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Abstract— The accurate and efficient classification of
electrocardiogram (ECG) signals is crucial in identifying cardiac
conditions for effective remote heart monitoring and telemedicine
systems. However, the large-scale data from various ECG
databases presents a challenge to traditional artificial intelligence
(AI) algorithms. To address this issue, we use multi-stage
classification as a promising method in sHealth. In this study, we
aim to evaluate the performance and power consumption of
various machine learning and deep learning algorithms in single-
stage and multi-stage classification. Specifically, we analyzed beats
combined from three different ECG databases and trained
decision tree (DT), artificial neural network (ANN), support
vector machine (SVM), Naive Bayes, K-nearest neighbors (KNN),
bagged tree, recurrent neural network (RNN), convolutional
neural network (CNN), and long short-term memory (LSTM)
algorithms using time series feature extraction library (TSFEL).
By dividing the data into training and testing sets, we were able to
obtain the best accuracy for each algorithm and evaluate their
memory usage, CPU usage, and running time. Our study
highlights the advantages of multi-stage classification with DT and
ANN in accurately detecting cardiovascular diseases while also
consuming less power, making it a scalable and upgradable
approach. The algorithm developed through this research can be
implemented in wearable devices as a pre-trained model to
efficiently monitor heart health and detect potential cardiac issues.
The use of such IoT devices for remote heart monitoring can
significantly improve access to healthcare for patients in remote
or underserved areas, allowing for early detection and treatment
of cardiovascular diseases.

Keywords- Multi-stage classification, Single-stage classification,
Cardiac episodes, Unsupervised monitoring, Machine learning.

I. INTRODUCTION

Cardiovascular diseases (CVDs) are a major global health
issue and monitoring heart disease is crucial in improving
patient outcomes. With the rise of the Internet of Things (IoT),
wearable devices and smart health (sHealth) applications have
become increasingly popular for monitoring heart disease and
promoting heart health. These devices and apps use sensors and
algorithms to collect and analyze electrocardiogram (ECG)
signals, which measure the electrical activity of the heart and can
detect irregular heartbeats or other abnormalities. The
integration of loT technology into heart disease monitoring has
revolutionized the way we approach cardiovascular health. With
these devices and applications, patients can take control of their
heart health and receive real-time feedback, leading to better
management of heart disease and improved patient outcomes.
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The concept of multi-stage classification has emerged as a
promising approach to address the challenges of adapting Al
models to new sensor data or decision-making processes in
smart systems. Breaking down the Al model into multiple stages
allows for independent modifications, making it more scalable
and upgradable compared to single-stage classification. While
single-stage classification can present challenges when changes
occur, multi-stage classification enables a more flexible and
adaptable approach. The benefits of multi-stage classification
are demonstrated in the example of cardiac disease detection,
showcasing its scalability and upgradability for smart health
systems.

An ECG is a non-invasive medical test that measures the
electrical activity of the heart. It's quick, safe, and comfortable
for patients. The test captures and records the electrical signals
generated each time the heart muscle contracts. By analyzing
these signals, ECG can help healthcare professionals understand
the heart's health and rhythm [2]. An electrocardiogram (ECG)
can detect abnormal beats and discover type and origin [3-12].
Interpreting ECG signals is challenging and requires expertise
[3]. Automatic heartbeat classification can help physicians
analyze ECG recordings [4]. The Stationary Wavelets
Transform and Support Vector Machine are used to extract
features and detect heart conditions [5]. A study has been
conducted on the performance of convolutional and deep neural
networks on mobile and embedded platforms [6]. Gradient
blending is used to address overfitting in multimodality and
compute an optimal blend [7]

The use of LSTM and CNN algorithms for ECG feature
analysis and classification is increasing due to advancements in
ECG data and DNNs [8]. The performance of training deep
learning models on mobile devices should be investigated in
terms of memory consumption, hardware utilization, and power
consumption [9]. Deep learning CNN and LSTM frameworks
stack similar networks to generate a robust model [10]. Different
methods are used for ECG feature extraction, then machine
learning algorithms like Decision Trees, Random Forests, and
Gradient Boosted Trees are applied for ECG classification [11].
Multiple CNN models can diagnose cardiac arrhythmias by
transferring knowledge from deep learning models into one
model using ECG signals [12].

