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A B S T R A C T

Most existing fair classifiers rely on sensitive attributes to achieve fairness. However, for many scenarios, we
cannot obtain sensitive attributes due to privacy and legal issues. The lack of sensitive attributes challenges
many existing fair classifiers. Though we lack sensitive attributes, for many applications, there usually exists
features/information of various formats that are relevant to sensitive attributes. For example, a person’s
purchase history can reflect his/her race, which would help for learning fair classifiers on race. However,
the work on exploring relevant features for learning fair models without sensitive attributes is rather limited.
Therefore, in this paper, we study a novel problem of learning fair models without sensitive attributes by
exploring relevant features. We propose a probabilistic generative framework to effectively estimate the
sensitive attribute from the training data with relevant features in various formats and utilize the estimated
sensitive attribute information to learn fair models. Experimental results on real-world datasets show the
effectiveness of our framework in terms of both accuracy and fairness. Our source code is available at:
https://github.com/huaishengzhu/FairWS.
1. Introduction

Over the past few years, machine learning models have shown great
success in a wide spectrum of applications, such as credit scoring [1],
crime prediction [2], and salary prediction [3]. However, there is a
rowing concern about societal bias in training data on demographic
r sensitive attributes such as age, gender and race [4,5]. In particular,
achine learning models trained on biased data can inherit the bias
r even reinforce it. For example, a strong unfairness is found in the
oftware COMPAS, which is used to predict the risk of a criminal to
ecommitting another crime [2]. It is found that COMPAS is more likely
o assign a higher risk score to criminals of color even when they do not
ecommit another crime. Thus, bias issues in a machine learning model
ould cause severe fairness problems, which raises concerns about their
eal-world applications, especially in high-stake scenarios such as credit
coring and crime prediction.
Therefore, extensive studies have been conducted to mitigate the

ias issues of machine learning models [6,7], which can be generally
ategorized into three categories, i.e., pre-processing, in-processing,
nd post-processing. Pre-processing approaches process the training
ata to remove discrimination. For example, they can reduce the bias in
he data by revising the attributes [8], generating non-discriminatory
abeled data [9], and learning fair representations [10]. In-processing
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E-mail address: szw494@psu.edu (S. Wang).

approaches will modify the training process of the state-of-the-art
model. Typically, in-processing methods incorporate fairness constraint
/regularizer into the objective function of the model, which can mit-
igate the bias of the models’ prediction results [7,11]. As for post-
processing algorithms, they directly change the predictions from the
trained model to meet the requirement of fairness [5,12].

Despite their effectiveness, the aforementioned approaches gener-
ally require the protected/sensitive attributes of each data sample to
preprocess the data, regularize the model or post-process the pre-
dictions to achieve fairness. However, for many real-world applica-
tions, obtaining sensitive attributes is difficult due to privacy and legal
issues [13,14]. For example, Consumer Financial Protection Bureau
(CFBP) requires that creditors may not collect information about an
applicant’s race, color, religion and other sensitive information [14].
Another scenario is the dataset collector did not realize the potential
bias issue when the dataset was built. Hence, the protected/sensitive
attributes which would be useful to mitigate the bias issue of machine
learning models are not collected. The lack of sensitive attributes chal-
lenges most existing fairness-aware machine learning models as they
rely on sensitive attributes to achieve fairness. There are only very few
initial works on training fair classifiers without sensitive attributes [14–
16]. For example, Yan et al. [16] introduces a clustering algorithm to
vailable online 27 September 2023
925-2312/© 2023 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.neucom.2023.126841
eceived 20 February 2023; Received in revised form 5 July 2023; Accepted 23 Se
ptember 2023

https://www.elsevier.com/locate/neucom
http://www.elsevier.com/locate/neucom
https://github.com/huaishengzhu/FairWS
mailto:szw494@psu.edu
https://doi.org/10.1016/j.neucom.2023.126841
https://doi.org/10.1016/j.neucom.2023.126841
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.126841&domain=pdf


Neurocomputing 561 (2023) 126841H. Zhu et al.

t

o
i
s

N
w
a
e
a
t
A
h
d
w
t
a
p

f
c
w
(
e
o
b
T
i
a
w
b

c
m
w
a

a
l
F

t
g
s
t
c
m
t

t
a
t
f
a
t
1
l
c
o
e
t
w
p

Fig. 1. Illustration of irrelevant features and relevant features (browsing history) w.r.t
he sensitive attribute (gender) together with their labels (income).

btain pseudo groups to replace the real protected groups. However,
t cannot guarantee that the groups they find are relevant to targeted
ubgroups to be protected. To resolve this problem, Zhao et al. [15]
assume that non-sensitive features that are highly correlated with
sensitive attributes exist in the dataset and treat these non-sensitive
features as pseudo sensitive attributes. Though effective, it is a strong
assumption that these relevant features are highly correlated with
sensitive attributes. Therefore, how to address fairness issues without
knowing the sensitive attribute of each data sample is still an open
problem to be addressed.

Though we lack sensitive attributes, for many real-world applica-
tions, there usually exists features/information of various formats that
are not only relevant to class labels but also have a high dependency on
sensitive attributes. For example, a person’s purchase or dining history
can reflect the person’s cultural background [17]. A user’s linguistic
style of reviews or browsing history can indicate the user’s gender [18,
19]. We call such feature/information relevant to sensitive attributes
as relevant features and the remaining features as irrelevant features.
ote that those irrelevant features might have a very weak dependency
ith the sensitive attributes, but would not be useful to infer sensitive
ttributes. Since those sensitive attributes can be in various formats,
.g., texts and graphs, they cannot be directly used as pseudo-sensitive
ttributes. However, it is possible to estimate sensitive attributes from
hose relevant features, which would be useful to train a fair classifier.
s the example shown in Fig. 1, women prefer to browse dresses,
igh-heeled shoes and makeup; while men tend to search electronic
evices on the website. In this case, we can easily infer users’ gender
hich is a sensitive attribute from their browsing history. In addition
o browsing history, there are other attributes such as occupation, age
nd education-level, which are irrelevant to the user’s gender but can
rovide useful information for the income prediction task.
One way to alleviate bias issues is to only use those irrelevant

eatures for prediction. However, it has several issues: (i) the labels
ollected might already contain bias. Such bias cannot be reduced
ithout using sensitive attribute information to guide model learning;
ii) the relevant features are also useful for the prediction tasks. For
xample, items in browsing history also imply the income (the label)
f the users by their price. Therefore, it is necessary to combine both
rowsing history and irrelevant features to train an accurate classifier.
herefore, though no sensitive attributes are provided for debiasing, it
s promising to utilize relevant features to estimate sensitive attributes
nd adapt them to regularize the classifier for fair predictions. Mean-
hile, the classifier utilizes both relevant and irrelevant features for
etter prediction accuracy. However, the work on this is rather limited.
Therefore, in this paper, we study a novel problem of learning fair

lassifiers without sensitive attributes by estimating sensitive infor-
ation from training data. There are several challenges: (i) how can
e effectively estimate sensitive information given that the sensitive
ttributes have a dependency on both relevant features and labels?
2

g

nd (ii) how to incorporate the estimated sensitive information to
earn fair classifiers? To fill this gap, we propose a novel framework
air Models Without Sensitive Attributes (FairWS). It adopts a proba-
bilistic graphical model to capture the dependency between sensitive
attributes, relevant features, irrelevant features and labels. Then, a
Variational Autoencoder is used to model these relationships in the
probabilistic graphical model, which paves a way to effectively estimate
the sensitive attributes. To ensure the fairness of the given predictions,
FairWS designs a fairness regularization term based on the estimated
sensitive information. The main contributions are as follows:

• We study a novel problem of learning fair classifiers without sensitive
attributes by estimating sensitive information from the training data;

• We propose a new framework FairWS, which is flexible to estimate
sensitive information from relevant features in various formats such
as texts and graphs and utilize the inferred sensitive information to
regularize existing classifiers to achieve fairness;

• We conduct experiments on real-world datasets with relevant features
in various formats to show the effectiveness of FairWS for fair and
high accuracy classification.

2. Related work

In this section, we review related works, including fairness in ma-
chine learning and deep generative models.

