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Abstract— The accurate and efficient classification of 

electrocardiogram (ECG) signals is crucial in identifying cardiac 

conditions for effective remote heart monitoring and telemedicine 

systems. However, the large-scale data from various ECG 

databases presents a challenge to traditional artificial intelligence 

(AI) algorithms. To address this issue, we use multi-stage 

classification as a promising method in sHealth. In this study, we 

aim to evaluate the performance and power consumption of 

various machine learning and deep learning algorithms in single-

stage and multi-stage classification. Specifically, we analyzed beats 

combined from three different ECG databases and trained 

decision tree (DT), artificial neural network (ANN), support 

vector machine (SVM), Naïve Bayes, K-nearest neighbors (KNN), 

bagged tree, recurrent neural network (RNN), convolutional 

neural network (CNN), and long short-term memory (LSTM) 

algorithms using time series feature extraction library (TSFEL). 

By dividing the data into training and testing sets, we were able to 

obtain the best accuracy for each algorithm and evaluate their 

memory usage, CPU usage, and running time. Our study 

highlights the advantages of multi-stage classification with DT and 

ANN in accurately detecting cardiovascular diseases while also 

consuming less power, making it a scalable and upgradable 

approach. The algorithm developed through this research can be 

implemented in wearable devices as a pre-trained model to 

efficiently monitor heart health and detect potential cardiac issues. 

The use of such IoT devices for remote heart monitoring can 

significantly improve access to healthcare for patients in remote 

or underserved areas, allowing for early detection and treatment 

of cardiovascular diseases.  

Keywords- Multi-stage classification, Single-stage classification, 

Cardiac episodes, Unsupervised monitoring, Machine learning. 

I. INTRODUCTION  

Cardiovascular diseases (CVDs) are a major global health 
issue and monitoring heart disease is crucial in improving 
patient outcomes. With the rise of the Internet of Things (IoT), 
wearable devices and smart health (sHealth) applications have 
become increasingly popular for monitoring heart disease and 
promoting heart health. These devices and apps use sensors and 
algorithms to collect and analyze electrocardiogram (ECG) 
signals, which measure the electrical activity of the heart and can 
detect irregular heartbeats or other abnormalities. The 
integration of IoT technology into heart disease monitoring has 
revolutionized the way we approach cardiovascular health. With 
these devices and applications, patients can take control of their 
heart health and receive real-time feedback, leading to better 
management of heart disease and improved patient outcomes.  

The concept of multi-stage classification has emerged as a 
promising approach to address the challenges of adapting AI 
models to new sensor data or decision-making processes in 
smart systems. Breaking down the AI model into multiple stages 
allows for independent modifications, making it more scalable 
and upgradable compared to single-stage classification. While 
single-stage classification can present challenges when changes 
occur, multi-stage classification enables a more flexible and 
adaptable approach. The benefits of multi-stage classification 
are demonstrated in the example of cardiac disease detection, 
showcasing its scalability and upgradability for smart health 
systems. 

An ECG is a non-invasive medical test that measures the 
electrical activity of the heart. It's quick, safe, and comfortable 
for patients. The test captures and records the electrical signals 
generated each time the heart muscle contracts. By analyzing 
these signals, ECG can help healthcare professionals understand 
the heart's health and rhythm [2]. An electrocardiogram (ECG) 
can detect abnormal beats and discover type and origin [3-12]. 
Interpreting ECG signals is challenging and requires expertise 
[3]. Automatic heartbeat classification can help physicians 
analyze ECG recordings [4]. The Stationary Wavelets 
Transform and Support Vector Machine are used to extract 
features and detect heart conditions [5]. A study has been 
conducted on the performance of convolutional and deep neural 
networks on mobile and embedded platforms [6]. Gradient 
blending is used to address overfitting in multimodality and 
compute an optimal blend [7] 

The use of LSTM and CNN algorithms for ECG feature 
analysis and classification is increasing due to advancements in 
ECG data and DNNs [8]. The performance of training deep 
learning models on mobile devices should be investigated in 
terms of memory consumption, hardware utilization, and power 
consumption [9]. Deep learning CNN and LSTM frameworks 
stack similar networks to generate a robust model [10]. Different 
methods are used for ECG feature extraction, then machine 
learning algorithms like Decision Trees, Random Forests, and 
Gradient Boosted Trees are applied for ECG classification [11]. 
Multiple CNN models can diagnose cardiac arrhythmias by 
transferring knowledge from deep learning models into one 
model using ECG signals [12]. 