This work explores the potential of multi-stage classification
for data analysis, in order to identify limitations in traditional
single-stage classification algorithms. The study focuses on
detecting cardiac conditions in patients from single-lead ECG
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Table I: The criteria of AAMI labeling class of MIT-BIH Database with the full database, and training and testing dataset.

AAMI Heartbeat N S
class
Description Normal beat = Supraventricular ectopic beat
(SVEB)
Label N, L, R S,ej,Aa,)
Full data 654,628 71,223
(Total 41 records)

Training 298,177 31,925

(21 records)
chfdb (chf01-05) 173,975 26,409
mitdb (100-1089, 17,253 5,231

111-113)

Itdb (14046, 14157, 106,949 285

14184)
Testing 356,451 39,298

( 20 records)
chfdb (chf06-10) 203,154 31,542
mitdb (114-1189, 20,014 6,541

121-124, 200)

Itdb (14134, 14172, 133,283 1,215

14149, 15814)

data, using machine learning and deep learning algorithms. The
aim is to classify different heartbeats with more precise training
and testing data. The performance and power consumption of
top-performing classifiers, such as decision tree and artificial
neural network, are evaluated using statistical metrics. The
feature vectors for classification are formed using the time series
feature extraction library (TSFEL). The study also compares the
effectiveness of multi-stage and single-stage classification in
analyzing heartbeats and applying the results to wearable
devices. The example of cardiac disease detection highlights the
benefits of multi-stage classification in terms of scalability and
the ability to upgrade. Table I shows the criteria of AAMI
labeling class of MIT-BIH database with the full database, and
training and testing dataset.

II. METHODOLOGY

This study utilized the MIT BIH database, which follows
the criteria set by AAMI to categorize heartbeat types [1]. The
five heartbeat categories in the MIT-BIH database include
Normal and Bundle Branch Block beats (class N),
Supraventricular Ectopic Beats (SVEB, class S), Ventricular
Ectopic Beats (VEB, class V), Fusion beats (class F), and
Unknown beats (class Q). Data was sourced from the open-
source PhysioNet database, which was a combination of the
BIDMC Congestive Heart Failure database, the MIT BIH
Arrhythmia database, and the MIT BIH Long-term ECG
database [13].

A. ECG data

In our study, we used data from three ECG databases: the
BIDMC congestive heart failure database (chfdb), the MIT BIH
arrhythmia database (mitdb), and the MIT BIH long term ECG
database (Itdb). The chfdb contained two lead ECG signals with
a 250 Hz sampling rate and a bandpass filter applied, and we
used 10 records for our analysis. The mitdb contained two lead
ECG signals with a 360 Hz sampling rate and a bandpass filter
applied, and we used 24 records for our analysis. The Itdb
contained two lead ECG signals with a 128 Hz sampling rate
and a bandpass filter applied, and we used 7 records for our
analysis. We divided the records into a training dataset (the 21

\ F Q Total
Ventricular ectopic beat Fusion beat Unknown beat
(VEB)
V, E F qQ/,f

81,356 6,663 3912 817,782
46,017 1,746 1,403 379,268
1,141 1,025 131 202,681
7,354 552 1,054 31,444
37,522 169 218 145,143
35,339 4,917 2,509 438,514
1,245 957 357 237,255
7,521 1,221 1,253 36,550
26,573 2,739 899 164,709

ECG data records) and a testing dataset (the remaining 20 ECG
data records). We have 379,628 beats for training data, and
438,514 beats for testing data. Fig 1 shows the flowchart of ECG
signal demonstrating machine learning algorithm for
preprocessing, analysis, and classification. The -classifier's
performance is assessed using the training dataset, and the final
evaluation of the heartbeat classification system is carried out on
the test dataset.
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Fig 1: Flowchart of ECG signal demonstrating’ machine learning algorithm for
preprocessing, analysis, and classification.

