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Uncovering rationales behind predictions of graph neural networks (GNNs) has received increasing
attention over recent years. Instance-level GNN explanation aims to discover critical input elements, such
as nodes or edges, that the target GNN relies upon for making predictions. Though various algorithms are
proposed, most of them formalize this task by searching the minimal subgraph, which can preserve original
predictions. However, an inductive bias is deep-rooted in this framework: Several subgraphs can result
in the same or similar outputs as the original graphs. Consequently, they have the danger of providing
spurious explanations and failing to provide consistent explanations. Applying them to explain weakly
performed GNNs would further amplify these issues. To address this problem, we theoretically examine
the predictions of GNNs from the causality perspective. Two typical reasons for spurious explanations
are identified: confounding effect of latent variables like distribution shift and causal factors distinct from
the original input. Observing that both confounding effects and diverse causal rationales are encoded in
internal representations, we propose a new explanation framework with an auxiliary alignment loss, which
is theoretically proven to be optimizing a more faithful explanation objective intrinsically. Concretely for
this alignment loss, a set of different perspectives are explored: anchor-based alignment, distributional
alignment based on Gaussian mixture models, mutual-information-based alignment, and so on. A com-
prehensive study is conducted both on the effectiveness of this new framework in terms of explanation
faithfulness/consistency and on the advantages of these variants. For our codes, please refer to the following
URL link: https://github.com/TianxiangZhao/GraphNNExplanation
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Graph-structured data is ubiquitous in the real world, such as social networks [1-3], molecular
structures [4, 5], and knowledge graphs [6, 7]. With the growing interest in learning from graphs,
graph neural networks (GNNs5s) are receiving more and more attention over the years. Gener-
ally, GNNs adopt message-passing mechanisms, which recursively propagate and fuse messages
from neighbor nodes on the graphs. Hence, the learned node representation captures both node at-
tributes and neighborhood information, which facilitates various downstream tasks such as node
classification [8-11], graph classification [12], and link prediction [13-15].

Despite the success of GNNs for various domains, as with other neural networks, GNNs lack
interpretability. Understanding the inner working of GNNs can bring several benefits. First, it
enhances practitioners’ trust in the GNN model by enriching their understanding of the model
characteristics such as if the model is working as desired. Second, it increases the models’ trans-
parency to enable trusted applications in decision-critical fields sensitive to fairness, privacy, and
safety challenges [16-18]. Thus, studying the explainability of GNNs is attracting increasing at-
tention and many efforts have been taken [19-21].

Particularly, we focus on post hoc instance-level explanations. Given a trained GNN and an input
graph, this task seeks to discover the substructures that can explain the prediction behavior of the
GNN model. Some solutions have been proposed in existing works [19, 22, 23]. For example, in
search of important substructures that predictions rely upon, GNNExplainer learns an importance
matrix on node attributes and edges via perturbation [19]. The identified minimal substructures
that preserve original predictions are taken as the explanation. Extending this idea, PGExplainer
trains a graph generator to utilize global information in explanation and enable faster inference
in the inductive setting [20]. SubgraphX constraints explanations into connected subgraphs and
conducts Monte Carlo tree search based on Shapley value [24]. These methods can be summarized
in a label preserving framework, i.e., the candidate explanation is formed as a masked version of
the original graph and is identified as the minimal discriminative substructure.

However, due to the complexity of topology and the combinatory number of candidate substruc-
tures, existing label preserving methods are insufficient for a faithful and consistent explanation
of GNNs. They are unstable and are prone to give spurious correlations as explanations. A failure
case is shown in Figure 1, where a GNN is trained on Graph-SST5 [25] for sentiment classifica-
tion. Each node represents a word, and each edge denotes syntactic dependency between nodes.
Each graph is labeled based on the sentiment of the sentence. In the figure, the sentence “Sweet
home alabama isn’t going to win any academy awards, but this date-night diversion will definitely
win some hearts” is labeled positive. In the first run, GNNExplainer [19] identifies the explanation
as “definitely win some hearts,” and in the second run, it identifies “win academy awards” to be
the explanation instead. Different explanations obtained by GNNExplainer break the criteria of
consistency, i.e., the explanation method should be deterministic and consistent with the same
input for different runs [26]. Consequently, explanations provided by existing methods may fail to
faithfully reflect the decision mechanism of the to-be-explained GNN.

Inspecting the inference process of target GNNs, we find that the inconsistency problem and
spurious explanations can be understood from the causality perspective. Specifically, existing ex-
planation methods may lead to spurious explanations either as a result of different causal factors or
due to the confounding effect of distribution shifts (identified subgraphs may be out of distribution).
These failure cases originate from a particular inductive bias that predicted labels are sufficiently
indicative for extracting critical input components. This underlying assumption is rooted in opti-
mization objectives adopted by existing works [19, 20, 24]. However, our analysis demonstrates
that the label information is insufficient to filter out spurious explanations, leading to inconsistent
and unfaithful explanations.
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Fig. 1. Explanation results achieved by a leading baseline GNNExplainer on the same input graph from
Graph-SST5. Red edges formulate explanation substructures.

Considering the inference of GNNs, both confounding effects and distinct causal relationships
can be reflected in the internal representation space. With this observation, we propose a novel ob-
jective that encourages alignment of embeddings of raw graph and identified subgraph in internal
embedding space to obtain more faithful and consistent GNN explanations. Specifically, to evaluate
the semantic similarity between two inputs and incorporate the alignment objective into explana-
tion, we design and compare strategies with various design choices to measure similarity in the em-
bedding space. These strategies enable the alignment between candidate explanations and original
inputs and are flexible to be incorporated into various existing GNN explanation methods. Partic-
ularly, aside from directly using Euclidean distance, we further propose three distribution-aware
strategies. The first one identifies a set of anchoring embeddings and utilizes relative distances
against them. The second one assumes a Gaussian mixture model and captures the distribution us-
ing the probability of falling into each Gaussian center. The third one learns a deep neural network
to estimate mutual information between two inputs, which takes a data-driven approach with little
reliance upon prior domain knowledge. Further analysis shows that the proposed method is in fact
optimizing a new explanation framework, which is more faithful in design. Our main contributions
are:

— We point out the faithfulness and consistency issues in rationales identified by existing GNN
explanation models. These issues arise due to the inductive bias in their label-preserving
framework, which only uses predictions as the guiding information;

— We propose an effective and easy-to-apply countermeasure by aligning intermediate embed-
dings. We implement a set of variants with different alignment strategies, which is flexible
to be incorporated to various GNN explanation models. We further conduct a theoretical
analysis to understand and validate the proposed framework.