This work explores the potential of multi-stage classification 
for data analysis, in order to identify limitations in traditional 
single-stage classification algorithms. The study focuses on 
detecting cardiac conditions in patients from single-lead ECG 
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data, using machine learning and deep learning algorithms. The 
aim is to classify different heartbeats with more precise training 
and testing data. The performance and power consumption of 
top-performing classifiers, such as decision tree and artificial 
neural network, are evaluated using statistical metrics. The 
feature vectors for classification are formed using the time series 
feature extraction library (TSFEL). The study also compares the 
effectiveness of multi-stage and single-stage classification in 
analyzing heartbeats and applying the results to wearable 
devices. The example of cardiac disease detection highlights the 
benefits of multi-stage classification in terms of scalability and 
the ability to upgrade. Table I shows the criteria of AAMI 
labeling class of MIT-BIH database with the full database, and 
training and testing dataset. 

II. METHODOLOGY 

This study utilized the MIT BIH database, which follows 

the criteria set by AAMI to categorize heartbeat types [1]. The 

five heartbeat categories in the MIT-BIH database include 

Normal and Bundle Branch Block beats (class N), 

Supraventricular Ectopic Beats (SVEB, class S), Ventricular 

Ectopic Beats (VEB, class V), Fusion beats (class F), and 

Unknown beats (class Q). Data was sourced from the open-

source PhysioNet database, which was a combination of the 

BIDMC Congestive Heart Failure database, the MIT BIH 

Arrhythmia database, and the MIT BIH Long-term ECG 

database [13]. 

A. ECG data 

In our study, we used data from three ECG databases: the 
BIDMC congestive heart failure database (chfdb), the MIT BIH 
arrhythmia database (mitdb), and the MIT BIH long term ECG 
database (Itdb). The chfdb contained two lead ECG signals with 
a 250 Hz sampling rate and a bandpass filter applied, and we 
used 10 records for our analysis. The mitdb contained two lead 
ECG signals with a 360 Hz sampling rate and a bandpass filter 
applied, and we used 24 records for our analysis. The Itdb 
contained two lead ECG signals with a 128 Hz sampling rate 
and a bandpass filter applied, and we used 7 records for our 
analysis. We divided the records into a training dataset (the 21 

ECG data records) and a testing dataset (the remaining 20 ECG 
data records). We have 379,628 beats for training data, and 
438,514 beats for testing data. Fig 1 shows the flowchart of ECG 
signal demonstrating machine learning algorithm for 
preprocessing, analysis, and classification. The classifier's 
performance is assessed using the training dataset, and the final 
evaluation of the heartbeat classification system is carried out on 
the test dataset. 

 

 
Fig 1: Flowchart of ECG signal demonstrating machine learning algorithm for 

preprocessing, analysis, and classification. 

B. Signal preprocessing 

In our work, we aim to analyze the human electrocardiogram 
(ECG) signal which is a weak physiological signal characterized 
by nonlinearity, non-stationarity, and strong randomness. The 
ECG signal is vulnerable to various types of noise and 
distortions, such as baseband drift, EMG interference, power 
frequency noise, and other noise interferences, which results in 

Table I:  The criteria of AAMI labeling class of MIT-BIH Database with the full database, and training and testing dataset. 
AAMI Heartbeat 

class 

N S V F Q Total 

Description Normal beat Supraventricular ectopic beat 

(SVEB) 

Ventricular ectopic beat 

(VEB) 

Fusion beat  Unknown beat  

Label N, L, R S, e, j, A, a, J V, E F Q, /, f  

Full data 
(Total 41 records) 

654,628 71,223 81,356 6,663 3912 817,782 

Training 
(21 records) 

298,177 31,925 46,017 1,746 1,403 379,268 

chfdb (chf01-05) 173,975 26,409 1,141 1,025 131 202,681 

mitdb (100-109, 

111-113) 

