ESAIM: M2AN 57 (2023) 3275-3302 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an /2023071 WWW.esalm-m2an.org

ON THE CONVERGENCE OF AN IEQ-BASED FIRST-ORDER SEMI-DISCRETE
SCHEME FOR THE BERIS-EDWARDS SYSTEM

FRANZISKA WEBER! AND YUKUN YUE>*

Abstract. We present a convergence analysis of an unconditionally energy-stable first-order semi-
discrete numerical scheme designed for a hydrodynamic Q-tensor model, the so-called Beris-Edwards
system, based on the Invariant Energy Quadratization Method (IEQ). The model consists of the Navier—
Stokes equations for the fluid flow, coupled to the Q-tensor gradient flow describing the liquid crystal
molecule alignment. By using the Invariant Energy Quadratization Method, we obtain a linearly implicit
scheme, accelerating the computational speed. However, this introduces an auxiliary variable to replace
the bulk potential energy and it is a priori unclear whether the reformulated system is equivalent to the
Beris-Edward system. In this work, we prove stability properties of the scheme and show its convergence
to a weak solution of the coupled liquid crystal system. We also demonstrate the equivalence of the
reformulated and original systems in the weak sense.
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1. INTRODUCTION

Liquid crystal is an intermediate state of matter between the solid and liquid phase and usually exists in
a specific temperature range. On one hand, it possesses the ability to flow of liquids, and on the other hand,
the molecules are ordered, (neighboring molecules roughly point in the same direction) similar as in a classical
solid. Due to this, liquid crystals have unique physical properties that are used in various real-life applications,
such as monitors, screens, clocks, navigation systems, and others. Typically, liquid crystals consist of elongated
molecules of identical size which can be pictured as rods. The inter-molecular forces make them align along a
common axis [3, 36].

Mathematical models for the dynamics of liquid crystals have been intensively studied in the last decades.
For an overview, see [16,25-27,37] and the references therein. Here we will consider the Q-tensor model by
Landau and de Gennes [15] and its numerical approximation. In this model, the orientation of the liquid crystal
molecules is described by the Q-tensor, a symmetric and trace-free d x d-matrix field where d = 2,3 is the
spatial dimension. It can be interpreted as the deviation of the second moment of the probability density of the
directions of liquid crystal molecules from the isotropic state [29]. When the liquid crystal is in an equilibrium,
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the Q-tensor minimizes a free energy, the so-called Landau—de Gennes free energy [5,30],

Fra(Q) = / F5(@Q) + Fr(@).

where  C R?, is the spatial domain, and we assume that it has a sufficiently smooth boundary. Fp is the bulk
potential and Fg is the elastic energy density given by

Fp@ = 5 @) — 3 (@) + (@)’ Fu(@ = 5IVaP

where a, b, ¢, L are constants with ¢, L > 0. In particular, ¢ > 0 will guarantee the existence of a lower bound
of the bulk potential, which is vital for the following analysis. In a non-equilibrium situation, the dynamics of
the Q-tensor are governed by a nonlinear system of PDEs, consisting of the gradient flow for the Q-tensor field
coupled to the Navier—Stokes equations for the underlying fluid flow [7,43,44],

U+ (u-Viu=—-Vp+puAu+V- - - HVQ, (1.1a)
V-u=0, (1.1b)
Qi +u-VQ—-S=MH, (1.1c)

subject to initial and boundary conditions,

Q‘t:() = QOa Q|6Q><[07T] =0, (1.28,)

ul,_y = uo, u|69><[O,T] =0, (1.2b)

where (HVQ), = szzl H;;0rQ;j and (u-VQ);; = ZZ=1 upOpQ;j for all 1 < k, 4,7 < d. u denotes the velocity

field, and p represents the pressure. The tensors S and ¥ appearing in the system (1.1a)—(1.1c) above are given
by

S = Su,Q) = WQ — QW +£(@D + DQ) + %D _9%(D: Q) (Q + ;I) (1.3)

and
S — %(Q,H) — QH — HQ — ¢(HQ + QH) — %H +26(Q: H) <Q + ;1> (1.4)

with
D= %(Vu +(Vu)'), W= %(Vu —(Vu)T") (1.5)

representing the symmetric and skew-symmetric parts of the matrix Vu. Here S denotes the rotational and
stretching effects on the liquid crystal molecules generated by the flow. The constant & € R, whose value
is contingent upon the specific molecular characteristics of a given liquid crystal, quantifies the proportion
between the tumbling effect and the aligning effect that a shear flow would exert on the liquid crystal director
[32]. X is an elastic stress tensor term [10]. The notation (- : -) represents the standard Frobenius inner prodcut of
two matrices, see the notation Section 2.1 for further details. The tensor H is the molecular field corresponding
to the variational derivative of the free energy Eprc(Q) and given by

0FLc
o

Notice that the last term in the definition of X, (1.4) results in a gradient term after taking the divergence as
it is the case in (1.1a). Hence we can modify the pressure to include this term and instead use the modified
definition of X:

2¢

Y=YQH)=QH-HQ-¢{HQ+QH) - — H+2((Q: H)Q. (1.7)

H—

~ 28 - 0@ - 0(Q* - L @) - cu@?) Q] (16)
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Indeed, as we will be concerned with Leray-Hopf solutions in the following, these definitions can be used
interchangeably. In the following, we will always use definition (1.7) for ¥ and the accordingly modified definition
of the pressure. System (1.1a)—(1.7) is equivalent to the Beris-Edwards model as it is shown in Section 2.1 of
[1].

Our goal in this work is to provide a convergence proof for a semi-discrete numerical scheme for (1.1a)—(1.7).
The existence, uniqueness and regularity theory for this system have been studied in, e.g., [1,2,10,21,22,32,33].
Numerical simulation and analysis of this and related models have been undertaken in, e.g., [4,6,8,13,14, 28].
Due to the system being highly nonlinear, for stability of the numerical method, it is crucial to retain a discrete
version of the energy dissipation law satisfied by the system at the level of the numerical scheme. However, this
often results in nonlinearly implicit schemes which require the iterative solution of a nonlinear algebraic system
at every timestep. In order to circumvent this issue, the invariant energy quadratization (IEQ) method has been
introduced for nonlinear gradient flows [23,24,39-42,44]. The key idea is to introduce an auxiliary variable for
the bulk potential term which is then discretized as an independent variable. This results in a linearly implicit
scheme which is unconditionally energy-stable. A discrete version of the energy dissipation property is retained
while enhancing computational efficiency.

Specifically, in the case of system (1.1a)—(1.7), the auxiliary variable r is introduced [44]:

'@ - \/ 2(§ @) - § (@) + § 7@ + o). (1.9

where Ag > 0 is a constant ensuring that r is always positive for any Q € R?*?. This is possible since one can
show that the bulk potential Fg(Q) has a lower bound, see Theorem 2.1 of [44]. If we then define

V@ - Q- 1[Q* - u@)1] + cu@)a

it follows that

@) _ V(@) _
Q Q) P(@Q), (1.9)
for a trace-free, symmetric tensor Q. Then system (1.1a)—(1.1c) can be reformulated as

u+w-Vu=-Vp+uAu+V -X - HVQ, (1.10a)
Vou=0, (1.10b)
Qi +u-Q—8=MH, (1.10¢)
re = P(Q) : Q4, (1.10d)
H =LAQ —rP(Q). (1.10e)

In [44], the authors proposed an energy stable scheme for the reformulated system (1.10a)—(1.10e), and proved
that it satisfies a discrete version of the energy dissipation law. Yet, to the extent of our knowledge, there is no
convergence proof for a numerical scheme developed for the Beris-Edwards model utilizing the IEQ method, nor
is there any existing proof of convergence to weak solutions to the Beris-Edwards for any numerical scheme. The
main issue is that the reformulation of (1.1a)—(1.7) to (1.10a)—(1.10e) is only valid at the formal level assuming
solutions are smooth. However, this may not be the case for this system, given that it involves coupling to
the incompressible Navier—Stokes equations. Therefore, at least in three space dimensions, at most global weak
solutions can be expected. Specifically, the existence of weak solutions in R3 was proven in the work of Paicu
and Zarnescu [32], and the existence of weak solutions in bounded domains with Dirichlet boundary conditions
was shown by Guillén-Gonzélez et al. [22]. To the best of our knowledge, this is the state-to-the-art regarding
this system. Furthermore, a priori, the auxiliary variable r has less integrability than the square root of the
bulk potential. While the square root of the bulk potential is expected to be in the Lebesgue space L? in space,
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the auxiliary variable is only expected to be in L? according to the reformulated energy dissipation law. In this
work, we will show how to circumvent this issue and obtain a priori estimates for the numerical approximations
which are sufficient for passing to the limit and obtaining a weak solution of (1.1a)-(1.7). Hence, this can also
be seen as an alternative proof of existence of global weak solutions for the Beris-Edwards system.

