m) = tan™"(m)
for parameters « > 0, v € (0,2). The forward-forward form of the system presented
in [10] is given by

? me

(7)
mt—l—m—ﬁx{m?;(x,:;ﬁ)}—l

which exhibits a trivial equilibrium at

ut—&—u—uxz—l—maH(x ““) +V(z,m)=0

™

ng_l_z,
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(We take L = 1 for now; thus, this m{ is indeed a probability distribution.) We
chose sample values of (a,7) and implemented the forward-forward system using
sinusoidal perturbations of (u§, mg) as initial data. Doing so for a variety of initial
perturbations and parameter values overwhelmingly led to long-time behavior of
convergence to the trivial equilibrium (ug, mg).

However, in one interval of parameter values (specifically, for a between 2.3
and 2.6, with v = 1.55), we did find nontrivial stationary solutions according to our
criterion. In Figure 1, the terminal density is shown in pink and exhibits a minimum
near x = 0.2 that sharpens into a cusp and approaches zero (a singular value for the
model) as the congestion parameter « increases. In Figure (2), the terminal utility
is shown in pink. While we know from the analytical results of [10] that the trivial
state is not a unique equilibrium of (7), for most parameter ranges we conclude that
the nontrivial stationary solutions are unstable to the forward-forward evolution.
Rather than continuing to make a brute-force search through parameter space to
look for small pockets of stable nontrivial stationary solutions, we will now change
approaches.

This motivates our study of bifurcations in congestion models. In Section 3, we
examine a different congestion model and demonstrate the exchange of stability
from uniform to non-uniform equilibria. The non-uniform equilibria thus obtained
are qualitatively similar to those obtained in this section.

FIGURE 1. Evolution to Nontrivial Stationary Densities
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FIGURE 2. Evolution to Nontrivial Stationary Utilities
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3. Existence of stationary solutions via bifurcation theory. In what follows,
we demonstrate the existence of stationary solutions for congestion game (3) in the
one-dimensional case with v = 1. That is, on the interval [0, L] (with periodic
boundary conditions) we will prove existence of solutions for the system

—u +lu7§,_ _ 1 + A

e () =0
x

We will be seeking solutions in which the mean of m is equal to 1/L, so we may

2
notice in the first equation that A is equal to the mean of %(mii’ﬂ)g We introduce
the projection P which removes the mean of a periodic function. Then we rewrite

the system as F(u,m) = 0, with F' given by
2
e+ @i =2 1)
e~ (),
For any ~, for any ¢, we have the trivial solution F’ (c, %, 'y) = 0. We seek to bifurcate

from this trivial family to nontrivial stationary solutions.
We use the following definition from the book of Zeidler [23].

F(u,m,y) =
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Definition 3.1. Let X be a Banach space over the field K and consider the operator
problem G(u,p) = 0 where (u,p) € X x K". The point (ug,po) € X x K" is a
bifurcation point of the problem if G(ug,po) = 0 and there exist distinct sequences
of solutions {(un,pn) : n € Z*} and {(vn,pn) : n € ZT} that both converge to
(1o, po)-

Note that we will only take the field K to be R.
We make use also of the following bifurcation theorem given in [23].

Theorem 3.2. If (up,po) € X x K" satisfies G(ug,po) = 0 together with the
following criteria, then (ug,po) is a bifurcation point of the equation G(u,p) = 0.
1. G is C? in a neighborhood of (ug, po)-
2. For all p € K" sufficiently close to pg, G(ug,p) = 0.
3. The linearization D, G(ug,po) is Fredholm and non-bijective.

1
4. For any nontrivial b € Ker DG (uo,po) and basis v1,- -+ ,vn of (Im DuG(uo,pg)) ,
if [Tk = (vj, D2, ,G(uo,po)b) then det T # 0.

Pru
We shall employ Theorem 3.2 to demonstrate the existence of a bifurcation point
in the parameter ~.
If m is a probability distribution on [0, L] then the stationary HJB equation

1 w2 1
Upy — = ———= =y m — —
is only satisfied if u, = 0, yielding the trivial equilibrium. Therefore a nontrivial
stationary density m(¢,z) = ¥(x) requires that u(t,z) approaches the long-time
limit u(t,z) = ¢(x) — At where ¢(x) has a mean of zero and

1 ¢/2
A=— | ————dx.
2L/qr(m+u)2 !

