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Abstract—Early detection and continuous monitoring can
help reduce the complexity of treatment and recovery. For
this purpose, many modern technologies are being used like
smart wearable devices to make the diagnosis of different types
of human diseases and automated tutoring systems. There is
a vast improvement in the sector of human healthcare and
education delivery using artificial intelligence (AI). For these Al
algorithms, there can be high error rates if situational contexts
are ignored. Currently, there is no automated approach to detect
situational context. In this work, we propose a novel approach
to automatically detect situational context with a smartphone
context detection app using AI from minimal sensor modality.
We begin the process by converting a few sensor data from
the smartphone app to a multitude of axes, then determine
situational context from these axes by using a machine learning
algorithm. At first, we evaluated k-means algorithm performance
on the converted data and grouped them into different clusters
according to the contexts. However, the k-means algorithm has
many challenges that negatively affect its clustering performance.
For this reason, to automatically detect the situational contexts
more accurately we have performed different machine learning
(ML) algorithms to differentiate their characteristic parameters
and attributes. To train and test ML models, 145 features
were extracted from the dataset. In our case, we have used a
dataset with 53,679 distinct values to evaluate the performance
of different algorithms in detecting five situational contexts
of the users. Experimental result shows that the accuracy of
the Support Vector Machine, Random Forest, Artificial Neural
Network, and Decision Tree Classifiers are 95%, 99%, 97 %,
and 98% respectively. The most effective classifier overall is
Random Forest. This preliminary work shows the feasibility of
detecting situational context automatically from a few sensor data
collected from the smartphone app by converting the sensor data
to multiple axes and applying a machine learning algorithm.

Keywords: k-means algorithm, machine learning, situational
context detection, smartphone app

I. INTRODUCTION

The advancements in modern technology have brought
about remarkable changes in several aspects of our daily
life, making it an essential part of our existence. With the
progress made in health monitoring technology, the future of
smart devices looks promising, as they will be capable of not
only observing their environment but also keeping track of
crucial vital signs such as heart rate and breathing rate [1].
The accurate measurement of a patient’s condition is possible
with the availability of sensors in wearable devices, enabling
the continuous monitoring of physiological changes and the

progress of treatments. The interpretation of a user’s physical
situation by an automated system could alert the physician
about the patient’s condition; however, data dependency poses
a significant pitfall as data can sometimes be misleading.
Utilizing Al without context-aware systems can result in high
error rates and erode users’ trust. Therefore, the incorporation
of context detection would significantly reduce the error rate
in such cases.

So far, wearable technology has been mainly used for
monitoring a few health-related parameters [2]. To address
this issue, we have conducted research on how we can use
wearable sensors to gather data without adding unnecessary
complexity to people’s lives. One potential solution is to use
context-aware systems with smartphones, which are intelligent
systems that can suggest adaptive service choices based on
the user’s current context [3]. One of the main benefits of
smartphones is that they are portable and always with the
patients, making it easy to collect data on a continuous basis.
Situational context refers to the context in which a patient is
located or the situation they are in. For example, if a patient’s
heart rate suddenly spikes while they are driving, this could
be an indication of a heart attack or other cardiac event. By
using situational context, the smartphone can alert the patient
or their healthcare provider to take appropriate action. To make
sense of this data, we can apply various machine learning
(ML) models as artificial neural networks and Support Vector
Machines (SVMs) in classification tasks.

The objective of this research is to analyze the potential of a
smartphone app designed for situational context detection. The
study aims to determine the usefulness of using sensor data
to identify context and subsequently convert the collected data
into multiple-axes data to enhance the precision of detecting
situational context. We performed the k-means algorithm to
cluster the converted data according to their contexts. To detect
usual patterns and make predictions about the user’s situational
context, we employed different machine learning models. We
compared the classification accuracy results of these models
to determine which one is better at detecting contexts. By
analyzing the situational context and the data collected from
these axes, we can develop a procedure that can assist in
comprehending the patient’s condition.
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II. DATA COLLECTION AND PRE-PROCESSING
A. Smartphone Context Detection App

This work involves the use of smartphone sensors to collect
important data from the human body, which can then be con-
verted into multiple axes data. For instance, we can measure a
person’s heart rate using pulse-oximetry and their speed using
the GPS function on a smartphone. The collection of these
axes data from smartphone sensors is depicted in Fig. 1.
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() .
® Pulse oximetry /\
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IMU Acceleration

Sensor data Quantitative scalar axis

Fig. 1. (a) Steps of analyzing sensor data collection (b) Illustration example
of converting 3 sample data to 3 axes data (c) Axes Data collection from
smartphone

For our work, we have used a smartphone context detection
app that was developed in our lab and can be used on any
Android smartphone to collect sensor values. This app uses
the built-in sensors of the smartphone and records the activities
of the user. Then the collected data from the smartphone was
transferred to local computer via CSV file. Different page
formats of the smartphone context detection app are shown
in Fig. 2.