2.1. Fairness in machine learning

Recent studies [5,8,11] show that machine learning models can
inherit societal bias from historical data. Thus, learning fair machine
learning models has attracted increasing attention and many efforts
have been taken [14], which can be generally split into three cate-
gories: (i) individual fairness [11,20–22], which trains the model to
provide similar individuals with similar predictions; (ii) group fair-
ness [5,11,23], which requires the model to give equal prediction
to groups with various protected sensitive attributes; (iii) Max-Min
fairness [14,24–26], which aims to maximize the minimum expected
utility across protected groups. We focus on group fairness in this work.

Based on the stage of achieving fairness, existing fair machine
learning methods can be split into three categories, i.e, pre-processing,
in-processing, and post-processing [2]. Pre-processing methods [8–10]
reduce the historical discrimination in the dataset by modifying the
training data. For example, Feldman et al. [8] introduce an approach
o revise the attributes of training data and Xu et al. [9] propose to
enerate non-discriminatory data. Locatello et al. [10] obtain fair repre-
entation for unbiased prediction. In-processing methods [7,11] revise
he training of fair machine learning models by designing fairness
onstraints or objective functions to train fair models. Post-processing
ethods [5,12] modify the prediction results from the training models
o achieve fairness.
Despite their effectiveness in mitigating bias issues, the aforemen-

ioned methods require sensitive attributes of each data sample to
chieve fairness, while for many scenarios, obtaining sensitive at-
ributes is difficult due to various issues, which challenge existing
air models. Specifically, developing a fair model without sensitive
ttributes is crucial in real-world scenarios where obtaining sensi-
ive attributes is important due to privacy and legal concerns [13,
4]. Collecting sensitive attributes can raise ethical issues and vio-
ate privacy regulations in many domains, including health care [27],
redit scoring [28] and criminal justice [29]. There is limited work
n learning fair models without sensitive attributes [14–16]. Lahoti
t al. [14] propose an optimization approach that leverages the no-
ion of computationally-identifiable errors and improves the utility for
orst-off protected groups. Yan et al. [16] conducts clustering to obtain
seudo groups to substitute the real protected groups. However, the

roups found by it may be irrelevant to the sensitive attributes we want
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the model to be fair with. For example, we might aim to make the
model fair with Race but clustering gives pseudo groups for Gender.
Thus, another trend of work assumes some prior knowledge about
sensitive information so that their model can be fair with targeted
sensitive attributes. For instance, Zhao et al. [15] assume that there
are some features strongly correlated with the sensitive attributes and
directly utilize these features as pseudo sensitive attributes. However,
such strongly correlated features that can be treated as pseudo-sensitive
attributes are not always available in real-world applications. More-
over, Grari et al. [30] introduce a generative model to learn a fair
odel (SRCVAE) without the need for sensitive attributes, which is the
ost similar work to ours. The proposed approach, SRCVAE, aims to
xtract latent sensitive information from attributes that are influenced
y sensitive attributes. However, it is important to note that attributes
esulting from sensitive attributes may not exclusively contain sensitive
nformation, as they can also incorporate non-sensitive information.
herefore, one limitation of their approach is the inability to effectively
isentangle sensitive information from non-sensitive information in
eatures that are influenced by sensitive attributes.
Our proposed FairWS is inherently different from the aforemen-

ioned approaches: (i) Instead of directly using the relevant features to
btain pseudogroups, we estimate sensitive information from relevant
eatures to train fair and accurate classifiers. And little prior knowledge
s required in FairWS to infer the sensitive information; and (ii) FairWS
s flexible to learn sensitive information from relevant features of vari-
us formats, like texts and graphs. (iii) FairWS introduces a loss based
n mutual information to enable the disentanglement of sensitive infor-
ation from non-sensitive information in features that are influenced
y sensitive attributes so that it can effectively extract relevant sensitive
nformation from relevant features. The inferred sensitive information
an be utilized to regularize existing fair models. Also, FairWS can infer
ensitive information from noisy relevant features in our experiments .

.2. Deep generative model

Generative models aim to capture the underlying data distribu-
ion. Due to their superior performance, deep generative models like
AE [31] and GAN [32] have attracted increasing attention.
u et al. [33] provides a unified view of various deep generative
odels. Furthermore, there are many efforts taken to generate real
ata based on GANs and VAEs [34–38]. For example, GANs are utilized
o generate realistic images [38]. Controlled generation of text based
n VAE has been explored [34,37]. Recently, there are some efforts of
sing VAEs to resolve the fairness problem [39–42]. Firstly, Variational
air Autoencoder [40] is proposed to build a probabilistic graphical
odel to model data with sensitive attributes. Then, a fair latent
epresentation is obtained by removing sensitive information. Creager
et al. [39] propose to learn the latent representation of VAEs by
disentangling it into two parts based on whether they are relevant
to sensitive attributes. And representations irrelevant to sensitive at-
tributes can be used as fair representation to learn fair models. Amini
et al. [41] apply fair VAEs to learn latent fair representations in facial
detection systems. However, works about exploring the ability of VAEs
to mitigate fairness problems without sensitive attributes are rather
limited. Moreover, the proposed FairWS is a general framework to
infer sensitive information from dependency on relevant features with
different formats and sensitive attributes.

3. Problem definition and notations

For many real-world applications, sensitive attributes of data sam-
ples are unavailable due to various issues such as difficulty in data
collection, security or privacy issues. The lack of sensitive attributes
challenges existing fairness-aware machine learning models that re-
quire sensitive attributes of data samples to achieve fairness. Though
sensitive attributes for many real-world applications are unavailable,
3

we observe that there is usually information highly relevant to sensitive
attributes. For example, a person’s purchase or dining history can
reflect the person’s gender or cultural background, which would help
learn fair classifiers on gender or cultural background. We call such
information relevant features and the remaining features that is not
related to the sensitive attribute to be protected as irrelevant features.
Note that the relevant features can be in various formats such as
sequences (purchase history) and texts (reviews). Thus, the relevant
features cannot be directly utilized as pseudo-sensitive attributes to
regularize the model [15]. In this paper, we aim to utilize the relevant
feature to estimate sensitive attributes and train a fair and accurate
classifier using both relevant and irrelevant features with estimated
sensitive attributes.

Specifically, we use  = {𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖}

𝑁
𝑖=1 to denote the training set with

𝑁 data samples, where (𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖) is the 𝑖th sample. 𝐱

𝑧
𝑖 is a feature vector

that is not relevant or is very weakly related to the protected sensitive
attribute 𝐒 such as gender, 𝐱𝑟𝑖 is relevant feature vector that are related
with 𝐒, and 𝐲𝑖 is the class label. 𝐱𝑟𝑖 can be in various formats such as
purchase history and review texts. In this paper, we focus on fairness
concerning a single sensitive attribute 𝐒. We leave the extension to
multi-sensitive attributes as future work. Note that we do not know
the values of the sensitive attribute of each data sample. The problem
is formally defined as:

Given the training set 𝑙 = {𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖}

𝑁
𝑖=1 with 𝐱𝑟𝑖 being relevant feature

w.r.t protected sensitive attribute 𝐒 and 𝐱𝑧𝑖 being irrelevant features, we aim
to learn a fair and accurate classifier 𝑓 (𝐱𝑧, 𝐱𝑟) → 𝐲̂, where 𝑓 denotes the
function to learn and 𝐲̂ represents the prediction from the classifier. And the
set of predictions on test set should simultaneously maintain high accuracy
and meet the fairness criteria w.r.t to the sensitive attribute 𝐒.

4. Proposed framework

In this section, we introduce the details of the proposed FairWS
for learning fair models without sensitive attributes. Without sensitive
attributes to achieve fairness, our basic idea is to estimate sensitive
attributes by exploring relevant features and adopting the estimated
sensitive attributes for learning fair classifiers. However, how to effec-
tively estimate sensitive information given that the sensitive attributes
have a dependency on both relevant features and labels remains a
question. To fully capture the dependency for accurately estimating
sensitive attributes, we assume that each observed data (𝐱𝑧𝑖 , 𝐱

𝑟
𝑖 , 𝐲𝑖) is

sampled from a probabilistic generative process which involves the
latent sensitive information 𝐚𝑖 and latent data representation 𝐳𝑖. Thus,
FairWS models the probabilistic generative process to estimate sensitive
information and utilizes the estimated sensitive information to learn
fair classifiers. Another important issue is about how to incorporate the
estimated sensitive information to learn fair classifiers. To resolve this
problem, we introduce a regularization term to train a fair classifier
with the generated latent representation of sensitive attributes. We will
first introduce the probabilistic generative model for sensitive attribute
estimation followed by fair classifier learning.

