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ON THE CONVERGENCE OF AN IEQ-BASED FIRST-ORDER SEMI-DISCRETE
SCHEME FOR THE BERIS-EDWARDS SYSTEM

Franziska Weber1 and Yukun Yue2,*

Abstract. We present a convergence analysis of an unconditionally energy-stable first-order semi-
discrete numerical scheme designed for a hydrodynamic Q-tensor model, the so-called Beris-Edwards
system, based on the Invariant Energy Quadratization Method (IEQ). The model consists of the Navier–
Stokes equations for the fluid flow, coupled to the Q-tensor gradient flow describing the liquid crystal
molecule alignment. By using the Invariant Energy Quadratization Method, we obtain a linearly implicit
scheme, accelerating the computational speed. However, this introduces an auxiliary variable to replace
the bulk potential energy and it is a priori unclear whether the reformulated system is equivalent to the
Beris-Edward system. In this work, we prove stability properties of the scheme and show its convergence
to a weak solution of the coupled liquid crystal system. We also demonstrate the equivalence of the
reformulated and original systems in the weak sense.
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1. Introduction

Liquid crystal is an intermediate state of matter between the solid and liquid phase and usually exists in
a specific temperature range. On one hand, it possesses the ability to flow of liquids, and on the other hand,
the molecules are ordered, (neighboring molecules roughly point in the same direction) similar as in a classical
solid. Due to this, liquid crystals have unique physical properties that are used in various real-life applications,
such as monitors, screens, clocks, navigation systems, and others. Typically, liquid crystals consist of elongated
molecules of identical size which can be pictured as rods. The inter-molecular forces make them align along a
common axis [3, 36].

Mathematical models for the dynamics of liquid crystals have been intensively studied in the last decades.
For an overview, see [16, 25–27, 37] and the references therein. Here we will consider the Q-tensor model by
Landau and de Gennes [15] and its numerical approximation. In this model, the orientation of the liquid crystal
molecules is described by the Q-tensor, a symmetric and trace-free 𝑑 × 𝑑-matrix field where 𝑑 = 2, 3 is the
spatial dimension. It can be interpreted as the deviation of the second moment of the probability density of the
directions of liquid crystal molecules from the isotropic state [29]. When the liquid crystal is in an equilibrium,
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the Q-tensor minimizes a free energy, the so-called Landau–de Gennes free energy [5, 30],

𝐸LG(𝑄𝑄𝑄) =
∫︁

Ω

ℱ𝐵(𝑄𝑄𝑄) + ℱ𝐸(𝑄𝑄𝑄),

where Ω ⊂ R𝑑, is the spatial domain, and we assume that it has a sufficiently smooth boundary. ℱ𝐵 is the bulk
potential and ℱ𝐸 is the elastic energy density given by

ℱ𝐵(𝑄𝑄𝑄) =
𝑎

2
tr(𝑄𝑄𝑄2)− 𝑏

3
tr(𝑄𝑄𝑄3) +

𝑐

4
(︀
tr(𝑄𝑄𝑄2)

)︀2
, ℱ𝐸(𝑄𝑄𝑄) =

𝐿

2
|∇𝑄𝑄𝑄|2,

where 𝑎, 𝑏, 𝑐, 𝐿 are constants with 𝑐, 𝐿 > 0. In particular, 𝑐 > 0 will guarantee the existence of a lower bound
of the bulk potential, which is vital for the following analysis. In a non-equilibrium situation, the dynamics of
the Q-tensor are governed by a nonlinear system of PDEs, consisting of the gradient flow for the Q-tensor field
coupled to the Navier–Stokes equations for the underlying fluid flow [7,43,44],⎧⎪⎨⎪⎩

𝑢𝑢𝑢𝑡 + (𝑢𝑢𝑢 · ∇)𝑢𝑢𝑢 = −∇𝑝+ 𝜇∆𝑢𝑢𝑢+∇ ·ΣΣΣ−𝐻𝐻𝐻∇𝑄𝑄𝑄,
∇ · 𝑢𝑢𝑢 = 0,
𝑄𝑄𝑄𝑡 + 𝑢𝑢𝑢 · ∇𝑄𝑄𝑄−𝑆𝑆𝑆 = 𝑀𝐻𝐻𝐻,

(1.1a)
(1.1b)
(1.1c)

subject to initial and boundary conditions,{︃
𝑄𝑄𝑄|𝑡=0 = 𝑄𝑄𝑄0, 𝑄𝑄𝑄|𝜕Ω×[0,𝑇 ] = 0,

𝑢𝑢𝑢|𝑡=0 = 𝑢𝑢𝑢0, 𝑢𝑢𝑢|𝜕Ω×[0,𝑇 ] = 0,

(1.2a)

(1.2b)

where (𝐻𝐻𝐻∇𝑄𝑄𝑄)𝑘 =
∑︀𝑑

𝑖,𝑗=1𝐻𝑖𝑗𝜕𝑘𝑄𝑖𝑗 and (𝑢𝑢𝑢 ·∇𝑄𝑄𝑄)𝑖𝑗 =
∑︀𝑑

𝑘=1 𝑢𝑘𝜕𝑘𝑄𝑖𝑗 for all 1 ≤ 𝑘, 𝑖, 𝑗 ≤ 𝑑. 𝑢𝑢𝑢 denotes the velocity
field, and 𝑝 represents the pressure. The tensors 𝑆𝑆𝑆 and ΣΣΣ appearing in the system (1.1a)–(1.1c) above are given
by

𝑆𝑆𝑆 = 𝑆(𝑢𝑢𝑢,𝑄𝑄𝑄) = 𝑊𝑊𝑊𝑄𝑄𝑄−𝑄𝑄𝑄𝑊𝑊𝑊 + 𝜉(𝑄𝑄𝑄𝐷𝐷𝐷 +𝐷𝐷𝐷𝑄𝑄𝑄) +
2𝜉
𝑑
𝐷𝐷𝐷 − 2𝜉(𝐷𝐷𝐷 : 𝑄𝑄𝑄)

(︂
𝑄𝑄𝑄+

1
𝑑
𝐼𝐼𝐼

)︂
, (1.3)

and

ΣΣΣ = Σ(𝑄𝑄𝑄,𝐻𝐻𝐻) = 𝑄𝑄𝑄𝐻𝐻𝐻 −𝐻𝐻𝐻𝑄𝑄𝑄− 𝜉(𝐻𝐻𝐻𝑄𝑄𝑄+𝑄𝑄𝑄𝐻𝐻𝐻)− 2𝜉
𝑑
𝐻𝐻𝐻 + 2𝜉(𝑄𝑄𝑄 : 𝐻𝐻𝐻)

(︂
𝑄𝑄𝑄+

1
𝑑
𝐼𝐼𝐼

)︂
(1.4)

with
𝐷𝐷𝐷 =

1
2
(︀
∇𝑢𝑢𝑢+ (∇𝑢𝑢𝑢)⊤

)︀
, 𝑊𝑊𝑊 =

1
2
(︀
∇𝑢𝑢𝑢− (∇𝑢𝑢𝑢)⊤

)︀
(1.5)

representing the symmetric and skew-symmetric parts of the matrix ∇𝑢𝑢𝑢. Here 𝑆𝑆𝑆 denotes the rotational and
stretching effects on the liquid crystal molecules generated by the flow. The constant 𝜉 ∈ R, whose value
is contingent upon the specific molecular characteristics of a given liquid crystal, quantifies the proportion
between the tumbling effect and the aligning effect that a shear flow would exert on the liquid crystal director
[32]. ΣΣΣ is an elastic stress tensor term [10]. The notation (· : ·) represents the standard Frobenius inner prodcut of
two matrices, see the notation Section 2.1 for further details. The tensor 𝐻𝐻𝐻 is the molecular field corresponding
to the variational derivative of the free energy 𝐸LG(𝑄𝑄𝑄) and given by

𝐻𝐻𝐻 = −𝜕𝐸LG

𝜕𝑄𝑄𝑄
= 𝐿∆𝑄𝑄𝑄−

[︂
𝑎𝑄𝑄𝑄− 𝑏

(︂
𝑄𝑄𝑄2 − 1

𝑑
tr(𝑄𝑄𝑄2)𝐼𝐼𝐼

)︂
− 𝑐 tr(𝑄𝑄𝑄2)𝑄𝑄𝑄

]︂
. (1.6)

Notice that the last term in the definition of ΣΣΣ, (1.4) results in a gradient term after taking the divergence as
it is the case in (1.1a). Hence we can modify the pressure to include this term and instead use the modified
definition of ΣΣΣ:

ΣΣΣ = Σ(𝑄𝑄𝑄,𝐻𝐻𝐻) = 𝑄𝑄𝑄𝐻𝐻𝐻 −𝐻𝐻𝐻𝑄𝑄𝑄− 𝜉(𝐻𝐻𝐻𝑄𝑄𝑄+𝑄𝑄𝑄𝐻𝐻𝐻)− 2𝜉
𝑑
𝐻𝐻𝐻 + 2𝜉(𝑄𝑄𝑄 : 𝐻𝐻𝐻)𝑄𝑄𝑄. (1.7)



ANALYSIS FOR Q-TENSOR FLOW 3277

Indeed, as we will be concerned with Leray-Hopf solutions in the following, these definitions can be used
interchangeably. In the following, we will always use definition (1.7) for ΣΣΣ and the accordingly modified definition
of the pressure. System (1.1a)–(1.7) is equivalent to the Beris-Edwards model as it is shown in Section 2.1 of
[1].

Our goal in this work is to provide a convergence proof for a semi-discrete numerical scheme for (1.1a)–(1.7).
The existence, uniqueness and regularity theory for this system have been studied in, e.g., [1,2,10,21,22,32,33].
Numerical simulation and analysis of this and related models have been undertaken in, e.g., [4, 6, 8, 13, 14, 28].
Due to the system being highly nonlinear, for stability of the numerical method, it is crucial to retain a discrete
version of the energy dissipation law satisfied by the system at the level of the numerical scheme. However, this
often results in nonlinearly implicit schemes which require the iterative solution of a nonlinear algebraic system
at every timestep. In order to circumvent this issue, the invariant energy quadratization (IEQ) method has been
introduced for nonlinear gradient flows [23,24,39–42,44]. The key idea is to introduce an auxiliary variable for
the bulk potential term which is then discretized as an independent variable. This results in a linearly implicit
scheme which is unconditionally energy-stable. A discrete version of the energy dissipation property is retained
while enhancing computational efficiency.

Specifically, in the case of system (1.1a)–(1.7), the auxiliary variable 𝑟 is introduced [44]:

𝑟(𝑄𝑄𝑄) =

√︃
2
(︂
𝑎

2
tr(𝑄𝑄𝑄2)− 𝑏

3
tr(𝑄𝑄𝑄3) +

𝑐

4
tr2(𝑄𝑄𝑄2) +𝐴0

)︂
, (1.8)

where 𝐴0 > 0 is a constant ensuring that 𝑟 is always positive for any 𝑄𝑄𝑄 ∈ R𝑑×𝑑. This is possible since one can
show that the bulk potential ℱ𝐵(𝑄𝑄𝑄) has a lower bound, see Theorem 2.1 of [44]. If we then define

𝑉 (𝑄𝑄𝑄) = 𝑎𝑄𝑄𝑄− 𝑏

[︂
𝑄𝑄𝑄2 − 1

𝑑
tr(𝑄𝑄𝑄2)𝐼𝐼𝐼

]︂
+ 𝑐 tr(𝑄𝑄𝑄2)𝑄𝑄𝑄,

it follows that
𝛿𝑟(𝑄𝑄𝑄)
𝛿𝑄𝑄𝑄

=
𝑉 (𝑄𝑄𝑄)
𝑟(𝑄𝑄𝑄)

:= 𝑃 (𝑄𝑄𝑄), (1.9)

for a trace-free, symmetric tensor 𝑄𝑄𝑄. Then system (1.1a)–(1.1c) can be reformulated as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑢𝑢𝑢𝑡 + (𝑢𝑢𝑢 · ∇)𝑢𝑢𝑢 = −∇𝑝+ 𝜇∆𝑢𝑢𝑢+∇ ·ΣΣΣ−𝐻𝐻𝐻∇𝑄𝑄𝑄,
∇ · 𝑢𝑢𝑢 = 0,
𝑄𝑄𝑄𝑡 + 𝑢𝑢𝑢 ·𝑄𝑄𝑄−𝑆𝑆𝑆 = 𝑀𝐻𝐻𝐻,

𝑟𝑡 = 𝑃 (𝑄𝑄𝑄) : 𝑄𝑄𝑄𝑡,

𝐻𝐻𝐻 = 𝐿∆𝑄𝑄𝑄− 𝑟𝑃 (𝑄𝑄𝑄).

(1.10a)
(1.10b)
(1.10c)
(1.10d)
(1.10e)

In [44], the authors proposed an energy stable scheme for the reformulated system (1.10a)–(1.10e), and proved
that it satisfies a discrete version of the energy dissipation law. Yet, to the extent of our knowledge, there is no
convergence proof for a numerical scheme developed for the Beris-Edwards model utilizing the IEQ method, nor
is there any existing proof of convergence to weak solutions to the Beris-Edwards for any numerical scheme. The
main issue is that the reformulation of (1.1a)–(1.7) to (1.10a)–(1.10e) is only valid at the formal level assuming
solutions are smooth. However, this may not be the case for this system, given that it involves coupling to
the incompressible Navier–Stokes equations. Therefore, at least in three space dimensions, at most global weak
solutions can be expected. Specifically, the existence of weak solutions in R3 was proven in the work of Paicu
and Zarnescu [32], and the existence of weak solutions in bounded domains with Dirichlet boundary conditions
was shown by Guillén-González et al. [22]. To the best of our knowledge, this is the state-to-the-art regarding
this system. Furthermore, a priori, the auxiliary variable 𝑟 has less integrability than the square root of the
bulk potential. While the square root of the bulk potential is expected to be in the Lebesgue space 𝐿3 in space,
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the auxiliary variable is only expected to be in 𝐿2 according to the reformulated energy dissipation law. In this
work, we will show how to circumvent this issue and obtain a priori estimates for the numerical approximations
which are sufficient for passing to the limit and obtaining a weak solution of (1.1a)–(1.7). Hence, this can also
be seen as an alternative proof of existence of global weak solutions for the Beris-Edwards system.