B. Data Validation

To ensure the accuracy of the collected data from the
smartphone app, we followed a protocol that involved a series
of steps. We have collected data on 5 situational contexts of the
users. The contexts are the sitting, walking, running, driving,
and sleeping activities of the users. For sitting, sleeping, and
driving positions we followed the same steps which are:

1) Start the smartphone context detection app and select
the sensors to collect the data.

2) Keep the smartphone in the user’s pocket or hand and
sit for 60 seconds steadily.

3) After 60 seconds, the app will be stopped and the
collected sensor data will be saved in CSV format.

For walking and running positions we followed some more
steps which are:

1) Start the smartphone context detection app and select
the sensors to collect the data.

2) Keep the smartphone in the user’s pocket or hand and
run or walk for 20 seconds.

3) Then rest or stand steadily for 10 seconds.

4) Again, run or walk for 10 seconds.

5) After that, rest or stand steadily for 10 seconds again.

6) Again, run or walk for 10 seconds. That’s how we
collected all together 60 seconds of running or walking
data.
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Fig. 2. Different pages of the Smartphone Context Detection App

7) After 60 seconds, the app will be stopped and the

collected sensor data will be saved in CSV format.

A series of sequential steps have been formulated for each
position, which are displayed on a PowerPoint slide. For
our work, we have collected the speed, time, altitude, GPS,
and accelerometer sensor values from the smartphone context
detection app.

C. Feature Extraction

Extracting features from raw data is a crucial step in data
analysis. Our study involved collecting 50 sets of data in
various user situations. Once we acquired the sensor data, we
processed them to extract a range of parameters to analyze the
situational context. In this work, we extracted multiple features
from all our collected datasets. Some of the extracted features
are outlined below:

1) Approximate Entropy: It is a statistical method used

to measure the complexity of time series data by quanti-
fying the degree of regularity or irregularity in the data

(4].
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2) Kurtosis: Kurtosis indicates whether the distribution is
flatter or more peaked than the normal distribution [5].

N Z( X)*
Kurtosis = 1/nz =1
i=1
Where X, a, and n are the sample mean, the sample
standard deviation, and the sample size, respectively.
3) Mean of absolute deviation: It is a statistical measure
that calculates the average of the absolute differences
between each data point in a dataset and the mean of
that dataset. It can be defined as [6]
N
Mean of absolute deviation = 1/nz [ Xit1 — X
i=1
Apart from the above-mentioned features, we have also

extracted several other features, which are enlisted in Table
I

TABLE I
KEY FEATURE LIST

Features

0_Absolute sum of changes
0_Autocorrelation
0_Centroid

0_ECDF Percentile Count_0
0_ECDF Percentile Count_1
0_ECDF Percentile_0
0_ECDF Percentile_1
0_ECDF_0-9

0_Entropy

0_FFT mean coefficient_0
0_FFT mean coefficient_1-10

0_Interquartile range
0_LPCC_0

0_Max power spectrum
0_Maximum frequency
0_Mean

0_Median

0_Median absolute deviation
0_Negative turning points
0_Neighbourhood peaks
0_Peak to peak distance
0_Root mean square

III. METHODS

Our work involves working with sensor data to extract
relevant information and convert it into multiple axes data.
To ensure accurate clustering and machine learning, we need
a substantial dataset categorized according to various axes and
contexts. This dataset will serve as the foundation for our
analysis, enabling us to identify patterns and make predictions
based on the situational context of the user.

A. K-means Algorithm

The K-means algorithm is an algorithm used for clustering
in machine learning and classification tasks. It works by
assigning each data point to the cluster with the nearest mean
or centroid, where the mean is the arithmetic average of
all the data points in that cluster. The algorithm begins by
randomly selecting K initial centroids, and then iteratively
assigns each data point to the nearest centroid and updates
the centroid to the mean of the assigned data points. The
algorithm stops when the centroids no longer change, or a
predetermined maximum number of iterations is reached. The
algorithm can be used for a variety of applications, such
as image segmentation, customer segmentation, and anomaly

detection [7].
The k-means algorithm involves several steps. They are

1) The number of desired clusters, denoted by K, is chosen.