4.1. Sensitive attributes estimation

Though the relevant features 𝐱𝑟𝑖 are related to the sensitive attribute
𝐬𝑖 of the 𝑖th data sample, they cannot be simply treated as pseudo-
sensitive attributes as 𝐱𝑟𝑖 could be in various formats and might be noisy.
Meanwhile, both relevant features and labels have a dependency on
sensitive attributes, which can be used to estimate the latent sensitive
attributes for fair classifiers. To handle this, we use a probabilistic
graphical model that models the dependency relations to obtain la-
tent sensitive attributes. The advantages are: (i) probabilistic graphical
model can capture the complex relationships among sensitive attribute
𝐬𝑖, label 𝐲𝑖, relevant feature 𝐱𝑟𝑖 and irrelevant feature 𝐱

𝑧
𝑖 , which can help

better estimate the sensitive attribute information; and (ii) estimated
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Fig. 2. Probabilistic Graphical Model of FairWS.

ensitive attribute information can be easily adopted to learn fair
lassifiers.
Specifically, we assume that each data sample (𝐱𝑧𝑖 , 𝐱

𝑟
𝑖 , 𝐲𝑖) is sampled

rom a generative process as shown in Fig. 2, where 𝐳𝑖 is the intrinsic
atent representation irrelevant to sensitive attributes 𝐬𝑖, and 𝐚𝑖 is the
latent representation of the sensitive attribute 𝐬𝑖. 𝐱𝑟𝑖 is dependent on sen-
sitive attribute’s latent representation 𝐚𝑖 as 𝐱𝑟𝑖 is relevant with 𝐬𝑖. As the
collected labels generally contain a bias towards the sensitive attribute,
we assume that 𝐲𝑖 is also dependent on 𝐚𝑖. Since 𝐳𝑖 contains the intrinsic
characteristic of data sample 𝑖, the class label 𝐲𝑖 is dependent on 𝐳𝑖. 𝐱𝑟𝑖
is also dependent on the 𝐳𝑖 because 𝐱𝑟𝑖 also contains some information
that is irrelevant to sensitive attributes. It is worth noting that 𝐱𝑧𝑖 is
independent with 𝐬𝑖 or has a very weak (neglectable) relationship with
𝐬𝑖 because those features that are highly relevant to 𝐬𝑖 are already
included in 𝐱𝑟𝑖 . Hence, there is no dependency between 𝐱𝑧𝑖 and 𝐚𝑖. We
disentangle 𝐚𝑖 and 𝐳𝑖 so that 𝐚𝑖 and 𝐳𝑖 can extract sensitive attribute
information and non-sensitive information from 𝐱𝑟𝑖 , respectively.

According to the probabilistic graphical model in Fig. 2, 𝐱𝑧𝑖 is inde-
pendent to the latent representation of sensitive attributes 𝐚𝑖, and 𝐱𝑟𝑖 is
highly correlated with 𝐳𝑖. Then, the joint distribution 𝑝(𝐚𝑖, 𝐲𝑖, 𝐳𝑖, 𝐱𝑟𝑖 , 𝐱

𝑧
𝑖 )

can be written as:
𝑝(𝐚𝑖, 𝐲𝑖, 𝐳𝑖, 𝐱𝑟𝑖 , 𝐱

𝑧
𝑖 )

= 𝑝(𝐚𝑖)𝑝(𝐳𝑖)𝑝(𝐱𝑟𝑖 ∣ 𝐚𝑖, 𝐳𝑖)𝑝(𝐱
𝑧
𝑖 ∣ 𝐳𝑖)𝑝(𝐲𝑖 ∣ 𝐳𝑖, 𝐚𝑖),

(1)

where 𝑝(𝐚𝑖) and 𝑝(𝐳𝑖) are the prior distributions, which are usually
implemented as standard Gaussian distributions. Our goal is to max-
imize the likelihood of the joint distribution of observed variables,
i.e., 𝑝𝜃(𝐱𝑟𝑖 , 𝐱

𝑧
𝑖 , 𝐲𝑖). However, directly maximizing it is difficult as it

contains latent variables 𝐳𝑖 and 𝐚𝑖. Following VAE [31], we maximize
the variational lower bound of this likelihood as:
log 𝑝𝜃(𝐱𝑟𝑖 , 𝐱

𝑧
𝑖 , 𝐲𝑖) ≥ E𝑞𝜙(𝐚𝑖 ,𝐳𝑖 ∣𝐱𝑧𝑖 ,𝐱

𝑟
𝑖 ,𝐲𝑖)

[𝑝𝜃(𝐱𝑟𝑖 , 𝐱
𝑧
𝑖 , 𝐲𝑖 ∣ 𝐳𝑖, 𝐚𝑖)]

− 𝐷𝐾𝐿(𝑞𝜙(𝐚𝑖, 𝐳𝑖 ∣ 𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖) ∥ 𝑝(𝐳𝑖, 𝐚𝑖)),

(2)

where E denotes the expectation, 𝑞𝜙(𝐚𝑖, 𝐳𝑖 ∣ 𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖) is an auxiliary

distribution to approximate 𝑝𝜃(𝐚𝑖, 𝐳𝑖 ∣ 𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖), and 𝐷𝐾𝐿(⋅, ⋅) denotes

he Kullback–Leibler divergence. 𝜙 and 𝜃 are learnable parameters for
neural networks of 𝑝 and 𝑞, respectively.

As our goal is to disentangle 𝐚𝑖 and 𝐳𝑖, for 𝑞𝜙(𝐚𝑖, 𝐳𝑖 ∣ 𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖), we

also assume that 𝐚𝑖 and 𝐳𝑖 are independent given 𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖, i.e.,

𝑞𝜙(𝐚𝑖, 𝐳𝑖 ∣ 𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖) = 𝑞𝜙(𝐚𝑖 ∣ 𝐱𝑧𝑖 , 𝐲𝑖)𝑞𝜙(𝐳𝑖 ∣ 𝐱

𝑧
𝑖 , 𝐱

𝑟
𝑖 , 𝐲𝑖), (3)

where 𝑞𝜙(𝐚𝑖 ∣ 𝐱𝑧𝑖 , 𝐲𝑖) and 𝑞𝜙(𝐳𝑖 ∣ 𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖) can be treated as the encoders

o learn the latent representation 𝐚𝑖 and 𝐳𝑖 from (𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖).

Based on Fig. 2, 𝑝𝜃(𝐱𝑟𝑖 , 𝐱
𝑧
𝑖 , 𝐲𝑖|𝐳𝑖, 𝐚𝑖) can be further written as:

𝜃(𝐱𝑟𝑖 , 𝐱
𝑧
𝑖 , 𝐲𝑖|𝐳𝑖, 𝐚𝑖) = 𝑝𝜃(𝐱𝑟𝑖 |𝐚𝑖, 𝐳𝑖)𝑝𝜃(𝐱

𝑧
𝑖 |𝐳𝑖)𝑝𝜃(𝐲𝑖|𝐳𝑖, 𝐚𝑖)

here 𝑝𝜃(𝐱𝑟𝑖 ∣ 𝐚𝑖, 𝐳𝑖), 𝑝𝜃(𝐲𝑖 ∣ 𝐳𝑖, 𝐚𝑖) and 𝑝𝜃(𝐱𝑧𝑖 ∣ 𝐳𝑖) are the decoders to
enerate 𝐱𝑟𝑖 𝐲𝑖 and 𝐱𝑧𝑖 , respectively. The details of encoders and decoders
ill be discussed in Section 4.3. Assume that the prior distribution
(𝐳𝑖, 𝐚𝑖) can be factorized as 𝑝(𝐳𝑖)𝑝(𝐚𝑖) with both 𝑝(𝐳𝑖) and 𝑝(𝐚𝑖) follow
he normal distribution, then we can rewrite the KL divergence as:

𝐷𝐾𝐿(𝑞𝜙(𝐳𝑖, 𝐚𝑖 ∣ 𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖) ∥ 𝑝(𝐳𝑖, 𝐚𝑖))

𝐷𝐾𝐿(𝑞𝜙(𝐳𝑖 ∣ 𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖)‖𝑝(𝐳𝑖)) +𝐷𝐾𝐿(𝑞𝜙(𝐚𝑖 ∣ 𝐱𝑟𝑖 , 𝐲𝑖)‖𝑝(𝐚𝑖)).