The focus of this work is on a semi-discrete scheme for the reformulated system (1.10) that uses the projection
method by Chorin and Temam [11,38] for the discretization of the Navier—Stokes subsystem. A version of this
scheme was initially proposed in [44]. We believe that many of the new ideas we are introducing could facilitate
the convergence proof for a fully-discrete scheme also. In particular, we show here how to overcome the lack
of regularity for the auxiliary variable r, one of the main obstacles encountered for proving convergence. This
issue needs to be solved in the fully-discrete case as well. Nevertheless, further challenges can be expected in the
fully-discrete case: A suitable spatial discretization will need to respect a discrete version of the energy law of
system (1.10). For a finite difference scheme, due to the coupling between variables and the nonlinear terms, this
will require the careful design of discrete chain rules and integration by parts identities, possibly using staggered
grids. For a finite element scheme, since the incompressible Navier—Stokes equation appear as a subsystem in
the Beris-Edwards equations, any convergence proof requires a convergence proof of a fully-discrete scheme for
the Navier—Stokes equations. As far as we know, such a proof is currently not available for a discretization using
finite elements and the projection method in 3D under no additional regularity assumptions. For these reasons,
we here focus on the semi-discrete scheme, while the fully-discrete is the subject of future research.

The rest of this article is structured as follows: In Section 2, we introduce the notations and some standard
results that will be used in the following. Then we will construct and analyze a numerical scheme designed for
system (1.10a)—(1.10e) in Section 3. We will also provide a discrete energy dissipation law in this section. In
Section 4, we provide the convergence argument. Finally, we will show the equivalence between weak solutions
for the reformulated system and weak solutions of the original system (1.1a)—(1.6).

2. PRELIMINARIES

2.1. Notation

Let © C R? be a bounded domain with C? boundary. We denote the norm of a Banach space X as || - || x
and its dual space by X*. If we omit the subscript X, it represents the norm of the space L?(Q2). For simplicity,
when used as a subscript, we will not write the symbol € if we refer to a function space over domain €2, i.e.,
L? = L?(Q). The inner product on L? will be denoted by (-,-). Vector-valued and matrix-valued functions will
be denoted in bold form.

For two vectors u,v € R?, we set their inner product to be u - v = Z?:l u;v; and for two matrices A, B €
R4 we use the Frobenius inner product A : B = tr(ATB) = Zg’j:l A;;B;j. The norm of matrix A is
then given by |A| = |A|r = VA: A. Finally, the derivatives of matrix A are defined as a matrix, that is,
0,A = (0;Ajk)jr and VA = (014, ---,04A). When we write ||A||, ||[VA|, we mean ||A| = (fQ\A|2dx)% and

1
2

IVAI = (fo X201 10.AP do)

Throughout this paper, we will denote LP spaces (e.g., L*(Q2) for square integrable functions defined over
Q), Sobolev spaces and Bochner spaces in standard ways, and will not distinguish between scalar, vector-valued
and tensor-valued function spaces when it is clear from the context. In particular, we use L?(0,T; X) to denote
the space of functions f : [0,7) — X which are LP-integrable in the time variable ¢t € [0,7). We will denote
the space LP(0,T; LP) as LP([0,T) x ) in the following. We define S to be the space of trace-free symmetric
R4*d matrices,

d
Sg = {A ERdXd : A'Lj :AjiaZAi’i =0,1<4,5< d}

i=1
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If there is no additional explanation, when we refer to a matrix-valued function @ (including
Q" 1Q™, Qat,Qns,,, etc.), we mean Q : Q — SZ. We will use the subscript o to indicate the divergence-
free vector spaces, for example,

0 (Q) = {6 € CX(Q:V ¢ =0}, L2(Q) = {$e L) :V ¢ =06 nlog =0} = Cx@Q) .

H; ,(9) = Hy (@) N L(Q).

We denote the Leray projector by P : L?(Q) — L2(Q), which is an orthogonal projection induced by the
Helmholtz-Hodge decomposition [38] f = Vg + h for any f € L?(Q). Here, g € H'(Q) is a scalar field, and
h € L2(Q) is a divergence-free vector field. Then for all f € L?(Q), it holds that Pf = h.

We will use C to denote a generic constant, which might depend on parameters u, a,b,c, M, L, &, d, domain

Q, and initial values (w;p,@;n). If a constant depends on any other factors, it will be specified. The product
space of two Banach spaces X and Y will be denoted as X x Y for all (z,y) € X xY wherez € X,y €Y.

2.2. Technical lemmas and definition of weak solutions

Here we will list the technical tools that will be frequently used in the following analysis. To obtain higher
order regularity of @ in space, we recall Agmon’s inequality ([12], Lem. 4.10).

Lemma 2.1. For any f € H*(Q) N H}(Q),

1fllz < ClFIZANF e (2.1)

The following lemma states an a priori estimate for Laplace operator ([19], Thm. 3.1.2.1).

Lemma 2.2. There exists a constant C' which only depends on the diameter of Q, such that

£ 12 < CIALI, (2.2)
for all f € H*(Q) N H ().
We will also use the Aubin-Lions lemma [9, 35]:

Lemma 2.3. Let Xo C X1 C Xo be three Banach spaces. Assume that the embedding of X1 into Xo is continu-
ous and that the embedding of Xo into X1 is compact. Let p,r € [1,00]. Now if a family of functions F satisfies
that for any f € F,

df

f € Lp([O7T)aXO)a E € LT([OvT)7X2)
Then if p < 0o, F is a compact family in LP([0,T); X1). If p = oo, then F is a compact family in C([0,T); X1).

Definition 2.4. By a weak solution of system (1.1a)—(1.1c), we mean a triple (u, @, H), withu : [0,T)xQ — R4,
Q:[0,7)x Q2 — R and H: [0,T) x Q — R4 which satisfy

(i) Q(t,x) and H (t,xz) are trace-free and symmetric and u(t, ) is divergence free for almost every (¢, x).
(ii) They attain the initial values

Q(O,I) = QO(QS) € Hl(Q)7 U(O, :ZJ) = UO(I) € L2(Q)’ <u07 v¢> =0,

for any smooth function ¢ € C°(Q).
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(iii) The triple (u, @, H) satisfies the regularity condition
Q € L>(0,T; Hy () N L*(0,T; H*(Q)), we L>(0,T;L2(Q)) NL*(0,T; H' (), H € L*([0,T) x Q).

(iv) (u,Q, H) satisfy the weak formulations

/OT/Qu.aﬂl)dmdt—I—/Quo(x)-1/)(0,x)dx+/oT/Qii: w;u;O;tp; da dt

ij=1
:/OTA[<QH—HQ>—£<HQ+QH>—%fHHé(Q:H)Q} Vi dadt
Jru/OT/QV'u,:V't/)d:L’dtJr/OT/Q(HVQ)~'t/1dxdt, (2.3a)

/OT/QQzattpdxdt—F/QQo(a?):<p(0,a:)dx+/OT/QQ;(u.vgo)dxdt

+/OT/Q[WQQW+£(QD+DQ)+Z§D2€(D:Q)Q] pdads

:—/OT/QMH:godxdt, (2.3b)
/OT/QHltﬁdxdt: —/OT/Q(LMiIVQij -V¢ij> dx dt
_ /OT/Q(GQ _ b((Q2) - ;tr(Q%) +ctr(Q2)Q) L pdadt, (2.3¢)

for all smooth divergence-free function 9 : [0,7) x @ — R? and all smooth matrix function ¢ =
(%j)?,j:17¢ = ((bij)zd,j:l 10, T) x Q — R¥*4 which are compactly supported within [0,7") x €.