Let Pv = v — ﬁ@) fTU dz denote the projection onto the space of zero-mean

functions. The HJB equation becomes
2

1 u 1
X —Upp _—\)=90
Yo 3t )2 ”(m L>

yielding the stationary form of the forward-forward system

i vl 1
—“mﬂ“’(mww”(m”) 0
Flum,) = (o)

BN

Again, we take the periodic spatial domain T = R/LZ. Choose base-point (u,m) =
(¢, L71) and let

1
w=1u-—Cc, v=m— —.

L
The stationary form of the forward-forward system may be represented by the

equivalent system

1 w2
7 ~Uar + §P Ty — 0 0
(U}, v, ’Y) - —v | o VWs o W o 0/’
ze ~ | GFatl-T TOFut =12

where we take solutions from the Sobolev space H%(T) x H?(T).
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Theorem 3.3. Let vo = —4n?(u+ L™Y)%/L. Then (0,0,79) is a bifurcation point
of the problem F = 0.

Proof. We restrict F to the space of odd functions (i.e. functions on the torus with
a sine-series expansion) for both w and v. Let H2(T) denote the space of all H?
functions on T that are odd. We linearize about the solution (0,0,~,) to obtain

A: HX(T) x HX(T) — L*(T) x L*(T),

A(v,w)z( ~Waz — 700 )7

7L(,u$iz*1)2 Y
which one computes by taking the derivative in the sense of Frechet, i.e.,
ﬁ(hwa hv? ’70) — ﬁ(oa 07 ’YO)

1m .
h—0 h

We see first that F is C? in a neighborhood of (0,0,7y) due to the presence of
p+ L1 in the denominators of the nonlinear terms. By direct calculation,

given by

Dﬁ <w’ IU? FY> (w/7 /U/’ "}//)

waew! P w?v’

/ z _ x —~y = !
~Wao T Py — Py — v o

’

= v = U/w:z+vw; —92 vwe v’ + w,, —9 wyv'
TT (v+p+L—1)2 (v+pu+L-1)3 L(v+p+L—1)2 L(v+pu+L—1)3
x

and
~ R
D2 (w0.7) ('t w00 = (1),
where
, 2w w! — dwgwiv” 3w2v'v" 2w v’
R I HD T xT x xT x —P x x _ ! _ " !
e 7R o e RS A E Ry 2 R
and
Ry— o/ — ( v'wl 4+ v, > B 2<2v'w1v” + vwliv’ +vw;v”>
SNCETER IR CrarLy ),

VW ,U/,U/l wl UH +w//7_}, w ,U/U//
(wrisim), s, o ),
(w+p+L71)r), Lv+p+L71)3 ), Liv+p+L71)4 ),
Therefore if v is sufficiently close to 0 then there exist ¢ = c(w,v,v, L, ) > 0 and
¢ =d(w,v,7,L,u) > 0 such that

‘ DF (mmv) (w',v',7)
and

HDQﬁ(wwm) <(w'7v’,7’), (w”,v”ﬁ"))

< C<||"w/H2 e+ |7'|>
L2x L2

L2x L2
< c'(w'||H2 e+ 7/> (Ilw”IHz e+ w").

That is, if (w, v, ) are sufficiently close to (0,0,7o) then F is C2. Clearly ﬁ(O7 0,7) =
0 for all v € R, so Conditions 1 and 2 of Theorem 3.2 are satisfied. In what follows,



56 JOSHUA SIN, JOHN W. BONNES, LUKE C. BROWN AND DAVID M. AMBROSE

we demonstrate that A is Fredholm and that F satisfies the transversality condition
at (07 07 70) .
If A(w,v) =0 then

—Wgy — YoV =0
Wae + L+ L71) 20, =0
SO
Vpg = | )
L+ L)
Note that it is crucial here that vy < 0. If 49 > 0 then under periodic, zero-mean
conditions, only v = 0 is possible, yielding a trivial kernel. Given

—4n? _
Yo=—7F—(p+ L")

. 2
v = CSIH(LLE)
for some ¢ € R and therefore
_ (27
Weg = —'yocsm(Lx>

2
w=—cL(u+ L™ ")? sin(lirx).