— Extensive experiments on real-world and synthetic datasets show that our framework ben-
efits various GNN explanation models to achieve more faithful and consistent explanations.

1 RELATED WORK

In this section, we review related works, including graph neural networks and interpretability of
GNNE.

1.1 Graph Neural Networks

GNNss are developing rapidly in recent years, with the increasing need for learning on relational
data structures [1, 27-30]. Generally, existing GNNs can be categorized into two categories, i.e.,
spectral-based approaches [31-33] based on graph signal processing theory and spatial-based
approaches [34-36] relying upon neighborhood aggregation. Despite their differences, most
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GNN variants can be summarized with the message-passing framework, which is composed of
pattern extraction and interaction modeling within each layer [37]. Specifically, GNNs model
messages from node representations. These messages are then propagated with various message-
passing mechanisms to refine node representations, which are then utilized for downstream
tasks [10, 13, 28, 38]. Explorations are made by disentangling the propagation process [39-41]
or utilizing external prototypes [42, 43]. Research has also been conducted on the expressive
power [44, 45] and potential biases introduced by different kernels [46, 47] for the design of
more effective GNNs. Despite their success in network representation learning, GNNs are unin-
terpretable black-box models. It is challenging to understand their behaviors even if the adopted
message passing mechanism and parameters are given. Besides, unlike traditional deep neural net-
works where instances are identically and independently distributed, GNNs consider node features
and graph topology jointly, making the interpretability problem more challenging to handle.

1.2 GNN Interpretation Methods

Recently, some efforts have been taken to interpret GNN models and provide explanations for
their predictions [48]. Based on the granularity, existing methods can be generally grouped into
two categories: (1) instance-level explanation [19], which provides explanations on the prediction
for each instance by identifying important substructures; and (2) model-level explanation [49, 50],
which aims to understand global decision rules captured by the target GNN. From the methodology
perspective, existing methods can be categorized as (1) self-explainable GNNs [50, 51], where the
GNN can simultaneously give prediction and explanations on the prediction; and (2) post hoc
explanations [19, 20, 24], which adopt another model or strategy to provide explanations of a
target GNN. As post hoc explanations are model-agnostic, i.e., can be applied for various GNNs,
in this work, we focus on post hoc instance-level explanations [19], i.e., given a trained GNN
model, identifying instance-wise critical substructures for each input to explain the prediction. A
comprehensive survey can be found in Reference [52].

A variety of strategies for post hoc instance-level explanations have been explored in the liter-
ature, including utilizing signals from gradients-based [49, 53], perturbed predictions-based [19,
20, 24, 54], and decomposition-based [49, 55]. Among these methods, perturbed prediction-based
methods are the most popular. The basic idea is to learn a perturbation mask that filters out
non-important connections and identifies dominating substructures preserving the original pre-
dictions [25]. The identified important substructure is used as an explanation for the prediction.
For example, GNNExplainer [19] employs two soft mask matrices on node attributes and graph
structure, respectively, which are learned end-to-end under the maximizing mutual informa-
tion (MMI) framework. PGExplainer [20] extends it by incorporating a graph generator to utilize
global information. It can be applied in the inductive setting and prevent the onerous task of re-
learning from scratch for each to-be-explained instance. SubgraphX [24] expects explanations to
be in the form of sub-graphs instead of bag-of-edges and employs Monte Carlo Tree Search
(MCTS) to find connected subgraphs that preserve predictions measured by the Shapley value. To
promote faithfulness in identified explanations, some works introduced terminologies from the
causality analysis domain, via estimating the individual causal effect of each edge [56] or design-
ing interventions to prevent the discovery of spurious correlations [57]. Reference [58] connects
the idea of identifying minimally predictive parts in explanation with the principle of information
bottleneck [59] and designs an end-to-end optimization framework for GNN explanation.

Despite the aforementioned progress in interpreting GNNs, most of these methods discover crit-
ical substructures merely upon the change of outputs given perturbed inputs. Due to this underly-
ing inductive bias, existing label-preserving methods are heavily affected by spurious correlations
caused by confounding factors in the environment. However, by aligning intermediate embeddings
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in GNNs, our method alleviates the effects of spurious correlations on interpreting GNNs, leading
to faithful and consistent explanations.

1.3 Graph Contrastive Learning

In recent years, contrastive learning (CL) has garnered significant attention, as it mitigates the
need for manual annotations via unsupervised pretext tasks [60-62]. In a typical CL framework,
the model is trained in a pairwise manner, promoting attraction between positive sample pairs and
repulsion between negative sample pairs [63, 64].

CL techniques have recently been extended to the graph domain, constructing multiple graph
views and MMI among semantically similar instances [62, 65-69]. Existing methods primarily vary
on graph augmentation techniques and contrastive pretext tasks. Graph augmentations commonly
involve node-level attribute masking or perturbation [70-72], edge dropping or rewiring [73, 74],
and graph diffusions[75, 76]. Contrastive pretext tasks can be categorized into two branches, same-
scale contrasts between embeddings of node (graph) pairs [75, 77, 78] and cross-scale contrasts
between global graph embeddings and local node representations [71, 72]. Recent works have
also explored dynamic contrastive objectives [79, 80] via learning the augmentation strategies
adaptively.

2 PRELIMINARY
2.1 Problem Definition

We use G = {V,E;F, A} to denote a graph, where V = {vy,...,v,} is a set of n nodes and
& € V x V is the set of edges. Nodes are accompanied by an attribute matrix F € R, and
F[i,:] € R is the d-dimensional node attributes of node v;. & is described by an adjacency
matrix A € R™". A;; = 1if there is an edge between node v; and v;; otherwise, A;; = 0. For
graph classification, each graph G; has a label Y; € C, and a GNN model f is trained to map G to
its class, i.e., f : {F,A} — {1,2,...,C}. Similarly, for node classification, each graph G; denotes a
K-hop subgraph centered at node v;, and a GNN model f is trained to predict the label of v; based
on node representation of v; learned from G;. The purpose of explanation is to find a subgraph
G’, marked with binary importance mask M4 € [0, 1]™" on adjacency matrix and My € [0, 1]"Xd
on node attributes, respectively, e.g., G’ = {A © M4;F © Mp}, where © denotes elementwise
multiplication. These two masks highlight components of G that are important for f to predict its
label. With the notations, the post hoc instance-level GNN explanation task is:

Given a trained GNN model f, for an arbitrary input graph G = {V,E;F, A}, find a subgraph G’
that can explain the prediction of f on G. The obtained explanation G’ is depicted by importance
mask Mg on node attributes and importance mask M4 on adjacency matrix.