(4)

here 𝐷𝐾𝐿(𝑞𝜙(𝐳𝑖 ∣ 𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖) ∥ 𝑝(𝐳𝑖)) and 𝐷𝐾𝐿(𝑞𝜙(𝐚𝑖 ∣ 𝐱𝑟𝑖 , 𝐲𝑖) ∥ 𝑝(𝐚𝑖)) are

wo KL divergence terms to regularize 𝑞 (𝐳 |𝐱𝑧, 𝐱𝑟, 𝐲 ) and 𝑞 (𝐚 |𝐱𝑟, 𝐲 ),
4

𝜙 𝑖 𝑖 𝑖 𝑖 𝜙 𝑖 𝑖 𝑖
espectively. To provide flexibility of our model, following [43], we
dd a weight hyperparameter 𝛽 to control the influence of 𝐷𝐾𝐿(𝑞𝜙(𝐚𝑖 ∣
𝑟
𝑖 , 𝐲𝑖) ∥ 𝑝(𝐚𝑖)). Then the variational lower bound can be written as:
𝑖
𝐸𝐿𝐵𝑂 = E𝑞𝜙(𝐚𝑖 ,𝐳𝑖 ∣𝐱𝑧𝑖 ,𝐱

𝑟
𝑖 ,𝐲𝑖)

[𝑝𝜃(𝐱𝑟𝑖 , 𝐱
𝑧
𝑖 , 𝐲𝑖 ∣ 𝐳𝑖, 𝐚𝑖)]

− 𝐷𝐾𝐿(𝑞𝜙(𝐳𝑖 ∣ 𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖) ∥ 𝑝(𝐳𝑖))

− 𝛽𝐷𝐾𝐿(𝑞𝜙(𝐚𝑖 ∣ 𝐱𝑟𝑖 , 𝐲𝑖) ∥ 𝑝(𝐚𝑖)).

(5)

Since both 𝐳𝑖 and 𝐚𝑖 is dependent on the relevant features 𝐱𝑟𝑖 , to
ake sure that 𝐳𝑖 and 𝐚𝑖 are disentangled, i.e., 𝐳𝑖 captures the class label
elated information from 𝐱𝑟𝑖 while 𝐳𝑖 captures sensitive attribute related
information, we add a regularizer to minimize the mutual information
between 𝐳𝑖 and 𝐚𝑖, i.e.:

min
𝜃,𝜙

𝐼(𝐀;𝐙) = 𝐻(𝐀) −𝐻(𝐀 ∣ 𝐙) (6)

where 𝐀 is a matrix with the 𝑖th row as 𝐚𝑖 and 𝐙 is a matrix with the 𝑖th
row as 𝐳𝑖. 𝐻(⋅) denotes the entropy function and 𝐼(𝐀,𝐙) measures de-
endencies between 𝐀 and 𝐙. However, the mutual information 𝐼(𝐀;𝐙)
is difficult to calculate directly. We follow [44] to efficiently estimate
the mutual information. The basic idea is to train a neural network
𝐷𝑖𝑠 to distinguish between sample pairs from the joint distribution
𝑝(𝐚𝑖, 𝐳𝑖) and those from 𝑝(𝐚𝑖)𝑝(𝐳𝑖). Note that we do not need to do prior
assumption on 𝑝(𝐚𝑖, 𝐳𝑖) and the mutual information can be approximated
s:
(𝐀;𝐙) ≈ E𝑝(𝐚𝑖 ,𝐳𝑖)[𝐷𝑖𝑠(𝐚𝑖, 𝐳𝑖)] − logE𝑝(𝐚𝑖)𝑝(𝐳𝑖)[𝑒

𝐷𝑖𝑠(𝐚𝑖 ,𝐳̃𝑖)]

= 𝑀𝐼 ,
(7)

where 𝐷𝑖𝑠(𝐚𝑖, 𝐳𝑖) is a binary discriminator judging if (𝐚𝑖, 𝐳𝑖) is from
(𝐚𝑖, 𝐳𝑖) or 𝑝(𝐚𝑖)𝑝(𝐳𝑖). In practice, in each batch to train 𝐷𝑖𝑠 with batch
ize 𝑀 , we sample a set of {(𝐚𝑖, 𝐳𝑖)}𝑀𝑖=1 from the combination of rep-
esentation matrices 𝐀 and 𝐙 to estimate the first term of Eq. (7).
hen, we randomly shuffle the rows of 𝑍 to obtain the corrupted
epresentation matrix 𝐙̃, {(𝐚𝑖, 𝐳̃𝑖)}𝑀𝑖=1 is sampled from the combination of
epresentation matrices 𝐀 and 𝐙̃ for estimating the first term of Eq. (7).
With the ELBO in Eq. (5) and the mutual information regular-

zer in Eq. (7), the final objective function of our sensitive attributes
stimation module is:

in
𝜃,𝜙

1
𝑁

𝑁
∑

𝑖=1
−𝑖

𝐸𝐿𝐵𝑂 + 𝑀𝐼 , (8)

Once the model is trained, we can estimate each data sample 𝑖’s latent
representation of sensitive attributes by sampling from 𝑞𝜙(𝐚𝑖 ∣ 𝐱𝑧𝑖 , 𝐲𝑖).
An illustration of the sensitive attribute estimation framework is shown
in the right part of Fig. 3, where each term can be implemented as a
neural network. To facilitate efficient large-scale training, we adopt the
reparameterization trick [31].

4.2. Fairness regularization

As shown in Fig. 3, we can obtain 𝑖th data sample’s latent represen-
tation of sensitive attributes, 𝐚𝑖, from the sensitive attributes estimation
module. Then, we can use sampled 𝐚𝑖 to regularize a base classifier to
learn a fair classifier. One way to train a fair classifier is to only use 𝐱𝑧𝑖 .
However, since both 𝐱𝑟𝑖 and 𝐱𝑧𝑖 contain useful information for predicting
the label of the 𝑖th data sample, using 𝐱𝑧𝑖 only will lose much useful
information, resulting in poor classification performance. Thus, we use
both 𝐱𝑟𝑖 and 𝐱𝑧𝑖 to predict the label distribution of the 𝑖th data sample
as:

𝐲̂𝑖 = 𝑔𝑤1
(𝐱𝑧𝑖 ⊕ 𝑓𝑤2

(𝐱𝑟𝑖 )) (9)

where ⊕ is the concatenation operator of two vectors and 𝑔𝑤1
(⋅) is

multi-layered perceptrons (MLPs) to predict the label. As 𝐱𝑟𝑖 can be in
various formats such as texts and graphs, 𝑓𝑤2

(⋅) is utilized to transform
𝐱𝑟𝑖 to a vector. For example, 𝑓𝑤2

(⋅) is the Convolutional Neural Network
or text reviews and Graph Convolutional Network for graph data. 𝑤1
and 𝑤 are both trainable parameters of neural networks. Note that
2
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Fig. 3. An illustration of the proposed FairWS.
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𝑤2
(𝐱𝑟𝑖 ) = 𝐱𝑟𝑖 if 𝐱𝑟𝑖 is a relevant feature vector of the sample 𝑖. The

ross-entropy loss for training the classifier 𝑔𝑤1
can be written as:

min
1 ,𝑤2

𝑐𝑙𝑓 = −
𝑁
∑

𝑖=1

𝑚
∑

𝑗=1
𝐲𝑖𝑗 log 𝐲̂𝑖𝑗 , (10)

here 𝐲𝑖 is one-hot encoding of the groundtruth label of 𝐱𝑖 and 𝑚 is
he number of class. 𝐲̂𝑖𝑗 denotes the predicted probability of 𝑖-the data
ampled being class 𝑗.
Once well trained, the above classifier can give accurate predictions.