The focus of this work is on a semi-discrete scheme for the reformulated system (1.10) that uses the projection
method by Chorin and Temam [11,38] for the discretization of the Navier–Stokes subsystem. A version of this
scheme was initially proposed in [44]. We believe that many of the new ideas we are introducing could facilitate
the convergence proof for a fully-discrete scheme also. In particular, we show here how to overcome the lack
of regularity for the auxiliary variable 𝑟, one of the main obstacles encountered for proving convergence. This
issue needs to be solved in the fully-discrete case as well. Nevertheless, further challenges can be expected in the
fully-discrete case: A suitable spatial discretization will need to respect a discrete version of the energy law of
system (1.10). For a finite difference scheme, due to the coupling between variables and the nonlinear terms, this
will require the careful design of discrete chain rules and integration by parts identities, possibly using staggered
grids. For a finite element scheme, since the incompressible Navier–Stokes equation appear as a subsystem in
the Beris-Edwards equations, any convergence proof requires a convergence proof of a fully-discrete scheme for
the Navier–Stokes equations. As far as we know, such a proof is currently not available for a discretization using
finite elements and the projection method in 3D under no additional regularity assumptions. For these reasons,
we here focus on the semi-discrete scheme, while the fully-discrete is the subject of future research.

The rest of this article is structured as follows: In Section 2, we introduce the notations and some standard
results that will be used in the following. Then we will construct and analyze a numerical scheme designed for
system (1.10a)–(1.10e) in Section 3. We will also provide a discrete energy dissipation law in this section. In
Section 4, we provide the convergence argument. Finally, we will show the equivalence between weak solutions
for the reformulated system and weak solutions of the original system (1.1a)–(1.6).

2. Preliminaries

2.1. Notation

Let Ω ⊂ R𝑑 be a bounded domain with 𝐶2 boundary. We denote the norm of a Banach space 𝑋 as ‖ · ‖𝑋

and its dual space by 𝑋*. If we omit the subscript 𝑋, it represents the norm of the space 𝐿2(Ω). For simplicity,
when used as a subscript, we will not write the symbol Ω if we refer to a function space over domain Ω, i.e.,
𝐿2 = 𝐿2(Ω). The inner product on 𝐿2 will be denoted by ⟨·, ·⟩. Vector-valued and matrix-valued functions will
be denoted in bold form.

For two vectors 𝑢𝑢𝑢,𝑣𝑣𝑣 ∈ R𝑑, we set their inner product to be 𝑢𝑢𝑢 · 𝑣𝑣𝑣 =
∑︀𝑑

𝑖=1 𝑢𝑖𝑣𝑖 and for two matrices 𝐴𝐴𝐴,𝐵𝐵𝐵 ∈
R𝑑×𝑑, we use the Frobenius inner product 𝐴𝐴𝐴 : 𝐵𝐵𝐵 = tr(𝐴𝐴𝐴⊤𝐵𝐵𝐵) =

∑︀𝑑
𝑖,𝑗=1𝐴𝑖𝑗𝐵𝑖𝑗 . The norm of matrix AAA is

then given by |𝐴𝐴𝐴| = |𝐴𝐴𝐴|𝐹 =
√
𝐴𝐴𝐴 : 𝐴𝐴𝐴. Finally, the derivatives of matrix 𝐴𝐴𝐴 are defined as a matrix, that is,

𝜕𝑖𝐴𝐴𝐴 = (𝜕𝑖𝐴𝑗𝑘)𝑗𝑘 and ∇𝐴𝐴𝐴 = (𝜕1𝐴𝐴𝐴, · · · , 𝜕𝑑𝐴𝐴𝐴). When we write ‖𝐴𝐴𝐴‖, ‖∇𝐴𝐴𝐴‖, we mean ‖𝐴𝐴𝐴‖ =
(︀∫︀

Ω
|𝐴|2 d𝑥

)︀ 1
2 and

‖∇𝐴𝐴𝐴‖ =
(︁∫︀

Ω

∑︀𝑑
𝑖=1|𝜕𝑖𝐴𝐴𝐴|2 d𝑥

)︁ 1
2
.

Throughout this paper, we will denote 𝐿𝑝 spaces (e.g., 𝐿2(Ω) for square integrable functions defined over
Ω), Sobolev spaces and Bochner spaces in standard ways, and will not distinguish between scalar, vector-valued
and tensor-valued function spaces when it is clear from the context. In particular, we use 𝐿𝑝(0, 𝑇 ;𝑋) to denote
the space of functions 𝑓 : [0, 𝑇 ) → 𝑋 which are 𝐿𝑝-integrable in the time variable 𝑡 ∈ [0, 𝑇 ). We will denote
the space 𝐿𝑝(0, 𝑇 ;𝐿𝑝) as 𝐿𝑝([0, 𝑇 )× Ω) in the following. We define 𝒮𝑑

0 to be the space of trace-free symmetric
R𝑑×𝑑 matrices,

𝒮𝑑
0 :=

{︃
𝐴𝐴𝐴 ∈ R𝑑×𝑑 : 𝐴𝑖𝑗 = 𝐴𝑗𝑖,

𝑑∑︁
𝑖=1

𝐴𝑖𝑖 = 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑑

}︃
.
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If there is no additional explanation, when we refer to a matrix-valued function 𝑄𝑄𝑄 (including
𝑄𝑄𝑄𝑛+1,𝑄𝑄𝑄𝑛,𝑄𝑄𝑄Δ𝑡,𝑄𝑄𝑄Δ𝑡𝑚

, etc.), we mean 𝑄𝑄𝑄 : Ω → 𝒮𝑑
0 . We will use the subscript 𝜎 to indicate the divergence-

free vector spaces, for example,

𝐶∞𝑐,𝜎(Ω) = {𝜑𝜑𝜑 ∈ 𝐶∞𝑐 (Ω);∇ ·𝜑𝜑𝜑 = 0}, 𝐿2
𝜎(Ω) =

{︀
𝜑𝜑𝜑 ∈ 𝐿2(Ω) : ∇ ·𝜑𝜑𝜑 = 0,𝜑𝜑𝜑 ·𝑛𝑛𝑛|𝜕Ω = 0

}︀
= 𝐶∞𝑐,𝜎(Ω)

𝐿2(Ω)
,

𝐻1
0,𝜎(Ω) = 𝐻1

0 (Ω) ∩ 𝐿2
𝜎(Ω).

We denote the Leray projector by 𝒫 : 𝐿2(Ω) → 𝐿2
𝜎(Ω), which is an orthogonal projection induced by the

Helmholtz-Hodge decomposition [38] 𝑓𝑓𝑓 = ∇𝑔 + ℎℎℎ for any 𝑓𝑓𝑓 ∈ 𝐿2(Ω). Here, 𝑔 ∈ 𝐻1(Ω) is a scalar field, and
ℎℎℎ ∈ 𝐿2

𝜎(Ω) is a divergence-free vector field. Then for all 𝑓𝑓𝑓 ∈ 𝐿2(Ω), it holds that 𝒫𝑓𝑓𝑓 = ℎℎℎ.
We will use 𝐶 to denote a generic constant, which might depend on parameters 𝜇, 𝑎, 𝑏, 𝑐,𝑀,𝐿, 𝜉, 𝑑, domain

Ω, and initial values (𝑢𝑢𝑢𝑖𝑛,𝑄𝑄𝑄𝑖𝑛). If a constant depends on any other factors, it will be specified. The product
space of two Banach spaces 𝑋 and 𝑌 will be denoted as 𝑋 × 𝑌 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 where 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 .

2.2. Technical lemmas and definition of weak solutions

Here we will list the technical tools that will be frequently used in the following analysis. To obtain higher
order regularity of 𝑄𝑄𝑄 in space, we recall Agmon’s inequality ([12], Lem. 4.10).

Lemma 2.1. For any 𝑓 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω),

‖𝑓‖𝐿∞ ≤ 𝐶‖𝑓‖
1
2
𝐻1‖𝑓‖

1
2
𝐻2 . (2.1)

The following lemma states an a priori estimate for Laplace operator ([19], Thm. 3.1.2.1).

Lemma 2.2. There exists a constant 𝐶 which only depends on the diameter of Ω, such that

‖𝑓‖𝐻2 ≤ 𝐶‖∆𝑓‖, (2.2)

for all 𝑓 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω).

We will also use the Aubin–Lions lemma [9,35]:

Lemma 2.3. Let 𝑋0 ⊂ 𝑋1 ⊂ 𝑋2 be three Banach spaces. Assume that the embedding of 𝑋1 into 𝑋2 is continu-
ous and that the embedding of 𝑋0 into 𝑋1 is compact. Let 𝑝, 𝑟 ∈ [1,∞]. Now if a family of functions ℱ satisfies
that for any 𝑓 ∈ ℱ ,

𝑓 ∈ 𝐿𝑝([0, 𝑇 );𝑋0),
d𝑓
d𝑡

∈ 𝐿𝑟([0, 𝑇 );𝑋2).

Then if 𝑝 <∞, ℱ is a compact family in 𝐿𝑝([0, 𝑇 );𝑋1). If 𝑝 = ∞, then ℱ is a compact family in 𝐶([0, 𝑇 );𝑋1).

Definition 2.4. By a weak solution of system (1.1a)–(1.1c), we mean a triple (𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻), with 𝑢𝑢𝑢 : [0, 𝑇 )×Ω → R𝑑,
𝑄𝑄𝑄 : [0, 𝑇 )× Ω → R𝑑×𝑑 and 𝐻𝐻𝐻 : [0, 𝑇 )× Ω → R𝑑×𝑑 which satisfy

(i) 𝑄𝑄𝑄(𝑡, 𝑥) and 𝐻𝐻𝐻(𝑡, 𝑥) are trace-free and symmetric and 𝑢𝑢𝑢(𝑡, 𝑥) is divergence free for almost every (𝑡, 𝑥).
(ii) They attain the initial values

𝑄𝑄𝑄(0, 𝑥) = 𝑄𝑄𝑄0(𝑥) ∈ 𝐻1(Ω), 𝑢𝑢𝑢(0, 𝑥) = 𝑢𝑢𝑢0(𝑥) ∈ 𝐿2(Ω), ⟨𝑢𝑢𝑢0,∇𝜓⟩ = 0,

for any smooth function 𝜓 ∈ 𝐶∞𝑐 (Ω).
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(iii) The triple (𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻) satisfies the regularity condition

𝑄𝑄𝑄 ∈ 𝐿∞
(︀
0, 𝑇 ;𝐻1

0 (Ω)
)︀
∩ 𝐿2

(︀
0, 𝑇 ;𝐻2(Ω)

)︀
, 𝑢𝑢𝑢 ∈ 𝐿∞

(︀
0, 𝑇 ;𝐿2

𝜎(Ω)
)︀
∩ 𝐿2

(︀
0, 𝑇 ;𝐻1(Ω)

)︀
, 𝐻𝐻𝐻 ∈ 𝐿2([0, 𝑇 )× Ω).

(iv) (𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻) satisfy the weak formulations

∫︁ 𝑇

0

∫︁
Ω

𝑢𝑢𝑢 · 𝜕𝑡𝜓𝜓𝜓 d𝑥 d𝑡+
∫︁

Ω

𝑢𝑢𝑢0(𝑥) ·𝜓𝜓𝜓(0, 𝑥) d𝑥+
∫︁ 𝑇

0

∫︁
Ω

𝑑∑︁
𝑖,𝑗=1

𝑢𝑖𝑢𝑗𝜕𝑖𝜓𝑗 d𝑥 d𝑡

=
∫︁ 𝑇

0

∫︁
Ω

[︂
(𝑄𝑄𝑄𝐻𝐻𝐻 −𝐻𝐻𝐻𝑄𝑄𝑄)− 𝜉(𝐻𝐻𝐻𝑄𝑄𝑄+𝑄𝑄𝑄𝐻𝐻𝐻)− 2𝜉

𝑑
𝐻𝐻𝐻 + 2𝜉(𝑄𝑄𝑄 : 𝐻𝐻𝐻)𝑄𝑄𝑄

]︂
: ∇𝜓𝜓𝜓 d𝑥 d𝑡

+ 𝜇

∫︁ 𝑇

0

∫︁
Ω

∇𝑢𝑢𝑢 : ∇𝜓𝜓𝜓 d𝑥d𝑡+
∫︁ 𝑇

0

∫︁
Ω

(𝐻𝐻𝐻∇𝑄𝑄𝑄) ·𝜓𝜓𝜓 d𝑥d𝑡,∫︁ 𝑇

0

∫︁
Ω

𝑄𝑄𝑄 : 𝜕𝑡𝜙𝜙𝜙d𝑥d𝑡+
∫︁

Ω

𝑄𝑄𝑄0(𝑥) : 𝜙𝜙𝜙(0, 𝑥) d𝑥+
∫︁ 𝑇

0

∫︁
Ω

𝑄𝑄𝑄 : (𝑢𝑢𝑢 · ∇𝜙𝜙𝜙) d𝑥d𝑡

+
∫︁ 𝑇

0

∫︁
Ω

[︂
𝑊𝑊𝑊𝑄𝑄𝑄−𝑄𝑄𝑄𝑊𝑊𝑊 + 𝜉(𝑄𝑄𝑄𝐷𝐷𝐷 +𝐷𝐷𝐷𝑄𝑄𝑄) +

2𝜉
𝑑
𝐷𝐷𝐷 − 2𝜉(𝐷𝐷𝐷 : 𝑄𝑄𝑄)𝑄𝑄𝑄

]︂
: 𝜙𝜙𝜙d𝑥 d𝑡

= −
∫︁ 𝑇

0

∫︁
Ω

𝑀𝐻𝐻𝐻 : 𝜙𝜙𝜙d𝑥d𝑡,

∫︁ 𝑇

0

∫︁
Ω

𝐻𝐻𝐻 : 𝜑𝜑𝜑 d𝑥d𝑡 = −
∫︁ 𝑇

0

∫︁
Ω

⎛⎝𝐿 𝑑∑︁
𝑖,𝑗=1

∇𝑄𝑖𝑗 · ∇𝜑𝑖𝑗

⎞⎠ d𝑥 d𝑡

−
∫︁ 𝑇

0

∫︁
Ω

(︂
𝑎𝑄𝑄𝑄− 𝑏

(︂
(𝑄𝑄𝑄2)− 1

𝑑
tr(𝑄𝑄𝑄2)

)︂
+ 𝑐 tr(𝑄𝑄𝑄2)𝑄𝑄𝑄

)︂
: 𝜑𝜑𝜑d𝑥 d𝑡,

(2.3a)

(2.3b)

(2.3c)

for all smooth divergence-free function 𝜓𝜓𝜓 : [0, 𝑇 ) × Ω → R𝑑 and all smooth matrix function 𝜙𝜙𝜙 =
(𝜙𝑖𝑗)𝑑

𝑖,𝑗=1,𝜑𝜑𝜑 = (𝜑𝑖𝑗)𝑑
𝑖,𝑗=1 : [0, 𝑇 )× Ω → R𝑑×𝑑 which are compactly supported within [0, 𝑇 )× Ω.