The linearization then has a one-dimensional kernel with a basis consisting only of

b= (—L(,u + L7 sin(?x) : sin<2L7Tx>).

We have already shown that F' € C? in a neighborhood of (0,0,p), and therefore
A is continuous on its domain dom A = H2(T) x H2(T).

We now argue that Im(A) is closed in L2(T) x L2(T) which allows us to compute
a basis of Coker A by obtaining a basis of Ker A*. We begin by decomposing the
domain,

we obtain that

implying

H?(T) x H*(T) = Ker(A) & W.
Since we have factored out the kernel, it is straightforward to see that A [ W has
bounded inverse (see [5] for full details). Let (fn,gn) = A(wn,v,) be a Cauchy
sequence in Im(A) with limit (f, g). For all n, decompose (w,,v,) as
(Wnyvn) = (Tn, 8n) + (Yns 2n)

where (ry,, sp) € Ker(A) and (yn, 2,) € W. Then clearly A(yn, 2n) = (fn,9n), and
(Yny2n) = (A | W)7L(fn, gn). We may then bound a difference as

| (Uns 2n) = Ym» 2m) | 2 52 = ||(A I W)71 ((frs gn) — (fmvgm))HHszz
< C”(fnygn) - (an7gm)HL2><L2'

Since the sequence (f,,gn) is Cauchy, we conclude that the sequence (y,,z,) is
also Cauchy, with limit (y,z). Since A is continuous, we further conclude that
A(y, z) = (f,g). This proves that Im(A) is closed, as desired. Therefore one may
compute a basis of Coker A by obtaining a basis of Ker A*. Using Plancherel’s
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theorem, we may represent the action of A between H? x H? and L? x L? in Fourier
space, and by taking the Hermitian adjoint,

~ k2 K
i — TGALT? | .
—Y% k2

If (w,v) € Ker A* then A\(zﬁ, v) = 0 and by the same calculation performed to
compute a basis of Ker A, we obtain that the kernel of A* is spanned by the vector

b= (s (220 -+ 1 2))

when we restrict to the subspace of odd functions. The linearization A is therefore
Fredholm.

The parameter space of the operator problem is one-dimensional, so the valida-
tion of the transversality condition is simple:

DWD(W)ﬁ(o,o,y) (w,v) = (—v,0),

SO

(b, Dy Dy 1) F(0,0,7) (b)) 2xz2 = — / sin?(z) dz < 0.
T

We have verified that (0,0, 7o) satisfies the necessary and sufficient conditions to
constitute a bifurcation point of the operator problem F' = 0. O

Remark 3.4. Note that by taking v < 0 in the forward-forward model, we ob-
tain equilibria of the conventional backward-forward model, with a coupling that is
increasing in m and therefore compliant with the assumptions typically placed on
such a model.

Remark 3.5. Note also the dependence of 7y on L. In particular, note that the
given congestion game on a short interval is more robust against the change of
equilibrium than a longer interval (that is, |y| must be taken larger for v < 0 to
obtain a nontrivial distribution in the long-time limit).

4. Numerical demonstration of the exchange of stability. In what follows,
we provide graphical results from our numerical experiments that demonstrate the
fact that 79 = —472(u + L~1)2/L is a bifurcation point in the congestion game.

4.1. Nontrivial equilibria. The following experiments use
1 2
u’(z) = 3 sin(Lx>, m(z) = 7 +5%107° sin(LTrx)

as initial data with L = 27. Note that the initial distribution is taken quite close
to the uniform distribution.

Figure 3 shows the mean-adjusted utility Pu” and density m” at the end of the
simulation, taking p = 0.1. The magenta (farthest from trivial), purple (middle),
and blue (nearest to trivial) curves correspond to b = —0.1, b = —0.0505, and
b = —0.001, respectively. The convergence of the solutions to equilibrium is demon-
strated in Figures 4, 5, and 6, which show K; as given in Section 2, with j ranging
over the time steps. Note that in the case b = —0.001, convergence to the stationary
solution is far slower than for the more extreme cases b = —0.1 and b = —0.0505.

The same experiment was repeated in the case p = 0.05, yielding Pu” and m” as
shown in Figure 7, with similar convergence rates to those shown in the y = 0.1 case.
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Note that the non-uniformity of the distribution of agents becomes more acute as
u grows smaller. Again, terminal data corresponding to b = —0.1 (Magenta, most
extreme), b = —0.0505 (Purple, middle), and b = —0.001 (blue, nearest to trivial)
are shown.