B. Signal preprocessing

In our work, we aim to analyze the human electrocardiogram
(ECG) signal which is a weak physiological signal characterized
by nonlinearity, non-stationarity, and strong randomness. The
ECG signal is vulnerable to various types of noise and
distortions, such as baseband drift, EMG interference, power
frequency noise, and other noise interferences, which results in
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a low signal-to-noise ratio (SNR). These disturbances cause
deformation of the ECG waveform and make it difficult for
doctors to accurately interpret the signal. To tackle the problem
of baseline drift, a low-pass filter is commonly used to remove
the low-frequency noise in the ECG signal. Other traditional
methods for removing baseline drift include median filtering,
wavelet transform, averaging filtering, and EMD decomposition
[14].

R | RR

—0X

Fig2: P, Q, R, S, T peaks in detail to form a heartbeat.

Table II: Summary the total of tsfel and ANOVA selection features.
Type of features Features
Time series feature Total 175 features be extracted
extraction library

(Tsfel) (175)
Analysis of variance | signal distance, slope, wavelet energy,
test (ANOVA) wavelet entropy, spectral centroid, ECDF
Selected features percentile count, empirical cumulative
(133) distribution function (ECDF), root mean

square, autocorrelation, max power
spectrum, mean absolute deviation, spectral
skewness, spectral roll-off, skewness,
spectral decrease, median frequency,
negative turning points, neighborhood
peaks, peak to peak distance, wavelet
standard deviation, wavelet variance, fast
Fourier transform mean coefficient, power
bandwidth, spectral distance, median
absolute diff, median diff, spectral entropy,
absolute energy, human range energy,
Kurtosis, MEL cepstral coefficients (MFCC),
maximum frequency, ...etc..

C. Peak detection

R peak detection plays a crucial role in ECG heartbeat
recognition. In this study, the Pan Tompkins algorithm was
utilized to accurately detect the R peak [15]. The open-source
code "The Python Toolbox for Neurophysiological Signal
Processing" provided by neurokit 2 was used to implement the
algorithm [16]. Once the R peak was detected, the RR interval
and mean RR interval were calculated, which were then used to
find the P, Q, S, T, and T' peaks. The algorithm detected three
R peaks to form one heartbeat. The middle value between the
first and second R peaks was used as the starting point, while
the middle value between the second and third R peak was used
as the ending point of the beat. Fig 2 shows P, Q, R, S, T peaks
in detail to form a heartbeat.

D. Feature extraction

In this work, two ECG beats are processed at a time using
the sliding window technique where each beat is processed and
then slides to the next beat. A total of 175 features are extracted
from these beats using the time series feature extraction library
(TSFEL) in Python [17]. The feature selection process involves
applying analysis of variance (ANOVA) algorithms, which
results in the selection of 133 features for use in classification.
ANOVA is a collection of statistical models and estimation
procedures used to analyze differences in group means. Table
II Summaries the total of tsfel and ANOVA selection features.

E. Classification

We categorize normal heartbeats (N) as 0, supraventricular
ectopic heartbeat (S) as 1, ventricular ectopic beats (V) as 2 and
fusion beat with unknown beat as 3. To classify the data, we use
various machine learning algorithms such as Decision Tree
(DT), Artificial Neural Network (ANN), Support Vector
Machine (SVM), Naive Bayes, K-Nearest Neighbors (KNN),
and Bagged Tree, as well as Deep Learning models such as
Recurrent Neural Network (RNN), Convolutional Neural
Network (CNN), and Long Short-Term Memory (LSTM). We
employ 10-fold cross-validation technique for training and
evaluation. Both single-stage multi-classification and two-stage
multimodal classification methods are tested to obtain accurate
results.