Definition 2.5. By a weak solution of system (1.10a)–(1.10e), we mean a quadruple (𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻, 𝑟), with 𝑢𝑢𝑢 :
[0, 𝑇 )× Ω → R𝑑, 𝑄𝑄𝑄 : [0, 𝑇 )× Ω → R𝑑×𝑑, 𝐻𝐻𝐻 : [0, 𝑇 )× Ω → R𝑑×𝑑 and 𝑟 : [0, 𝑇 )× Ω → R,

(i) 𝑄𝑄𝑄(𝑡, 𝑥) and 𝐻𝐻𝐻(𝑡, 𝑥) are trace-free and symmetric and 𝑢𝑢𝑢(𝑡, 𝑥) is divergence free for almost every (𝑡, 𝑥).
(ii) They attain the initial values

𝑄𝑄𝑄(0, 𝑥) = 𝑄𝑄𝑄0(𝑥) ∈ 𝐻1(Ω), 𝑢𝑢𝑢(0, 𝑥) = 𝑢𝑢𝑢0(𝑥) ∈ 𝐿2(Ω), 𝑟(0, 𝑥) = 𝑟(𝑄0(𝑥)), ⟨𝑢𝑢𝑢0,∇𝜓⟩ = 0,

for any smooth function 𝜓 ∈ 𝐶∞𝑐 (Ω).
(iii) (𝑢𝑢𝑢,𝑄𝑄𝑄, 𝑟) satisfy the regularity condition

𝑄𝑄𝑄 ∈ 𝐿∞
(︀
0, 𝑇 ;𝐻1

0 (Ω)
)︀
∩ 𝐿2

(︀
0, 𝑇 ;𝐻2(Ω)

)︀
, 𝑢𝑢𝑢 ∈ 𝐿∞

(︀
0, 𝑇 ;𝐿2

𝜎(Ω)
)︀
∩ 𝐿2

(︀
0, 𝑇 ;𝐻1(Ω)

)︀
,

𝐻𝐻𝐻 ∈ 𝐿2
(︀
0, 𝑇 ;𝐿2(Ω)

)︀
, 𝑟 ∈ 𝐿∞

(︀
0, 𝑇 ;𝐿2(Ω)

)︀
.
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(iv) (𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻, 𝑟) satisfy the weak formulations

∫︁ 𝑇

0

∫︁
Ω

𝑢𝑢𝑢 · 𝜕𝑡𝜓𝜓𝜓 d𝑥d𝑡+
∫︁

Ω

𝑢𝑢𝑢0(𝑥) ·𝜓𝜓𝜓(0, 𝑥) d𝑥+
∫︁ 𝑇

0

∫︁
Ω

𝑑∑︁
𝑖,𝑗=1

𝑢𝑖𝑢𝑗𝜕𝑖𝜓𝑗 d𝑥 d𝑡

=
∫︁ 𝑇

0

∫︁
Ω

[︂
(𝑄𝑄𝑄𝐻𝐻𝐻 −𝐻𝐻𝐻𝑄𝑄𝑄)− 𝜉(𝐻𝐻𝐻𝑄𝑄𝑄+𝑄𝑄𝑄𝐻𝐻𝐻)− 2𝜉

𝑑
𝐻𝐻𝐻 + 2𝜉(𝑄𝑄𝑄 : 𝐻𝐻𝐻)𝑄𝑄𝑄

]︂
: ∇𝜓𝜓𝜓 d𝑥 d𝑡

+ 𝜇

∫︁ 𝑇

0

∫︁
Ω

∇𝑢𝑢𝑢 : ∇𝜓𝜓𝜓 d𝑥 d𝑡+
∫︁ 𝑇

0

∫︁
Ω

(𝐻𝐻𝐻∇𝑄𝑄𝑄) ·𝜓𝜓𝜓 d𝑥d𝑡,∫︁ 𝑇

0

∫︁
Ω

𝑄𝑄𝑄 : 𝜕𝑡𝜙𝜙𝜙d𝑥d𝑡+
∫︁

Ω

𝑄𝑄𝑄0(𝑥) : 𝜙𝜙𝜙(0, 𝑥) d𝑥−
∫︁ 𝑇

0

∫︁
Ω

((𝑢𝑢𝑢 · ∇)𝑄𝑄𝑄) : 𝜙𝜙𝜙d𝑥d𝑡

+
∫︁ 𝑇

0

∫︁
Ω

[︂
𝑊𝑊𝑊𝑄𝑄𝑄−𝑄𝑄𝑄𝑊𝑊𝑊 + 𝜉(𝑄𝑄𝑄𝐷𝐷𝐷 +𝐷𝐷𝐷𝑄𝑄𝑄) +

2𝜉
𝑑
𝐷𝐷𝐷 − 2𝜉(𝐷𝐷𝐷 : 𝑄𝑄𝑄)𝑄𝑄𝑄

]︂
: 𝜙𝜙𝜙d𝑥 d𝑡

= −
∫︁ 𝑇

0

∫︁
Ω

𝑀𝐻𝐻𝐻 : 𝜙𝜙𝜙d𝑥 d𝑡∫︁ 𝑇

0

∫︁
Ω

𝑟 𝜑𝑡 d𝑥d𝑡+
∫︁

Ω

𝑟0(𝑥)𝜑(0, 𝑥) d𝑥 = −
∫︁ 𝑇

0

∫︁
Ω

𝑃 (𝑄𝑄𝑄) : 𝑄𝑄𝑄𝑡 𝜑d𝑥d𝑡,

(2.4a)

(2.4b)

(2.4c)

and ∫︁ 𝑇

0

∫︁
Ω

𝐻𝐻𝐻 : 𝜑𝜑𝜑d𝑥d𝑡 = −
∫︁ 𝑇

0

∫︁
Ω

𝐿

𝑑∑︁
𝑖,𝑗=1

∇𝑄𝑖𝑗 · ∇𝜑𝑖𝑗d𝑥d𝑡−
∫︁ 𝑇

0

∫︁
Ω

𝑟𝑃 (𝑄𝑄𝑄) : 𝜑𝜑𝜑d𝑥d𝑡, (2.4d)

for all smooth divergence-free function 𝜓𝜓𝜓 : [0, 𝑇 )× Ω → R𝑑, all smooth matrix function 𝜙𝜙𝜙 = (𝜙𝑖𝑗)𝑑
𝑖,𝑗=1,𝜑𝜑𝜑 =

(𝜑𝑖𝑗)𝑑
𝑖,𝑗=1 : [0, 𝑇 )×Ω → R𝑑×𝑑 and smooth function 𝜑 : [0, 𝑇 )×Ω → R which are compactly supported within

[0, 𝑇 )× Ω.

Remark 2.6. Due to the density of smooth functions with compact support in 𝐿𝑞(0, 𝑇 ;𝐿𝑝(Ω)) and
𝐿𝑞(0, 𝑇 ;𝑊 1,𝑝

0 (Ω)) for 1 ≤ 𝑝, 𝑞 <∞ and the regularity requirements on (𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻, 𝑟) (together with the upcoming
Lems. 3.9, 3.10 and Cor. 3.11 for the regularity of the time derivatives), we can reexamine the weak formu-
lations (2.4) and integrate the time derivatives by part to weaken the requirements on the test functions to
𝜓𝜓𝜓 ∈ 𝐿2(0, 𝑇 ;𝐻1

0,𝜎(Ω) ∩𝑊 1,6(Ω)), 𝜙𝜙𝜙 ∈ 𝐿2(0, 𝑇 ;𝐿6(Ω)), 𝜑 ∈ 𝐿6([0, 𝑇 ] × Ω), and 𝜑𝜑𝜑 ∈ 𝐿2(0, 𝑇 ;𝐻1
0 (Ω)) (by inter-

preting
∫︀
Ω
𝜕𝑡𝑢𝑢𝑢 · 𝜓𝜓𝜓 d𝑥 as a duality product in the space 𝑉 := 𝐻1

0,𝜎 ∩ 𝑊 1,6(Ω)). By the same argument, the
requirments on the test functions in Definition 2.4 can be weakened.

Then for the treatment of the convection term, we consider a bilinear form

𝐵(𝑢𝑢𝑢,𝑣𝑣𝑣) = (𝑢𝑢𝑢 · ∇)𝑣𝑣𝑣 +
1
2

(∇ · 𝑢𝑢𝑢)𝑣𝑣𝑣. (2.5)

It is not hard to verify the following properties of 𝐵 (see [31,34,38] and the references therein).

Lemma 2.7. We define the trilinear form

𝐵̃(𝑢𝑢𝑢,𝑣𝑣𝑣,𝜔𝜔𝜔) = ⟨𝐵(𝑢𝑢𝑢,𝑣𝑣𝑣),𝜔𝜔𝜔⟩. (2.6)

Then
𝐵̃(𝑢𝑢𝑢,𝑣𝑣𝑣,𝜔𝜔𝜔) = −𝐵̃(𝑢𝑢𝑢,𝜔𝜔𝜔,𝑣𝑣𝑣), (2.7)

for all 𝑢𝑢𝑢 ∈ 𝐿2(Ω) with 𝐿2(Ω)-integrable divergence, and 𝑣𝑣𝑣,𝜔𝜔𝜔 ∈ 𝐻1
0 (Ω). Moreover, 𝐵̃(𝑢𝑢𝑢,𝑣𝑣𝑣,𝑣𝑣𝑣) = 0.
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The following cancelation property will play a key role in deducing the discrete energy dissipation law in the
next section.

Lemma 2.8. For any 𝑢𝑢𝑢 ∈ 𝐻1
0 (Ω), we have

⟨∇𝑢𝑢𝑢,Σ(𝑄𝑄𝑄,𝐻𝐻𝐻)⟩+ ⟨𝐻𝐻𝐻,𝑆(𝑢𝑢𝑢,𝑄𝑄𝑄)⟩ = 0, (2.8)

for all symmetric trace-free matrices 𝑄𝑄𝑄 ∈ 𝐿∞(Ω),𝐻𝐻𝐻 ∈ 𝐿2(Ω).

Proof. From definitions (1.3) and (1.7), we have

⟨𝐻𝐻𝐻,𝑆(𝑢𝑢𝑢,𝑄𝑄𝑄)⟩ =
⟨
𝐻𝐻𝐻,𝑊𝑊𝑊𝑄𝑄𝑄−𝑄𝑄𝑄𝑊𝑊𝑊 + 𝜉(𝑄𝑄𝑄𝐷𝐷𝐷 +𝐷𝐷𝐷𝑄𝑄𝑄) +

2𝜉
𝑑
𝐷𝐷𝐷 − 2𝜉(𝐷𝐷𝐷 : 𝑄𝑄𝑄)

(︂
𝑄𝑄𝑄+

1
𝑑
𝐼𝐼𝐼

)︂⟩
,

⟨∇𝑢𝑢𝑢,Σ(𝑄𝑄𝑄,𝐻𝐻𝐻)⟩ =
⟨
∇𝑢𝑢𝑢,𝑄𝑄𝑄𝐻𝐻𝐻 −𝐻𝐻𝐻𝑄𝑄𝑄− 𝜉(𝐻𝐻𝐻𝑄𝑄𝑄+𝑄𝑄𝑄𝐻𝐻𝐻)− 2𝜉

𝑑
𝐻𝐻𝐻 + 2𝜉(𝑄𝑄𝑄 : 𝐻𝐻𝐻)𝑄𝑄𝑄

⟩
.

Comparing these terms and utilizing the symmetry and trace-free property of 𝐻𝐻𝐻 and 𝑄𝑄𝑄, we observe that

⟨𝐻𝐻𝐻,𝑊𝑊𝑊𝑄𝑄𝑄−𝑄𝑄𝑄𝑊𝑊𝑊 ⟩ =
∫︁

Ω

𝑑∑︁
𝑖,𝑗,𝑘=1

𝐻𝑖𝑗(𝑊𝑖𝑘𝑄𝑘𝑗 −𝑄𝑖𝑘𝑊𝑘𝑗)

=
∫︁

Ω

𝑑∑︁
𝑖,𝑗,𝑘=1

(𝑊𝑖𝑘𝐻𝑖𝑗𝑄𝑗𝑘 −𝑊𝑘𝑗𝑄𝑘𝑖𝐻𝑖𝑗) = ⟨𝑊𝑊𝑊,𝐻𝐻𝐻𝑄𝑄𝑄−𝑄𝑄𝑄𝐻𝐻𝐻⟩ = −⟨∇𝑢𝑢𝑢,𝑄𝑄𝑄𝐻𝐻𝐻 −𝐻𝐻𝐻𝑄𝑄𝑄⟩,

⟨𝐻𝐻𝐻, 𝜉(𝑄𝑄𝑄𝐷𝐷𝐷 +𝐷𝐷𝐷𝑄𝑄𝑄)⟩ =
∫︁

Ω

𝑑∑︁
𝑖,𝑗,𝑘=1

𝜉𝐻𝑖𝑗(𝑄𝑖𝑘𝐷𝑘𝑗 +𝐷𝑖𝑘𝑄𝑘𝑗) =
∫︁

Ω

𝑑∑︁
𝑖,𝑗,𝑘=1

𝜉(𝐷𝑖𝑘𝐻𝑖𝑗𝑄𝑗𝑘 +𝐷𝑘𝑗𝑄𝑘𝑖𝐻𝑖𝑗)

= ⟨𝐷𝐷𝐷, 𝜉(𝐻𝐻𝐻𝑄𝑄𝑄+𝑄𝑄𝑄𝐻𝐻𝐻)⟩ = 𝜉⟨∇𝑢𝑢𝑢,𝐻𝐻𝐻𝑄𝑄𝑄+𝑄𝑄𝑄𝐻𝐻𝐻⟩,⟨
𝐻𝐻𝐻,

2𝜉
𝑑
𝐷𝐷𝐷

⟩
=
⟨
∇𝑢𝑢𝑢, 2𝜉

𝑑
𝐻𝐻𝐻

⟩
, ⟨𝐻𝐻𝐻,−2𝜉(𝐷𝐷𝐷 : 𝑄𝑄𝑄)𝑄𝑄𝑄⟩ = −2𝜉

∫︁
Ω

(∇𝑢𝑢𝑢 : 𝑄𝑄𝑄)(𝐻𝐻𝐻 : 𝑄𝑄𝑄) d𝑥 = −⟨∇𝑢𝑢𝑢, 2𝜉(𝑄𝑄𝑄 : 𝐻𝐻𝐻)𝑄𝑄𝑄⟩,⟨
𝐻𝐻𝐻,

2𝜉
𝑑

(𝐷𝐷𝐷 : 𝑄𝑄𝑄)𝐼𝐼𝐼
⟩

=
2𝜉
𝑑

∫︁
Ω

(𝐷𝐷𝐷 : 𝑄𝑄𝑄) tr(𝐻𝐻𝐻) d𝑥 = 0.