Definition 2.5. By a weak solution of system (1.10a)—(1.10e), we mean a quadruple (u,Q,H,r), with u :
0,T)x Q2 —RL Q:[0,T)x Q— R H:[0,T) x Q— R and r:[0,T) x 2 — R,

(i) Q(t,z) and H (t,z) are trace-free and symmetric and u(t,z) is divergence free for almost every (t,x).
(ii) They attain the initial values

Q0,2) = Qo(x) € H(Q), u(0,7) =uo(z) € L*(Q), r(0,2) =r(Qo(x)), (ug, V) =0,

for any smooth function ¢ € C°(Q).
(iil) (w,@,r) satisfy the regularity condition

Q € L™(0,T; Hy () N L*(0,T; H*()),  we L>(0,T;L2(Q)) N L*(0,T; H'()),
H e L*(0,T;L*()), r e L>®(0,T; L*(Q)).
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(iv) (u,@,H,r) satisfy the weak formulations

/OT/Qu.at?ﬁdﬂcdt—k/QUO( )-9(0,2) dx+/ / Zuzug O, dz dt

ij=1
=/OT/Q[<QH—HQ>—5<HQ+QH>—§H+2§<Q:H)Q] .V dedt
+M/T/Vu:V¢dxdt+/T/(HVQ)-'qbdxdt, (2.4a)
/ /Q 3t<pd:cdt+/Q0 ¢(0,x d:z?f/ / u-V)Q): pdxdt

+ WQ—QW+§(QD+DQ)+—£D—2§(D:Q)Q cpdadt
0o Jo d

—/T/ MH : pdadt (2.4b)

/ /r¢tdxdt+/7‘o( )o( / / ) Qrodadt, (2.4¢)
/()T/QI{:¢501”361’5:_/OT/Q ZVQu Ve dt — / / L dadt, (2.4d)

1,0=1

and

for all smooth divergence-free function 9 : [0,7) x Q — R%, all smooth matrix function ¢ = (goij)ﬁjzl,(ﬁ =
(¢ij)§l,j=1 210, T) x Q — R¥*4 and smooth function ¢ : [0,T) x Q — R which are compactly supported within
[0,T) x Q.

Remark 2.6. Due to the density of smooth functions with compact support in L2(0,7T;LP(2)) and
L0, T; Wol’p(Q)) for 1 < p,q < oo and the regularity requirements on (u, @, H,r) (together with the upcoming
Lems. 3.9, 3.10 and Cor. 3.11 for the regularity of the time derivatives), we can reexamine the weak formu-
lations (2.4) and integrate the time derivatives by part to weaken the requirements on the test functions to
Y € L*(0,T; Hy , () N WH8(Q)), ¢ € L*(0,T; L5(2)), ¢ € LS([0,T] x Q), and ¢ € L*(0,T; Hj(€2)) (by inter-
preting fQ Owu - ¥ dzx as a duality product in the space V := H&,U N WL6(Q)). By the same argument, the
requirments on the test functions in Definition 2.4 can be weakened.

Then for the treatment of the convection term, we consider a bilinear form

B(u,v) = (u- Vv + (V- -u)v. (2.5)

It is not hard to verify the following properties of B (see [31, 34, 38] and the references therein).

Lemma 2.7. We define the trilinear form
B(u,v,w) = (B(u,v),w). (2.6)

Then
B(u,v,w) = —B(u,w,v), (2.7)

for allu € L*(Q) with L?()-integrable divergence, and v,w € H (). Moreover, B(u,v,v) = 0.
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The following cancelation property will play a key role in deducing the discrete energy dissipation law in the
next section.

Lemma 2.8. For any u € H}(Q2), we have

<VU>Z(Q3H)> + <H7S(an)> =0, (28)
for all symmetric trace-free matrices @ € L>=(Q),H € L*(Q).

Proof. From definitions (1.3) and (1.7), we have

(H.500.Q)) = (H.WQ - QW + @D + DQ) + D~ 26(D: Q)(Q+ 1) ),

(Vu.2(Q. H)) = (Vu.QH - HQ - €(HQ + QH) - % H +26Q  H)Q).

Comparing these terms and utilizing the symmetry and trace-free property of H and @, we observe that

d
(HWQ — QW) = /Q Z Hij(Wir.Qrj — Qi Wij)

i,7,k=1

d
= /Q Z (Wi Hij Qi1 — WijQriHy;) = (W, HQ — QH) = —(Vu,QH — HQ),

ij,k=1

d d
(H,{(@QD + DQ)) Z/Q Z EH;j(QikDrj + DirpQrj) Z/Q Z §(DirHijQjk + DijQriHij)

ij,k=1 i\j,k=1

— (D, £(HQ + QH)) = £(Vu, HQ + QH),
(m.5D) = (vu2em). (#1260 Q) = 2 [ (Vu: QU : Q) s = ~(Vu2(Q: H)Q),

<H, %E(D : Q)I> - % /Q(D . Q) tr(H) dz = 0.

From these calculations, we can conclude that (2.8) holds true. O

We also recall the following lemma from Theorem 4.11 of [20], establishing Lipschitz continuity of P. We will
use this lemma to pass to the limit in the numerical approximations introduced below and obtain convergence
to a weak solution as in Definition 2.5.

Lemma 2.9. The function P is Lipschitz continuous, that is, there exists constant L > 0 such that for any
matriz Q,0Q € R3*3,

IP(Q+4Q) — P(Q)| < L|5Q). (2.9)
3. CONSTRUCTION AND ANALYSIS OF THE NUMERICAL SCHEME

We start by describing the first-order semi-discrete numerical scheme for system (1.10a)—(1.10e). It is based
on the projection method, a fractional step method widely used for the numerical approximation of the Navier—
Stokes equations [11, 34, 38]. It consists of two steps. Let At > 0 be the time step size.

Given initial data (u®,Q°,p%) € H(Q) x (H}(Q) N H?(Q)) x H(Q), we set P° = P(Q°),r° = r(Q") and
(w1,Q 1 p~tr 1) =@’Q"p’r°). Then forn = 0,1,..., we update (u"+1, Q"+ pn*tt H"+1 r7+1) through
the following two steps.
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Step 1. Given (u",Q",p",r"™) € HI() x (HJ)NH2(Q) x H(Q) x L*(Q), we seek
@ QML H M ) € HE(Q) x (HY(Q)NH?(Q)) x L*(Q) x L*(Q) as a weak solution of the
following system with boundary conditions @" |5 = 0, Q"*!|sq = 0,

<“+At‘“¢> B ) = —(Vp" ) - (VAT V) - (B g), (3a)
— (H"'vQ",v)

<W,¢> (@ VQ" ) = (" ) + M(H" ), (3.1b)

(Pt ) = (P™: (Q"T — Q™)) (3.1c)

(H"',¢) = —L(VQ"',V¢) — (r"T'P" ¢) (3.1d)

for all smooth vector-valued function 1, smooth scalar function 7 and smooth matrix-valued function ¢, ¢
with compact support in [0,7T") x €. Here

s"H =@t Qm), = »(Q", H™), P" = P(Q") for all n > 0. (3.2)

Step 2. Then we project @" ! onto a divergence free function u™*! using the following procedure: We define
("t pntl) € HY(Q) x H%(Q) through the following equations with boundary condition u™*! - n|sq = 0

and 22 — 0,
n+1l __ ~n+1
<“At",v> = 2"t = p", V), (3.3a)
1 ~T n
(TP, 9¢) = 5 (@4, 90 + (V" 90, (3.3)

for all vector-valued v € L?(Q) with square integrable divergence and scalar function ( € H'(Q).
Remark 3.1. The second step can be understood as applying the Helmholtz decomposition to 4", in par-
ticular, u"t! = Pa" . In particular, using Vn for any € H'(Q) as a test function in (3.3a), we obtain

(", Vn) = 0. (3.4)
Here s = s(u, Q) is given by
s(u, Q) = S(u,Q) — Z—E(V ~u) . (3.5)

Clearly, if u is divergence free, this definition coincides with the definition of S in (1.3). However, the velocity

field "™ obtained in the first step of the scheme is not necessarily divergence free and hence S may not be

trace-free, a fact which is needed to show that the scheme conserves the trace-free properties of @ and H, as

we will see later. From the proof of Lemma 2.8, we notice that the trace-free property of H is in fact necessary

for obtaining the cancellation property (2.8), which in turn is needed for showing the discrete energy balance.
Then the following version of Lemma 2.8 holds:

Lemma 3.2. For anyu € H}(Q), we have
(Vu, X(Q, H)) + (H,5(u,Q)) = 0, (3.6)

for every symmetric trace-free matriz @ € H}(Q) N H?(QY), H € L?*(R).

Proof. The proof is the same as the proof of Lemma 2.8 after noting that %(V ~u)trH = 0. O
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3.1. Well-posedness of the scheme

First, we need to guarantee a solution of (3.1)—(3.3) with the required properties exists at every step n.
We start by noting that the scheme preserves the trace-free and symmetry property of @ and H, i.ce., if Q™
is trace-free and symmetric, then Q"+! and H"™*! will be also. Since the second step of the scheme does not
modify @ and H, we only need to consider the first step:

Lemma 3.3. IfQ" is trace-free and symmetric, then Q"' and H" 1 computed through (3.1) are also trace-free
and symmetric almost everywhere.