E. 1. Single-stage classification

We perform single-stage classification using one classifier
to distinguish between four classes. We train machine learning
models such as decision tree (DT), artificial neural network
(ANN), support vector machine (SVM), Naive Bayes, K-nearest
neighbors (KNN), bagged tree. As well as deep learning models
like recurrent neural network (RNN), convolutional neural
network (CNN), and long short-term memory (LSTM). We use
10-fold cross-validation to evaluate the performance of the
classifier. We perform experiments with both DT and ANN,
which perform best among the machine learning models, and
adjust parameters to test their performance. The structure of the
classifier is shown in Figure 3-A.

single-stage

Layers | or [ Max depths
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multi-stage stage 1 (
888 T Wiax depih > La
ayers or lax ths yers
000 X Y X Xor [

3-A: The structure of single-stage classification. 3-B: The structure of multi-stage
classification
Fig 3: Present the structure of classifier.
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E. 2. Multi-stage classification

In multi-stage classification, there are two classifiers
involved in two-step classification. First, a binary classification
is performed to distinguish normal from abnormal beats. The
second step involves building a new classifier for multi-class
classification, focused only on the three outlier beats. We
conduct experiments using DT and ANN, which perform the
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best among ML models, and adjust parameters to assess
performance. The classifier structure is depicted in Figure 3-B.

F. Performance

Various statistical metrics are used to assess model
performance and evaluate selected TSFEL features, including
accuracy, precision, and recall. Record refers to the correct
identification of the proportion of true negatives. Precision
represents recognition accuracy, while accuracy determines
how closely a measured value corresponds to the true value. We
also measure power consumption in terms of memory usage,
CPU usage, and running time, based on the best accuracy
achieved by ML and DL algorithms. Tensorflow's "Keras
Model Profiler" package is used to obtain basic but critical
information about model parameters and memory requirements
on the GPU, while the "Psutil" package is used to retrieve
information on running processes and system utilization,
including CPU, memory, disks, network, and sensors, for
system monitoring, profiling, and process management.

II. RESULTS

The Pan Tompkins algorithm is used to detect the R peak,
and a sliding window with two beat intervals move one beat at a
time until the end. The resulting peaks are labeled as P, Q, R, S,
and T and are illustrated in Figure 4 for the interval from 1050
to 1250 at the apex. The blue line represents the P peak, the
yellow line represents the Q peak, the green circle represents the
R peak, the red line represents the S peak, and the purple line
represents the T peak.
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Fig4: P, Q,R, S, T peaks detected for 2 ECG beats

For the machine learning, DT got the overall accuracy 91%,
overall precision and recall are 91% and 90%. ANN got the
overall accuracy 96%, overall precision and recall are 97% and
98%. For deep learning, the performance of RNN, CNN, LSTM
exceeds 97%, among which CNN performs best. CNN got the
overall accuracy 99%, overall precision and recall are 99% and
99%. Table III shows the comparison of ML & DL performance
of single-stage classification base on different classifiers.

Table IV shows the power consumption results for single-
stage classifications using ML and DL. The ANN classifier in
the ML model achieved a higher accuracy of 96%, but
consumed more memory, CPU usage, and running time than
DT, which had an accuracy of 91% with quicker running time

and lower memory and CPU usage. Among the DL models, the
CNN classifier showed the highest accuracy, less memory and
CPU usage, and running time. The DL models, however,
consumed more energy than the ML models.