owever, 𝐱𝑟𝑖 contains sensitive attribute information and the provided
abels can also be biased, resulting in discriminatory predictions. To
ive fair predictions, we can utilize the estimated sensitive attributes to
egularize the model. One way to make the prediction fair is to reduce
he correlation between the prediction and the sensitive attribute 𝐬𝑖.
ince 𝐚𝑖 is the latent representation of 𝐬𝑖, the regularization form can
e the correlation between predicted label vectors and latent sensitive
ttributes vectors as:

reg =
𝑑
∑

𝑘=1

𝑚
∑

𝑗=1
|

𝑁
∑

𝑖=1
(𝐲̂𝑖𝑗 − 𝐲̄𝑗 )(𝐚𝑖𝑘 − 𝐚̄𝑘)|, (11)

here 𝑁 is the number of samples and 𝑚 is the number of classes. 𝑑
is the dimension of 𝐚𝑖 and 𝐚𝑖𝑘 is the 𝑘th element of 𝐚𝑖. 𝐚̄𝑘 = 1

𝑁
∑𝑁

𝑖=1 𝐚𝑖𝑘.
̂ 𝑖𝑗 denotes the predicted probability of class 𝑗 for sample 𝑖. And 𝐲̄′𝑗 =
1
𝑁

∑𝑁
𝑖=1 𝐲𝑖𝑗 .
The final objective function of FairWS is given as:

min
𝑤1 ,𝑤2

𝑐𝑙𝑓 + 𝜆𝑟𝑒𝑔 , (12)

where 𝜆 is a scalar controlling the trade-off between the accuracy and
fairness, and 𝑤1 and 𝑤2 are learnable parameters for transformation
function and classifier in Eq. (9).

4.3. Deep learning framework of FairWS

With the generative model for sensitive attributes given above,
we will introduce the details of modeling encoders 𝑞𝜙(𝐳𝑖|𝐱𝑧𝑖 , 𝐱

𝑟
𝑖 , 𝐲𝑖) and

𝑞𝜙(𝐚𝑖|𝐱𝑟𝑖 , 𝐲𝑖) together with decoders 𝑝𝜃(𝐱
𝑟
𝑖 |𝐚𝑖, 𝐳𝑖), 𝑝𝜃(𝐱

𝑧
𝑖 |𝐳𝑖) and 𝑝𝜃(𝐲𝑖|𝐳𝑖, 𝐚𝑖)

separately. In real-world applications, decoders and encoders can be
very complex distributions for images and text data. In this paper, we
adopt the reparameterization trick [31] and neural networks to model
encoders and decoders, which can approximate complex distributions
under mild conditions.

Firstly, we assume the encoders 𝑞𝜙(𝐳𝑖|𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖) and 𝑞𝜙(𝐚𝑖|𝐱𝑟𝑖 , 𝐲𝑖) both

follow the Gaussian Distribution where mean and variance are the
output of the neural network. It can be defined as:

𝑞𝜙(𝐳𝑖|𝐱𝑧𝑖 , 𝐱
𝑟
𝑖 , 𝐲𝑖) = 𝑁(𝐳𝑖;𝜇𝐳𝑖 , 𝜎

2
𝐳𝑖
𝐈) 𝜇𝐳𝑖 , 𝜎𝐳𝑖 = 𝐸𝑧(𝐱𝑧𝑖 , 𝐱

𝑟
𝑖 , 𝐲𝑖),

𝑟 2 𝑟 (13)
5

𝑞𝜙(𝐚𝑖|𝐱𝑖 , 𝐲𝑖) = 𝑁(𝐚𝑖;𝜇𝐚𝑖 , 𝜎𝐚𝑖 𝐈) 𝜇𝐚𝑖 , 𝜎𝐚𝑖 = 𝐸𝑎(𝐱𝑖 , 𝐲𝑖),
Algorithm 1 Training Algorithm of FairWS.

Input:  = {𝑥𝑧𝑖 , 𝑥
𝑟
𝑖 , 𝑦𝑖}

𝑁
𝑖=1, 𝜆 and 𝛽.

utput: a fair classifier with 𝑓𝑤1
and 𝑔𝑤1

1: Initialize parameters of 𝐸𝑧, 𝐸𝑎, 𝐷𝑥𝑟 , 𝐷𝑥𝑧 and 𝐷𝑦 .
2: repeat
3: Obtain labeled training samples {𝑥𝑧𝑖 , 𝑥

𝑟
𝑖 , 𝑦𝑖}

𝑁
𝑖=1 from 

4: Optimized the encoder and decoder parameters 𝐸𝑧, 𝐸𝑎, 𝐷𝑥𝑟 , 𝐷𝑥𝑧

by Eq. (8).
5: until convergence
6: Infer the latent sensitive attributes 𝐴 = {𝑎𝑖}𝑁𝑖=1 based on encoders
and decoders

7: Initialize parameters of 𝑓𝑤1
and 𝑔𝑤1

8: repeat
9: Get all labeled samples {𝑥𝑧𝑖 , 𝑥

𝑟
𝑖 , 𝑦𝑖}

𝑁
𝑖=1 from  and inferred

sensitive latent representation 𝐴
0: Optimize 𝑓𝑤1

and 𝑔𝑤1
by the loss from Eq. (12)

1: until convergence
2: return 𝑓𝑤1

and 𝑔𝑤1

where 𝐈 is the identity matrix, 𝐸𝑧(⋅) and 𝐸𝑎(⋅) are the neural networks.
𝐸𝑧(⋅) takes 𝐱𝑧𝑖 , 𝐱

𝑟
𝑖 and 𝐲𝑖 as input and outputs the mean 𝜇𝐳𝑖 and standard

eviation 𝜎𝐳𝑖 . Similarly, 𝐸𝑎(∗) takes 𝐱𝑟𝑖 and 𝐲𝑖 as input and outputs
ean 𝜇𝐚𝑖 and variance 𝜎𝐚𝑖 . 𝐸𝑧(∗) and 𝐸𝑎(∗) can be neural networks
n the domain we are working on because 𝐱𝑟𝑖 may be graph structures
and text reviews. For example, for graph datasets, graph convolutional
neural networks could be applied. For text datasets, deep convolutional
neural networks are good candidates. Then 𝐳𝑖 and 𝐚𝑖 can be sampled as
𝑖 = 𝜇𝐳𝑖 + 𝜎𝐳𝑖 ⊙ 𝜖𝑧𝑖 and 𝐚𝑖 = 𝜇𝐚𝑖 + 𝜎𝐚𝑖 ⊙ 𝜖𝑎𝑖 , respectively, where 𝜖𝑧𝑖 and
𝜖𝑎𝑖 are random noises sampled from normal distributions.

Similarly, decoders are assumed as Gaussian Distribution with mean
and variance as the output of neural networks:

𝑝𝜃(𝐱𝑟𝑖 |𝐚𝑖, 𝐳𝑖) = 𝑁(𝐱𝑟𝑖 ;𝜇𝐱𝑟𝑖 , 𝜎
2
𝐱𝑟𝑖
𝐈) 𝜇𝐱𝑟𝑖 , 𝜎𝐱𝑟𝑖 = 𝐷𝑥𝑟 (𝐚𝑖, 𝐳𝑖),

𝑝𝜃(𝐱𝑧𝑖 |𝐳𝑖) = 𝑁(𝐱𝑧𝑖 ;𝜇𝐱𝑧𝑖 , 𝜎
2
𝐱𝑧𝑖
𝐈) 𝜇𝐱𝑧𝑖 , 𝜎𝐱𝑧𝑖 = 𝐷𝑥𝑧 (𝐳𝑖),

𝑝𝜃(𝐲𝑖|𝐳𝑖, 𝐚𝑖) = 𝑁(𝐲𝑖;𝜇𝐲𝑖 , 𝜎
2
𝐲𝑖
𝐈) 𝜇𝐲𝑖 , 𝜎𝐲𝑖 = 𝐷𝑦(𝐚𝑖, 𝐳𝑖),

(14)

where 𝐷𝑥𝑟 (⋅), 𝐷𝑥𝑧 (⋅), 𝐷𝑦(⋅) are neural networks. 𝐷𝑥𝑟 (⋅) the takes 𝐚𝑖 and
𝐳𝑖 as input and outputs 𝜇𝐱𝑟𝑖 and 𝜎2𝐱𝑟𝑖

. Also, the input of 𝐷𝐱𝑧 (∗) is 𝐳𝑖 and
output is 𝜇𝐱𝑧𝑖 , 𝜎𝐱𝑧𝑖 . Then, the input of 𝐷𝑦(∗) is 𝐚𝑖, 𝐳𝑖 and output is 𝜇𝑦𝑖 , 𝜎

2
𝑦𝑖
.