17,253 5,231 7,354 552 1,054 31,444 

Itdb (14046, 14157, 

14184) 

106,949 285 37,522 169 218 145,143 

Testing 
( 20 records) 

356,451 39,298 35,339 4,917 2,509 438,514 

chfdb (chf06-10) 203,154 31,542 1,245 957 357 237,255 

mitdb (114-119, 

121-124, 200) 

20,014 6,541 7,521 1,221 1,253 36,550 

Itdb (14134, 14172, 

14149, 15814) 

133,283 1,215 26,573 2,739 899 164,709 
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a low signal-to-noise ratio (SNR). These disturbances cause 
deformation of the ECG waveform and make it difficult for 
doctors to accurately interpret the signal. To tackle the problem 
of baseline drift, a low-pass filter is commonly used to remove 
the low-frequency noise in the ECG signal. Other traditional 
methods for removing baseline drift include median filtering, 
wavelet transform, averaging filtering, and EMD decomposition 
[14]. 

 

 
Fig 2: P, Q, R, S, T peaks in detail to form a heartbeat. 

 
Table II:  Summary the total of tsfel and ANOVA selection features. 

Type of features Features 

Time series feature 

extraction library 

(Tsfel) (175) 

Total 175 features be extracted 

Analysis of variance 

test (ANOVA)  

Selected features 

(133) 

 

signal distance, slope, wavelet energy, 

wavelet entropy, spectral centroid, ECDF 

percentile count, empirical cumulative 

distribution function (ECDF), root mean 

square, autocorrelation, max power 

spectrum, mean absolute deviation, spectral 

skewness, spectral roll-off, skewness, 

spectral decrease, median frequency, 

negative turning points, neighborhood 

peaks, peak to peak distance, wavelet 

standard deviation, wavelet variance, fast 

Fourier transform mean coefficient, power 

bandwidth, spectral distance, median 

absolute diff, median diff, spectral entropy, 

absolute energy, human range energy, 

Kurtosis, MEL cepstral coefficients (MFCC), 

maximum frequency, …etc..  

C. Peak detection  

R peak detection plays a crucial role in ECG heartbeat 

recognition. In this study, the Pan Tompkins algorithm was 

utilized to accurately detect the R peak [15]. The open-source 

code "The Python Toolbox for Neurophysiological Signal 

Processing" provided by neurokit 2 was used to implement the 

algorithm [16]. Once the R peak was detected, the RR interval 

and mean RR interval were calculated, which were then used to 

find the P, Q, S, T, and T' peaks. The algorithm detected three 

R peaks to form one heartbeat. The middle value between the 

first and second R peaks was used as the starting point, while 

the middle value between the second and third R peak was used 

as the ending point of the beat. Fig 2 shows P, Q, R, S, T peaks 

in detail to form a heartbeat. 

D. Feature extraction 

In this work, two ECG beats are processed at a time using 

the sliding window technique where each beat is processed and 

then slides to the next beat. A total of 175 features are extracted 

from these beats using the time series feature extraction library 

(TSFEL) in Python [17]. The feature selection process involves 

applying analysis of variance (ANOVA) algorithms, which 

results in the selection of 133 features for use in classification. 

ANOVA is a collection of statistical models and estimation 

procedures used to analyze differences in group means. Table 

II Summaries the total of tsfel and ANOVA selection features. 

E. Classification 

We categorize normal heartbeats (N) as 0, supraventricular 
ectopic heartbeat (S) as 1, ventricular ectopic beats (V) as 2 and 
fusion beat with unknown beat as 3. To classify the data, we use 
various machine learning algorithms such as Decision Tree 
(DT), Artificial Neural Network (ANN), Support Vector 
Machine (SVM), Naive Bayes, K-Nearest Neighbors (KNN), 
and Bagged Tree, as well as Deep Learning models such as 
Recurrent Neural Network (RNN), Convolutional Neural 
Network (CNN), and Long Short-Term Memory (LSTM). We 
employ 10-fold cross-validation technique for training and 
evaluation. Both single-stage multi-classification and two-stage 
multimodal classification methods are tested to obtain accurate 
results. 