2.2 MMI-based Explanation Framework

Many approaches have been designed for post hoc instance-level GNN explanation. Due to the
discreteness of edge existence and non-grid graph structures, most works apply a perturbation-
based strategy to search for explanations. Generally, they can be summarized as MMI between
predicted label ¥ and explanation G’, i.e.,
min - I(Y,G),
g (1)
st. G ~P(G,Mas,Mp), R(Mpg,My) <c,

where () represents mutual information and # denotes the perturbations on original input with
importance masks {Mp, M4}. For example, let {A, F} represent the perturbed {A, F}. Then, A = A®
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My and F = Z+ (F—Z) ©Mp in GNNExplainer [19], where Z is sampled from marginal distribution
of node attributes F. R denotes regularization terms on the explanation, imposing prior knowledge
into the searching process, like constraints on budgets or connectivity distributions [20]. Mutual
information I(Y, G') quantifies consistency between original predictions Y = f(&) and prediction
of candidate explanation f(G’), which promotes the positiveness of found explanation G’. Since
mutual information measures the predictive power of G’ on Y, this framework essentially tries to
find a subgraph that can best predict the original output Y. During training, a relaxed version [19]
is often adopted as:

min He (V. P(V' 1 §)).
st. G ~P(G,Ma,Mp), R(Mp,M4) <c,

where Hc denotes cross-entropy. With this same objective, existing methods mainly differ from
each other in optimization and searching strategies.

Different aspects regarding the quality of explanations can be evaluated [26]. Among them, two
most important criteria are faithfulness and consistency. Faithfulness measures the descriptive
accuracy of explanations, indicating how truthful they are compared to behaviors of the target
model. Consistency considers explanation invariance, which checks that identical input should
have identical explanations. However, as shown in Figure 1, the existing MMI-based framework is
sub-optimal in terms of these criteria. The cause of this problem is rooted in its learning objective,
which uses prediction alone as guidance in search of explanations. Due to the complex graph
structure, the prediction alone as a guide could result in spurious explanations. A detailed analysis
will be provided in the next section.

@)

3 ANALYZE SPURIOUS EXPLANATIONS

With “spurious explanations,” we refer to those explanations lying outside the genuine rationale
of prediction on G, making the usage of G’ as explanations anecdotal. As examples in Figure 1,
despite rapid developments in explaining GNNs, the problem w.r.t. faithfulness and consistency
of detected explanations remains. To get a deeper understanding of reasons behind this problem,
we will examine the behavior of target GNN model from the causality perspective. Figure 2(a)
shows the Structural Equation Model (SEM), where variable C denotes discriminative causal
factors and variable S represents confounding environment factors. Two paths between G and the
predicted label Y can be found.

— G — C — Y: This path presents the inference of target GNN model, i.e., critical patterns C
that are informative and discriminative for the prediction Y would be extracted from input
graph, upon which the target model is dependent. Causal variables are determined by both
the input graph and learned knowledge by the target GNN model.

— G « S — Y: We denote S as the confounding factors, such as depicting the overall distribu-
tion of graphs. It is causally related to both the appearance of input graphs and the prediction
of target GNN models. A masked version of G could create out-of-distribution (OOD) ex-
amples, resulting in spurious causality to prediction outputs. For example, in the chemical
domain, removing edges (bonds) or nodes (atoms) may obtain invalid molecular graphs that
never appear during training. In the existence of distribution shifts, model predictions would
be less reliable.

Figure 2(a) provides us with a tool to analyze f’s behaviors. From the causal structures, we can
observe that spurious explanations may arise as a result of failure in recovering the original causal
rationale. G’ learned from Equation (1) may preserve prediction ¥ due to confounding effect of
distribution shift or different causal variables C compared to original G. Weakly trained GNNs
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Fig. 2. (a) Prediction rules of f in the form of SCM. (b) An example of anchor-based embedding alignment.

f(-) that are unstable or non-robust towards noises would further amplify this problem, as the
prediction is unreliable.

To further understand the issue, we build the correspondence from SEM in Figure 2(a) to the
inference process of GNN f. Specifically, we first decompose f () as a feature extractor f;() and a
classifier f,;s(). Then, its inference can be summarized as two steps: (1) encoding step with fex;(),
which takes G as input and produce its embedding in the representation space Ec; (2) classification
step with f;;5(), which predicts output labels on input’s embedding. Connecting these inference
steps to SEM in Figure 2(a), we can find that:

— The causal path G — C — Y lies behind the inference process with representation space Ec
to encode critical variables C;

— The confounding effect of distribution shift S works on the inference process via influencing
distribution of graph embedding in Ec. When masked input G’ is OOD, its embedding would
fail to reflect its discriminative features and deviate from real distributions, hence deviating
the classification step on it.

To summarize, we can observe that spurious explanations are usually obtained due to the following
two reasons:

(1) The obtained G’ is OOD graph. During inference of target GNN model, the encoded represen-
tation of G’ is distant from those seen in the training set, making the prediction unreliable;
(2) The encoded discriminative representation does not accord with that of the original graph.
Different causal factors (C) are extracted between G’ and G, resulting in false explanations.

4 METHODOLOGY

Based on the discussion above, in this section, we focus on improving the faithfulness and con-
sistency of GNN explanations and correcting the inductive bias caused by simply relying on pre-
diction outputs. We first provide an intuitive introduction to the proposed countermeasure, which
takes the internal inference process into account. We then design four concrete algorithms to align
G and G’ in the latent space to promote that they are seen and processed in the same manner.
Finally, theoretical analysis is provided to justify our strategies.

4.1 Alleviate Spurious Explanations

Instance-level post hoc explanation dedicates to finding discriminative substructures that the tar-
get model f depends upon. The traditional objective in Equation (2) can identify minimal predictive
parts of input, however, it is dangerous to directly take them as explanations. Due to diversity in
graph topology and combinatory nature of sub-graphs, multiple distinct substructures could be
identified leading to the same prediction, as discussed in Section 3.
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For an explanation substructure G’ to be faithful, it should follow the same rationale as the
original graph G inside the internal inference of to-be-explained model f. To achieve this goal,
the explanation G’ should be aligned to G w.r.t. the decision mechanism, reflected in Figure 2(a).
However, it is non-trivial to extract and compare the critical causal variables C and confounding
variables S due to the black-box nature of the target GNN model to be explained.