And our deep learning framework is trained on Eq. (8) with mutual
information loss. The overall architecture is shown in Fig. 3.

4.4. An training algorithm of FairWS

In this subsection, we will introduce the training algorithm for
FairWS. The overall process is shown in Algorithm 12. The first step

of our algorithm is to generate sensitive attributes based on Graphical
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Probability Model in Section 4.1, which models dependency relation-
ships between sensitive attributes, relevant features, irrelevant features
and labels. Specifically, we train the encoders and decoders on labeled
nodes from line 3 to line 4 on the loss Eq. (8). The implementation
details are introduced in Section 4.3. Then, the latent representation
of the sensitive attributes 𝐀 is generated via line 6. Secondly, our
generate latent sensitive attributes will be used to train fair classifiers
by regularizing on 𝐀 also with label loss as shown in Eq. (12). Finally,
the output of this algorithm is a trained classifier and it will be used to
predict labels on the testing set with unlabeled nodes.

5. Experiments

In this section, we conduct extensive experiments to evaluate the
effectiveness of the proposed FairWS. Specifically, we aim to answer
the following research questions:

• (RQ1) How does the proposed FairWS perform in terms of both
classification accuracy and fairness?

• (RQ2) Can the proposed framework give accurate estimated sensitive
attributes for achieving fairness?

• (RQ3) How does the quality of sensitive attributes affect the perfor-
mance of the proposed FairWS?

5.1. Datasets

We conduct experiments on three publicly available benchmark
datasets, including Adult [3], Credit Defaulter [1] and Animate.1

• Adult: This dataset contains records of personal yearly income. The
task is to predict whether the yearly salary is over or under $50,000
and the sensitive attribute is gender. It has 12 features. We use age,
relation, and marital status as relevant features 𝐗𝑟 and the rest as
irrelevant features.
Credit Defaulter: In this dataset, each data sample is a person which
has 14 features about their personal information. In addition, two
samples are connected based on the similarity of their purchase and
payment records, which forms a graph. The sensitive attribute of this
dataset is age and the task is to classify whether a user is married.
Each person’s connectivity is treated as relevant features 𝐗𝑟 because
it is relevant to age, i.e., two persons of similar age are more likely
to be connected and have similar connectivity or common friends.
Animate: This dataset includes records of users’ reviews and their
profiles. The task is to predict whether the average ranking of users’
favorite movies is in the top 400 and the sensitive attribute is whether
the average scores the users give to their favorite movies are above
8. Note that the ranking of movies is evaluated from the website
Animate based on their popularity and rating scores. We treat the
text review from users as relevant features 𝐗𝑟 and their attributes
as irrelevant features. Text reviews are treated as relevant features
because reviews can (i) reflect people’s attitudes towards the movie,
i.e. whether to give this movie a higher score; and (ii) indicate their
occupations, age, or other sensitive information.

The key statistics of the datasets are summarized in Table 1, which
ncludes the number of features for each dataset, the number of class
abels, the formats of their relevant features and the number of data
amples. Note that the Personal Attributes of Adult represent the feature
ectors that can represent the characteristics of people. For Adult and
nimate, we make the train:val:test split ratio as 5 : 2.5 : 2.5. For Credit
efaulter, following [1], we select 2000 nodes as the training set, 25%
or validation and 25% for testing. Each experiment is conducted 3
imes and the averaged performance will be reported.

1 https://www.kaggle.com/marlesson/myanimelist-dataset-animes-
rofiles-reviews
6

Table 1
Statistics of datasets.
Dataset Adult Credit defaulter Animate

Features 12 13 15
Class 2 2 2
Type of 𝐗𝑟 Personal Attributes Graph Text
Data size 45,211 30,000 12,772

5.2. Experimental setup

5.2.1. Baselines
To evaluate the effectiveness of FairWS, we compare it with the

vanilla model, sensitive-attribute-aware model and fair models without
sensitive attributes.

• Vanilla: It utilizes the base classifier without the regularization form.
The base classifier 𝑔𝑤1

(⋅) is MLP for all datasets. The transformed
model 𝑓𝑤2

(⋅) is Graph Convolutional Network (GCN) [45] for dataset
Credit Defaulter and Convolutional Neural Network (CNN) [46] for
dataset Animate.

• ConstrainS: We assume the sensitive attribute of each sample is
known for this baseline. We add the correlation regularizer between
sensitive attributes and the model output to the original loss of the
Vanilla model. Note that ConstrainS aims to show the accuracy and
fairness we can achieve, which is the upper bound for the proposed
method.

We also include following representative models in fair learning with-
out sensitive attributes as baselines:

• KSMOTE [16]: It conducts clustering to get pseudo groups and treats
clustering groups as pseudo sensitive attributes. It then adopts fair-
ness regularization terms with pseudo sensitive attributes to achieve
fairness.

• RemoveR [15]: For this baseline, it removes all candidate-relevant
features for fair classifiers. This baseline is utilized to validate the ef-
ficiency of regularizing classifiers with the generated latent sensitive
attributes.

• ConstrainR: It trains a fair classifier by calculating the correlation
regularization form on relevant features through Eq. (12). We design
this baseline to show the quality of our generated latent sensitive
attributes in regularizing the classifier for fair predictions.

• ARL [14]: It optimizes the model’s performance through reweighting
under-represented regions detected by an adversarial model, which
can alleviate bias.

• FairRF [15]: It uses relevant features as pseudo sensitive attributes
to regularize the model to be fair. This is the state-of-the-art method
to train a fair classifier without sensitive attributes.

• SRCVAE [30]: It is a baseline which also focuses on training fair mod-
els without sensitive attributes. It utilizes Variational Autoencoders
to generate sensitive attributes and then uses generated sensitive
attributes to learn a fair classifier.

For baselines FairRF and ConstrainR, since the graph and text cannot
be directly utilized to regularize the model, we adopt Node2vec [47]
to obtain the node embeddings as relevant features on Credit Defaulter.
Similarly, we utilize the average of the pretrained word embeddings as
relevant feature vectors on Animate for FairRF and ConstrainR.

5.2.2. Configurations
For ARL and KSMOTE [14,16], we utilize the authors’ source codes.

For other baselines, we follow the implementation of [15]. For the
decoder and encoder of our sensitive estimation module, we implement
them as a multi-layer perceptron (MLP) network with two and three
layers, respectively. The hidden dimension is 8 for the Adult dataset,
50 for the graph dataset, and 16 for the text dataset. For classifier
𝑔 (⋅), we adopt three-layer MLPs for the adult dataset and one-layer
𝑤1

https://www.kaggle.com/marlesson/myanimelist-dataset-animes-profiles-reviews
https://www.kaggle.com/marlesson/myanimelist-dataset-animes-profiles-reviews
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Table 2
Comparison of different approaches in three datasets.
Methods Adult Credit defaulter Animate

ACC 𝛥𝐸𝑂 𝛥𝐷𝑃 ACC 𝛥𝐸𝑂 𝛥𝐷𝑃 ACC 𝛥𝐸𝑂 𝛥𝐷𝑃

Vanilla 0.856 ± 0.001 0.046 ± 0.006 0.089 ± 0.005 0.731 ± 0.001 0.159 ± 0.001 0.101 ± 0.001 0.755 ± 0.001 0.330 ± 0.001 0.391 ± 0.001
ConstrainS 0.845 ± 0.002 0.040 ± 0.003 0.058 ± 0.004 0.713 ± 0.006 0.137 ± 0.002 0.087 ± 0.003 0.738 ± 0.008 0.202 ± 0.005 0.264 ± 0.003