Table III: Comparison of ML & DL performance for single-stage
classification base on different classifiers

Data: chf01~ chf10, Itdb1~ Itdb7, mitdb100~ mitdb124

Feature vector: 133 x 675,358

Single-stage classifier Overall Overall Precision
Accuracy (%)  / Recall (%)

Machine learning ~ DT(10) 91 91/90
ANN(64) 9% 97/98
SVM 86 82/80
Naive Bayes 82 86/82
KNN 70 68/73
Bagged tree 88 80/ 84

Deep learning RNN 98 97 /97
CNN 99 99 /99
LSTM 98 99 /98

Table IV: Power consumption of single-stage classification for ML
and DL

Data: chf01~ chf10, Itdb1~ Itdb7, mitdb100~ mitdb124

Feature vector: 133 x 675,358

Single-stage Machine learning Deep learning

classification

Classifier ANN(64) DT(10) RNN CNN LSTM
Accuracy (%) 96 91 98 99 98
Memory usage = 518.3 463.1 585.2 570.1 572.8
(MiB)

CPU usage (%) 5.5 1 19.6 17.5 19
Running time 335 15 78 56 58
(s)

Table V : Summary of power consumption for ANN and DT single-
stage classification based on different parameters.
Single-stage classification (one classifier, one step)

Classifier Accuracy Memory CPU usage Running
(%) usage (MiB) (%) time (s)
ANN (Layers)
256 Increase 100 529.6 6.5 40
128 100 528.4 6.5 35
64  Standard 96 518.3 5.5 33.5
32 84 527.8 5.5 32
16 72 523.5 5.0 32
8 68 521.2 5.0 21
4 57 519.1 4.6 11
2 55 517.4 4.3 10
1 Decrease 45 516.3 4.0 6
DT (MaxDepth)
25 Increase 100 463.2 1 1.6
24 100 463.4 1 1.6
23 100 463.6 1 1.6
20 99 463.3 1 1.6
15 96 463.7 1 1.5
10  standard 91 463.1 1 1.5
6 86 456.5 1 1.6
2 83 463.4 1 1.2
1 Decrease 83 462.8 1 1.2

Table V summaries of power consumption for ANN and DT
single-stage classification based on different parameters like
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layers and maximum depth. We vary the ANN parameters to
find out what performance will be exhibited using different
numbers of layers. We set 64 layers as standard, increasing and
decreasing from 256 layers to 1 layer. The 128-layer and 256-
layer ANN classifiers achieved 100% accuracy without much
change in memory, CPU usage, and runtime. After 128 layers,
the accuracy and power consumption are reduced, and the
runtime becomes faster. We vary the DT parameters to find out
what performance will be exhibited using different numbers of
maximum depth. We set 10 max depth as standard, increasing
and decreasing from 25 max depth to 1 max depth. The 25-max
depth, 24-max depth and 23-max depth DT classifiers achieved
100% accuracy without much change in memory, CPU usage,
and runtime. After 23-max depth, the accuracy and memory
usage are reduced, and the CPU usage and runtime remain the
same.

Table VI: Summary of power consumption for ANN and DT
combination as multi-modal classification based on different
parameters and arrangment.

Multi-stage classification (two classifiers, two steps)

First stage Second stage Overall
classification classification
Classifier Accurac Memory = Accurac Memory CPU
y (%) usage y (%) usage usage
(MmiB) (MmiB) (%) ;
Running
time (s)
ANN&ANN (Layers)
256 100 429.1 100 446.8 17 ;87
Increase
128 100 428.0 100 444.1 16.5; 80
64 100 429.4 95 446.3 17.5;77
Standard
32 100 428.8 90 445.4 14;70
16 100 427.5 70 444.5 13.7;64.5
8 100 427.1 58 444.2 13;54
4 76 427.1 50 443.3 12;34
2 75 427.4 48 444.1 11.5;33.5
1 75 426.2 47 442.8 16; 22
Decrease
DT&DT (MaxDepth)
25 100 383.9 100 373.3 1;1.6
Increase
24 100 384.6 99 374.3 1;1.6
23 100 383.9 98 373.4 1;1.6
20 100 384.1 94 373.5 1;1.6
15 100 384.5 84 373.8 1;1.6
10 100 383.9 72 373.3 1;1.6
Standard
6 100 384.7 59 374.2 1;1.6
2 100 384.5 49 374.2 1;1.6
1 100 383.2 47 373.0 1;1.6
Decrease
Arrangement
DT (25) 100 385.4 100 440.2 16;42.12
& ANN
(128))
ANN 100 452.3 100 381.2 12;41.8
(128 ) &
DT (25)