Proof. We use tr(Q"+1)I (where I is the d x d identity matrix) as a test function in (3.1b):

<Qn+1At_Qn’tr(Qn+l>I> + (@ vQ, tr(QUT) — (8" tr(QUTHT) = M(H™ tr(Q™))

which can be rewritten as

<tr(Q"“) — tr(@")
At

,tr(Q”+1)> @ V@), (@) — ((s™), (@)
— M (H), (@),

By assumption, Q" is trace-free, hence this becomes

Aithr(Q"“)H2 — (tr(s" ), tr(Q")) = M {(tr(H" ™), tr(Q™1)). (3.7
From the definition of "1 in (3.5) and (3.2), it follows that

26

(tr(s 1), 6) = (tx(S@"+, Q). 8) — <d2(v Y (T), ¢>

= <tr (W”HQ” - Q"WnH) + 5tr(Q”b”+1 + D”HQ") + %tr (D”H)

%(f)"*—l : Q”) tr(I) — %(V .ﬁn+1)7¢> —0 (3.8)

—2(D" QM) w(@") - >

for any test function ¢ : 2 — R with zero trace and contained in H?(f). In order to deal with the last term,
we take tr(Q"1)I as a test function in (3.1d):
(H™, 4 (Q)T) = —L(VQ™, ¥ (tx(Q"1)T)) — ("1 P, tx(Q"+1)1),
which again, we can write as
(). (@) = ~ L]V (@) - (1 (P (@),

From equation (1.9), where due to P" = P(Q™) and the condition tr(Q™) = 0, it follows that tr(P") = 0
Therefore the last equation simplifies to

(o (H"), Q")) = L[ V(@)

Plugging this into (3.7), we obtain

Al @)~ (s ). (@) = ~ML| T 1r(@)|* <0
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and so tr(Q™*!) = 0 almost everywhere.
For the symmetry, we consider Z"+1 = Q"+ — (Q"*!)T as a test function in (3.1b):

<Q71+1AQ” Qn+1 (Qn+1)T> + <ﬂ,n+1 . VQN’Qn+1 _ (Qn+1)T> . <Sn+1,Qn+1 - (Qn+1)T>
= u{E Q- (@)
which can be rewritten as

1 <Q”+1 -@+) - (- @)
2

N ,Qn+1 _ (Qn+1)T> + %<ﬂn+1 . V(Qn o (Qn)T)’Qn+1 N (Qn+1)T>

. %<sn+1 ( n+1) Qn+1 (Qn+1)T> _ %<H7’L+1 _ (Hn+1)T7Qn+1 _ (Qn+1)T>.

Since Q" is assumed to be symmetric, a simple calculation reveals that s”t! is also symmetric and so the
previous identity simplifies to

sl - @) = (E - @y T - @), (3.9)

We use Z"T! as a test function in the equation for H" !, equation (3.1d):
<Hn+17Qn+1 _ (Qn+1)T> _ _L<in+1’v(Qn+1 _ (Qn+1)T>> _ <Tn+1Pn7Qn+1 _ (Qn+1)T>’
which we can rewrite as
1
G ) T - @) = v (e - @)
(e T @t (@)
which noticing that P" is symmetric since Q™ is, becomes

b @ @) = He(er - @)

Thus (3.9) becomes

il - @[ - v (e - @) <o

This implies that @' is symmetric almost everywhere. (]

Next, we turn to the solvability of our numerical scheme, that is, given (u",Q",p",H",r") € H'(Q) x
(H2(Q) N H(Q)) x H(Q) x L*() x L*(2), whether there exists (w", Q" pnt! H rmtl) € HY(Q) x
(H?(Q) N H(Q)) x H*(Q) x L*(Q) x L?(Q) solving equations (3.1)~(3.3). To see this, we will rewrite the scheme
into a more straightforward form to implement and analyze. From (3.1c), we can express r"*! in terms of Q",
Q™! and r™ as

,r,n-‘rl =" P (Qn+1 _ Qn)7

interpreted in the distributional sense. Substituting r"*! into the formula for H" ™! in (3.1d), we obtain

(H™,¢) = —L(VQ", V) — ((P": Q""" )P",¢) + (F",¢) (3.10)
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where we denoted F™* := (P" : Q")P™—r™P". This leads to the following problem: Given (u™,Q™,p", H",r") €
HY(Q) x (H2(Q) N H}(Q)) x H*(2) x L*(Q) x L2(Q), find a unique (u,Q, H) € H}(Q) x HJ(Q) x L*(£2) such
that

an+1((u7Q7H)7<¢7<pa¢>> :.fn(("pv(pa(p)) (311)
€ H () x H{ (Q2) x L*(Q2). Here the bilinear form a1 (-,-) : (Hg () x H} () x L3(Q)) x

holds for all (’l/) p, )
() x L?(Q)) — R is defined as:

(Ho( ) x Hj

a1 ((w.Q, H), (¢.9,9))

L /u Ydz+ Bu™, u, ) + p Vu-V¢dx+/E(Q”,H):V1/de+ HVQ" -y dx
T At Q Q Q

_E/Q;dydx—/((u-VQ”):¢dx+/s(u,Q”):q)da:—#M/QHde

12
/H pdr + */ V@ : Vedr + At/(Pn :Q)(P" i p)dx = ZAZHv (3.12a)
k=1
and the right-hand side is

fo((¥:0.9)) = i@"ﬂ/ﬁ —(Vp",9) + i@",q&) + é(F",go). (3.12b)

By the Lax—Milgram theorem [17], we infer that it is enough to show that a,; is bounded and coercive. We
will start with the boundedness. Given (u™,Q", H™) € H}(Q) x (H () N H?(Q)) x L*(2) and a fixed At, the
terms A7, AQ‘H, Ag“, Ag"’l, Al 1 A" can be bounded by Cauchy-Schwarz inequality as

AT < ||u|| [l < HUHH [l
A5 < uIIVUII VY| < MHUIIHg [y »
1 1
At < — < —
45+ < RNl < 1@l 1]
A5 < M|H| |19l
1 1
n+1
A1 < 5 IH el < 57 1HI el
n+1 L L
AT < S IVRIIVel < 1Rl el
Using the Holder inequality and the Sobolev inequality, we can estimate A3 as
[ASTH < Ju™| (V] [l e < Cllu™ g Il ag 9]l g < Cllull g 1815z -
Similar tricks can be applied to control A¥ and A%. Specifically, we have
[AS < (IHIIVQ" s s < CIH| Q" = 1]l g < CIH|[8h]] 1y

and
AT < Jlullzs 1VQ™ (s I8l < Cliwll gy 1Q" 2 1]l < Cllwl gy |-

Thanks to Lemmas 2.1 and 2.9, we obtain

n 1 L?
A3 < 1P I QI el < 5 1Q7 7~ 1@l ellmy
< Q™ 1Q" = 1Q el sz < ClIQ sz el
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Recalling definition (1.3), (3.5) and (1.7) and using Lemma 2.1, we can estimate the remaining two terms
AP AT as

| = | [ Qe - HQ - e(HQ" + @ H) - X H 4 26@" Q"] : Vo da
o d

< C(IRQ"l= +1Q™ T~ + 1) [H| V]| < CIH| ]l 3.

and
n+1 n n n n 25 n n 1 2£
47 = | [ [WQ" — Q"W +£Q"D+DQ") + 7D ~26(D: Q) (Q"+ 4 ) — Z(V )| :4ds
< C (IR = +1Q" 7 + 1) [ Vull §]| < Clully 6]
Combining these estimates on A;,7 = 1,2,---,12, we conclude that
1 (. Q.H), (8,9.9))| < C(llully + 1@l + IHN) (Wl + llell; + )
< O, @ H) | 3 0wz oy ooy |2 ) @y m@ynroy (313)

which completes the proof of the boundedness of the bilinear form a, 1.
Next we show the coercivity of a,, 1. To do so, we choose (’l/), P, ¢) = (u, Q, H), it follows from Lemmas 2.7, 3.2
that

a((v,Q H), (v,Q. H))