In Figures 8 and 9, the average value of u(t,-) over time is shown. As we have
stated, the nontrivial long-time limits we obtain have the form wu(t,z) = ¢(z) — At
and m(t,xz) = ¢¥(z). The approximate value of A has been calculated and included
in the plots. Note that A is a translation rate in time (and therefore given in utils
per second), while the horizontal axis is the time-step index, to coordinate with the
convergence plots. In these experiments, we once again employed p = 0.1, with
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FiGURE 7. Terminal Data; u = 0.05, b < 0

Average Utility over Time

Limit of Slope::
: -0.0135 u/s

Average Utility over Time

Limit of Slope:
-0.007 u/s

8 1 12
Time Step 108

8 1 12 14 16 18 2
Time Step <108

FIGURE 8. Average Utility; 4 = 0.1, b = —0.1 and b = —0.0505

corresponding perturbations b = —0.1, b = —0.0505, and b = —0.001, respectively,

from the bifurcation point.

4.2. Trivial equilibria. The same experiments performed for b < 0 were per-
formed for various values of b > 0 and shown to yield trivial equilibria (although, as
in the b < 0 case, convergence is extremely slow near the bifurcation point). As a
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representative example (Figure 10), a time-evolving plot shows the convergence of

Pu(t,z) and m(t,z) to 0 and 1/L, respectively, in the case of b = 0.1 with g = 0.1.
Plots showing K; over the time-steps j, corresponding to u and m, respectively, are

shown in Figure 11.
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FIGURE 9. Average Utility; p = 0.1, b = —0.001
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F1GUurE 10. Convergence to Trivial Equilibrium; g = 0.1, b = 0.1
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FIGURE 11. Convergence over Time; b = 0.1, K; decreases

4.3. Convergence rates near the bifurcation. We now examine the rate of
convergence of the forward-forward system to equilibrium near the bifurcation point.
Let K} (b) and K7"(b) be as given in Section 2, measuring the zero-mean difference
in v and m, respectively, after j time steps, taking the parameter value v = 9 + b.
With Nt = 2 % 105 and At = 1074, let

_ Kﬁt(b) - Kf\iltf1(b)
At

Q.(b)
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Ficure 12. Rate of Convergence in Orders of Magnitude

and
o - S = IR, 0

At
represent the rate of change of the order of magnitude in the zero-mean L2-norm
of the step-by-step difference between wu(¢,-) and m(t, -), respectively, at the end of
the simulation. That is, £, (b) represents the rate at which u(t,-) is converging to
¢(x) — At in orders of magnitude per second, when v = vy + b (and the same for
Q.,(b)). In Figure 12, Q, and Q,, are shown on the left and right, respectively,
for b = —0.01, b = —0.0075, b = —0.005, b = —0.0025, and b = 0. Note that
Qy, Q< 0, showing that K is decreasing as the solution converges, but growing
smaller in magnitude as the bifurcation point is approached.

5. Discussion. We have shown that the forward-forward form of a mean-field game
system holds the potential to ease the detection of game equilibria by numeri-
cal experimentation. Our numerical experimentation focuses on a one-dimensional
forward-forward mean-field game with congestion, and through numerical experi-
mentation, we detect the emergence of nontrivial equilibria, motivating our search
for the existence of a bifurcation point in the solutions parametrized by the coupling
strength ~.

While several theoretical investigations into forward-forward mean-field games
are known to the authors ([11], [12], [16], [17]), this is the first investigation, to
our knowledge, that has used them to numerically detect nontrivial equilibria in
the original backward-forward game. We therefore regard our results as a proof-
of-concept for use of the forward-forward system to produce numerical results to
complement the proof of theoretical ones. The same methodology may be employed
to search for bifurcations in other mean-field game systems, or in generalizations
of the same congestion model. One may perform a similar analysis of the general
congestion game posed in [1], that is,

—uy — VAU + %(LZ:LIL[;Q =V(t,z,m)

m; — vAm — div {m ‘(Yn’ﬂi;j Vu} =0

u,m: [0,T] x T? — R,

together with a parameter space consisting of (¢, 8) and parameters associated with
a specific form of the coupling.
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