From these calculations, we can conclude that (2.8) holds true. �

We also recall the following lemma from Theorem 4.11 of [20], establishing Lipschitz continuity of 𝑃 . We will
use this lemma to pass to the limit in the numerical approximations introduced below and obtain convergence
to a weak solution as in Definition 2.5.

Lemma 2.9. The function 𝑃 is Lipschitz continuous, that is, there exists constant 𝐿̃ > 0 such that for any
matrix 𝑄𝑄𝑄, 𝛿𝑄𝑄𝑄 ∈ R3×3,

|𝑃 (𝑄𝑄𝑄+ 𝛿𝑄𝑄𝑄)− 𝑃 (𝑄𝑄𝑄)| ≤ 𝐿̃ |𝛿𝑄𝑄𝑄|. (2.9)

3. Construction and analysis of the numerical scheme

We start by describing the first-order semi-discrete numerical scheme for system (1.10a)–(1.10e). It is based
on the projection method, a fractional step method widely used for the numerical approximation of the Navier–
Stokes equations [11,34,38]. It consists of two steps. Let ∆𝑡 > 0 be the time step size.

Given initial data (𝑢𝑢𝑢0,𝑄𝑄𝑄0, 𝑝0) ∈ 𝐻1
0 (Ω) ×

(︀
𝐻1

0 (Ω) ∩𝐻2(Ω)
)︀
× 𝐻2(Ω), we set 𝑃𝑃𝑃 0 = 𝑃 (𝑄𝑄𝑄0), 𝑟0 = 𝑟(𝑄𝑄𝑄0) and

(𝑢𝑢𝑢−1,𝑄𝑄𝑄−1, 𝑝−1, 𝑟−1) = (𝑢𝑢𝑢0,𝑄𝑄𝑄0, 𝑝0, 𝑟0). Then for 𝑛 = 0, 1, . . . , we update (𝑢𝑢𝑢𝑛+1,𝑄𝑄𝑄𝑛+1, 𝑝𝑛+1,𝐻𝐻𝐻𝑛+1, 𝑟𝑛+1) through
the following two steps.
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Step 1. Given (𝑢𝑢𝑢𝑛,𝑄𝑄𝑄𝑛, 𝑝𝑛, 𝑟𝑛) ∈ 𝐻1
0 (Ω) ×

(︀
𝐻1

0 (Ω) ∩𝐻2(Ω)
)︀
× 𝐻2(Ω) × 𝐿2(Ω), we seek

(𝑢𝑢𝑢𝑛+1,𝑄𝑄𝑄𝑛+1,𝐻𝐻𝐻𝑛+1, 𝑟𝑛+1) ∈ 𝐻1
0 (Ω) ×

(︀
𝐻1

0 (Ω) ∩𝐻2(Ω)
)︀
× 𝐿2(Ω) × 𝐿2(Ω) as a weak solution of the

following system with boundary conditions 𝑢𝑢𝑢𝑛+1|𝜕Ω = 0, 𝑄𝑄𝑄𝑛+1|𝜕Ω = 0,⟨
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛

∆𝑡
,𝜓𝜓𝜓

⟩
+ 𝐵̃

(︀
𝑢𝑢𝑢𝑛,𝑢𝑢𝑢𝑛+1,𝜓𝜓𝜓

)︀
= −⟨∇𝑝𝑛,𝜓𝜓𝜓⟩ − 𝜇

⟨︀
∇𝑢𝑢𝑢𝑛+1,∇𝜓𝜓𝜓

⟩︀
−
⟨︀
ΣΣΣ𝑛+1,∇𝜓𝜓𝜓

⟩︀
,

−
⟨︀
𝐻𝐻𝐻𝑛+1∇𝑄𝑄𝑄𝑛,𝜓𝜓𝜓

⟩︀⟨
𝑄𝑄𝑄𝑛+1−𝑄𝑄𝑄𝑛

∆𝑡
,𝜙𝜙𝜙

⟩
+
⟨︀
𝑢𝑢𝑢𝑛+1 · ∇𝑄𝑄𝑄𝑛,𝜙𝜙𝜙

⟩︀
=
⟨︀
𝑠𝑠𝑠𝑛+1,𝜙𝜙𝜙

⟩︀
+𝑀

⟨︀
𝐻𝐻𝐻𝑛+1,𝜙𝜙𝜙

⟩︀
,⟨︀

𝑟𝑛+1 − 𝑟𝑛, 𝜂
⟩︀

=
⟨︀
𝑃𝑃𝑃𝑛 :

(︀
𝑄𝑄𝑄𝑛+1 −𝑄𝑄𝑄𝑛

)︀
, 𝜂
⟩︀
,⟨︀

𝐻𝐻𝐻𝑛+1,𝜑𝜑𝜑
⟩︀

= −𝐿
⟨︀
∇𝑄𝑄𝑄𝑛+1,∇𝜑𝜑𝜑

⟩︀
−
⟨︀
𝑟𝑛+1𝑃𝑃𝑃𝑛,𝜑𝜑𝜑

⟩︀

(3.1a)

(3.1b)

(3.1c)

(3.1d)

for all smooth vector-valued function 𝜓𝜓𝜓, smooth scalar function 𝜂 and smooth matrix-valued function 𝜙𝜙𝜙,𝜑𝜑𝜑
with compact support in [0, 𝑇 )× Ω. Here

𝑠𝑠𝑠𝑛+1 = 𝑠(𝑢𝑢𝑢𝑛+1,𝑄𝑄𝑄𝑛), ΣΣΣ𝑛+1 = Σ(𝑄𝑄𝑄𝑛,𝐻𝐻𝐻𝑛+1), 𝑃𝑃𝑃𝑛 = 𝑃 (𝑄𝑄𝑄𝑛) for all 𝑛 ≥ 0. (3.2)

Step 2. Then we project 𝑢𝑢𝑢𝑛+1 onto a divergence free function 𝑢𝑢𝑢𝑛+1 using the following procedure: We define
(𝑢𝑢𝑢𝑛+1, 𝑝𝑛+1) ∈ 𝐻1(Ω) × 𝐻2(Ω) through the following equations with boundary condition 𝑢𝑢𝑢𝑛+1 · 𝑛𝑛𝑛|𝜕Ω = 0
and 𝜕𝑝𝑛+1

𝜕𝑛 = 0, ⟨
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛+1

∆𝑡
, 𝑣𝑣𝑣

⟩
= 2
⟨︀
𝑝𝑛+1 − 𝑝𝑛,∇ · 𝑣𝑣𝑣

⟩︀
,⟨︀

∇𝑝𝑛+1,∇𝜁
⟩︀

=
1

2∆𝑡
⟨︀
𝑢𝑢𝑢𝑛+1,∇𝜁

⟩︀
+ ⟨∇𝑝𝑛,∇𝜁⟩,

(3.3a)

(3.3b)

for all vector-valued 𝑣𝑣𝑣 ∈ 𝐿2(Ω) with square integrable divergence and scalar function 𝜁 ∈ 𝐻1(Ω).

Remark 3.1. The second step can be understood as applying the Helmholtz decomposition to 𝑢𝑢𝑢𝑛+1, in par-
ticular, 𝑢𝑢𝑢𝑛+1 = 𝒫𝑢𝑢𝑢𝑛+1. In particular, using ∇𝜂 for any 𝜂 ∈ 𝐻1(Ω) as a test function in (3.3a), we obtain⟨︀

𝑢𝑢𝑢𝑛+1,∇𝜂
⟩︀

= 0. (3.4)

Here 𝑠 = 𝑠(𝑢𝑢𝑢,𝑄𝑄𝑄) is given by

𝑠(𝑢𝑢𝑢,𝑄𝑄𝑄) := 𝑆(𝑢𝑢𝑢,𝑄𝑄𝑄)− 2𝜉
𝑑2

(∇ · 𝑢𝑢𝑢)𝐼𝐼𝐼. (3.5)

Clearly, if 𝑢𝑢𝑢 is divergence free, this definition coincides with the definition of 𝑆 in (1.3). However, the velocity
field 𝑢𝑢𝑢𝑛+1 obtained in the first step of the scheme is not necessarily divergence free and hence 𝑆 may not be
trace-free, a fact which is needed to show that the scheme conserves the trace-free properties of 𝑄𝑄𝑄 and 𝐻𝐻𝐻, as
we will see later. From the proof of Lemma 2.8, we notice that the trace-free property of 𝐻𝐻𝐻 is in fact necessary
for obtaining the cancellation property (2.8), which in turn is needed for showing the discrete energy balance.

Then the following version of Lemma 2.8 holds:

Lemma 3.2. For any 𝑢𝑢𝑢 ∈ 𝐻1
0 (Ω), we have

⟨∇𝑢𝑢𝑢,Σ(𝑄𝑄𝑄,𝐻𝐻𝐻)⟩+ ⟨𝐻𝐻𝐻, 𝑠(𝑢𝑢𝑢,𝑄𝑄𝑄)⟩ = 0, (3.6)

for every symmetric trace-free matrix 𝑄𝑄𝑄 ∈ 𝐻1
0 (Ω) ∩𝐻2(Ω), 𝐻𝐻𝐻 ∈ 𝐿2(Ω).

Proof. The proof is the same as the proof of Lemma 2.8 after noting that 2𝜉
𝑑2 (∇ · 𝑢𝑢𝑢) tr𝐻𝐻𝐻 = 0. �
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3.1. Well-posedness of the scheme

First, we need to guarantee a solution of (3.1)–(3.3) with the required properties exists at every step 𝑛.
We start by noting that the scheme preserves the trace-free and symmetry property of 𝑄𝑄𝑄 and 𝐻𝐻𝐻, i.e., if 𝑄𝑄𝑄𝑛

is trace-free and symmetric, then 𝑄𝑄𝑄𝑛+1 and 𝐻𝐻𝐻𝑛+1 will be also. Since the second step of the scheme does not
modify 𝑄𝑄𝑄 and 𝐻𝐻𝐻, we only need to consider the first step:

Lemma 3.3. If𝑄𝑄𝑄𝑛 is trace-free and symmetric, then𝑄𝑄𝑄𝑛+1 and𝐻𝐻𝐻𝑛+1 computed through (3.1) are also trace-free
and symmetric almost everywhere.

Proof. We use tr(𝑄𝑄𝑄𝑛+1)I (where I is the 𝑑× 𝑑 identity matrix) as a test function in (3.1b):⟨
𝑄𝑄𝑄𝑛+1 −𝑄𝑄𝑄𝑛

∆𝑡
, tr
(︀
𝑄𝑄𝑄𝑛+1

)︀
I
⟩

+
⟨︀
𝑢𝑢𝑢𝑛+1 · ∇𝑄𝑄𝑄𝑛, tr

(︀
𝑄𝑄𝑄𝑛+1

)︀
I
⟩︀
−
⟨︀
𝑠𝑠𝑠𝑛+1, tr

(︀
𝑄𝑄𝑄𝑛+1

)︀
I
⟩︀

= 𝑀
⟨︀
𝐻𝐻𝐻𝑛+1, tr

(︀
𝑄𝑄𝑄𝑛+1

)︀
I
⟩︀

which can be rewritten as⟨
tr(𝑄𝑄𝑄𝑛+1)− tr(𝑄𝑄𝑄𝑛)

∆𝑡
, tr
(︀
𝑄𝑄𝑄𝑛+1

)︀⟩
+
⟨︀
𝑢𝑢𝑢𝑛+1 · ∇ tr(𝑄𝑄𝑄𝑛), tr

(︀
𝑄𝑄𝑄𝑛+1

)︀⟩︀
−
⟨︀
tr(𝑠𝑠𝑠𝑛+1), tr

(︀
𝑄𝑄𝑄𝑛+1

)︀⟩︀
= 𝑀

⟨︀
tr(𝐻𝐻𝐻𝑛+1), tr

(︀
𝑄𝑄𝑄𝑛+1

)︀⟩︀
.

By assumption, 𝑄𝑄𝑄𝑛 is trace-free, hence this becomes

1
∆𝑡

⃦⃦
tr(𝑄𝑄𝑄𝑛+1)

⃦⃦2 −
⟨︀
tr(𝑠𝑠𝑠𝑛+1), tr

(︀
𝑄𝑄𝑄𝑛+1

)︀⟩︀
= 𝑀

⟨︀
tr(𝐻𝐻𝐻𝑛+1), tr

(︀
𝑄𝑄𝑄𝑛+1

)︀⟩︀
. (3.7)

From the definition of 𝑠𝑠𝑠𝑛+1 in (3.5) and (3.2), it follows that

⟨︀
tr(𝑠𝑠𝑠𝑛+1), 𝜑

⟩︀
=
⟨︀
tr
(︀
𝑆(𝑢𝑢𝑢𝑛+1,𝑄𝑄𝑄𝑛)

)︀
, 𝜑
⟩︀
−
⟨

2𝜉
𝑑2

(︀
∇ · 𝑢𝑢𝑢𝑛+1

)︀
tr(𝐼𝐼𝐼), 𝜑

⟩
=
⟨

tr
(︁
𝑊̃𝑊𝑊

𝑛+1
𝑄𝑄𝑄𝑛 −𝑄𝑄𝑄𝑛𝑊̃𝑊𝑊

𝑛+1
)︁

+ 𝜉 tr
(︁
𝑄𝑄𝑄𝑛𝐷̃𝐷𝐷

𝑛+1
+ 𝐷̃𝐷𝐷

𝑛+1
𝑄𝑄𝑄𝑛
)︁

+
2𝜉
𝑑

tr
(︁
𝐷̃𝐷𝐷

𝑛+1
)︁

− 2𝜉
(︁
𝐷̃𝐷𝐷

𝑛+1
: 𝑄𝑄𝑄𝑛

)︁
tr(𝑄𝑄𝑄𝑛)− 2𝜉

𝑑

(︁
𝐷̃𝐷𝐷

𝑛+1
: 𝑄𝑄𝑄𝑛

)︁
tr(𝐼𝐼𝐼)− 2𝜉

𝑑

(︀
∇ · 𝑢𝑢𝑢𝑛+1

)︀
, 𝜑

⟩
= 0 (3.8)

for any test function 𝜑 : Ω → R with zero trace and contained in 𝐻2(Ω). In order to deal with the last term,
we take tr(𝑄𝑄𝑄𝑛+1)I as a test function in (3.1d):⟨︀

𝐻𝐻𝐻𝑛+1, tr
(︀
𝑄𝑄𝑄𝑛+1

)︀
I
⟩︀

= −𝐿
⟨︀
∇𝑄𝑄𝑄𝑛+1,∇

(︀
tr
(︀
𝑄𝑄𝑄𝑛+1

)︀
I
)︀⟩︀
−
⟨︀
𝑟𝑛+1𝑃𝑃𝑃𝑛, tr

(︀
𝑄𝑄𝑄𝑛+1

)︀
I
⟩︀
,

which again, we can write as⟨︀
tr
(︀
𝐻𝐻𝐻𝑛+1

)︀
, tr
(︀
𝑄𝑄𝑄𝑛+1

)︀⟩︀
= −𝐿

⃦⃦
∇ tr

(︀
𝑄𝑄𝑄𝑛+1

)︀⃦⃦2 −
⟨︀
𝑟𝑛+1 tr(𝑃𝑃𝑃𝑛), tr

(︀
𝑄𝑄𝑄𝑛+1

)︀⟩︀
.