Following the causal analysis in Section 3, we propose to take an alternative approach by look-
ing into internal embeddings learned by f. Causal variables C are encoded in representation space
extracted by f, and out-of-distribution effects can also be reflected by analyzing embedding dis-
tributions. An assumption can be safely made: If two graphs are mapped to embeddings near each
other by a GNN layer, then these graphs are seen as similar by it and would be processed similarly by
following layers. With this assumption, a proxy task can be designed by aligning internal graph em-
beddings between G’ and G. This new task can be incorporated into Framework 1 as an auxiliary
optimization objective.

Let h! be the representation of node v at the Ith GNN layer with h = F[o,:]. Generally, the
inference process inside GNN layers can be summarized as a message-passing framework:

m/ = Z Message,; (hé,h,lﬁAv,u)’
ueN(v) (3)
h!*! = Update, (hé,miﬂ),

where Message; and Update; are the message function and update function at [th layer, respec-
tively. N (v) is the set of node v’s neighbors. Without loss of generality, the graph pooling layer
can also be presented as:
b’ = ) P -, (4)
veV
where P, .+ denotes mapping weight from node v in layer [ to node v’ in layer [ + 1 inside the

myriad GNNSs for graph classification. We propose to align embedding h!}! at each layer, which
contains both node and local neighborhood information.

4.2 Distribution-aware Alignment

Achieving alignment in the embedding space is not straightforward. It has several distinct difficul-
ties: (1) It is difficult to evaluate the distance between G and G’ in this embedding space. Different
dimensions could encode different features and carry different importance. Furthermore, G’ is
a substructure of the original G, and a shift on unimportant dimensions would naturally exist.
(2) Due to the complexity of graph/node distributions, it is non-trivial to design a measurement of
alignments that is both computation-friendly and can correlate well to distance on the distribution
manifold.

To address these challenges, we design a strategy to identify explanatory substructures and
preserve their alignment with original graphs in a distribution-aware manner. The basic idea is to
utilize other graphs to obtain a global view of the distribution density of embeddings, providing a
better measurement of alignment. Concretely, we obtain representative node/graph embeddings
as anchors and use distances to these anchors as the distribution-wise representation of graphs.
Alignment is conducted on obtained representation of graph pairs. Next, we go into details of this
strategy.

— First, using graphs {G;}", from the same dataset, a set of node embeddings can be ob-
tained as {{hﬁ}’i}very;}i’zl for each layer [, where h, ; denotes embedding of node v in
graph G;. For node-level tasks, we set V/ to contain only the center node of graph G;. For
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graph-level tasks, V/ contains nodes set after graph pooling layer, and we process them
following {3, e hl“/ [V/ 1}, to get global graph representation.

— Then, a clusterinlg algorlthm is apphed to the obtained embedding set to get K groups. Clus-
tering centers of these groups are set to be anchors, annotated as {h/*" k} . In experiments,
we select DBSCAN [81] as the clustering algorithm and tune its hyperparameters to get
around 20 groups.

— Atlthlayer, hi*! is represented in terms of relative distances to those K anchors, as s/, € R™*K

with the kth element calculated as lerl k IIhIJrl hi,“ kII .

Alignment between G’ and G can be achieved by comparing their representations at each layer.
The alignment loss is computed as:

-Lallgn(f(g Z Z HS _S,l” (5)

veV’

This metric provides a lightweight strategy for evaluating alignments in the embedding distribu-
tion manifold by comparing relative positions w.r.t. representative clustering centers. This strat-
egy can naturally encode the varying importance of each dimension. Figure 2(b) gives an example,
where G is the graph to be explained and the red stars are anchors. G| and G, are both similar to
G w.rt. absolute distances; while it is easy to see G| is more similar to G w.r.t. to the anchors. In
other words, the anchors can better measure the alignment to filter out spurious explanations.

This alignment loss is used as an auxiliary task incorporated into MMI-based framework in
Equation (2) to get faithful explanation as:

n’g{l’ch<i},P(?/ | gl)) +A- LAlign»

st. G ~P(G.Ma,Mp), R(Mp,My) <c,

(6)

where A controls the balance between prediction preservation and embedding alignment. L;ign
is flexible to be incorporated into various existing explanation methods.

4.3 Direct Alignment

As a simpler and more direct implementation, we also design a variant based on absolute distance.
For layers without graph pooling, the objective can be written as 3; 3, <y |lh}, —h} l|2. For layers
with graph pooling, as the structure could be different, we conduct alignment on global represen-
tation 3, cq hi¥1/|V’|, where V'’ denotes node set after pooling.

5 EXTENDED METHODOLOGY

In this section, we further examine more design choices for the strategy of alignment to obtain
faithful and consistent explanations. Instead of using heuristic approaches, we explore two new
directions: (1) statistically sound distance measurements based on the Gaussian mixture model,
(2) fully utilizing the power of deep neural networks to capture distributions in the latent embed-
ding space. Details of these two alignment strategies will be introduced below.

5.1 Gaussian-mixture-based Alignment

In this strategy, we model the latent embeddings of nodes (or graphs) using a mixture of Gauss-
ian distributions, with representative node/graph embeddings as anchors (Gaussian centers). The
produced embedding of each input can be compared with those prototypical anchors, and the se-
mantic information of inputs taken by the target model would be encoded by relative distances
from them.
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Concretely, we first obtain prototypical representations, annotated as {h" k}k ,» by running
the clustering algorithm on collected embeddings {{hi Joevi iz from graphs {G;}",, in the
same strategy as introduced in Section 4.2. Clustering algorlthm DBSCAN [81] is adopted, and we
tune its hyperparameters to get around 20 groups.