Alt/u wdz + B(u", u,u) +u/Vu Vudx+/E(Q",H):Vudx+/HVQ”-udx
Q

——/Q:de—/(u~VQ"):de+/s(u,Q"):de—i—M/H:de
At Jo Q Q Q
42 /H-Qd + L /VQ-VQd 42 /(P”-Q)2d
A H T+ A : T+ A : x
1 2 9 9 L 9 1 2
— M = —||P
el + vl + MIE|? + 2 IVQI* + 1P Ql
> C(Jlullfy + QU3 + IHI), (3.14)
for some constant C' > 0 which depends on p, M, and At. Thus, given (u™, Q™ H" p" ") € H&(Q)
(H () N H2(Q)) x L*(Q) x L*(Q) x L*(12), there exists a unique (2", Q"+, H"*1) € H}(Q ) x H}(Q) x L?(Q)
solving (3.1). Then standard results about elliptic equations [17] lift the regularity of @"*! to H?(Q) due to
(3.10).
As it is stated in Remark 3.1, the uniqueness and existence of u™*! and p"*! are guaranteed by the Helmholtz

decomposition. Using (3.3a) and (3.4), for any smooth function 4 with compact support in [0,7) x Q, p"*!
solves

1
/vp"+1 V'(pdx—/Vp Vpdz — 2ATt/(u"H—m“) -V

/v " v«p—— ( ") pda, (3.15)
which implies that p"™ € H2(Q) given p" € H%(Q). In add1t1on, it follows from (3.3a) that u"t! = 4"t —
2(Vpntt — Vp™)At € HY(Q). We have shown:

Theorem 3.4. Given the initial value (u®, Q%) € Hg(Q) x (Hg(Q) N H*(Y)), the numerical scheme (3.1)—(3.3)
can be solved iteratively with (u™,Q™) € H'(Q) x (H(Q) N H*(Q)) for every n € Z.

Remark 3.5. Owing to the enhanced regularity obtained, the results established in Lemma 3.3 can be upgraded
from holding almost everywhere in ) to now being valid point-wisely throughout the domain.
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3.2. Energy stability

Lemma 3.6. The numerical scheme (3.1)—(3.3) is unconditionally energy stable and satisfies the semi-discrete
energy dissipation law

N-1

1 n 2 ot n n n 2
BN 23t - a4 zn P zuvcz Hove|
n=0 n=0
1 N . N
o2 [t - | + ;LZHW"“H2 At+ M |H | At = B, (3.16)
n=0 n=0 n=0

for all integers N € [0, L%J] where
T I T (e e e L/ [N

Proof. According to Theorem 3.4, "' € HL(Q) for every n > 0. It allows us to choose ¢ = @1 At as a test
function in (3.1a) to get

%(wa+1|}2 — ||’le||2 + ||ﬂ,n+1 _ unH2) _ 7<Vp",’l~tn+1>At _ u||Vﬂn+1||2At _ <2”+1,Vﬁ"+1>At
_ <HTL+1VQ’!L7&’I’L+1>AZ‘:7

where we have used the fact that B(u™, 4", 4" ™") = 0 by Lemma 2.7. Taking —AtH"*! as a test function in
(3.1b) and Q™! — Q™ in (3.1d), adding the two equations, and using (3.1c), tested by r"*1, we have

1 ~n n ~n rn
Z(IvQ P~ 19Q I +[19Q " =@ ) + S (71 — I + [+ — )
= —M|[H"" At + (@ vQ", H" YAt — (s"F H' )AL

Lemma 3.2 implies that
<V~n+1 2n+1> + <Hn+173n+1> — 0

Next, we take %u”“At and 2 7 (u u™t! + @™ ) At respectively as test functions in (3.3a), and use the divergence
free condition (3.4) for ™!, Then we have

1, . 1, Ly vt omein2
R i ) (3.172)
1 n+12 1 ~n+1)2 1 n+1 ~n+1

P = @R = = (T vt A (3.17b)

These are admissible test functions, since we have shown that &+ u"*! € H'(Q) with@" ™" = 0 and ™' -n = 0
on the boundary. Adding up these estimates together, we obtain

(3l + FIv@ 2+ J1m 1R ) = (Gl + F1v @12 + 511

+ iuwl A N R | e SR o A [l
T ) A |V P A P
= —%<Vp"+1 +Vp, 2(Vpt = Vpt) At) At — p|| VTt At — M| HMPA

(991" = 190" 17) A2 = ul|Va || a¢ - M||H"|*At,
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Summing up it from n = 0 to N, we yield

1 L 1
S+ SIVQYH P 4 S [P+ [V P g
5N 1y 2 Ly 2 1 2
+ZZHU"+1—ﬂ"“”Q—&-iZH'E"“—U"H +§ZHVQH+1_inH +§Z||Tn+l_rn’|
n=0 n=0 ne0 —re

N N
na1(2 112 1 2 L 2 1 2 2
oy VAT Aty JHT A= Gl |+ SIVQUT+ ST+ (Ve At
n=0 n=0

Using (3.17a) once more, we can also rewrite this equation as

1. 2 1 I 1
s+ A o Zpmgyenj? s L 4 upvesae
S 2 1 » L& )
31 Z [un+t — 1}n+1H +5 ZH,&nJrl —un|+ L ZHVQ"H v
n=0 o —

1 2 al 1112 al 2
o Dl =t T Y[Vt A MY |l H | A

n=0 n=0 n=0
1 L 1
= L0l + ZwQe P L+ e 518)
This concludes the proof of the discrete energy law of the system. O

Next, we define piece-wise linear in time interpolations based on the approximants (u",Q",p",r™), 1 <
n < LAltJ Specifically, given At > 0, we define (ua¢,uh;,@ar,7a¢) as piece-wise linear interpolation of
u, @, Q" ™, that is,

2
L

[(n+1)At —t t —nAt +1]
uni(t) = " u"" | X, (3.19)
n:O At At
N—-1p
. n+1D)At—t _, t—nAt _,
OEDY ( A)t u' o — “] XS, 5 (3.19Db)
n=0 "
S+ 1)At—t t—nAt 7
Qac(t) = Q" + Q" xs,., (3.19¢)
At At
n=0 *“ d
[+ 1)At—t t—nAt ]
Qa(t) = Q"+ Q"| x5, (3.19d)
At At
n=0 " -
[+ 1)At—t t—nAt ]
Pa(t) = Z YN et At P"| xs,, (3.19)
n=0 *“ i
=+ 1)At—t t — nAt
Ha(t) =) A H" + — H"H} XS0» (3.19¢)
n=0 *
N—1r
n+1)At—t ,  t—nAt
’I"At(t) = ( A)t T At T +1:| XSy (319g)
n=0

where S, = [nAt, (n 4+ 1)At) and xg, is the characteristic function on S,,. Our goal is to use the Aubin-Lions
lemma, Lemma 2.3 to deduce pre-compactness of these interpolants. To do so, we need a couple of additional
a priori estimates that are uniform in At.
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As in [32,33], we will show that the approximations of @ are uniformly bounded in L2?(0,T; H?). This is
critical for obtaining weak solutions. In [32,33], this result is obtained wvia Sobolev embeddings and using the
integrability of the bulk potential term in the energy. Due to the reformulation with the auxiliary variable, the
same integrability is not available for the auxiliary variable r through the a priori energy estimate. However, it
is possible to obtain the L2(0,T; H?)-regularity using Lemma 2.1:

Lemma 3.7. IfQ° € H?(), then
N
At ||aQk|P < c. (3.20)
k=1

Proof. As it is shown in Theorem 3.4, for each k € N, Q¥ € H?(2). Therefore, we can integrate by parts in
(3.1d) which leads to
(H*, ¢) = L(AQ"! ,¢) — ("' P",¢),

for any smooth ¢ with compact support. By density of C2°(2) in L?(Q), we can use test functions in L?(£2)
and in particular, we can choose AQ*t! as a test function to obtain

L{AQMT, AQMTY = (HM AQF ) + (rFH1PF, AQMHY).
Using Lemmas 3.6, 2.1, 2.2 and 2.9, we have
L@ < ol |+ [ p(@)]) + Fla@
< (a1 + IP@) 5 ) + T 1@

Lemma 2.9 2

2 2 2 L
CIE " + Q< Ir17) + Fll1a@™+|

Lemma 2.1

L
C<HHk+1H2 n HQkHHz i 1) + ZHAQkHHQ
Ml 4 QY 1) + 2 agr
2 L 2 L 2
< C(l—i— HHHIH )"'ZHAQkH +ZHAQ1€+1H .