2) The algorithm randomly initializes K centroids by se-
lecting K data points from the dataset without replace-
ment.

3) The distance between each data point and each centroid
is calculated, and the data points are assigned to the
nearest centroid.

4) The distance between each data point and each centroid
is calculated, and the data points are assigned to the
nearest centroid

B. Support Vector Machine

The SVM algorithm is a machine learning model that
identifies a hyperplane in N-dimensional space, which acts
as a decision boundary to separate data points based on their
attributes. Its goal is to find the hyperplane that has the widest
margin between two classes of data points among all possible
decision boundaries for classification [8].

The hyperplanes assist distinguish between data points from
various classes. The hyperplane’s dimension changes depend-
ing on how many input features there are; for two features, it
is a line, while for three features, it is a 2D plane. However, it
becomes difficult to visualize the hyperplane for feature spaces
with increasing dimensions.

The support vectors, or data points closest to the hyperplane,
are identified by the SVM algorithm, which then makes use
of them to maximize the margin between the classes [9]. As
a result, a classification approach that can handle both linear
and nonlinear data is produced. It has been demonstrated that
the SVM algorithm outperforms other classification methods
in a variety of domains, including image classification, bioin-
formatics, and text classification.

C. Random Forest

A Random Forest (RF) is a machine learning algorithm that
uses an ensemble of decision trees to make predictions [10].
Each decision tree in the forest produces a prediction, and the
class with the highest number of votes is considered as the final
prediction. The strength of RF lies in the idea of the wisdom
of crowds, where a large number of relatively uncorrelated
decision trees can work together as a committee to improve
the accuracy of the model [10].

The algorithm’s success depends on the decision trees’ min-
imal correlation with one another. The ensemble predictions
made by the uncorrelated trees can be more precise than
those made by any single tree. The reason for this is that
the trees may correct one other’s mistakes, and the forest can
progress in the right path with the support of the majority vote.
The proportion of test data that the model properly classifies
can be used to describe the classification accuracy of the RF
algorithm. The accuracy is described as

TP+NP

A -
CUTAY = Tp TN+ FP+FN
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In the formula: TP represents the correct positive; TN rep-
resents correct negative; FP represents the false positive; FN
represents false negative.

D. Decision Tree

Classification is very important in various fields, and one
of the most popular tools used for these tasks is the Decision
Tree (DT). In a DT, each internal node denotes a test on an
attribute, and each branch signifies the result of the test. The
terminal nodes, also known as leaf nodes, hold the class label.
The advantage of using a DT is that it can generate different
rules for decision-making, while requiring less computational
resources than other methods [11].

When a new input is presented to the classifier, it traverses
the decision tree from the root to a leaf node, following the
path that satisfies the decision rules based on the input features.
The anticipated class label for the input is represented by the
leaf node that is reached at the end of the journey. DT is
a highly well-known model for classification and prediction
problems since it can pinpoint the most crucial areas for
classification or prediction.

E. Artificial Neural Network

Artificial neural network (ANN) is a computational model
inspired by the structure and function of the human brain. The
ANN consists of a large number of interconnected processing
nodes that are organized into layers. The input layer receives
the data, the output layer produces the output, and the hidden
layers process the data in between. The nodes in each layer
are connected to the nodes in the next layer by weights, which
determine the strength of the connection between the nodes
[12].

The ANN is trained by adjusting the weights of the connec-
tions between the nodes, using a learning algorithm. During
training, the ANN learns to recognize patterns in the input
data and to produce the correct output for each input. Once
trained, the ANN can be used to classify new data or to make
predictions based on the input data. One of the key advantages
of ANNSs is their ability to learn and generalize from large
amounts of data, making them well-suited for applications
where traditional rule-based approaches are not effective [13].

IV. RESULTS

Our study focuses on capturing and analyzing human po-
sitions using smartphone sensor data. To achieve this, we
selected a combination of five axes and five situational contexts
that can be observed from a smartphone while being carried
by the user. By collecting data from a context detection app,
we were able to gather relevant sensor data for each axis and
context. These 5 axes and contexts are outlined in detail in
Table II.