Next, the probability of encoded representation h’ falling into each prototypical Gaussian cen-

ters {h" k}k , can be computed as:

exp(—|lhl, — h:¥||2/202)

Lk _ )
Y, exp(=[Ihl, - hbK|12/252)

%

™)

This distribution probability can serve as a natural tool for depicting the semantics of the input
graph learned by the GNN model. Consequently, the distance between h’! and h, can be directly
measured as the KL-divergence w.r.t. this distribution probability:

'k
dphpl) = > pik log<’;7 ) (®)

kel1,...,K] 4

where p! € RK denotes the distribution probability of candidate explanation embedding, /. Using
this strategy, the alignment loss between original graph and the candidate explanation is computed

as:
Latign (@), £(6)) =D > d(plpl), O)
I veV’
which can be incorporated into the revised explanation framework proposed in Equation (6).
Comparison Compared with the alignment loss based on relative distances against anchors in
Equation (5), this new objective offers a better strategy in taking distribution into consideration.
Specifically, we can show the following two advantages:

— In obtaining the distribution-aware representation of each instance, this variant uses a Gauss-
ian distance kernel (Equation (7)) while the other one uses Euclidean distance in Section 4.2,
which may amplify the influence of distant anchors. We can prove this by examining the gra-
dient of changes in representation w.r.t. GNN embeddings h,,. In the [th layer at dimension
k, the gradient of the previous variant can be computed as:

3S£Jk_ hl _ plk
ahg)_z-(v— LE). (10)

However, the gradient of this variant is:
ops" __exp(=lih}, — h-F|F/20%) - (b, — hg)
ohlh, ~ o2 XK exp(—Ilhl — htk|Z/202)

(11)

It is easy to see that for the previous variant, the magnitude of gradient would grow lin-
early w.r.t. distances towards corresponding anchors. For this variant, however, the term
exp(=[lh},~h"¥ [} /25°)

023K, exp(~IIhl,—hb K12 /202)
up-weight the importance of similar anchors, which is more desired in obtaining distribution-
aware representations.

— In computing the distance between representations of two inputs, this variant adopts the
KL divergence as in Equation (8), which would be scale-agnostic compared to the other one
directly using Euclidean distance as in Equation (5). Again, we can show the gradient of

would down-weight the importance of those distant anchors while
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alignment loss towards obtained embeddings that encode distribution information. It can be
observed that for the previous variant:

dd(s. s,)

Lk 'Lk
. =2 (s —s,"). (12)
s o (44—t
For this variant based on Gaussian mixture model, the gradient can be computed as:
ad(pl,pl Lk
—(pf’l f”) =1+log (pj = (13)
opy’ Po

It can be observed that the previous strategy focuses on representation dimensions with
a large absolute difference, while would be sensitive towards the scale of each dimension.
However, this strategy uses the summation between the logarithm of relative difference with
a constant, which is scale-agnostic towards each dimension.

5.2 Ml-based Alignment

In this strategy, we further consider the utilization of deep models to capture the distribution
and estimate the semantic similarity of two inputs and incorporate it into the alignment loss for
discovering faithful and consistent explanations. Specifically, we train a deep model to estimate
the mutual information (MI) between two input graphs and use its prediction as a measurement
of alignment between original graph and its candidate explanation. This strategy circumvents the
reliance on heuristic strategies and is purely data-driven, which can be learned in an end-to-end
manner.

To learn the mutual information estimator, we adopt a neural network and train it to be a Jensen-
Shannon MI estimator [82]. Concretely, we train this JSD-based estimator on top of intermediate
embeddings with the learning objective as follows, which offers better stability in optimization:

mir_l Lmi = EQE{Q,-}{ZIEZJEQEI [Eh1,+sp (—Tl (hi, hi}+))
Imi : (14)
o (1 ()]

where E denotes expectation. In this equation, T*(-) is a compatibility estimation function in the
Ith layer, and we denote {T'(-)}; as the MI estimator g,,;. Activation function sp(-) is the softplus
function, and h} represents the embedding of augmented node v that is a positive pair of v in
the original graph. On the contrary, h;, denotes the embedding of augmented node v that is a neg-
ative pair of original input. A positive pair is obtained through randomly dropping intermediate
neurons, corresponding to masking out a ratio of original input, and a negative pair is obtained as
embeddings of different nodes. This objective can guide g,,; to capture the correlation or similarity
between two input graphs encoded by the target model. Note that to further improve the learning
of MI estimator, more advanced graph augmentation techniques can be incorporated for obtaining
positive/negative pairs, following recent progresses in graph contrastive learning [65, 66]. In this
work, we stick to the strategy adopted in Reference [82] for its popularity and leave that for fu-
ture explorations. With this MI estimator learned, alignment loss between G and G can be readily
computed:
Latign(FG)£G)) =D D) sp(-T' 0}, wl)), (15)
I veV’

which can be incorporated into the revised explanation framework proposed in Equation (6).

In this strategy, we design a data-driven approach by capturing the mutual information between
two inputs, which circumvents the potential biases of using human-crafted heuristics.
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6 THEORETICAL ANALYSIS

With those alignment strategies and our new explanation framework introduced, next, we want
to look deeper and provide theoretical justifications for the proposed new loss function in
Equation (6). In this section, we first propose a new explanation objective to prevent spurious
explanations based Section 3. Then, we theoretically show that it squares with our loss function
with mild relaxations.

6.1 New Explanation Objective

From previous discussions, it is shown that G’ obtained via Equation (1) cannot be safely used
as explanations. One main drawback of existing GNN explanation methods lies in the inductive
bias that the same outcomes do not guarantee the same causes, leaving existing approaches vul-
nerable towards spurious explanations. An illustration is given in Figure 3. Objective proposed in
Equation (1) optimizes the mutual information between explanation candidate G’ and Y, corre-
sponding to maximize the overlapping between H(G’) and H(Y) in Figure 3(a) or region S; U S, in
Figure 3(b). Here, H denotes information entropy. However, this learning target cannot prevent the
danger of generating spurious explanations. Provided G’ may fall into the region S,, which can-
not faithfully represent graph G. Instead, a more sensible objective should be maximizing region
Sy in Figure 3(b). The intuition behind this is that in the search input space that causes the same
outcome, identified G’ should account for both representative and discriminative parts of origi-
nal G to prevent spurious explanations that produce the same outcomes due to different causes.
Concretely, finding G’ that maximizes S; can be formalized as:

min —1(G. ", 7).
st. G ~P(G,Ms,Mp) R(Mp,My) <c

(16)

6.2 Connecting to Our Method

1(G, G, f/) is intractable, as the latent generation mechanism of G is unknown. In this part, we
expand this objective, connect it to Equation (6), and construct its proxy optimizable form as:

- , PG »)P(G.G)P(G.1)
1G.6"1)= ), ), ) P66 1) 108 g h @ P )

v GG
(G.y) P(G.G) P(G.y)
‘EYZQI;PQQ v 1°g[P<g Py) PGPG) P(G.yIG")
PG y) P(G.G)
- Z;”g ) log pronnes Zngg) g 5GP
y~Y
P(G.y.G")
_gzngyg) el
y~Y G
= 1@, 1) +1(G.6") - ). > P(G.Y) ZPQIQ y) - log P(G'IG. y)
y~Y G
+ 3> Y PGy, G)  log P(G")
G v G

=1(G".V)+1(¢.6) + H(G'|G.Y) - H(G).