Table V summaries of power consumption for ANN and DT
combination as multi-stage classification based on different

parameters and arrangement. In multi-stage  ANN&ANN
classifier from 256 layers to 8 layers, we achieve 100% accuracy
without much change in memory usage, but after 8 layers the
accuracy decreases in the first stage. In 256 layers and 128
layers, we achieve 100% accuracy without much change in
memory usage, but after 128 layers the accuracy decreases in the
second stage. When layers are reduced, overall CPU usage
increases and run times are faster. In multi-stage DT&DT
classifier from 25 max depths to 1 max depth, we achieve 100%
accuracy without much change in memory usage in the first
stage. At 25 max depths we achieve 100% accuracy, but after 25
max depths the accuracy drops off in the second stage. When
max depths are reduced, overall CPU usage and run times
remain the same. We also select the most accurate classifier
based on the changed parameters to combine the classifier as
ANN(128)&DT(25) or DT(25)&ANN(128). When the first
stage is 25 max depth DT and the second stage is 128 layers
ANN, we get 100% accuracy in both first and second stages, low
memory usage for the first stage, but high-power consumption
in second stage. The overall CPU usage and elapsed time are
also higher than the other sort order.

IV. DISCUSSION

In our study, we evaluated the performance of machine
learning and deep learning models using equal amounts of data.
Our results indicate that deep learning models have higher
memory usage, runtime, and CPU usage than machine learning
models. Although the accuracy of deep learning models
improves as the amount of data increases, they are more
complex than machine learning models. Interestingly, we found
that single-stage classification outperforms multi-stage
classification in terms of running time, as it generates data with
only one model and runs fewer layers. We also discovered that
normalizing the data effectively can significantly improve
running time. Moreover, our findings suggest that single-stage
classification is faster than multi-stage classification, as it is less
prone to overfitting and demonstrates differing rates of
overfitting and generalization among different modalities.

V. CONCLUSION.

Our study compares the performance of single-stage and
multi-stage classification methods for detecting ECG heartbeats
using machine learning and deep learning algorithms. We use
publicly available ECG data from various databases and
analyzes it using time series feature extraction library (TSFEL)
to form feature vectors. We find that multi-stage classification is
beneficial for handling large-scale data, as it allows for
independent modification of each stage, making the model more
scalable and upgradable. This approach helps optimize specific
stages without affecting others, leading to more efficient power
consumption and better accuracy. We examine the performance
of various machine learning algorithms such as decision tree,
artificial neural network, support vector machine, Naive Bayes,
K-nearest neighbors, and bagged tree, and deep learning
algorithms such as recurrent neural network, convolutional
neural network, and long short-term memory. The parameters of
these algorithms are varied to determine the best performance.
The results of our study show that multi-stage classification is
more efficient than single-stage classification. In single-stage
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classification with ANN, reducing the number of layers can save
power but not improve accuracy. Increasing the number of
layers can improve accuracy but consume more power. In
single-stage classification with DT, changing the maximum
depth has little effect on power consumption but can improve
accuracy. Increasing the maximum depth can improve accuracy
without increasing power consumption. For multi-stage
classification, the study uses DT and ANN to test performance
and vary parameters. In multi-stage classification with ANN,
reducing the number of layers can save power but not improve
accuracy. In multi-stage classification with DT, changing the
maximum depth has little effect on power consumption and
accuracy in the first step, but reducing the maximum depth can
decrease accuracy in the second step. Our study shows that
multi-stage classification can improve the performance and
efficiency of Al models for detecting heart conditions, and the
findings have implications for the development of smarter and
more efficient healthcare systems.
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