E. 1. Single-stage classification 

We perform single-stage classification using one classifier 
to distinguish between four classes. We train machine learning 
models such as decision tree (DT), artificial neural network 
(ANN), support vector machine (SVM), Naive Bayes, K-nearest 
neighbors (KNN), bagged tree. As well as deep learning models 
like recurrent neural network (RNN), convolutional neural 
network (CNN), and long short-term memory (LSTM). We use 
10-fold cross-validation to evaluate the performance of the 
classifier. We perform experiments with both DT and ANN, 
which perform best among the machine learning models, and 
adjust parameters to test their performance. The structure of the 
classifier is shown in Figure 3-A. 

 

 
3-A: The structure of single-stage classification. 3-B: The structure of multi-stage 

classification 

Fig 3: Present the structure of classifier. 

 

E. 2. Multi-stage classification 

In multi-stage classification, there are two classifiers 
involved in two-step classification. First, a binary classification 
is performed to distinguish normal from abnormal beats. The 
second step involves building a new classifier for multi-class 
classification, focused only on the three outlier beats. We 
conduct experiments using DT and ANN, which perform the 
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best among ML models, and adjust parameters to assess 
performance. The classifier structure is depicted in Figure 3-B. 

F. Performance 

Various statistical metrics are used to assess model 

performance and evaluate selected TSFEL features, including 

accuracy, precision, and recall. Record refers to the correct 

identification of the proportion of true negatives. Precision 

represents recognition accuracy, while accuracy determines 

how closely a measured value corresponds to the true value. We 

also measure power consumption in terms of memory usage, 

CPU usage, and running time, based on the best accuracy 

achieved by ML and DL algorithms. Tensorflow's "Keras 

Model Profiler" package is used to obtain basic but critical 

information about model parameters and memory requirements 

on the GPU, while the "Psutil" package is used to retrieve 

information on running processes and system utilization, 

including CPU, memory, disks, network, and sensors, for 

system monitoring, profiling, and process management. 

III. RESULTS  

The Pan Tompkins algorithm is used to detect the R peak, 
and a sliding window with two beat intervals move one beat at a 
time until the end. The resulting peaks are labeled as P, Q, R, S, 
and T and are illustrated in Figure 4 for the interval from 1050 
to 1250 at the apex. The blue line represents the P peak, the 
yellow line represents the Q peak, the green circle represents the 
R peak, the red line represents the S peak, and the purple line 
represents the T peak.  

 

 
Fig 4 : P, Q, R, S, T peaks detected for 2 ECG beats 

 

For the machine learning, DT got the overall accuracy 91%, 
overall precision and recall are 91% and 90%. ANN got the 
overall accuracy 96%, overall precision and recall are 97% and 
98%. For deep learning, the performance of RNN, CNN, LSTM 
exceeds 97%, among which CNN performs best. CNN got the 
overall accuracy 99%, overall precision and recall are 99% and 
99%. Table III shows the comparison of ML & DL performance 
of single-stage classification base on different classifiers. 

Table IV shows the power consumption results for single-

stage classifications using ML and DL. The ANN classifier in 

the ML model achieved a higher accuracy of 96%, but 

consumed more memory, CPU usage, and running time than 

DT, which had an accuracy of 91% with quicker running time 

and lower memory and CPU usage. Among the DL models, the 

CNN classifier showed the highest accuracy, less memory and 

CPU usage, and running time. The DL models, however, 

consumed more energy than the ML models. 

 
Table III:  Comparison of ML & DL performance for single-stage 

classification base on different classifiers 

Data: chf01~ chf10, ltdb1~ ltdb7, mitdb100~ mitdb124  

Feature vector: 133 x 675,358  

Single-stage classifier Overall 

Accuracy (%) 

Overall Precision 

/ Recall (%) 

Machine learning DT(10) 91 91 / 90 

ANN(64) 96 97 / 98 

SVM 86 82 / 80 

Naïve Bayes 82 86 / 82 

KNN 70 68 / 73 

Bagged tree 88 80 / 84 

Deep learning RNN 98 97 / 97 

CNN 99 99 / 99 

LSTM 98 99 / 98 

 
Table IV:  Power consumption of single-stage classification for ML 

and DL 
Data: chf01~ chf10, ltdb1~ ltdb7, mitdb100~ mitdb124  

Feature vector: 133 x 675,358  

Single-stage 

classification 

Machine learning  Deep learning 

Classifier ANN(64) DT(10) RNN CNN LSTM 

Accuracy (%) 96 91 98 99 98 

Memory usage 

(MiB) 