Since both H(G’|G,Y) and H(G’) depict entropy of explanation G’ and are closely related to
perturbation budgets, we can neglect these two terms and get a surrogate optimization objective

for maxg (G, G’, Y) as maxg I(Y,.G) + (G, G).
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Fig. 3. lllustration of our proposed new objective.

In maxg I(Y,G') + (G, G), the first term maxg I(Y,G’) is the same as Equation (1). Follow-
ing Reference [19], We relax it as ming He (Y,Y'1G6"), optimizing G’ to preserve original prediction
outputs. The second term, max g I(G’, G), corresponds to maximizing consistency between G’ and
G. Although the graph generation process is latent, with the safe assumption that embedding Eg
extracted by f is representative of G, we can construct a proxy objective maxg I(Eg:, Eg), improv-
ing the consistency in the embedding space. In this work, we optimize this objective by aligning
their representations, either optimizing a simplified distance metric or conducting distribution-
aware alignment.

7 EXPERIMENT

In this section, we conduct a set of experiments to evaluate the benefits of the proposed auxiliary
task in providing instance-level post hoc explanations. Experiments are conducted on five datasets,
and obtained explanations are evaluated with respect to both faithfulness and consistency. Partic-
ularly, we aim to answer the following questions:

—RQ1: Can the proposed framework perform strongly in identifying explanatory sub-
structures for interpreting GNNs?

— RQ2: Is the consistency problem severe in existing GNN explanation methods? Could the
proposed embedding alignment improve GNN explainers over this criterion?

— RQ3: Can our proposed strategies prevent spurious explanations and be more faithful to the
target GNN model?

7.1 Experiment Settings

7.1.1  Datasets. We conduct experiments on five publicly available benchmark datasets for ex-
plainability of GNNs. The key statistics of the datasets are summarized in Table 1.

— BA-Shapes[19]: A node classification dataset with a Barabasi-Albert (BA) graph of
300 nodes as the base structure. Eighty “house” motifs are randomly attached to the base
graph. Nodes in the base graph are labeled as 0 and those in the motifs are labeled based
on positions. Explanations are conducted on those attached nodes, with edges inside the
corresponding motif as ground-truth.

— Tree-grid [19]: A node classification dataset created by attaching 80 grid motifs to a single
8-layer balanced binary tree. Nodes in the base graph are labeled as 0, and those in the motifs
are labeled as 1. Edges inside the same motif are used as ground-truth explanations for nodes
from class 1.

— Infection [83]: A single network initialized with an ER random graph. 5% of nodes are labeled
as infected, and other nodes are labeled based on their shortest distances to those infected
ones. Labels larger than 4 are clipped. Following Reference [83], infected nodes and nodes
with multiple shortest paths are neglected. For each node, its shortest path is used as the
ground-truth explanation.
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Table 1. Statistics of Datasets

BA-shapes = Tree-grid Infection Mutag SST-5
Level Node Node Node Graph Graph
Graphs 1 1 1 4,337 11,855
Avg.Nodes 700 1,231 1,000 30.3 19.8
Avg Edges 4,110 3,410 4,001 61.5 18.8
Classes 4 2 5 2 5

— Mutag [19]: A graph classification dataset. Each graph corresponds to a molecule with nodes
for atoms and edges for chemical bonds. Molecules are labeled with consideration of their
chemical properties, and discriminative chemical groups are identified using prior domain
knowledge. Following PGExplainer [20], chemical groups NH; and NO; are used as ground-
truth explanations.

— Graph-SST5 [25]: A graph classification dataset constructed from text, with labels from sen-
timent analysis. Each node represents a word, and edges denote word dependencies. In this
dataset, there is no ground-truth explanation provided, and heuristic metrics are usually
adopted for evaluation.

7.1.2  Baselines. To evaluate the effectiveness of the proposed framework, we select a group of
representative and state-of-the-art instance-level post hoc GNN explanation methods as baselines.
The details are given as follows:

— GRAD [20]: A gradient-based method, which assigns importance weights to edges by com-
puting gradients of GNN’s prediction w.r.t. the adjacency matrix.

— ATT [20]: It utilizes average attention weights inside self-attention layers to distinguish
important edges.

— GNNExplainer [19]: A perturbation-based method that learns an importance matrix sepa-
rately for every instance.

— PGExplainer [20]: A parameterized explainer that learns a GNN to predict important edges
for each graph and is trained via testing different perturbations;

— Gem [56]: Similar to PGExplainer but from the causal view, based on the estimated individual
causal effect.

— RG-Explainer [54]: A reinforcement learning (RL)-enhanced explainer for GNN, which
constructs G’ by sequentially adding nodes with an RL agent.

Our proposed algorithms in Section 4.2 are implemented and incorporated into two representa-
tive GNN explanation frameworks, i.e., GNNExplainer [19] and PGExplainer [20].

7.1.3  Configurations. Following existing work [20], a three-layer GCN [8] is trained on each
dataset as the target model, with the train/validation/test data split as 8:1:1. The latent dimension
is set to 64 across all datasets, and we use Relu as activation function. For graph classification,
we concatenate the outputs of global max pooling and global mean pooling as the graph repre-
sentation. All explainers are trained using ADAM optimizer with weight decay set to 5e-4. For
GNNExplainer, learning rate is initialized to 0.01 with training epoch being 100. For PGExplainer,
learning rate is initialized to 0.003 and training epoch is set as 30. Hyperparameter A, which con-
trols the weight of Lg;4, is tuned via grid search within the range [0.1, 10] for different datasets
separately. Explanations are tested on all instances.