From equation (1.9), where due to 𝑃𝑃𝑃𝑛 = 𝑃 (𝑄𝑄𝑄𝑛) and the condition tr(𝑄𝑄𝑄𝑛) = 0, it follows that tr(𝑃𝑃𝑃𝑛) = 0.
Therefore the last equation simplifies to⟨︀

tr
(︀
𝐻𝐻𝐻𝑛+1

)︀
, tr
(︀
𝑄𝑄𝑄𝑛+1

)︀⟩︀
= −𝐿

⃦⃦
∇ tr

(︀
𝑄𝑄𝑄𝑛+1

)︀⃦⃦2
.

Plugging this into (3.7), we obtain

1
∆𝑡

⃦⃦
tr
(︀
𝑄𝑄𝑄𝑛+1

)︀⃦⃦2 −
⟨︀
tr
(︀
𝑠𝑠𝑠𝑛+1

)︀
, tr
(︀
𝑄𝑄𝑄𝑛+1

)︀⟩︀
= −𝑀𝐿

⃦⃦
∇ tr

(︀
𝑄𝑄𝑄𝑛+1

)︀⃦⃦2 ≤ 0
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and so tr(𝑄𝑄𝑄𝑛+1) = 0 almost everywhere.
For the symmetry, we consider 𝑍𝑍𝑍𝑛+1 = 𝑄𝑄𝑄𝑛+1 − (𝑄𝑄𝑄𝑛+1)⊤ as a test function in (3.1b):⟨

𝑄𝑄𝑄𝑛+1 −𝑄𝑄𝑄𝑛

∆𝑡
,𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
+
⟨
𝑢𝑢𝑢𝑛+1 · ∇𝑄𝑄𝑄𝑛,𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩− ⟨𝑠𝑠𝑠𝑛+1,𝑄𝑄𝑄𝑛+1 −
(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
= 𝑀

⟨
𝐻𝐻𝐻𝑛+1,𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
which can be rewritten as

1
2

⟨
𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤ − (︁𝑄𝑄𝑄𝑛 − (𝑄𝑄𝑄𝑛)⊤
)︁

∆𝑡
,𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
+

1
2

⟨
𝑢𝑢𝑢𝑛+1 · ∇

(︀
𝑄𝑄𝑄𝑛 − (𝑄𝑄𝑄𝑛)⊤

)︀
,𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
− 1

2

⟨
𝑠𝑠𝑠𝑛+1 −

(︀
𝑠𝑠𝑠𝑛+1

)︀⊤
,𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
=
𝑀

2

⟨
𝐻𝐻𝐻𝑛+1 −

(︀
𝐻𝐻𝐻𝑛+1

)︀⊤
,𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
.

Since 𝑄𝑄𝑄𝑛 is assumed to be symmetric, a simple calculation reveals that 𝑠𝑠𝑠𝑛+1 is also symmetric and so the
previous identity simplifies to

1
2∆𝑡

⃦⃦⃦
𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⃦⃦⃦2

=
𝑀

2

⟨
𝐻𝐻𝐻𝑛+1 −

(︀
𝐻𝐻𝐻𝑛+1

)︀⊤
,𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
. (3.9)

We use 𝑍𝑍𝑍𝑛+1 as a test function in the equation for 𝐻𝐻𝐻𝑛+1, equation (3.1d):⟨
𝐻𝐻𝐻𝑛+1,𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
= −𝐿

⟨
∇𝑄𝑄𝑄𝑛+1,∇

(︁
𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤)︁⟩− ⟨𝑟𝑛+1𝑃𝑃𝑃𝑛,𝑄𝑄𝑄𝑛+1 −
(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
,

which we can rewrite as

1
2

⟨
𝐻𝐻𝐻𝑛+1 −

(︀
𝐻𝐻𝐻𝑛+1

)︀⊤
,𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
= −𝐿

2

⃦⃦⃦
∇
(︁
𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤)︁⃦⃦⃦2

− 1
2

⟨
𝑟𝑛+1

(︁
𝑃𝑃𝑃𝑛 − (𝑃𝑃𝑃𝑛)⊤

)︁
,𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
,

which noticing that 𝑃𝑃𝑃𝑛 is symmetric since 𝑄𝑄𝑄𝑛 is, becomes

1
2

⟨
𝐻𝐻𝐻𝑛+1 −

(︀
𝐻𝐻𝐻𝑛+1

)︀⊤
,𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⟩
= −𝐿

2

⃦⃦⃦
∇
(︁
𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤)︁⃦⃦⃦2

.

Thus (3.9) becomes

1
2∆𝑡

⃦⃦⃦
𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤⃦⃦⃦2

= −𝐿𝑀
2

⃦⃦⃦
∇
(︁
𝑄𝑄𝑄𝑛+1 −

(︀
𝑄𝑄𝑄𝑛+1

)︀⊤)︁⃦⃦⃦2

≤ 0.

This implies that 𝑄𝑄𝑄𝑛+1 is symmetric almost everywhere. �

Next, we turn to the solvability of our numerical scheme, that is, given (𝑢𝑢𝑢𝑛,𝑄𝑄𝑄𝑛, 𝑝𝑛,𝐻𝐻𝐻𝑛, 𝑟𝑛) ∈ 𝐻1(Ω) ×(︀
𝐻2(Ω) ∩𝐻1

0 (Ω)
)︀
×𝐻2(Ω) × 𝐿2(Ω) × 𝐿2(Ω), whether there exists (𝑢𝑢𝑢𝑛+1,𝑄𝑄𝑄𝑛+1, 𝑝𝑛+1,𝐻𝐻𝐻𝑛+1, 𝑟𝑛+1) ∈ 𝐻1(Ω) ×(︀

𝐻2(Ω) ∩𝐻1
0 (Ω)

)︀
×𝐻2(Ω)×𝐿2(Ω)×𝐿2(Ω) solving equations (3.1)–(3.3). To see this, we will rewrite the scheme

into a more straightforward form to implement and analyze. From (3.1c), we can express 𝑟𝑛+1 in terms of 𝑄𝑄𝑄𝑛,
𝑄𝑄𝑄𝑛+1 and 𝑟𝑛 as

𝑟𝑛+1 = 𝑟𝑛 +𝑃𝑃𝑃𝑛 :
(︀
𝑄𝑄𝑄𝑛+1 −𝑄𝑄𝑄𝑛

)︀
,

interpreted in the distributional sense. Substituting 𝑟𝑛+1 into the formula for 𝐻𝐻𝐻𝑛+1 in (3.1d), we obtain⟨︀
𝐻𝐻𝐻𝑛+1,𝜑𝜑𝜑

⟩︀
= −𝐿

⟨︀
∇𝑄𝑄𝑄𝑛+1,∇𝜑𝜑𝜑

⟩︀
−
⟨︀(︀
𝑃𝑃𝑃𝑛 : 𝑄𝑄𝑄𝑛+1

)︀
𝑃𝑃𝑃𝑛,𝜑𝜑𝜑

⟩︀
+ ⟨𝐹𝐹𝐹𝑛,𝜑𝜑𝜑⟩ (3.10)
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where we denoted 𝐹𝐹𝐹𝑛 := (𝑃𝑃𝑃𝑛 : 𝑄𝑄𝑄𝑛)𝑃𝑃𝑃𝑛−𝑟𝑛𝑃𝑃𝑃𝑛. This leads to the following problem: Given (𝑢𝑢𝑢𝑛,𝑄𝑄𝑄𝑛, 𝑝𝑛,𝐻𝐻𝐻𝑛, 𝑟𝑛) ∈
𝐻1(Ω)×

(︀
𝐻2(Ω) ∩𝐻1

0 (Ω)
)︀
×𝐻2(Ω)×𝐿2(Ω)×𝐿2(Ω), find a unique

(︀
𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻

)︀
∈ 𝐻1

0 (Ω)×𝐻1
0 (Ω)×𝐿2(Ω) such

that
𝑎𝑛+1

(︀(︀
𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻

)︀
,
(︀
𝜓𝜓𝜓,𝜙𝜙𝜙,𝜑𝜑𝜑

)︀)︀
= 𝑓𝑛

(︀(︀
𝜓𝜓𝜓,𝜙𝜙𝜙,𝜑𝜑𝜑

)︀)︀
(3.11)

holds for all
(︀
𝜓𝜓𝜓,𝜙𝜙𝜙,𝜑𝜑𝜑

)︀
∈ 𝐻1

0 (Ω)×𝐻1
0 (Ω)×𝐿2(Ω). Here the bilinear form 𝑎𝑛+1(·, ·) :

(︀
𝐻1

0 (Ω)×𝐻1
0 (Ω)× 𝐿2(Ω)

)︀
×(︀

𝐻1
0 (Ω)×𝐻1

0 (Ω)× 𝐿2(Ω)
)︀
→ R is defined as:

𝑎𝑛+1

(︀(︀
𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻

)︀
,
(︀
𝜓𝜓𝜓,𝜙𝜙𝜙,𝜑𝜑𝜑

)︀)︀
=

1
∆𝑡

∫︁
Ω

𝑢𝑢𝑢 ·𝜓𝜓𝜓 d𝑥+ 𝐵̃(𝑢𝑢𝑢𝑛,𝑢𝑢𝑢,𝜓𝜓𝜓) + 𝜇

∫︁
Ω

∇𝑢𝑢𝑢 · ∇𝜓𝜓𝜓 d𝑥+
∫︁

Ω

Σ(𝑄𝑄𝑄𝑛,𝐻𝐻𝐻) : ∇𝜓𝜓𝜓 d𝑥+
∫︁

Ω

𝐻𝐻𝐻∇𝑄𝑄𝑄𝑛 ·𝜓𝜓𝜓 d𝑥

− 1
∆𝑡

∫︁
Ω

𝑄𝑄𝑄 : 𝜑𝜑𝜑d𝑥−
∫︁

Ω

(𝑢𝑢𝑢 · ∇𝑄𝑄𝑄𝑛) : 𝜑𝜑𝜑d𝑥+
∫︁

Ω

𝑠(𝑢𝑢𝑢,𝑄𝑄𝑄𝑛) : 𝜑𝜑𝜑 d𝑥+𝑀

∫︁
Ω

𝐻𝐻𝐻 : 𝜑𝜑𝜑 d𝑥

+
1

∆𝑡

∫︁
Ω

𝐻𝐻𝐻 : 𝜙𝜙𝜙d𝑥+
𝐿

∆𝑡

∫︁
Ω

∇𝑄𝑄𝑄 : ∇𝜙𝜙𝜙d𝑥+
1

∆𝑡

∫︁
Ω

(𝑃𝑃𝑃𝑛 : 𝑄𝑄𝑄)(𝑃𝑃𝑃𝑛 : 𝜙𝜙𝜙) d𝑥 :=
12∑︁

𝑘=1

𝐴𝑛+1
𝑘 , (3.12a)

and the right-hand side is

𝑓𝑛

(︀(︀
𝜓𝜓𝜓,𝜙𝜙𝜙,𝜑𝜑𝜑

)︀)︀
=

1
∆𝑡
⟨𝑢𝑢𝑢𝑛,𝜓𝜓𝜓⟩ − ⟨∇𝑝𝑛,𝜓𝜓𝜓⟩+

1
∆𝑡
⟨𝑄𝑄𝑄𝑛,𝜑𝜑𝜑⟩+

1
∆𝑡
⟨𝐹𝐹𝐹𝑛,𝜙𝜙𝜙⟩. (3.12b)

By the Lax–Milgram theorem [17], we infer that it is enough to show that 𝑎𝑛+1 is bounded and coercive. We
will start with the boundedness. Given (𝑢𝑢𝑢𝑛,𝑄𝑄𝑄𝑛,𝐻𝐻𝐻𝑛) ∈ 𝐻1

0 (Ω)×
(︀
𝐻1

0 (Ω) ∩𝐻2(Ω)
)︀
× 𝐿2(Ω) and a fixed ∆𝑡, the

terms 𝐴𝑛+1
1 , 𝐴𝑛+1

3 , 𝐴𝑛+1
6 , 𝐴𝑛+1

9 , 𝐴𝑛+1
10 , 𝐴𝑛+1

11 can be bounded by Cauchy–Schwarz inequality as⃒⃒
𝐴𝑛+1

1

⃒⃒
≤ 1

∆𝑡
‖𝑢𝑢𝑢‖ ‖𝜓𝜓𝜓‖ ≤ 1

∆𝑡
‖𝑢𝑢𝑢‖𝐻1

0
‖𝜓𝜓𝜓‖𝐻1

0
,⃒⃒

𝐴𝑛+1
3

⃒⃒
≤ 𝜇‖∇𝑢𝑢𝑢‖ ‖∇𝜓𝜓𝜓‖ ≤ 𝜇‖𝑢𝑢𝑢‖𝐻1

0
‖𝜓𝜓𝜓‖𝐻1

0
,⃒⃒

𝐴𝑛+1
6

⃒⃒
≤ 1

∆𝑡
‖𝑄𝑄𝑄‖ ‖𝜑𝜑𝜑‖ ≤ 1

∆𝑡
‖𝑄𝑄𝑄‖𝐻1

0
‖𝜑𝜑𝜑‖,⃒⃒

𝐴𝑛+1
9

⃒⃒
≤𝑀‖𝐻𝐻𝐻‖ ‖𝜑𝜑𝜑‖,⃒⃒

𝐴𝑛+1
10

⃒⃒
≤ 1

∆𝑡
‖𝐻𝐻𝐻‖ ‖𝜙𝜙𝜙‖ ≤ 1

∆𝑡
‖𝐻𝐻𝐻‖ ‖𝜙𝜙𝜙‖𝐻1

0
,⃒⃒

𝐴𝑛+1
11

⃒⃒
≤ 𝐿

∆𝑡
‖∇𝑄𝑄𝑄‖ ‖∇𝜙𝜙𝜙‖ ≤ 𝐿

∆𝑡
‖𝑄𝑄𝑄‖𝐻1

0
‖𝜙𝜙𝜙‖𝐻1

0
.