518.3  463.1  585.2  570.1  572.8  

CPU usage (%) 5.5 1 19.6 17.5 19 

Running time 

(s) 

33.5 1.5 78 56 58 

 
Table V :  Summary of power consumption for ANN and DT single-

stage classification based on different parameters. 

Single-stage classification (one classifier, one step)  

Classifier Accuracy 

(%) 

Memory 

usage (MiB) 

CPU usage 

(%) 

Running 

time (s) 

ANN (Layers) 

256     Increase 100 529.6 6.5 40 

128 100 528.4 6.5 35 

64       Standard 96 518.3 5.5 33.5 

32 84 527.8 5.5 32 

16 72 523.5 5.0 32 

8 68 521.2 5.0 21 

4 57 519.1 4.6 11 

2 55 517.4 4.3 10 

1        Decrease 45 516.3 4.0 6 

DT (MaxDepth) 

25       Increase 100 463.2 1 1.6 

24 100 463.4 1 1.6 

23 100 463.6 1 1.6 

20 99 463.3 1 1.6 

15 96 463.7 1 1.5 

10       Standard 91 463.1 1 1.5 

6 86 456.5 1 1.6 

2 83 463.4 1 1.2 

1           Decrease 83 462.8 1 1.2 

 

Table V summaries of power consumption for ANN and DT 

single-stage classification based on different parameters like 
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layers and maximum depth. We vary the ANN parameters to 

find out what performance will be exhibited using different 

numbers of layers. We set 64 layers as standard, increasing and 

decreasing from 256 layers to 1 layer. The 128-layer and 256-

layer ANN classifiers achieved 100% accuracy without much 

change in memory, CPU usage, and runtime. After 128 layers, 

the accuracy and power consumption are reduced, and the 

runtime becomes faster. We vary the DT parameters to find out 

what performance will be exhibited using different numbers of 

maximum depth. We set 10 max depth as standard, increasing 

and decreasing from 25 max depth to 1 max depth. The 25-max 

depth, 24-max depth and 23-max depth DT classifiers achieved 

100% accuracy without much change in memory, CPU usage, 

and runtime. After 23-max depth, the accuracy and memory 

usage are reduced, and the CPU usage and runtime remain the 

same. 

 
Table VI:  Summary of power consumption for ANN and DT 

combination as multi-modal classification based on different 

parameters and arrangment. 

Multi-stage classification (two classifiers, two steps)  

 First stage 

classification 

Second stage 

classification 

Overall 

Classifier Accurac

y (%) 

Memory 

usage 

(MiB) 

Accurac

y (%) 

Memory 

usage 

(MiB) 

CPU 

usage 

(%) ; 

Running 

time (s) 

ANN&ANN (Layers) 

256     
Increase 

100 429.1 100 446.8 17 ; 87 

128 100 428.0 100 444.1 16.5 ; 80 

64   
Standard 

100 429.4 95 446.3 17.5 ; 77 

32 100 428.8 90 445.4 14 ; 70 

16 100 427.5 70 444.5 13.7 ; 64.5 

8 100 427.1 58 444.2 13 ; 54 

4 76 427.1 50 443.3 12 ; 34 

2 75 427.4 48 444.1 11.5 ; 33.5 

1        
Decrease 

75 426.2 47 442.8 16 ; 22 

DT&DT (MaxDepth) 

25       
Increase 

100 383.9 100 373.3 1 ; 1.6 

24 100 384.6 99 374.3 1 ; 1.6 

23 100 383.9 98 373.4 1 ; 1.6 

20 100 384.1 94 373.5 1 ; 1.6 

15 100 384.5 84 373.8 1 ; 1.6 

10       
Standard 

100 383.9 72 373.3 1 ; 1.6 

6 100 384.7 59 374.2 1 ; 1.6 

2 100 384.5 49 374.2 1 ; 1.6 

1           

Decrease 
100 383.2 47 373.0 1 ; 1.6 

Arrangement 

DT (25) 