7.1.4  Evaluation Metrics. To evaluate faithfulness of different methods, following Reference
[25], we adopt two metrics: (1) AUROC score on edge importance and (2) Fidelity of explanations.
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Table 2. Explanation Faithfulness in Terms of AUC on Edges

BA-Shapes Tree-grid  Infection Mutag
GRAD 88.2 61.2 74.0 78.3
ATT 81.5 66.7 - 76.5
Gem 97.1 - - 83.4
RG-Explainer 98.5 92.7 - 87.3
GNNExplainer 93~1j:1.8 86.212.2 92-2i1.1 74.911_9
+ Ahgn_Emb 95.311.4 91.2.2.3 93.041.0 76.341.7
+ Align_Anchor 97.1413 92.411 9 93.1.0.8 78.9411.6
+ Align_MI 974,16 92.2.55 93.241.0 782413
+ Align_Gaus 96.7+1.3 92.541.9 93.140.9 793415
PGExplainer 96.910_7 92.711.5 89.6:‘:0_6 83.711_2
+ Ahgn_Emb 97.240.7 95.840.9 90.540.7 92.841.1
+ Align_Anchor 98.7+0.5 94.711 .0 91.640.6 94.5.0.8
+ Align_MI 99.3,0 5 96.211 3 92.0.0.4 943,14
+ Align_Gaus 99.210.3 96.4.1 1 92.550.8 95.9.1.2

On benchmarks with oracle explanations available, we can compute the AUROC score on identified
edges, as the well-trained target GNN should follow those predefined explanations. On datasets
without ground-truth explanations, we evaluate explanation quality with fidelity measurement fol-
lowing Reference [25]. Concretely, we observe prediction changes by sequentially removing edges
following assigned importance weight, and a faster performance drop represents stronger fidelity.

To evaluate consistency of explanations, we randomly run each method five times and report
average structural Hamming distance (SHD) [84] among obtained explanations. A smaller SHD
score indicates stronger consistency.

7.2 Explanation Faithfulness

To answer RQ1, we compare explanation methods in terms of AUROC score and explanation
fidelity.

7.2.1  AUROC on Edges. In this subsection, AUROC scores of different methods are reported by
comparing assigned edge importance weight with ground-truth explanations. For baseline meth-
ods GRAD, ATT, Gem, and RG-Explainer, their performances reported in their original papers
are presented. GNNExplainer and PGExplainer are re-implemented, upon which four alignment
strategies are instantiated and tested. Each experiment is conducted five times, and we summarize
the average performance in Table 2. A higher AUROC score indicates more accurate explanations.
From the results, we can make the following observations:

— Across all four datasets, with both GNNExplainer or PGExplainer as the base method, incor-
porating embedding alignment can improve the quality of obtained explanations;

— Among proposed alignment strategies, those distribution-aware approaches, particularly the
variant based on Gaussian mixture models, achieve the best performance. In most cases, the
variant utilizing latent Gaussian distribution demonstrates stronger improvements, showing
the best results on three out of four datasets;

— On more complex datasets like Mutag, the benefit of introducing embedding alignment is
more significant, e.g., the performance of PGExplainer improves from 83.7% to 95.9% with
Align_Gaus. This result also indicates that spurious explanations are severer with increased
dataset complexity.
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Fig. 4. Explanation fidelity (best viewed in color).

7.2.2  Explanation Fidelity. In addition to comparing to ground-truth explanations, we evaluate
the obtained explanations in terms of fidelity. Specifically, we sequentially remove edges from the
graph by following importance weight learned by the explanation model and test the classifica-
tion performance. Generally, the removal of really important edges would significantly degrade
the classification performance. Thus, a faster performance drop represents stronger fidelity. We
conduct experiments on Tree-grid and Graph-SST5. Each experiment is conducted three times,
and we report results averaged across all instances on each dataset. PGExplainer and GNNEx-
plainer are used as the backbone method. We plot the curves of prediction accuracy concerning
the number of removed edges in Figure 4. From the figure, we can observe that when the pro-
posed embedding alignment is incorporated, the classification accuracy from edge removal drops
much faster, which shows that the proposed embedding alignment can help to identify more im-
portant edges used by GNN for classification, hence providing better explanations. Furthermore,
distribution-aware alignment strategies like the variant based on Gaussian mixture models demon-
strate stronger fidelity in most cases. Besides, it can be noted that on Tree-grid the fidelity of
mutual-information-based alignment is dependent on the number of edges and achieves better
results with edge number within [8, 15].

From these two experiments, we can observe that embedding alignment can obtain explanations
of better faithfulness and is flexible to be incorporated into various models such as GNNExplainer
and PGExplainer, which answers RQ1.

7.3 Explanation Consistency

One problem of spurious explanation is that, due to the randomness in initialization of the ex-
plainer, the explanation for the same instance given by a GNN explainer could be different for
different runs, which violates the consistency of explanations. To test the severity of this problem
and answer RQ2, we evaluate the proposed framework in terms of explanation consistency. We
adopt GNNExplainer and PGExplainer as baselines. Specifically, SHD distance among explanatory
edges with top-k importance weights identified each time is computed. Then, the results are av-
eraged for all instances in the test set. Each experiment is conducted five times, and the average
consistencies on datasets Tree-grid and Mutag are reported in Tables 3 and 4, respectively. Larger
distances indicate inconsistent explanations. From the table, we can observe that existing method
following Equation (1) suffers from the consistency problem. For example, average SHD distance
on top-six edges is 4.39 for GNNExplainer. Introducing the auxiliary task of aligning embeddings
can significantly improve explainers in terms of this criterion. Of these different alignment strate-
gies, the variant based on Gaussian mixture model shows the strongest performance in most cases.
After incorporating Align Gaus on dataset TreeGrid, SHD distance of top-six edges drops from
4.39 to 2.13 for GNNExplainer and from 1.38 to 0.13 for PGExplainer. After incorporating it on
dataset Mutag, SHD distance of top-six edges drops from 4.78 to 3.85 for GNNExplainer and from
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Table 3. Consistency of Explanation in Terms of Average SHD across Five

Rounds of Random Running on Tree-grid

Top-K Edges

Methods 1 2 3 4 5 6

GNNExplainer 0.86 1.85 2.48 3.14 3.77  4.39
+Align_Emb 0.77 1.23 1.28 0.96 1.81 2.72
+Align_Anchor | 0.72 1.06  0.99  0.53 1.52  2.21
+Align_MI 0.74 1.11 1.08 1.32 1.69  2.27
+Align_Gaus 0.68 1.16 1.13 0.72 1.39  2.13
PGExplainer 0.74 1.23 0.76 0.46 0.78 1.38
+Align_Emb 0.11 0.15 0.13 0.11 0.24 0.19
+Align_Anchor | 0.07 0.12 0.13 0.16 0.21 0.13
+Align_MI 0.28 0.19 0.27 0.15 0.20  0.16
+Align_Gaus 0.05 0.08 0.10 0.12 0.19 0.13

Table 4. Consistency of Explanation in Terms of Average SHD Distance
across Five Rounds of Random Running on Mutag

Top-K Edges

Methods 1 2 3 4 5 6

GNNExplainer 1.12 1.74 2.65 3.40 4.05 4.78
+Align_Emb 1.05 1.61 2.33 3.15 3.77 4.12
+Align_Anchor 1.06 1.59 2.17 3.06 3.54 3.95
+Align_MI 1.11 1.68 2.42 3.23 3.96 4.37
+Align_Gaus 1.03 1.51 2.19 3.02 3.38 3.85
PGExplainer 0.91 1.53 2.10 2.57 3.05 3.42
+Align_Emb 0.55 0.96 1.13 1.31 1.79 2.04
+Align_Anchor 0.51 0.90 1.05 1.27 1.62 1.86
+Align_MI 0.95 1.21 1.73 2.25 2.67 2.23
+Align_Gaus 0.59 1.34 1.13 0.84 1.25 1.15

92:17

3.42 to 1.15 for PGExplainer. These results validate the effectiveness of our proposal in obtaining

consistent explanations.