Using the Hölder inequality and the Sobolev inequality, we can estimate 𝐴𝑛+1
2 as⃒⃒

𝐴𝑛+1
2

⃒⃒
≤ ‖𝑢𝑢𝑢𝑛‖𝐿4 ‖∇𝑢𝑢𝑢‖ ‖𝜓𝜓𝜓‖𝐿4 ≤ 𝐶‖𝑢𝑢𝑢𝑛‖𝐻1

0
‖𝑢𝑢𝑢‖𝐻1

0
‖𝜓𝜓𝜓‖𝐻1

0
≤ 𝐶‖𝑢𝑢𝑢‖𝐻1

0
‖𝜓𝜓𝜓‖𝐻1

0
.

Similar tricks can be applied to control 𝐴𝑘
5 and 𝐴𝑘

7 . Specifically, we have⃒⃒
𝐴𝑛+1

5

⃒⃒
≤ ‖𝐻𝐻𝐻‖ ‖∇𝑄𝑄𝑄𝑛‖𝐿4 ‖𝜓𝜓𝜓‖𝐿4 ≤ 𝐶‖𝐻𝐻𝐻‖ ‖𝑄𝑄𝑄𝑛‖𝐻2 ‖𝜓𝜓𝜓‖𝐻1

0
≤ 𝐶‖𝐻𝐻𝐻‖ ‖𝜓𝜓𝜓‖𝐻1

0
,

and ⃒⃒
𝐴𝑛+1

7

⃒⃒
≤ ‖𝑢𝑢𝑢‖𝐿4 ‖∇𝑄𝑄𝑄𝑛‖𝐿4 ‖𝜑𝜑𝜑‖ ≤ 𝐶‖𝑢𝑢𝑢‖𝐻1

0
‖𝑄𝑄𝑄𝑛‖𝐻2 ‖𝜑𝜑𝜑‖ ≤ 𝐶‖𝑢𝑢𝑢‖𝐻1

0
‖𝜑𝜑𝜑‖.

Thanks to Lemmas 2.1 and 2.9, we obtain

⃒⃒
𝐴𝑛+1

12

⃒⃒
≤ 1

∆𝑡
‖𝑃𝑃𝑃𝑛‖2𝐿∞ ‖𝑄𝑄𝑄‖ ‖𝜙𝜙𝜙‖ ≤

𝐿̃2

∆𝑡
‖𝑄𝑄𝑄𝑛‖2𝐿∞‖𝑄𝑄𝑄‖𝐻1

0
‖𝜙𝜙𝜙‖𝐻1

0

≤ 𝐶‖𝑄𝑄𝑄𝑛‖𝐻1
0
‖𝑄𝑄𝑄𝑛‖𝐻2 ‖𝑄𝑄𝑄‖𝐻1

0
‖𝜙𝜙𝜙‖𝐻1

0
≤ 𝐶‖𝑄𝑄𝑄‖𝐻1

0
‖𝜙𝜙𝜙‖𝐻1

0
.
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Recalling definition (1.3), (3.5) and (1.7) and using Lemma 2.1, we can estimate the remaining two terms
𝐴𝑛+1

4 , 𝐴𝑛+1
8 as ⃒⃒

𝐴𝑛+1
4

⃒⃒
=
⃒⃒⃒⃒∫︁

Ω

[︂
𝑄𝑄𝑄𝑛𝐻𝐻𝐻 −𝐻𝐻𝐻𝑄𝑄𝑄𝑛 − 𝜉(𝐻𝐻𝐻𝑄𝑄𝑄𝑛 +𝑄𝑄𝑄𝑛𝐻𝐻𝐻)− 2𝜉

𝑑
𝐻𝐻𝐻 + 2𝜉(𝑄𝑄𝑄𝑛 : 𝐻𝐻𝐻)𝑄𝑄𝑄𝑛

]︂
: ∇𝜓𝜓𝜓 d𝑥

⃒⃒⃒⃒
≤ 𝐶

(︀
‖𝑄𝑄𝑄𝑛‖𝐿∞ + ‖𝑄𝑄𝑄𝑛‖2𝐿∞ + 1

)︀
‖𝐻𝐻𝐻‖ ‖∇𝜓𝜓𝜓‖ ≤ 𝐶‖𝐻𝐻𝐻‖ ‖𝜓𝜓𝜓‖𝐻1

0
,

and ⃒⃒
𝐴𝑛+1

8

⃒⃒
=
⃒⃒⃒⃒∫︁

Ω

[︂
𝑊𝑊𝑊𝑄𝑄𝑄𝑛 −𝑄𝑄𝑄𝑛𝑊𝑊𝑊 + 𝜉(𝑄𝑄𝑄𝑛𝐷𝐷𝐷 +𝐷𝐷𝐷𝑄𝑄𝑄𝑛) +

2𝜉
𝑑
𝐷𝐷𝐷 − 2𝜉(𝐷𝐷𝐷 : 𝑄𝑄𝑄𝑛)

(︂
𝑄𝑄𝑄𝑛 +

1
𝑑
𝐼𝐼𝐼

)︂
− 2𝜉
𝑑2

(∇ · 𝑢𝑢𝑢)𝐼𝐼𝐼
]︂

: 𝜑𝜑𝜑d𝑥
⃒⃒⃒⃒

≤ 𝐶
(︀
‖𝑄𝑄𝑄𝑛‖𝐿∞ + ‖𝑄𝑄𝑄𝑛‖2𝐿∞ + 1

)︀
‖∇𝑢𝑢𝑢‖ ‖𝜑𝜑𝜑‖ ≤ 𝐶‖𝑢𝑢𝑢‖𝐻1

0
‖𝜑𝜑𝜑‖.

Combining these estimates on 𝐴𝑖, 𝑖 = 1, 2, · · · , 12, we conclude that⃒⃒
𝑎𝑛+1

(︀(︀
𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻

)︀
,
(︀
𝜓𝜓𝜓,𝜙𝜙𝜙,𝜑𝜑𝜑

)︀)︀⃒⃒
≤ 𝐶

(︁
‖𝑢𝑢𝑢‖𝐻1

0
+ ‖𝑄𝑄𝑄‖𝐻1

0
+ ‖𝐻𝐻𝐻‖

)︁(︁
‖𝜓𝜓𝜓‖𝐻1

0
+ ‖𝜙𝜙𝜙‖𝐻1

0
+ ‖𝜑𝜑𝜑‖

)︁
≤ 𝐶

⃦⃦(︀
𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻

)︀⃦⃦
𝐻1

0 (Ω)×𝐻1
0 (Ω)×𝐿2(Ω)

⃦⃦(︀
𝜓𝜓𝜓,𝜙𝜙𝜙,𝜑𝜑𝜑

)︀⃦⃦
𝐻1

0 (Ω)×𝐻1
0 (Ω)×𝐿2(Ω)

, (3.13)

which completes the proof of the boundedness of the bilinear form 𝑎𝑛+1.
Next we show the coercivity of 𝑎𝑛+1. To do so, we choose

(︀
𝜓𝜓𝜓,𝜙𝜙𝜙,𝜑𝜑𝜑

)︀
=
(︀
𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻

)︀
, it follows from Lemmas 2.7, 3.2

that

𝑎
(︀(︀
𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻

)︀
,
(︀
𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻

)︀)︀
=

1
∆𝑡

∫︁
Ω

𝑢𝑢𝑢 · 𝑢𝑢𝑢d𝑥+ 𝐵̃(𝑢𝑢𝑢𝑛,𝑢𝑢𝑢,𝑢𝑢𝑢) + 𝜇

∫︁
Ω

∇𝑢𝑢𝑢 · ∇𝑢𝑢𝑢d𝑥+
∫︁

Ω

Σ(𝑄𝑄𝑄𝑛,𝐻𝐻𝐻) : ∇𝑢𝑢𝑢d𝑥+
∫︁

Ω

𝐻𝐻𝐻∇𝑄𝑄𝑄𝑛 · 𝑢𝑢𝑢d𝑥

− 1
∆𝑡

∫︁
Ω

𝑄𝑄𝑄 : 𝐻𝐻𝐻 d𝑥−
∫︁

Ω

(𝑢𝑢𝑢 · ∇𝑄𝑄𝑄𝑛) : 𝐻𝐻𝐻 d𝑥+
∫︁

Ω

𝑠(𝑢𝑢𝑢,𝑄𝑄𝑄𝑛) : 𝐻𝐻𝐻 d𝑥+𝑀

∫︁
Ω

𝐻𝐻𝐻 : 𝐻𝐻𝐻 d𝑥

+
1

∆𝑡

∫︁
Ω

𝐻𝐻𝐻 : 𝑄𝑄𝑄d𝑥+
𝐿

∆𝑡

∫︁
Ω

∇𝑄𝑄𝑄 : ∇𝑄𝑄𝑄d𝑥+
1

∆𝑡

∫︁
Ω

(𝑃𝑃𝑃𝑛 : 𝑄𝑄𝑄)2 d𝑥

=
1

∆𝑡
‖𝑢𝑢𝑢‖2 + 𝜇‖∇𝑢𝑢𝑢‖2 +𝑀‖𝐻𝐻𝐻‖2 +

𝐿

∆𝑡
‖∇𝑄𝑄𝑄‖2 +

1
∆𝑡
‖𝑃𝑃𝑃𝑛 : 𝑄𝑄𝑄‖2

≥ 𝐶
(︁
‖𝑢𝑢𝑢‖2𝐻1

0
+ ‖𝑄𝑄𝑄‖2𝐻1

0
+ ‖𝐻𝐻𝐻‖2

)︁
, (3.14)

for some constant 𝐶 > 0 which depends on 𝜇,𝑀 , and ∆𝑡. Thus, given (𝑢𝑢𝑢𝑛,𝑄𝑄𝑄𝑛,𝐻𝐻𝐻𝑛, 𝑝𝑛, 𝑟𝑛) ∈ 𝐻1
0 (Ω) ×(︀

𝐻1
0 (Ω) ∩𝐻2(Ω)

)︀
×𝐿2(Ω)×𝐿2(Ω)×𝐿2(Ω), there exists a unique (𝑢𝑢𝑢𝑛+1,𝑄𝑄𝑄𝑛+1,𝐻𝐻𝐻𝑛+1) ∈ 𝐻1

0 (Ω)×𝐻1
0 (Ω)×𝐿2(Ω)

solving (3.1). Then standard results about elliptic equations [17] lift the regularity of 𝑄𝑄𝑄𝑛+1 to 𝐻2(Ω) due to
(3.10).

As it is stated in Remark 3.1, the uniqueness and existence of 𝑢𝑢𝑢𝑛+1 and 𝑝𝑛+1 are guaranteed by the Helmholtz
decomposition. Using (3.3a) and (3.4), for any smooth function 𝜓𝜓𝜓 with compact support in [0, 𝑇 ) × Ω, 𝑝𝑛+1

solves ∫︁
Ω

∇𝑝𝑛+1 · ∇𝜓𝜓𝜓 d𝑥 =
∫︁

Ω

∇𝑝𝑛 · ∇𝜓𝜓𝜓 d𝑥− 1
2∆𝑡

∫︁
Ω

(︀
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛+1

)︀
· ∇𝜓𝜓𝜓

=
∫︁

Ω

∇𝑝𝑛 · ∇𝜓𝜓𝜓 − 1
2∆

∫︁
Ω

(︀
∇ · 𝑢𝑢𝑢𝑛+1

)︀
𝜓𝜓𝜓 d𝑥, (3.15)

which implies that 𝑝𝑛+1 ∈ 𝐻2(Ω) given 𝑝𝑛 ∈ 𝐻2(Ω). In addition, it follows from (3.3a) that 𝑢𝑢𝑢𝑛+1 = 𝑢𝑢𝑢𝑛+1 −
2(∇𝑝𝑛+1 −∇𝑝𝑛)∆𝑡 ∈ 𝐻1(Ω). We have shown:

Theorem 3.4. Given the initial value (𝑢𝑢𝑢0,𝑄𝑄𝑄0) ∈ 𝐻1
0 (Ω)×

(︀
𝐻1

0 (Ω) ∩𝐻2(Ω)
)︀
, the numerical scheme (3.1)–(3.3)

can be solved iteratively with (𝑢𝑢𝑢𝑛,𝑄𝑄𝑄𝑛) ∈ 𝐻1(Ω)×
(︀
𝐻1

0 (Ω) ∩𝐻2(Ω)
)︀

for every 𝑛 ∈ Z.
Remark 3.5. Owing to the enhanced regularity obtained, the results established in Lemma 3.3 can be upgraded
from holding almost everywhere in Ω to now being valid point-wisely throughout the domain.
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3.2. Energy stability

Lemma 3.6. The numerical scheme (3.1)–(3.3) is unconditionally energy stable and satisfies the semi-discrete
energy dissipation law

𝐸𝑁+1 +
1
4

𝑁−1∑︁
𝑛=0

⃦⃦
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛+1

⃦⃦2
+

1
2

𝑁∑︁
𝑛=0

⃦⃦
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛

⃦⃦2
+
𝐿

2

𝑁∑︁
𝑛=0

⃦⃦
∇𝑄𝑄𝑄𝑛+1 −∇𝑄𝑄𝑄𝑛

⃦⃦2

+
1
2

𝑁∑︁
𝑛=0

⃦⃦
𝑟𝑛+1 − 𝑟𝑛

⃦⃦2
+ 𝜇

𝑁∑︁
𝑛=0

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦2
∆𝑡+𝑀

𝑁∑︁
𝑛=0

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦2
∆𝑡 = 𝐸0, (3.16)

for all integers 𝑁 ∈
[︀
0, ⌊ 𝑇

Δ𝑡⌋
]︀

where

𝐸𝑁+1 =
1
2

⃦⃦⃦
𝑢𝑢𝑢𝑁+1

⃦⃦⃦2

+
1
2

⃦⃦
𝑢𝑢𝑢𝑁+1

⃦⃦2
+
𝐿

2

⃦⃦
∇𝑄𝑄𝑄𝑁+1

⃦⃦2
+

1
2

⃦⃦
𝑟𝑁+1

⃦⃦2
+
⃦⃦
∇𝑝𝑁+1

⃦⃦2
∆𝑡2.