ARL 0.861 ± 0.003 0.034 ± 0.012 0.141 ± 0.008 0.578 ± 0.001 0.050 ± 0.005 0.054 ± 0.009 0.688 ± 0.002 0.241 ± 0.003 0.332 ± 0.002
KSMOTE 0.560 ± 0.002 0.141 ± 0.031 0.012 ± 0.022 0.563 ± 0.003 0.203 ± 0.002 0.258 ± 0.001 0.672 ± 0.004 0.174 ± 0.001 0.320 ± 0.002
RemoveR 0.801 ± 0.010 0.124 ± 0.004 0.071 ± 0.002 0.674 ± 0.002 0.148 ± 0.003 0.092 ± 0.001 0.715 ± 0.002 0.193 ± 0.002 0.273 ± 0.002
ConstrainR 0.832 ± 0.013 0.061 ± 0.015 0.088 ± 0.019 0.668 ± 0.014 0.121 ± 0.012 0.089 ± 0.016 0.726 ± 0.017 0.257 ± 0.010 0.329 ± 0.012
FairRF 0.832 ± 0.001 0.025 ± 0.009 0.066 ± 0.004 0.682 ± 0.002 0.163 ± 0.002 0.106 ± 0.001 0.715 ± 0.002 0.225 ± 0.001 0.291 ± 0.001
SRCVAE 0.834 ± 0.002 0.038 ± 0.007 0.056 ± 0.013 0.712 ± 0.016 0.147 ± 0.009 0.089 ± 0.021 0.717 ± 0.009 0.188 ± 0.021 0.253 ± 0.017

FairWS 0.842 ± 0.004 0.024 ± 0.012 0.054 ± 0.010 0.720 ± 0.012 0.145 ± 0.016 0.087 ± 0.010 0.726 ± 0.016 0.173 ± 0.014 0.247 ± 0.016
FairWS + MI 0.833 ± 0.006 0.013 ± 0.011 0.046 ± 0.019 0.719 ± 0.028 0.145 ± 0.019 0.074 ± 0.011 0.732 ± 0.020 0.178 ± 0.016 0.263 ± 0.012
for other datasets. We implement two-layer GCN and CNN for graph
and text datasets separately. For fair comparison, we adopt the same
backbone for all baselines. Adam optimizer is adopted to train the
model, with an initial learning rate of 0.001 for all datasets. We find
the best hyperparameter 𝛽 through {0.001, 0.01, 0.1, 0.5, 1, 1.5} and 𝜆
hrough {0.01, 0.02, 0.03, 0.04, 0.05} via grid search.

.2.3. Evaluation metrics
For classification performance, we adopt the widely used accuracy

s the evaluation metric. Following existing work on fair models [2], we
dopt the difference in equal opportunity 𝛥𝐸𝑂 and demographic parity

𝛥𝐷𝑃 as the fairness metrics. They are defined as:
Equal Opportunity [2]: Equal Opportunity requires that the model

assigns the equal probability of positive instances with random pro-
tected attributes 𝑖, 𝑗 to a data point with a positive label:

E(𝑦̂ ∣ 𝑆 = 𝑖, 𝑦 = 1) = E(𝑦̂ ∣ 𝑆 = 𝑗, 𝑦 = 1), (15)

where 𝑦̂ is the output of the model 𝑔𝑤2
, 𝑆 represents the sensitive

attribute. Note that the tasks in our experiment are binary classification
problems so 𝑦′ means the probability to be predicted as positive labels.
In this paper, we report the difference for equal opportunity (𝛥𝐸𝑂),
which is defined as:

𝛥𝐸𝑂 = |E(𝑦′ ∣ 𝑆 = 𝑖, 𝑦 = 1) − E(𝑦′ ∣ 𝑆 = 𝑗, 𝑦 = 1)|. (16)

Demographic Parity [2]: Demographic Parity requires that the
predicted results of models are fair on different sensitive groups:

E(𝑦̂ ∣ 𝑆 = 𝑖) = E(𝑦̂ ∣ 𝑆 = 𝑗),∀𝑖, 𝑗. (17)

We also report the difference in Demographic Parity:

𝛥𝐷𝑃 = |E(𝑦′ ∣ 𝑆 = 𝑖) − E(𝑦′ ∣ 𝑆 = 𝑗)| (18)

Note that equal opportunity and demographic parity measure fair-
ness from different dimensions. Equal opportunity requires similar
performance across protected groups; while demographic parity focuses
more on fair demographics [15]. The smaller 𝛥𝐸𝑂 and 𝛥𝐷𝑃 are, the more
fair the model is.

5.3. Classification accuracy and fairness

To answer RQ1, we conduct each experiment 3 times and report
the average results along with standard deviation in terms of accuracy,
𝛥𝐸𝑂 and 𝛥𝐷𝑃 on three datasets in Table 2. Note that FairWS + MI means
that we utilize the mutual information loss for the sensitive attributes
estimation module and FairWS means no mutual information loss. For
all baselines, the hyperparameters are tuned via grid search on the
validation dataset. From Table 2, we make the following observations:

• Comparing Vanilla with ConstrainR, we can observe that directly
constraining relevant features 𝐗𝑟 can help the model achieve fairer
results on Adult, which is because 𝐗𝑟 of Adult are simple features that
7

can be easily incorporated into the covariance regularizer. However,
when 𝐗𝑟 is complex features such as text on Animate and graph on
Credit Defaulter, ConstrainR method does not have too much effect,
which is because the learned embedding vectors obtained from an
unsupervised manner, which are treated as relevant features, may be
irrelevant to the targeted sensitive attributes. While for FairWS, it can
extract the targeted sensitive information from the graph structure
or text reviews flexibly via Variational Autoencoders in the sensitive
attributes estimation part.

• Compared with baselines without the sensitive attributes, FairWS can
achieve the best result in terms of the accuracy and fairness metrics
on Adult datasets. Even though FairRF can achieve fairer performance
on Credit Defaulter and Animate datasets separately, it will result in
a significant drop in accuracy. Also, FairRF can improve the fairness
performance on the Adult dataset as shown in Table 2, but it cannot
work on the graph and text dataset. Finally, SRCVAE can achieve
better performance by generating sensitive attributes compared with
other baselines. However, they cannot outperform our model. This is
because they cannot greatly eliminate the information of irrelevant
features when generating sensitive attributes. Our proposed loss in
Eq. (7) can discriminate sensitive attributes and irrelevant features
so our model can have more accurate sensitive attributes. Based
on our generated sensitive attributes, our model can obtain better
performance.

• Compared with ConstrainS which uses the grand truth of sensitive at-
tributes, FairWS can achieve comparable performance or even better
performance with a little drop in accuracy for all datasets. And our
proposed mutual information loss can help the fairness regularization
to get better performance on the Adult dataset. In addition, it can
result in comparable results on fairness metrics with higher accuracy
for the text and graph dataset.

• Finally, FairWS achieve the best performance on Adult and Animate
datasets in terms of accuracy and fairness metrics with different
kinds of relevant features. It means that FairWS can extract sensitive
information from relevant features in different formats, which proves
the flexibility of our proposed model.

5.4. Accuracy of sensitive attribute estimation

To answer RQ2, we conduct an experiment to show whether our
generated latent representation 𝐀 learns information about sensitive
attributes. Specifically, we adopt Gaussian Mixture Model to cluster
data into two clusters based on 𝐀 for FairWS and FairWS + MI. As
𝐀 should contain sensitive attribute information, we would expect the
two clusters would correspond to two groups of different sensitive
attributes. Then, we calculate the AUC score between predicted cluster
and ground sensitive attributes and the results are shown in Table 3,
where Gaussian Mixture in the table means using Gaussian Mixture
Model on raw relevant feature vectors. Note that this is an unsupervised
setting and we evaluate the performance of the training set. From the
table, we find that (i) we can obtain a large improvement compared

with Gaussian Mixture on raw relevant features, which means that
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Fig. 4. Classification accuracy and fairness in terms of 𝛥𝐸𝑂 and 𝛥𝐷𝑃 w.r.t. the
yperparameter 𝜆 on Adult.

Fig. 5. Classification accuracy and fairness in terms of 𝛥𝐸𝑂 and 𝛥𝐷𝑃 w.r.t. the
yperparameter 𝜆 on Animate.

Table 3
Comparison of different approaches for sensitive attributes estimation on three dataset
Models Adult Credit defaulter Animate

AUC AUC AUC

GM 0.5087 ± 0.012 0.5238 ± 0.005 0.5363 ± 0.009
SRCVAE 0.7021 ± 0.028 0.6741 ± 0.019 0.6862 ± 0.002
FairWS 0.7481 ± 0.010 0.7046 ± 0.036 0.7804 ± 0.003
FairWS+MI 0.7704 ± 0.046 0.6994 ± 0.004 0.7926 ± 0.001

FairWS can efficiently estimate sensitive attributes via extracting sen-
sitive information from relevant features; and (ii) our model FairWS
can consistently outperform SRVAE. It verifies the effectiveness of our
model to estimate sensitive attributes. Furthermore, FairWS+MI can
outperform SRCVAE and FairWS on Adult and Animate datasets. It
shows that mutual information loss can help 𝐀 learn more information
about sensitive attributes. It demonstrates that disentangling latent
representation between 𝐚𝑖 and 𝐳𝑖 can help 𝐚𝑖 to better learn sensitive
nformation.