7.4 Ability in Avoiding Spurious Explanations

Existing graph explanation benchmarks are usually designed to be less ambiguous, containing only
one oracle cause of labels, and identified explanatory substructures are evaluated via comparing
with the ground-truth explanation. However, this result could be misleading, as faithfulness of
explanation in more complex scenarios is left untested. Real-world datasets are usually rich in
spurious patterns, and a trained GNN could contain diverse biases, setting a tighter requirement
on explanation methods. Thus, to evaluate if our framework can alleviate the spurious explanation
issue and answer RQ3, we create a new graph-classification dataset: MixMotif, which enables us
to train a biased GNN model and test whether explanation methods can successfully expose this
bias.

Specifically, inspired by Reference [57], we design three types of base graphs, i.e., Tree, Ladder,
and Wheel, and three types of motifs, i.e., Cycle, House, and Grid. With a mix ratio y, motifs
are preferably attached to base graphs. For example, Cycle is attached to Tree with probability
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Table 5. Performance on MixMotif

y in Training

Classification 0 0.7
y in test 0 0.982 0.765
0.7 0.978 0.994
Explanation | PGExplainer +Align | PGExplainer +Align
AUROC 0.711 0.795 0.748 0.266
on Motif (Higher is better) (Lower is better)

Two GNNs are trained with different y. We check their performance in graph
classification, then compare obtained explanations with the motif.

%y + %, and to others with probability I_Ty So are the cases for House to Ladder and Grid to
Wheel. Labels of obtained graphs are set as type of the motif. When y is set to 0, each motif has
the same probability of being attached to the three base graphs. In other words, there is no bias
on which type of base graph to attach for each type of motif. Thus, we consider the dataset with
y = 0 as clean or bias-free. We would expect GNN trained on data with y = 0 to focus on the
motif structure for motif classification. However, when y becomes larger, the spurious correlation
between base graph and the label would exist, i.e., a GNN might utilize the base graph structure for
motif classification instead of relying on the motif structure. For each setting, the created dataset
contains 3,000 graphs, and train:evaluation:test are splitas 5: 2 : 3.

In this experiment, we set y to 0 and 0.7 separately and train GNN f; and f; 7 for each setting.
Two models are tested in graph classification performance. Then, explanation methods are applied
to and fine-tuned on f;. Following that, these explanation methods are applied to explain f; 7 using
found hyperparameters. Results are summarized in Table 5.

From Table 5, we can observe that (1) f; achieves almost perfect graph classification perfor-
mance during testing. This high accuracy indicates that it captures the genuine pattern, relying
on motifs to make predictions. Looking at explanation results, it is shown that our proposal of-
fers more faithful explanations, achieving higher AUROC on motifs. (2) f; 7 fails to predict well
with y = 0, showing that there are biases in it and it no longer depends solely on the motif struc-
ture for prediction. Although ground-truth explanations are unknown in this case, a successful
explanation should expose this bias. However, PGExplainer would produce similar explanations
as the clean model, still highly in accord with motif structures. Instead, for explanations produced
by embedding alignment, AUROC score would drop from 0.795 to 0.266, exposing the change in
prediction rationales, hence able to expose biases. (3) In summary, our proposal can provide more
faithful explanations for both clean and mixed settings, while PGExplainer would suffer from spu-
rious explanations and fail to faithfully explain GNN’s predictions, especially in the existence of
biases.

7.5 Hyperparameter Sensitivity Analysis

In this part, we vary the hyperparameter A to test the sensitivity of the proposed framework toward
its values. A controls the weight of our proposed embedding alignment task. To keep simplicity,
all other configurations are kept unchanged, and A is varied within the scale [1e — 3, 1e — 2, 1e —
1,1,10, 1e2, 1e3}. PGExplainer is adopted as the base method. Experiments are randomly conducted
three times on datasets Tree-grid and Mutag. Averaged results are visualized in Figure 5. From the
figure, we can make the following observations:

— For all four variants, increasing A has a positive effect at first, and the further increase would
result in a performance drop. For example, on the Tree-grid dataset, best results of variants
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Fig. 5. Sensitivity of PGExplainer towards weight of embedding alignment loss.

based on anchors, latent Gaussian mixture models, and mutual information scores are all
obtained with A around 1. When A is small, the explanation alignment regularization in
Equation (6) will be underweighted. However, a too-large A may underweight the MMI-based
explanation framework, which preserves the predictive power of obtained explanations.

— Among these variants, the strategy based on latent Gaussian mixture models shows the
strongest performance in most cases. For example, for both datasets Tree-grid and Mutag,
this variant achieves the highest AUROC scores on identified explanatory edges. However,
the variant directly using Euclidean distances shows inferior performances in most cases. We
attribute this to their different ability in modeling the distribution and conducting alignment.

8 CONCLUSION

In this work, we study a novel problem of obtaining faithful and consistent explanations for GNNs,
which is largely neglected by existing MMI-based explanation framework. With close analysis on
the inference of GNNs, we propose a simple yet effective approach by aligning internal embeddings.
Theoretical analysis shows that it is more faithful in design, optimizing an objective that encour-
ages high MI between the original graph, GNN output, and identified explanation. Four different
strategies are designed by directly adopting Euclidean distance, using anchors, KL divergence with
Gaussian mixture models, and estimated MI scores. All these algorithms can be incorporated into
existing methods with no effort. Experiments validate their effectiveness in promoting the faith-
fulness and consistency of explanations.

In the future, we will seek more robust explanations. Increased robustness indicates stronger
generality and could provide better class-level interpretation at the same time. Besides, the eval-
uation of explanation methods also needs further studies. Existing benchmarks are usually clear
and unambiguous, failing to simulate complex real-world scenarios.
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