Proof. According to Theorem 3.4, 𝑢𝑢𝑢𝑛+1 ∈ 𝐻1
0 (Ω) for every 𝑛 ≥ 0. It allows us to choose 𝜙𝜙𝜙 = 𝑢𝑢𝑢𝑛+1∆𝑡 as a test

function in (3.1a) to get

1
2

(︁⃦⃦
𝑢𝑢𝑢𝑛+1

⃦⃦2 − ‖𝑢𝑢𝑢𝑛‖2 +
⃦⃦
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛

⃦⃦2
)︁

= −
⟨︀
∇𝑝𝑛,𝑢𝑢𝑢𝑛+1

⟩︀
∆𝑡− 𝜇

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦2
∆𝑡−

⟨︀
ΣΣΣ𝑛+1,∇𝑢𝑢𝑢𝑛+1

⟩︀
∆𝑡

−
⟨︀
𝐻𝐻𝐻𝑛+1∇𝑄𝑄𝑄𝑛,𝑢𝑢𝑢𝑛+1

⟩︀
∆𝑡,

where we have used the fact that 𝐵̃(𝑢𝑢𝑢𝑛,𝑢𝑢𝑢𝑛+1,𝑢𝑢𝑢𝑛+1) = 0 by Lemma 2.7. Taking −∆𝑡𝐻𝐻𝐻𝑛+1 as a test function in
(3.1b) and 𝑄𝑄𝑄𝑛+1 −𝑄𝑄𝑄𝑛 in (3.1d), adding the two equations, and using (3.1c), tested by 𝑟𝑛+1, we have

𝐿

2

(︁⃦⃦
∇𝑄𝑄𝑄𝑛+1

⃦⃦2 − ‖∇𝑄𝑄𝑄𝑛‖2 +
⃦⃦
∇𝑄𝑄𝑄𝑛+1 −∇𝑄𝑄𝑄𝑛

⃦⃦2
)︁

+
1
2

(︁⃦⃦
𝑟𝑛+1

⃦⃦2 − ‖𝑟𝑛‖2 +
⃦⃦
𝑟𝑛+1 − 𝑟𝑛

⃦⃦2
)︁

= −𝑀
⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦2
∆𝑡+

⟨︀
𝑢𝑢𝑢𝑛+1 · ∇𝑄𝑄𝑄𝑛,𝐻𝐻𝐻𝑛+1

⟩︀
∆𝑡−

⟨︀
𝑠𝑠𝑠𝑛+1,𝐻𝐻𝐻𝑛+1

⟩︀
∆𝑡.

Lemma 3.2 implies that ⟨︀
∇𝑢𝑢𝑢𝑛+1, ΣΣΣ𝑛+1

⟩︀
+
⟨︀
𝐻𝐻𝐻𝑛+1, 𝑠𝑠𝑠𝑛+1

⟩︀
= 0.

Next, we take 1
2 𝑢𝑢𝑢

𝑛+1∆𝑡 and 1
4 (𝑢𝑢𝑢𝑛+1 +𝑢𝑢𝑢𝑛+1) ∆𝑡 respectively as test functions in (3.3a), and use the divergence

free condition (3.4) for 𝑢𝑢𝑢𝑛+1. Then we have

1
4
‖𝑢𝑢𝑢𝑛+1‖2 − 1

4
‖𝑢𝑢𝑢𝑛+1‖2 +

1
4

⃦⃦
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛+1

⃦⃦2
= 0,

1
4
‖𝑢𝑢𝑢𝑛+1‖2 − 1

4
‖𝑢𝑢𝑢𝑛+1‖2 = −1

2
⟨︀
∇𝑝𝑛+1 −∇𝑝𝑛,𝑢𝑢𝑢𝑛+1

⟩︀
∆𝑡.

(3.17a)

(3.17b)

These are admissible test functions, since we have shown that 𝑢𝑢𝑢𝑛+1,𝑢𝑢𝑢𝑛+1 ∈ 𝐻1(Ω) with 𝑢𝑢𝑢𝑛+1 = 0 and 𝑢𝑢𝑢𝑛+1·n = 0
on the boundary. Adding up these estimates together, we obtain(︂

1
2
‖𝑢𝑢𝑢𝑛+1‖2 +

𝐿

2
‖∇𝑄𝑄𝑄𝑛+1‖2 +

1
2
‖𝑟𝑛+1‖2

)︂
−
(︂

1
2
‖𝑢𝑛‖2 +

𝐿

2
‖∇𝑄𝑛‖2 +

1
2
‖𝑟𝑛‖2

)︂
+

1
4
‖𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛+1‖2 +

1
2

⃦⃦
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛

⃦⃦2
+
𝐿

2

⃦⃦
∇𝑄𝑄𝑄𝑛+1 −∇𝑄𝑄𝑄𝑛

⃦⃦2
+

1
2

⃦⃦
𝑟𝑛+1 − 𝑟𝑛

⃦⃦2

= −1
2
⟨︀
∇𝑝𝑛+1 +∇𝑝𝑛,𝑢𝑢𝑢𝑛+1

⟩︀
∆𝑡− 𝜇

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦2
∆𝑡−𝑀

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦2
∆𝑡

= −1
2
⟨︀
∇𝑝𝑛+1 +∇𝑝𝑛, 2

(︀
∇𝑝𝑛+1 −∇𝑝𝑛

)︀
∆𝑡
⟩︀

∆𝑡− 𝜇
⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦2
∆𝑡−𝑀

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦2
∆𝑡

= −
(︁⃦⃦
∇𝑝𝑛+1

⃦⃦2 − ‖∇𝑝𝑛‖2
)︁

∆𝑡2 − 𝜇
⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦2
∆𝑡−𝑀

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦2
∆𝑡.
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Summing up it from 𝑛 = 0 to 𝑁 , we yield

1
2

⃦⃦
𝑢𝑢𝑢𝑁+1

⃦⃦2
+
𝐿

2

⃦⃦
∇𝑄𝑄𝑄𝑁+1

⃦⃦2
+

1
2

⃦⃦
𝑟𝑛+1

⃦⃦2
+
⃦⃦
∇𝑝𝑁+1

⃦⃦2
∆𝑡2

+
1
4

𝑁∑︁
𝑛=0

‖𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛+1‖2 +
1
2

𝑁∑︁
𝑛=0

⃦⃦
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛

⃦⃦2
+
𝐿

2

𝑁∑︁
𝑛=0

⃦⃦
∇𝑄𝑄𝑄𝑛+1 −∇𝑄𝑄𝑄𝑛

⃦⃦2
+

1
2

𝑁∑︁
𝑛=0

⃦⃦
𝑟𝑛+1 − 𝑟𝑛

⃦⃦2

+ 𝜇

𝑁∑︁
𝑛=0

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦2
∆𝑡+𝑀

𝑁∑︁
𝑛=0

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦2
∆𝑡 =

1
2

⃦⃦
𝑢𝑢𝑢0
⃦⃦2

+
𝐿

2

⃦⃦
∇𝑄𝑄𝑄0

⃦⃦2
+

1
2

⃦⃦
𝑟0
⃦⃦2

+
⃦⃦
∇𝑝0

⃦⃦2
∆𝑡2.

Using (3.17a) once more, we can also rewrite this equation as

1
4

⃦⃦⃦
𝑢𝑢𝑢𝑁+1

⃦⃦⃦2

+
1
4

⃦⃦
𝑢𝑢𝑢𝑁+1

⃦⃦2
+
𝐿

2

⃦⃦
∇𝑄𝑄𝑄𝑁+1

⃦⃦2
+

1
2

⃦⃦
𝑟𝑛+1

⃦⃦2
+
⃦⃦
∇𝑝𝑁+1

⃦⃦2
∆𝑡2

+
1
4

𝑁−1∑︁
𝑛=0

⃦⃦
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛+1

⃦⃦2
+

1
2

𝑁∑︁
𝑛=0

⃦⃦
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛

⃦⃦2
+
𝐿

2

𝑁∑︁
𝑛=0

⃦⃦
∇𝑄𝑄𝑄𝑛+1 −∇𝑄𝑄𝑄𝑛

⃦⃦2

+
1
2

𝑁∑︁
𝑛=0

⃦⃦
𝑟𝑛+1 − 𝑟𝑛

⃦⃦2
+ 𝜇

𝑁∑︁
𝑛=0

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦2
∆𝑡+𝑀

𝑁∑︁
𝑛=0

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦2
∆𝑡

=
1
2

⃦⃦
𝑢𝑢𝑢0
⃦⃦2

+
𝐿

2

⃦⃦
∇𝑄𝑄𝑄0

⃦⃦2
+

1
2

⃦⃦
𝑟0
⃦⃦2

+
⃦⃦
∇𝑝0

⃦⃦2
∆𝑡2. (3.18)

This concludes the proof of the discrete energy law of the system. �

Next, we define piece-wise linear in time interpolations based on the approximants (𝑢𝑢𝑢𝑛,𝑄𝑄𝑄𝑛, 𝑝𝑛, 𝑟𝑛), 1 ≤
𝑛 ≤ ⌊ 𝑇

Δ𝑡⌋. Specifically, given ∆𝑡 > 0, we define (𝑢𝑢𝑢Δ𝑡,𝑢𝑢𝑢
*
Δ𝑡,𝑄𝑄𝑄Δ𝑡, 𝑟Δ𝑡) as piece-wise linear interpolation of

𝑢𝑢𝑢𝑛,𝑢𝑢𝑢𝑛+1,𝑄𝑄𝑄𝑛, 𝑟𝑛, that is,

𝑢𝑢𝑢Δ𝑡(𝑡) =
𝑁−1∑︁
𝑛=0

[︂
(𝑛+ 1)∆𝑡− 𝑡

∆𝑡
𝑢𝑢𝑢𝑛 +

𝑡− 𝑛∆𝑡
∆𝑡

𝑢𝑢𝑢𝑛+1

]︂
𝜒𝑆𝑛

,

𝑢𝑢𝑢*Δ𝑡(𝑡) =
𝑁−1∑︁
𝑛=0

[︂
(𝑛+ 1)∆𝑡− 𝑡

∆𝑡
𝑢𝑢𝑢𝑛 +

𝑡− 𝑛∆𝑡
∆𝑡

𝑢𝑢𝑢𝑛+1

]︂
𝜒𝑆𝑛 ,

𝑄𝑄𝑄Δ𝑡(𝑡) =
𝑁−1∑︁
𝑛=0

[︂
(𝑛+ 1)∆𝑡− 𝑡

∆𝑡
𝑄𝑄𝑄𝑛 +

𝑡− 𝑛∆𝑡
∆𝑡

𝑄𝑄𝑄𝑛+1

]︂
𝜒𝑆𝑛

,

𝑄𝑄𝑄*Δ𝑡(𝑡) =
𝑁−1∑︁
𝑛=0

[︂
(𝑛+ 1)∆𝑡− 𝑡

∆𝑡
𝑄𝑄𝑄𝑛−1 +

𝑡− 𝑛∆𝑡
∆𝑡

𝑄𝑄𝑄𝑛

]︂
𝜒𝑆𝑛 ,

𝑃𝑃𝑃Δ𝑡(𝑡) =
𝑁−1∑︁
𝑛=0

[︂
(𝑛+ 1)∆𝑡− 𝑡

∆𝑡
𝑃𝑃𝑃𝑛−1 +

𝑡− 𝑛∆𝑡
∆𝑡

𝑃𝑃𝑃𝑛

]︂
𝜒𝑆𝑛

,

𝐻𝐻𝐻Δ𝑡(𝑡) =
𝑁−1∑︁
𝑛=0

[︂
(𝑛+ 1)∆𝑡− 𝑡

∆𝑡
𝐻𝐻𝐻𝑛 +

𝑡− 𝑛∆𝑡
∆𝑡

𝐻𝐻𝐻𝑛+1

]︂
𝜒𝑆𝑛

,

𝑟Δ𝑡(𝑡) =
𝑁−1∑︁
𝑛=0

[︂
(𝑛+ 1)∆𝑡− 𝑡

∆𝑡
𝑟𝑛 +

𝑡− 𝑛∆𝑡
∆𝑡

𝑟𝑛+1

]︂
𝜒𝑆𝑛 ,

(3.19a)

(3.19b)

(3.19c)

(3.19d)

(3.19e)

(3.19f)

(3.19g)

where 𝑆𝑛 = [𝑛∆𝑡, (𝑛+ 1)∆𝑡) and 𝜒𝑆𝑛 is the characteristic function on 𝑆𝑛. Our goal is to use the Aubin–Lions
lemma, Lemma 2.3 to deduce pre-compactness of these interpolants. To do so, we need a couple of additional
a priori estimates that are uniform in ∆𝑡.
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As in [32, 33], we will show that the approximations of 𝑄𝑄𝑄 are uniformly bounded in 𝐿2(0, 𝑇 ;𝐻2). This is
critical for obtaining weak solutions. In [32, 33], this result is obtained via Sobolev embeddings and using the
integrability of the bulk potential term in the energy. Due to the reformulation with the auxiliary variable, the
same integrability is not available for the auxiliary variable 𝑟 through the a priori energy estimate. However, it
is possible to obtain the 𝐿2(0, 𝑇 ;𝐻2)-regularity using Lemma 2.1:

Lemma 3.7. If 𝑄𝑄𝑄0 ∈ 𝐻2(Ω), then

∆𝑡
𝑁∑︁

𝑘=1

⃦⃦
∆𝑄𝑄𝑄𝑘

⃦⃦2 ≤ 𝐶. (3.20)

Proof. As it is shown in Theorem 3.4, for each 𝑘 ∈ N, 𝑄𝑄𝑄𝑘 ∈ 𝐻2(Ω). Therefore, we can integrate by parts in
(3.1d) which leads to ⟨︀

𝐻𝐻𝐻𝑘+1,𝜑𝜑𝜑
⟩︀

= 𝐿
⟨︀
∆𝑄𝑄𝑄𝑘+1,𝜑𝜑𝜑

⟩︀
−
⟨︀
𝑟𝑘+1𝑃𝑃𝑃 𝑘,𝜑𝜑𝜑

⟩︀
,

for any smooth 𝜑𝜑𝜑 with compact support. By density of 𝐶∞𝑐 (Ω) in 𝐿2(Ω), we can use test functions in 𝐿2(Ω)
and in particular, we can choose ∆𝑄𝑄𝑄𝑘+1 as a test function to obtain

𝐿
⟨︀
∆𝑄𝑄𝑄𝑘+1,∆𝑄𝑄𝑄𝑘+1

⟩︀
=
⟨︀
𝐻𝐻𝐻𝑘+1,∆𝑄𝑄𝑄𝑘+1

⟩︀
+
⟨︀
𝑟𝑘+1𝑃𝑃𝑃 𝑘,∆𝑄𝑄𝑄𝑘+1

⟩︀
.