A. K-means Algorithm Results

Once we collected the data from the smartphone app, we
proceeded to process it. Since our data set was unsupervised,
we decided to use the k-means algorithm, which is capable

TABLE 11
LIST OF AXES AND SITUATIONAL CONTEXTS

Axes Context
Speed (m/s) Rest

GPS Walk
Accelerometer Run
Altitude (m) Drive

Time of Day (hr) Sleep

of grouping similar data without the need for training. This
algorithm allows us to define the number of clusters for
our datasets. To optimize the performance of the k-means
algorithm with our dataset, we fine-tuned its parameters, as
shown in Table III. By doing so, we were able to obtain more
accurate and reliable results from our clustering analysis.

TABLE III
K-means ALGORITHM PARAMETER OPTIMIZATION
Parameter Value
"n_clusters’ 5
n_init’ 10

‘random_state’ 0

Algorithm Auto
’initialization’ ‘k-means++’
’max_iteration’ 300

From Fig. 3, we can observe the spatial arrangement of
the data, which has been clustered into 5 distinct situational
contexts based on various conditions. By utilizing our dataset,
we can identify the specific cluster that corresponds to a test
subject’s position. This approach provides us with a reliable
means of discerning a subject’s situational context from the
test values.

4/ |
Time=>

8 AT 50
1 Tt
2

Speegey

Fig. 3. 3D presentation of the clustering data showing 5 clusters

As we know the k-means algorithm is designed for cluster-
ing tasks, it is not suitable for multiclass classification tasks
where each data point is assigned to one of several predefined
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classes. One of the main problems with using k-means for the
detection of situational context is that it is not designed to
handle discrete data. Another issue is that k-means assumes
that the clusters are spherical and have similar sizes. This
assumption may not hold for multiclass datasets, where the
classes may have different shapes and sizes, and may overlap
with each other. For this reason, to get a more defined detection
of situational contexts of our users’ different positions we
have analyzed the dataset with 4 machine learning models
and compared the results to find the best-performing model.

B. Machine Learning Model Results

To get a proper detection and to compare the results, we
have analyzed our dataset with 4 machine learning models.
They are SVM, RF, DT, and ANN. At first, we trained our
dataset with different groups. The 3 dataset split groups are
as follows:

In the first approach, the dataset was devided into the
training set as 80% and the testing set groups as 20%.

For the second approach, we have split the entire dataset into
three groups: training, validation, and testing sets as 70%, 15%
and last 15% respectively. This allows us to evaluate our model
on a larger testing set and validate the model’s performance
during the training process.

Lastly, to ensure a robust and accurate evaluation of our
model’s performance, we have employed the k-fold cross-
validation estimator, to reduce the variance in performance
estimates. With this approach, we divided our dataset into k
distinct segments and trained and tested our model k times,
with each segment serving as a testing set once. By setting
k to 10, we obtained a diverse range of testing sets, which
enabled us to evaluate our model’s performance in various
scenarios.

After training our dataset using the best parameter variation
configuration for each of our three dataset distributions, accu-
racy and performance metrics have been computed. A list of
critical parameters of the models is shown in Table IV

TABLE IV
CLASSIFIER KEY PARAMETERS
Classifier | Combination of hyperparameter
SVM Kernal="rbf’
RF Number of trees=100
DT Max_depth=7
ANN Optimizer="SGD’, three layers of neurons

The performance of classifiers is reported in Fig. 4, where
the accuracy of different models is presented for different
dataset distributions. From our calculated results, we can say
that RF performed the best. In Tables V, VI, VII, and VIII
we have presented the distribution of the predicted and true
class prediction comparison for 4 models for 10-fold cross-
validation where the models perform the best.

Table IX presents the precision, recall, and fl-score for
different models and distributions. Based on these metrics, the
RF classifier shows promising results and can be a suitable

TABLE V
PRESENTATION OF TRUE CLASS AND PREDICTED CLASS FOR SVM MODEL
WITH 10-FOLD CROSS VALIDATION SPLIT

Predicted — | Rest | Walk | Drive | Sleep | Run
True |
Rest 866 0 0 235 3
Walk 0 1037 0 0 12
Drive 0 0 1038 0 0
Sleep 275 56 0 755 0
Run 93 48 0 0 984
TABLE VI

PRESENTATION OF TRUE CLASS AND PREDICTED CLASS FOR RF MODEL
WITH 10-FOLD CROSS VALIDATION SPLIT

Predicted — | Rest | Walk | Drive | Sleep | Run
True |
Rest 1049 0 0 55 0
Walk 0 1049 0 0 0
Drive 0 0 1038 0 0
Sleep 1 0 0 1085 0
Run 0 0 0 0 1123

choice for our purpose. The performance metrics presentation
of 4 models for different dataset distributions are also shown
in Figs 5, 6, and 7.