Multiplying At on both sides and summing from k£ =0 to k = N — 1, we have

L N 2 L N k 2 L 0112 N k+1 2
S1aQY A+ 3 3 [aQ *at < LAV At + e (1+ [H ) Ar,
k=1 k=1
which is bounded uniformly in A¢ thanks to the discrete energy estimate (3.18). O

Remark 3.8. When the boundary is smooth enough, this estimate implies that Qa¢,Q4, € L*(0,T; H*(2))
uniformly in At, see Lemma 2.2. Using the Gagliardo—Nirenberg interpolation inequality, this implies that

Quar € L7550, T; WHP(Q)), 2<p <6,

uniformly in At. In particular, we obtain Qa; € L*(0,T; W13(Q)) N L8/3(0, T; W4(Q)) N L20/°(0, T; W15(Q))
(and the same estimates for Q4,).

To apply the Aubin-Lions lemma, we also need to derive uniform (in At) estimates on the time derivatives
of ua; and Qa¢. We summarize these estimates for regularity in time in the following two lemmas. The first
one states the regularity for time derivative of velocity field ua;.
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Lemma 3.9. Let V. =W"%(Q) N H} (). For every At > 0, we have
Oruns € L*(0,T; V).

Proof. From (3.1a), we infer that for any ¢ € L?(0,T;V),
,&n+1 —u" n ~n+1 ~n+1
7ta¢(at) = —<B(’U, , U )7¢(at)>_<:uvu av¢(at)>

B <2”+17V¢(-,t)> o <Hn+1in’¢(.7t)> = ZI]?

k=1

To derive the regularity estimate, we will control IT* to I} separately. Using integration by parts and the energy
estimate (3.18), we obtain

(n+1)A (n+1)At
11 dt| = / (u"-V)a" - gdedt
nA n— 0 nAt
(n+1)At
<3 [T ool
n=0
(318) NZL p(n+1)At
<X [ e ar
n=0

(n+1)At

<c Z / 1, Dl | V"

n+1)A (n+1)At
(Z/ ||Vfw+1||2dt> (Z/ llo(-, ||W16dt>

1
N-1 12 2 (3.18)
=C ZHVU |"At) 18l 20 rwrsy < CldllLzorvy-
n=0

1

2

| /\

I> can be estimated as

N—-1 ,(n+1)At
> [ ma
n—o Y nAt

N—-1 ,(n+1)At
> / / pvVatt . Ve dz dt
n—o JnAt Q

N-1 2 2 (3.18)
<C ZHV“ || At HV¢HL2([O,T)><Q) < CH¢||L2(0,T;V)'

n=0

By definitions (1.7) and (3.2), Holder’s inequality, Poincaré’s inequality and the Sobolev inequality, we
have
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N-1 .(n+1)At (n+1)At
Z / I3 dt) < Z < Qan+1 _Hn+lQn) _ f(Hn+1Qn +Qan+1)
n=0 Y nAt

- %H"“ +26(Q™ - H™)Q™, V¢(~,t)> dt

(n+1)At
<c Z / <||Q”L3 [ 19, )]0

SOl 7 1@ 9.0 )

(n+1)At
<o X [0 (1@ ot
B 60Ol + [H Q10 (- >||W1,6) at

318) N-1 ,(n+1)At . .
Z (E" Y 16C Ol + [H () 1

+ ||H”“H 16(+ D)llwr.6) A

N-1 12 2 (3.18)
<c ZHH H At ||¢||L2(O,T;W1vGOH§’a) < C||¢||L2(07T;V)'

n=0
To control I, we apply Lemma 2.1,

N-1 (n+1)At (n+1)At
> / Irdt| = / H"MvQ" - ¢dadt
n=0 Y nAt
(n+1)At
< Z / 16, 8) o | 4| 1VQ| da
n=0
(3.18) N-1 r(n+D)At
< 0y / 16, )l [H™ | der it
n—0 v nAt
1 1
gy 2 T 9 2 (3.18)
<o Xtarapar) ([ 0] ol
n=0

According to scheme (3.3), for each n, u™*1 is the projection of @

Therefore, for every ¢ € L2(0,T;V), we have

(n+1)At (n+1)At untl — (n+1)At ,&n-i-l —yn
/nAt (O 9) df = /nAt < At 7¢> = /nAt < At 7¢> 4

Therefore, combining the estimates from I; to Iy, we have shown that

(n+1)At antl_gyn
‘Z nAt < At a¢> dt‘
0wwatll 20y =  sup <C, (3.21)
$€L2(0,T;V) H¢||L2(0,T;V)

onto the space of divergence free functions.

and so dyua; € L2(0,T; V') uniformly in At. O
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Next we show a uniform estimate in At for 9,Q ;.
Lemma 3.10. For every At > 0, we have
atQAt S L2 (0, T, Lg) .

Proof. For any function ¢ € L?(0,T; LY),

Qn+1 _Qn A L .
<At"”> = (@ VQ" ) + (") + M(H" ) =

I
;«3

Using energy estimate (3.18), the first term can be bounded as follows

n+1

Z J1 dt

n=0 7/ nA

(n+1)At

a" . vQ" : pdxdt

(n+1)At

< Z / 64, I 9Q - )

318 n+1At N
2 / [l ) st

N-1 , 3 T 1 515
SC(ZHW il At) ( / ||so<-,t>||mdt> < Clell 20,70

n=0

Using the Sobolev inequality and definitions (1.3), (3.2), we have

N-1 ,(n4+1)A N-1 r(nt1)At , - - -
Z / +1)At Jpa = Z / +1 <Wn+1Q" QanH n g(QnDnH JrDnﬂQn)
n—0 JnAt —o /nAt

2£~n 1 25 ~n 1 ~n+1. n n 1
+ 20" -2V A -2(D"Q )(Q +dI),<p>dt

N—

n+1
<> / (17 1@ e D+ [V ot 01

; HV&"“HHQ”HZLG||<P(vt)||L6> i
(’I’L-‘rl A . 41
<cz / (1" 1V Ml (- )L o + 4+ [lle -, D)l e
Va1 Q P e (- ) o )

(518) N—-1 n+1 At 1 11 +1
cy / (193 o 0l o + [ 757 o Lo + [ 787 o

T 5 (3.18)
/0 leCDIedt ) = Cllellagomie.

N—-1
< c(zuv«f“mt)
n=0

3293

Blle) dt
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The last term J3' satisfies

N-1 .(n+1)At N-1 .(n+1)At N—-1 .(n+1)At
Z/ Jidt| = Z/ /H"+1 pdrdt| < Z/ IH™lo(-, )] dt
n=0 Y nAt n=0 JnAt Q n=0 Y nAt
1 1
= 12 T ) % (3.18)
<c( L imrpar) ([ lecola) < Cleleere,.
n=0

Combining these estimates for Ji, J and J3, we have shown 9,Qa; € L*(0,T; Lg).

This estimate naturally leads to the following corollary:

Corollary 3.11. We have
drae € L2(0,T; L1 (Q)) N LY?([0,T] x Q),

uniformly in At.

Proof. We obtain from (3.1c) that

T 2 N-1 ,(n+1)At )
/ (/ lf)tmx,wldw) di=), / IP" : 0 Qe (-, t)|7: dt
0 Q n=0’n

At
N-1 ,(n+1)At ) ,
<[P 0@ o)yt
n=0 nAt
N-1 ,(n4+1)At
Lemma 2.9
2oy [ IR Qa0 g
n=0 nAt
N-1 .(n+1)At ) ,
<OX [ IR FI0Qad 0l gt
n=0 nAt
(3.18) NZ1 r(nt1)At ,
< ) _ 2
= niz:o /nAt 10:Qar( Dl g dt = Cllo@al,, (orz8) =

To obtain the second estimate, we instead compute

T o & N—-1 .(n+1)At s
(/ / |amt<x,t>|5dxdt) (Z / ||P":atQm<~,t>||zG/sdt>
0 Q n—=0 Y nAt
N-=1 .(n+1)At 5 3 /N-1 (n+1)At )
< (Z / ||P"||Lwdt> (Z / atQAtc,t)nLgdt)
n=0 """ n=0""

At At

Lemma 2.9 N-1 r(nt1)At 5 3
= ¢ Z / 1@adllpods ||8tQAt("t)HL2(0,T;Lg)
n=0""

At

5
6

1
2

1
3

N-1 .(n+1)At 5
: O<Z / ”QAtle’lssdt> 19@ae (Dl . (0.1:L%)
n=0"v" Y

At
Remark 3.8, (3.18)
<

CH@,;QAt(,t)H ) < Q.