.5. Hyperparameter sensitivity analysis

The proposed FairWS has two important hyperparameters 𝜆 and 𝛽. 𝜆
ontrols the trade-off between fairness and accuracy when learning the
air classifier. To evaluate the parameter sensitivity on 𝜆, we fix the
ensitive attributes estimation module with 𝛽 = 0.01 and train a fair
lassifier based on the generated latent representation with different
. We vary 𝜆 as {0, 0.01, 0.02, 0.03, 0.04, 0.05}. Fig. 4 and 5 show the
esults on Adult and Animate datasets separately. From Fig. 4, we can
bserve that larger 𝜆 will lead to a slight drop in terms of accuracy
ut significant improvement in terms of fairness 𝛥𝐸𝑂 and 𝛥𝐷𝑃 , which
s because the higher weight of correlation loss between predicted
esults and sensitive information will lead to a fairer model but with
drop of accuracy. For Fig. 5 which has text relevant features, and
lso shows the same pattern as Fig. 4. Thus, it is important to select a
for various requirements, e.g., better performance on the accuracy or
airness metrics.
Another hyperparameter 𝛽 is to control the training process of the

atent representation 𝐀. We vary 𝛽 as {0.001, 0.01, 0.1, 0.5, 1, 1.5}. For
8

Fig. 6. Sensitivity of 𝛽 on sensitive attribute estimation.

Fig. 7. Classification accuracy and fairness in terms of 𝛥𝐸𝑂 and 𝛥𝐷𝑃 w.r.t. the
hyperparameter learning rate on the Animate dataset, which is denoted as lr in the
figure.

Fig. 8. Classification accuracy and fairness in terms of 𝛥𝐸𝑂 and 𝛥𝐷𝑃 w.r.t. the
hyperparameter batch size on the Animate dataset.

each choice of 𝛽, we learn 𝐀 and use Gaussian Mixture Model to
predict the sensitive attributes from 𝐀. The results of sensitive attribute
estimation in terms of AUC are shown in Fig. 6. We observe that the
performance first increases when 𝛽 increases from 0.001 to 0.01, and
then results tend to be fluent on Adult and Animate. Finally, when
𝛽 is larger than 0.5, the AUC values will have a slight drop. It is
because higher 𝛽 will make 𝑞𝜙(𝐚𝑖 ∣ 𝐱𝑟𝑖 , 𝐲𝑖) close to standard Gaussian
distributions, which will fail to extract sensitive information from 𝐱𝑟𝑖 .
Therefore, small and large 𝛽 will result in less sensitive information in
𝐀 and the best value of it is between 0.01 to 0.5.

We also analyze the influence of batch size and the learning rate
of our model. We vary the learning rate as {0.01, 0.001, 0.0005,
0.0001}. Other hyperparameters are determined by cross validation
with grid search. The corresponding results are shown in Fig. 7. We
can observe that a higher learning rate can result in unstable training
and poor performance because it causes the model to take larger steps
during parameter updates. This can lead to overshooting the optimal
parameter values and oscillations in the loss function. The model may
fail to converge or converge to a suboptimal solution. A lower learning
rate can also make the model more susceptible to getting trapped in
local minima or plateaus in the loss landscape. Since the parameter
updates are small, the model may struggle to escape these regions and
find the global or better local optima.

We also vary the batch size as {64, 128, 256, 512}. Other hyper-

parameters are determined by cross validation with grid search. The



Neurocomputing 561 (2023) 126841H. Zhu et al.

o
q

•

•

•

Table 4
The impact of the quality of relevant features on the sensitive attribute estimation on Adult.
Methods Random Top-1 Noisy GM FairWS

AUC 0.6681 ± 0.019 0.6678 ± 0.022 0.7019 ± 0.027 0.5078 ± 0.018 0.7616 ± 0.025
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Table 5
Comparison of different selection approaches on relevant features.
Methods ACC 𝛥𝐸𝑂 𝛥𝐷𝑃

Vanilla 0.856 ± 0.001 0.046 ± 0.006 0.089 ± 0.005

Random 0.826 ± 0.020 0.036 ± 0.015 0.057 ± 0.014
Top-1 0.841 ± 0.011 0.041 ± 0.008 0.057 ± 0.010
Nosiy 0.838 ± 0.012 0.031 ± 0.021 0.059 ± 0.021

FairWS 0.842 ± 0.004 0.024 ± 0.012 0.054 ± 0.010

corresponding results are shown in Fig. 8. We can find that batch
size may not have too much influence on the final results because the
presence of regularization techniques, such as dropout or weight decay,
can further mitigate the influence of batch size on the final results by
introducing robustness to the training process [48,49].

5.6. Impact of relevant features

In this section, to answer RQ3, we explore the impact of the quality
f relevant features on FiarWS. To get relevant features of different
uality, we consider the following variants of FairWS:

Random: We randomly select a set of relevant features with the same
number of attributes with FairWS.
Top-1: It includes the most-effective relevant features. We test all
candidate relevant features and select the one which achieves the
highest performance by regularizing a classifier based on Eq. (10),
and report its performance.
Noisy: It contains features randomly selected from both highly rele-
vant features and irrelevant features. In implementation, we replace
one attribute in the highly relevant features e.g. age, relation and
marital status with one irrelevant features.

We first evaluate the quality of 𝐀 under different choices of relevant
features and report the results in Table 4. In the table, GM means
applying Gaussian Mixture on raw relevant features and we consider
it as the baseline or reference result for our analysis. For a fair com-
parison, Random, Noisy and Top-1 are three selection methods for
relevant features and we use them to select three relevant features.
Then, we utilize the selected relevant features from these methods
to train the FairWS model. We only conduct an experiment on Adult
because Adult is the only dataset which has tabular attributes with clear
semantic meaning and requires our prior knowledge to select relevant
features; while the other two datasets have texts and features, which
make it difficult to control the experiment. The results on Adult are
shown in Table 4. From the table, we can observe that FairwS can
also learn information about the sensitive attributes even with noisy
relevant features. Comparing FairWS with Top-1, we can find that
sensitive information in one feature is limited but FairWS can utilize
a set of relevant features to learn sensitive information automatically
and achieve great performance.

Furthermore, we conduct experiments to explore the impact of
relevant features in terms of accuracy and fairness metrics. The results
are shown in Table 5. We make the following observation:

• Firstly, comparing Noisy with FairWS, with noisy relevant features
where we randomly replace one highly relevant features with other
features, our model can help to train a fair classifier with a little
drop in accuracy. Also, in comparison with Random, training our
9

models based on a random selection of features can efficiently extract v
sensitive information to regularize the MLP classifier. It can achieve
similar results on fairness metrics with more drops in accuracy. It
shows that FairRF can cope with little domain knowledge scenarios.

• In comparison with Top-1, FairWS still shows great improvement. It
further proves the ability of FairWS to extract sensitive information
from a set of relevant features and sensitive information in one feature
is limited.

6. Conclusion

In this paper, we study a novel problem of training fair and ac-
curate classifiers without sensitive attributes by estimating sensitive
information from features which are relevant to sensitive attributes. We
propose a novel framework FairWS which learns sensitive information
from relevant features and regularizes classifiers based on inferred
sensitive information. FairWS can flexibly learn sensitive information
from relevant features in different formats and even from noisy relevant
features which may contain irrelevant features. Through extensive ex-
periments, we demonstrate that our method significantly outperformed
the state-of-the-art methods w.r.t both accuracy and fairness metrics
when sensitive attributes are unavailable. Also, we explore the impact
of relevant features which proves FairWS can obtain sensitive infor-
mation even with irrelevant features. Parameter sensitive analysis is
also conducted to understand the sensitivity to hyperparameters. In the
future, work can be done to adopt our generated sensitive information
to more fair models. Furthermore, designing fair models without sensi-
tive attributes on different kinds of data is also a promising direction,
including graphs, text and images. Finally, it is also significant to
explore training fair models without any prior knowledge.
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