V. DISCUSSION

The results of our study show that the RF model outper-
forms all other models when it comes to classifying five situa-
tional contexts using the dataset. With an accuracy rate of up to
99%, the RF model has consistently shown better performance
in all of our experiments, whether the dataset was split into
an 80/20 split, a 70/15/15 split, or a 10-fold cross-validation
split. RFs are highly scalable and can handle large datasets
with millions of observations and thousands of features. This

TABLE VII
PRESENTATION OF TRUE CLASS AND PREDICTED CLASS FOR DT MODEL
WITH 10-FOLD CROSS VALIDATION SPLIT

Predicted — | Rest | Walk | Drive | Sleep | Run
True |
Rest 1029 0 0 75 0
Walk 0 1049 0 0 0
Drive 0 0 1038 0 0
Sleep 31 0 0 1055 0
Run 17 0 0 0 1106
TABLE VIII

PRESENTATION OF TRUE CLASS AND PREDICTED CLASS FOR ANN MODEL
WITH 10-FOLD CROSS VALIDATION SPLIT

Predicted — | Rest | Walk | Drive | Sleep | Run
True |
Rest 1028 0 0 74 2
Walk 0 1046 0 0 3
Drive 0 0 1038 0 0
Sleep 13 0 0 1073 0
Run 0 9 0 0 1114
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Fig. 4. Accuracy result comparison for different classifier models with 3 dataset distributions

TABLE IX
PRECISION, RECALL AND F1-SCORE PRESENTATION OF DIFFERENT MODELS FOR 10-FOLD CROSS-VALIDATION SPLIT FOR DIFFERENT SITUATIONAL
CONTEXTS
SVM RF DT ANN
precision | recall | fl-score | precision | recall | fl-score | precision | recall | fl-score | precision | recall | fl-score
Rest 1 0.93 0.97 1 0.97 0.99 1 0.96 0.98 1 0.93 0.98
Walk 1 1 1 1 1 1 1 1 1 1 1 1
Drive 1 1 1 1 1 1 1 1 1 1 1 1
Sleep 0.94 1 0.97 0.94 1 0.99 0.94 1 0.99 0.98 1 0.97
Run 1 1 1 1 1 1 1 1 1 1 1
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Fig. 5. Performance Metrics presentation of all models for Dataset with 80/20
split

algorithm can be parallelized and distributed across multiple
processors, making it efficient for big data applications. RFs
are relatively easy to interpret and are also known to produce
high-accuracy results, especially for complex datasets with
high dimensionality. The ensemble nature of the algorithm and
the use of bagging and feature randomness techniques help to
reduce overfitting and increase generalization performance.
On the other hand, the SVM performs ineffectively with
our huge dataset. The SVM is often particularly tricky for
expansive datasets, where commotion and exceptions are more
likely to be displayed. SVM can take a long time to prepare

model

Fig. 6. Performance Metrics presentation of all models for Dataset with
70/15/15 split

expansive datasets, particularly on the off chance that the data
is not well isolated or the part work is complex. This may
make the preparing handle unreasonable for real-time or time-
sensitive applications.

VI. CONCLUSION

In this paper, we introduce a novel method for detecting
situational context using a limited number of sensors from
smartphone. The data collected from a smartphone context
detection app was used to develop a classification model for
various situational contexts. The data was transformed into
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Fig. 7. Performance Metrics presentation of all models for Dataset with 10-
fold cross-validation split

multiple axes data, and various machine learning models were
performed using real-time data. The results demonstrated that
the random forest (RF) model outperformed other models on
all three datasets. Our proposed approach has the potential
to enhance the performance of automated algorithms for
disease detection by optimizing error rates. This approach
demonstrates the capability to identify and categorize user
situational context from extensive datasets, providing a novel
and feasible solution to an important problem. Overall, the
presented method holds significant potential for improving
the accuracy and reliability of situational context detection
systems.
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