6
12 (0,T;L5
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4. CONVERGENCE ANALYSIS

In this section, we will prove convergence of the semi-discrete numerical scheme constructed in the previous
section as the time step At tends to zero. We will show that a subsequence of {Qa¢, U, HA¢, Tat} ar converges
to a weak solution of system (1.10a)—(1.10e). This leads to the following main theorem:

Theorem 4.1. The piece-wise linear interpolations (3.19a)—(3.19g) computed using scheme (3.1a)—(3.4) con-
verge up to a subsequence to a weak solution of (1.10a)—(1.10e) (as in Def. 2.5) as At — 0.

Proof. Our proof utilizes the energy estimates derived in the last section for the linear interpolations defined in
(3.192)—(3.19g). Then we will use compactness theorems, such as Lemma 2.3, to extract a convergent subsequence
and pass the limit, obtaining a weak solution of system (1.10a)—(1.10e). We split the proof into several steps as
follows.

Step 1: Smoothing the initial data. In order for Lemma 3.7 to be useful, we need AL‘HAQOH2 to be uni-
formly bounded in At. However, the initial data Q;, may be less regular, for example, in H'(Q) only. In
order to approximate Qj, with a sufficiently regular initial approximation Q°, we proceed as follows: Given
Qin € H}, we determine Q° € H} N H? by solving the equation

(I — AtA)Q° = Q.

We obtain from an energy estimate that
1 1
IVQII" + At AQ°* < 1VQull [VQ° < 51VQull® + 51IVQ°|". (4.1)

This implies that At||AQY||? is bounded and, therefore, || AtAQC||? = O(At). As At tends to 0, || AtAQC||?
tends to 0. Then we can conclude that Q° — @, strongly in L? and weakly in H®.

Step 2: Compactness. The a priori estimates from the previous section can be summarized as follows: For
any fixed T' > 0,

SKP ||QAtHL?(O,T;H?)mLoo(o,T;Hl) < 00, SEP HQ*At||L2(07T;H2)OL°°(0,T;H1) < 00,
t t
SlAlp ||’UAtHL2(0,T;H;)mL°¢(0,T;Lg) < 00, SKP H'U'*At”L2(O,T;H1)HL°°(O,T;L2) < 00
t t
SXp 17 atl| oo (0,7:02(0)) < 0. (4.2)
t

Lemmas 3.9 and 3.10 imply
SlAlp||at’U,At||L2(07T;V,) < 00, stHﬁtQAtHLZ(O,T;H,I) < 00. (4.3)
t t

Noting that L2(€2) is continuously embedded into V' = (W'r(Q) N H&VU(Q))/, we can apply Lemma 2.3
to obtain that there exists u € L?(0,T; Hj ) N L>(0,T; L?) and a subsequence of {ua¢}a¢, which will be
denoted as {ua¢,, }m, such that

uae, —uwin L2(0,T;Hy ), uae, —win L2(0,T;L2), unay, (t) = u(t) in L? for ae. t € [0,7]. (4.4)
Similarly, for the Q-tensor, H! is continuously embedded into H~1(£2) and so we apply Lemma 2.3 again,

to obtain @,Q* € L*(0,T; H?) N L*>(0,T; H') and subsequences of {Qa¢}a: and {Q%,}a+ which will be
denoted by Qa¢,, and @}, , such that

Qa:,, — Qin L*(0,T; H?), Qnas, — Qin L*(0,T; HY), Qnay, (1) — Q(t)in L2 YVt € [0,T], (4.5)
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Qht,, — Q" in L*(0,T;H?), Qh,, — Q" in L*(0,T5H'), Qh,, (1) = Q*(t) in L*,Vt € [0,T]. (4.6)
Since Qat,,, @A, are symmetric and trace-free for every At, it follows that the limits @ and Q" are also
symmetric and trace-free, since these are linear properties. According to Lemma 2.9, the Lipschitz continuity
of P guarantees the strong convergence properties of subsequence {Q*Atm}m hold as well for the sequence
{P(Qat,,)}m, that is,

Pay, — P(Q*) in L*([0,T) x Q). (4.7)
In view of the Banach—Alaoglu theorem [18] and Lemma 3.10, we can extract a weakly convergent subse-
quence {9:QAa¢,, }m such that

m

9Qat,, — 0:Q in L*(0,T; H™ ), (4.8)

and a weakly convergent subsequence of {ra¢, }m from {ra:}as such that

Tat, — 7 in L(0,T;L?). (4.9)

Step 3: Equivalence between @@ and Q* and convergence of u},. This step’s primary purpose is to
show that the limit functions of the various subsequences coincide. Noting that Qa,, differs from @},
since they are interpolations of numerical solutions obtained at consecutive time steps, we can make use of
the upper bound of the term 22;0 [VQ"+! — V@Q™||? obtained in Lemma 3.6 to deduce that

1Q = Q"N 20,11
< ||Q - QAthLZ(o,T;Hl) + HQAtm - Q*Atm

L2(0,T;HY) + HQ* - QZM‘

L2(0,T;H?')
N
_ _ (n + I)At —t n _ n—1 t —nAt n+l _ n
= 1Q ~ Quau, ll 2oy + ;) A @)@y
+ HQ* - Q*Atm }LQ(O,T;Hl)
N
=1Q = Qat.llpaoruy + D [1Q" =@l + Q" = Q"] ] At
n=0
+ HQ* - Q*Atm HL2(07T;H1)
N :
2
<1Q = Qatnll 2oy +C (ZHVQ"“ - ve"|| At) + Q" = Qar, Il 2 o1 (4.10)
n=0

As At — 0, the convergence results (4.5) and (4.6) imply that the first and third will go to 0 as At tends to
0 while the second is O(v/At) by energy estimate (3.16), and so it goes to 0, too. So we conclude that @ is
equal to @* in L?(0,T; H").

For the velocity field, though the sequence {u},}, does not preserve the divergence-free property on each
step, we will show that the limit of its subsequence u}, agrees with u. To see this, we infer from definitions
(3.19a) and (3.19b) that

e = e, [l 0.y ey < = watnll 2oy + [watn =i, 220 xe)
N 2
<l —vat.,llr2oryx0) T C(ZH&"“ — ! HQAt) . (4.11)
n=0

As At — 0, the convergence result (4.4) implies that the first term will go to 0 while the second is O(vAt)
by energy estimate (3.16), and so it goes to 0 as well. In this way, we have shown that up, — u strongly
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in L2([0,T) x Q). For each At, we note that ua; is divergence-free and therefore, by the weak convergence
in (4.4), we obtain that for almost every ¢ € [0, 7] and any smooth function ¢ € C°(Q),

0= lim d(x)V -upe, (t,x)de = — lim [ Vé(x) -uae, (8, ) da

m—00 Q m— 00

- /QVqS(x)-u(t,x)dx: [ 6@V -ut.a) (4.12)

This implies that u is weakly divergence-free which implies that it is divergence free almost everywhere in
[0,T) x Q.

Step 4: Weak convergence to H, S, . We let H = LAQ — rP(Q). This is well-defined thanks to the
regularity estimates we obtained for @ in the previous steps. To obtain a representation of H a; in terms of
r™ and P", we introduce the following piece-wise linear function rPa; to approximate rP,

(4.13)

n

N—1
~ n+1)At —t _q  t—mAt
rPa; = E {( A)t P4 AL rntlp } XS

n=0

Recalling definitions (3.19f) and (3.1d), the interpolation H a; satisfies the following weak form

(Hai¢) = ~L(VQa:, V9) — (1Pai. )

for any smooth matrix-valued test function ¢ with compact support in [0,T) x Q. Accordingly, the subse-
quence H a;  satisfies

<HAtma¢> = _L<VQAtm7v¢> - <7‘A13Atm7¢>-

To show that rAPAtm converges weakly to rP(Q), we introduce a piece-wise constant interpolation P}, to
approximate P as

N-1
Py =) P lys,. (4.14)

n=0

Then for any smooth test function ¢, we have

/OT [ (Par. = rP@) : gz

T N T
= / / (rPAtm - rAth*Atm) coda dt+/ / rat, (Pay, — Pag,) s ¢dadt
0o Ja 0 Jo

Ko

K1
T T
+/0 /Qrmm (Pat,, — P(@Q)) : ¢dz dtJr/O /Q(rmm —r)P(Q) : ¢dadt.