& ANN 

(128)) 

100 385.4 100 440.2 16 ; 42.12 

ANN 

(128 ) & 

DT (25) 

100 452.3 100 381.2 12 ; 41.8 

 

     Table V summaries of power consumption for ANN and DT 

combination as multi-stage classification based on different 

parameters and arrangement. In multi-stage ANN&ANN 

classifier from 256 layers to 8 layers, we achieve 100% accuracy 

without much change in memory usage, but after 8 layers the 

accuracy decreases in the first stage. In 256 layers and 128 

layers, we achieve 100% accuracy without much change in 

memory usage, but after 128 layers the accuracy decreases in the 

second stage. When layers are reduced, overall CPU usage 

increases and run times are faster. In multi-stage DT&DT 

classifier from 25 max depths to 1 max depth, we achieve 100% 

accuracy without much change in memory usage in the first 

stage. At 25 max depths we achieve 100% accuracy, but after 25 

max depths the accuracy drops off in the second stage. When 

max depths are reduced, overall CPU usage and run times 

remain the same. We also select the most accurate classifier 

based on the changed parameters to combine the classifier as 

ANN(128)&DT(25) or DT(25)&ANN(128). When the first 

stage is 25 max depth DT and the second stage is 128 layers 

ANN, we get 100% accuracy in both first and second stages, low 

memory usage for the first stage, but high-power consumption 

in second stage. The overall CPU usage and elapsed time are 

also higher than the other sort order. 

IV. DISCUSSION 

In our study, we evaluated the performance of machine 
learning and deep learning models using equal amounts of data. 
Our results indicate that deep learning models have higher 
memory usage, runtime, and CPU usage than machine learning 
models. Although the accuracy of deep learning models 
improves as the amount of data increases, they are more 
complex than machine learning models. Interestingly, we found 
that single-stage classification outperforms multi-stage 
classification in terms of running time, as it generates data with 
only one model and runs fewer layers. We also discovered that 
normalizing the data effectively can significantly improve 
running time. Moreover, our findings suggest that single-stage 
classification is faster than multi-stage classification, as it is less 
prone to overfitting and demonstrates differing rates of 
overfitting and generalization among different modalities. 

V. CONCLUSION. 

Our study compares the performance of single-stage and 
multi-stage classification methods for detecting ECG heartbeats 
using machine learning and deep learning algorithms. We use 
publicly available ECG data from various databases and 
analyzes it using time series feature extraction library (TSFEL) 
to form feature vectors. We find that multi-stage classification is 
beneficial for handling large-scale data, as it allows for 
independent modification of each stage, making the model more 
scalable and upgradable. This approach helps optimize specific 
stages without affecting others, leading to more efficient power 
consumption and better accuracy. We examine the performance 
of various machine learning algorithms such as decision tree, 
artificial neural network, support vector machine, Naive Bayes, 
K-nearest neighbors, and bagged tree, and deep learning 
algorithms such as recurrent neural network, convolutional 
neural network, and long short-term memory. The parameters of 
these algorithms are varied to determine the best performance. 
The results of our study show that multi-stage classification is 
more efficient than single-stage classification. In single-stage 
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classification with ANN, reducing the number of layers can save 
power but not improve accuracy. Increasing the number of 
layers can improve accuracy but consume more power. In 
single-stage classification with DT, changing the maximum 
depth has little effect on power consumption but can improve 
accuracy. Increasing the maximum depth can improve accuracy 
without increasing power consumption. For multi-stage 
classification, the study uses DT and ANN to test performance 
and vary parameters. In multi-stage classification with ANN, 
reducing the number of layers can save power but not improve 
accuracy. In multi-stage classification with DT, changing the 
maximum depth has little effect on power consumption and 
accuracy in the first step, but reducing the maximum depth can 
decrease accuracy in the second step. Our study shows that 
multi-stage classification can improve the performance and 
efficiency of AI models for detecting heart conditions, and the 
findings have implications for the development of smarter and 
more efficient healthcare systems. 
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