K3 K4
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Our goal is to show that when m — oo, each K;,i = 1,2,3,4 tends to 0. With (3.19g), (4.13), (4.14) and
using Lemmas 2.9, 3.6, we can estimate K; as

|Kq| = [ ne 1 At prprt 4 L2180 AntAtm r”“P”] Xs, : ¢dxdl
n=0 m
/ / Z [ nt 1 At ) ] AntAtm r”“P”l} Xs, : ¢dzdt
Lt — nAt

L Im et (P PPy, pdadt

< At bl = oryey 3 / [P - P da
n=0
~ N-1
S LAth¢||Loo([O’T)XQ) Z / |7«"+1HQn _ Qn_1’d$

gmtm< max_ | ”+1|\)||¢|Lx(m)m ZHQ“ Q|

N-1 3
< ﬂTéAtﬁ@< max ||7“"+1H> ||¢||Lec([o,T)xQ) <Z HQ” - Qn1H2>
- n=0

2

gCAt%(OS%aX I n+1H)¢”L°° (o) xQ)(ZHin v ! )

The estimate for K5 is similar. Specifically, we have

T N-—1 N-—1
- n+ 1Aty —t 1 t—nlAt, _.
|K2_|/ /T'Atm{zpn 1XSW_Z[(A)tP 1+AtP]XSn}:¢d1'dt
0 Q m m

n=0
t — nAt,,
[ " P"f1 — P")XSW} c¢dadt
N—-1
< CAtTHHTAtm ”Loc([o,T);L?(Q))H¢||L°°([O,T)><Q) Z ||Qn - Qﬂil”
n=0

1
< CAts ||TAtm

1
N—1 2
e (o,1):12() 1Bl o< (j0.1) % 2) < E |vQ" - VQ"_1H2> — 0.
n=0

K3 tends to 0 as well thanks to the strong convergence of Py, to P(Q), see (4.7), (4.10). The last term

K, goes to 0 as m tends to infinity by the weak convergence of ra;,, towards r. Thus, rPa:,, — 7P(Q).
Using this, we prove Ha,;,, — H in L*([0,T) x Q). Indeed, we have

T T
/ /HAtm :¢dxdt7/ /H:¢dmdt
0 Jo 0 Jo

_ /OT /Q L(VQat,, —VQ) : V¢ — /OT/Q(;PM" - TP(Q)) c¢dudt — 0, (4.15)
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as m tends to infinity since VQa;,, — @ in L?. This shows that Ha;,, — H in L*([0,T) x Q). Since Ha,,,
are trace-free and symmetric for every At, by Lemma 3.3, it follows that the limit H is also trace-free and
symmetric since these are linear properties.

According to (3.2), we can define

28

1
sat =WarQrr — QA War +E( QA Dat + Dar QAy) + FDAt —26(Das - QAy) <Q*At + d1>a

9 1
Bai = Qh Has ~ Hae Qi ~ €(Har Qs + Qi Hao) ~ 5 Har+ 2@, Had Qs+ 31,

where
% 1 * * T * 1 * *T
D, = 5(Vul, + Vuy]), ar = 5 (Vupy = Vuyg).

Taking § = S(Vu,Q), £ = X(Q,H) and D = 1(Vu + VuT), W = 1(Vu — VuT), we claim that sa;,, — S
and ¥ s, — X. Using formula (3.5), we can rewrite sa¢,, as

* * 2
S0, = S(uds, Qar,) — o (V-uiy, )T

As it is shown in (4.4), (4.11) and (4.12), V-ur, — V-u =0, and so we only need to show S(u}, ,Qr, ) —
S. The most challenging term to treat within S(ujx, ,Q7; )is (Dat,, : @Ay, ) @A, - The weak convergence
of other terms follows in a similar way. Applying the generalized Holder’s inequality and Sobolev inequality,
for any smooth function ¢ with compact support in [0,7") x €, we obtain,

T T
/ (DAtm : Q*Atm) Qh;,, s pdadt — / /(D :Q)Q :pdadt
Q o Ja

T T
/ (Dar, Qi) (@ — Q) : pdedt + / / (Dac, : (@, —Q))Q: pdedt
Q 0 Q

//Dm ~D):Q)Q: pdudt

< Cllell Lo 0,750 1P At | 220, 7)< ) @A, HLoo(o,T;m) QA — Q||L2([0,T);L4)

+ C”‘P”Loo([o,T)xQ)”DAtm ||L2([O,T)><Q)||QHL°°([O,T);L4)HQ*Atm - QHL2([O,T);L4)
T

+/ /((DN,,L—D%Q)Q:sodxdt
0 Q

= C(HQ*AthLOQ(QT;Hl) + HQ||L°°(O,T;H1)) HQ*Atm - QHLQ(O,T;Hl)

T
| [ [ (Da. ~D):@Q: pdra] (4.16)

As m tends to infinity, the first term goes to 0 since @A, — @ in L?(0,T; H'). While the second term
tends to 0 because D3, — D in L?, and (Q : p)Q € LQ([O T) x Q).

To show ¥a¢, — X in LQ([O T) x Q) is similar, therefore, we will only present the treatment of the most
challenging term within Xay,,, which is (QA, : H Atm)Q At,, - For any smooth function ¢ with compact

m?
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support in [0,7T) x Q, we have

T T
/(Q*Atm tHa,,) @Ay, :<pda:dt—/ /(Q:H)Q:(pda:dt
Q 0o Jo

T T
/ (Q*Atm : HAtm) (Q*Atm — Q) cpdadt + / / ((Q*Atm — Q) : HAtm) Q:pdxdt
Q 0o Ja

/ / t(Ha,, —H))Q : pdadt

< CHSDHLOO [0,T)xQ) (HQ*Atm HL‘X’(O T;L4) + ||Q||L°°(O,T;L4)) ||HAtm ||L2([0,T)><Q)

/ / (Hay, —H)Q : pdadt

:(Ha, —H))Q : pdadt|.

X HQAt QHL2 (0,T;L4)

< ClQar, — @l 2oz (4.17)

As m tends to infinity, the first term goes to 0 since Qi, — @ in L?*(0,T; H"'). The second term tends to
0 because H p;,, — H in L?([0,T) x ), and (Q : ¢)Q € L?([0,T) x Q).

Step 5: Passing the limit. Using the results from the previous steps, we can pass to the limit in most terms
in weak formulation (3.1a), and (3.1b) after integrating over [0,7"). The convergence of the terms in the
equation for ra; follows by combining the weak convergence of 9;Qa; with the Lipschitz continuity of P
and the strong convergence of Qa; in L2([0,T] x Q) (see also [20] for details). The only two remaining terms
remaining are fOT JoHar, V@A, - dxdtand fOT Jowh, -VQAi, ):e@dzdt. Combining weak and strong
convergence as in Step 4, it follows that

T T
/ /HAthQ*Atm'T/’dedt—\/ /HVQ-i/dedt,
0

T
/ / up;, - VQA,, ) :edrdt — / / u-VQ) : pdxdt. (4.18)
0o Ja
This shows that (u,Q,H, ) is a weak solution satisfying Definition 2.5. O

In order to conclude, we need to show that the reformulated system (1.10a)—(1.10e) and the original hydro-
dynamics system (1.1a)—(1.1c) are equivalent in the weak sense. This follows from the following lemma that was
proved in Lemma 5.2 of [20]:

Lemma 4.2. Assume that (u,Q,H,r) is a weak solution in the sense of Definition 2.5. Then for any smooth
function ¢ with compact support in (0,T) x Q (compactly supported in both time and space), we have

/OT/Qrgj)dxdt/oT/Qr(Q)d)dxdt (4.19)

Proof. We only provide a sketch of the proof here since this result follows in a similar way as in Lemma 5.2
of [20]. Firstly, in Corollary 3.11, we have shown that 9;ra; € L?(0,T; L(Q)), uniformly in At, from which it
follows that the weak limit r satisfies the same regularity estimate. Thus, it follows from Lemma 1.1, p. 250 of
[38] that r is absolutely continuous in time with values in L!(£2). Moreover, from the a priori estimates, we have

where r(Q) is defined in (1.8).
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that the limit @ € L?(0,T; H*(Q2)) which implies that @ € L?(0,T; L°°(£2)) (and also Q € L>(0,T; H') which
implies @ € L>°(0,T; L%(2))). With the Lipschitz continuity of P(Q), this implies that P(Q) € L?(0,T; L>=(Q2))
(and P(Q) € L>°(0,T;L5(9))). Combining this with Q; € L?(0,T; L%/°(Q)) from Lemma 3.10, we obtain that
the product P(Q) : Q; € L'([0,T] x ) (or better) as in Lemma 5.2 of [20]. Thus, the rest of the proof follows
in the same way as in Lemma 5.2 of [20]. O

Remark 4.3. For a similar reason as Remark 2.6, it is also valid to choose L? functions as test functions
in (4.19) since 7 is bounded in L2.
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