Using Lemmas 3.6, 2.1, 2.2 and 2.9, we have

𝐿
⃦⃦

∆𝑄𝑄𝑄𝑘+1
⃦⃦2 ≤ 𝐶

(︁⃦⃦
𝐻𝐻𝐻𝑘+1

⃦⃦2
+
⃦⃦
𝑟𝑘+1𝑃

(︀
𝑄𝑄𝑄𝑘
)︀⃦⃦2
)︁

+
𝐿

4

⃦⃦
∆𝑄𝑄𝑄𝑘+1

⃦⃦2

≤ 𝐶
(︁⃦⃦
𝐻𝐻𝐻𝑘+1

⃦⃦2
+
⃦⃦
𝑃
(︀
𝑄𝑄𝑄𝑘
)︀⃦⃦2

𝐿∞

⃦⃦
𝑟𝑘+1

⃦⃦2
)︁

+
𝐿

4

⃦⃦
∆𝑄𝑄𝑄𝑘+1

⃦⃦2

Lemma 2.9
≤ 𝐶

(︁⃦⃦
𝐻𝐻𝐻𝑘+1

⃦⃦2
+
⃦⃦
𝑄𝑄𝑄𝑘
⃦⃦2

𝐿∞

⃦⃦
𝑟𝑘+1

⃦⃦2
)︁

+
𝐿

4

⃦⃦
∆𝑄𝑄𝑄𝑘+1

⃦⃦2

Lemma 2.1
≤ 𝐶

(︁⃦⃦
𝐻𝐻𝐻𝑘+1

⃦⃦2
+
⃦⃦
𝑄𝑄𝑄𝑘
⃦⃦

𝐻2 + 1
)︁

+
𝐿

4

⃦⃦
∆𝑄𝑄𝑄𝑘+1

⃦⃦2

Lemma 2.2
≤ 𝐶

(︁⃦⃦
𝐻𝐻𝐻𝑘+1

⃦⃦2
+
⃦⃦
∆𝑄𝑄𝑄𝑘

⃦⃦
+ 1
)︁

+
𝐿

4

⃦⃦
∆𝑄𝑄𝑄𝑘+1

⃦⃦2

≤ 𝐶
(︁

1 +
⃦⃦
𝐻𝐻𝐻𝑘+1

⃦⃦2
)︁

+
𝐿

4

⃦⃦
∆𝑄𝑄𝑄𝑘

⃦⃦2
+
𝐿

4

⃦⃦
∆𝑄𝑄𝑄𝑘+1

⃦⃦2
.

Multiplying ∆𝑡 on both sides and summing from 𝑘 = 0 to 𝑘 = 𝑁 − 1, we have

𝐿

4

⃦⃦
∆𝑄𝑄𝑄𝑁

⃦⃦2
∆𝑡+

𝐿

2

𝑁∑︁
𝑘=1

⃦⃦
∆𝑄𝑄𝑄𝑘

⃦⃦2
∆𝑡 ≤ 𝐿

4

⃦⃦
∆𝑄𝑄𝑄0

⃦⃦2
∆𝑡+

𝑁∑︁
𝑘=1

𝐶
(︁

1 +
⃦⃦
𝐻𝐻𝐻𝑘+1

⃦⃦2
)︁

∆𝑡,

which is bounded uniformly in ∆𝑡 thanks to the discrete energy estimate (3.18). �

Remark 3.8. When the boundary is smooth enough, this estimate implies that 𝑄𝑄𝑄Δ𝑡,𝑄𝑄𝑄
*
Δ𝑡 ∈ 𝐿2(0, 𝑇 ;𝐻2(Ω))

uniformly in ∆𝑡, see Lemma 2.2. Using the Gagliardo–Nirenberg interpolation inequality, this implies that

𝑄𝑄𝑄Δ𝑡 ∈ 𝐿
4𝑝

3𝑝−6 (0, 𝑇 ;𝑊 1,𝑝(Ω)), 2 ≤ 𝑝 < 6,

uniformly in ∆𝑡. In particular, we obtain 𝑄𝑄𝑄Δ𝑡 ∈ 𝐿4(0, 𝑇 ;𝑊 1,3(Ω))∩𝐿8/3(0, 𝑇 ;𝑊 1,4(Ω))∩𝐿20/9(0, 𝑇 ;𝑊 1,5(Ω))
(and the same estimates for 𝑄𝑄𝑄*Δ𝑡).

To apply the Aubin–Lions lemma, we also need to derive uniform (in ∆𝑡) estimates on the time derivatives
of 𝑢𝑢𝑢Δ𝑡 and 𝑄𝑄𝑄Δ𝑡. We summarize these estimates for regularity in time in the following two lemmas. The first
one states the regularity for time derivative of velocity field 𝑢𝑢𝑢Δ𝑡.
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Lemma 3.9. Let 𝑉 = 𝑊 1,6(Ω) ∩𝐻1
0,𝜎(Ω). For every ∆𝑡 > 0, we have

𝜕𝑡𝑢𝑢𝑢Δ𝑡 ∈ 𝐿2(0, 𝑇 ;𝑉 ′).

Proof. From (3.1a), we infer that for any 𝜑𝜑𝜑 ∈ 𝐿2(0, 𝑇 ;𝑉 ),⟨
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛

∆𝑡
,𝜑𝜑𝜑(·, 𝑡)

⟩
= −

⟨︀
𝐵
(︀
𝑢𝑢𝑢𝑛,𝑢𝑢𝑢𝑛+1

)︀
,𝜑𝜑𝜑(·, 𝑡)

⟩︀
−
⟨︀
𝜇∇𝑢𝑢𝑢𝑛+1,∇𝜑𝜑𝜑(·, 𝑡)

⟩︀
−
⟨︀
ΣΣΣ𝑛+1,∇𝜑𝜑𝜑(·, 𝑡)

⟩︀
−
⟨︀
𝐻𝐻𝐻𝑛+1∇𝑄𝑄𝑄𝑛,𝜑𝜑𝜑(·, 𝑡)

⟩︀
:=

4∑︁
𝑘=1

𝐼𝑛
𝑘 .

To derive the regularity estimate, we will control 𝐼𝑛
1 to 𝐼𝑛

4 separately. Using integration by parts and the energy
estimate (3.18), we obtain⃒⃒⃒⃒

⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

𝐼𝑛
1 d𝑡

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

∫︁
Ω

(𝑢𝑢𝑢𝑛 · ∇)𝑢𝑢𝑢𝑛+1 ·𝜑𝜑𝜑 d𝑥d𝑡

⃒⃒⃒⃒
⃒

≤
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝜑𝜑𝜑(·, 𝑡)‖𝐿∞‖𝑢𝑢𝑢
𝑛‖
⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
d𝑡

(3.18)

≤ 𝐶

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝜑𝜑𝜑(·, 𝑡)‖𝐿∞

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
d𝑡

≤ 𝐶

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝜑𝜑𝜑(·, 𝑡)‖𝑊 1,6

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
d𝑡

≤ 𝐶

(︃
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦2
d𝑡

)︃ 1
2
(︃

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝜑𝜑𝜑(·, 𝑡)‖2𝑊 1,6 d𝑡

)︃ 1
2

= 𝐶

(︃
𝑁−1∑︁
𝑛=0

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦2
∆𝑡

)︃ 1
2

‖𝜑𝜑𝜑‖𝐿2(0,𝑇 ;𝑊 1,6)

(3.18)

≤ 𝐶‖𝜑𝜑𝜑‖𝐿2(0,𝑇 ;𝑉 ).

𝐼2 can be estimated as⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

𝐼𝑛
2 d𝑡

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

∫︁
Ω

𝜇∇𝑢𝑢𝑢𝑛+1 · ∇𝜑𝜑𝜑 d𝑥d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶

(︃
𝑁−1∑︁
𝑛=0

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦2
∆𝑡

)︃ 1
2

‖∇𝜑𝜑𝜑‖𝐿2([0,𝑇 )×Ω)

(3.18)

≤ 𝐶‖𝜑𝜑𝜑‖𝐿2(0,𝑇 ;𝑉 ).

By definitions (1.7) and (3.2), Hölder’s inequality, Poincaré’s inequality and the Sobolev inequality, we
have
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⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

𝐼𝑛
3 d𝑡

⃒⃒⃒⃒
⃒ ≤

𝑁−1∑︁
𝑛=0

⃒⃒⃒⃒
⃒
∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

⟨(︀
𝑄𝑄𝑄𝑛𝐻𝐻𝐻𝑛+1 −𝐻𝐻𝐻𝑛+1𝑄𝑄𝑄𝑛

)︀
− 𝜉
(︀
𝐻𝐻𝐻𝑛+1𝑄𝑄𝑄𝑛 +𝑄𝑄𝑄𝑛𝐻𝐻𝐻𝑛+1

)︀
− 2𝜉

𝑑
𝐻𝐻𝐻𝑛+1 + 2𝜉

(︀
𝑄𝑄𝑄𝑛 : 𝐻𝐻𝐻𝑛+1

)︀
𝑄𝑄𝑄𝑛,∇𝜑𝜑𝜑(·, 𝑡)

⟩
d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

(︂
‖𝑄𝑄𝑄𝑛‖𝐿3

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦
‖∇𝜑𝜑𝜑(·, 𝑡)‖𝐿6

+
⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦
‖∇𝜑𝜑𝜑(·, 𝑡)‖+

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦
‖𝑄𝑄𝑄𝑛‖2𝐿6 ‖∇𝜑𝜑𝜑(·, 𝑡)‖𝐿6

)︂
d𝑡

≤ 𝐶

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

(︂
‖𝑄𝑄𝑄𝑛‖𝐻1

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦
‖𝜑𝜑𝜑(·, 𝑡)‖𝑊 1,6

+
⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦
‖𝜑𝜑𝜑(·, 𝑡)‖𝐻1 +

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦
‖𝑄𝑄𝑄𝑛‖2𝐻1 ‖𝜑𝜑𝜑(·, 𝑡)‖𝑊 1,6

)︂
d𝑡

(3.18)

≤ 𝐶

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

(︀⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦
‖𝜑𝜑𝜑(·, 𝑡)‖𝑊 1,6 +

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦
‖𝜑𝜑𝜑(·, 𝑡)‖𝐻1

+
⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦
‖𝜑𝜑𝜑(·, 𝑡)‖𝑊 1,6

)︀
d𝑡

≤ 𝐶

(︃
𝑁−1∑︁
𝑛=0

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦2
∆𝑡

)︃ 1
2

‖𝜑𝜑𝜑‖𝐿2(0,𝑇 ;𝑊 1,6∩𝐻1
0,𝜎)

(3.18)

≤ 𝐶‖𝜑𝜑𝜑‖𝐿2(0,𝑇 ;𝑉 ).

To control 𝐼4, we apply Lemma 2.1,⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

𝐼𝑛
4 d𝑡

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

∫︁
Ω

𝐻𝐻𝐻𝑛+1∇𝑄𝑄𝑄𝑛 ·𝜑𝜑𝜑d𝑥d𝑡

⃒⃒⃒⃒
⃒

≤
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝜑𝜑𝜑(·, 𝑡)‖𝐿∞

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦
‖∇𝑄𝑄𝑄𝑛‖d𝑥 d𝑡

(3.18)

≤ 𝐶

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝜑𝜑𝜑(·, 𝑡)‖𝑊 1,6

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦
d𝑥 d𝑡

≤ 𝐶

(︃
𝑁−1∑︁
𝑛=0

⃦⃦
𝐻𝐻𝐻𝑛+1

⃦⃦2
∆𝑡

)︃ 1
2
(︃∫︁ 𝑇

0

‖𝜑𝜑𝜑(·, 𝑡)‖2𝑊 1,6 d𝑡

)︃ 1
2 (3.18)

≤ 𝐶‖𝜑𝜑𝜑‖𝐿2(0,𝑇 ;𝑉 ).

According to scheme (3.3), for each 𝑛, 𝑢𝑢𝑢𝑛+1 is the projection of 𝑢𝑢𝑢𝑛+1 onto the space of divergence free functions.
Therefore, for every 𝜑𝜑𝜑 ∈ 𝐿2(0, 𝑇 ;𝑉 ), we have∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

⟨𝜕𝑡𝑢𝑢𝑢Δ𝑡,𝜑𝜑𝜑⟩d𝑡 =
∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

⟨
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛

∆𝑡
,𝜑𝜑𝜑

⟩
d𝑡 =

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

⟨
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛

∆𝑡
,𝜑𝜑𝜑

⟩
d𝑡.

Therefore, combining the estimates from 𝐼1 to 𝐼4, we have shown that

‖𝜕𝑡𝑢𝑢𝑢Δ𝑡‖𝐿2(0,𝑇 ;𝑉 ′) = sup
𝜑𝜑𝜑∈𝐿2(0,𝑇 ;𝑉 )

⃒⃒⃒∑︀𝑁−1
𝑛=0

∫︀ (𝑛+1)Δ𝑡

𝑛Δ𝑡

⟨
𝑢̃𝑢𝑢𝑛+1−𝑢𝑢𝑢𝑛

Δ𝑡 ,𝜑𝜑𝜑
⟩

d𝑡
⃒⃒⃒

‖𝜑𝜑𝜑‖𝐿2(0,𝑇 ;𝑉 )
≤ 𝐶, (3.21)

and so 𝜕𝑡𝑢𝑢𝑢Δ𝑡 ∈ 𝐿2(0, 𝑇 ;𝑉 ′) uniformly in ∆𝑡. �
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Next we show a uniform estimate in ∆𝑡 for 𝜕𝑡𝑄𝑄𝑄Δ𝑡.

Lemma 3.10. For every ∆𝑡 > 0, we have

𝜕𝑡𝑄𝑄𝑄Δ𝑡 ∈ 𝐿2
(︁

0, 𝑇 ;𝐿
6
5

)︁
.

Proof. For any function 𝜙𝜙𝜙 ∈ 𝐿2(0, 𝑇 ;𝐿6),

⟨
𝑄𝑄𝑄𝑛+1 −𝑄𝑄𝑄𝑛

∆𝑡
,𝜙𝜙𝜙

⟩
= −

⟨︀
𝑢𝑢𝑢𝑛+1 · ∇𝑄𝑄𝑄𝑛,𝜙𝜙𝜙

⟩︀
+
⟨︀
𝑠𝑠𝑠𝑛+1,𝜙𝜙𝜙

⟩︀
+𝑀

⟨︀
𝐻𝐻𝐻𝑛+1,𝜙𝜙𝜙

⟩︀
:=

3∑︁
𝑘=1

𝐽𝑛
𝑘 .

Using energy estimate (3.18), the first term can be bounded as follows⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

𝐽𝑛
1 d𝑡

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

∫︁
Ω

𝑢𝑢𝑢𝑛+1 · ∇𝑄𝑄𝑄𝑛 : 𝜙𝜙𝜙d𝑥 d𝑡

⃒⃒⃒⃒
⃒

≤
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

⃦⃦
𝑢𝑢𝑢𝑛+1

⃦⃦
𝐿4‖∇𝑄𝑄𝑄𝑛‖‖𝜙𝜙𝜙(·, 𝑡)‖𝐿4 d𝑡

(3.18)

≤ 𝐶

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
‖𝜙𝜙𝜙(·, 𝑡)‖𝐿6 d𝑡

≤ 𝐶

(︃
𝑁−1∑︁
𝑛=0

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦2
∆𝑡

)︃ 1
2
(︃∫︁ 𝑇

0

‖𝜙𝜙𝜙(·, 𝑡)‖2𝐿6 d𝑡

)︃ 1
2 (3.18)

≤ 𝐶‖𝜙𝜙𝜙‖𝐿2(0,𝑇 ;𝐿6).

Using the Sobolev inequality and definitions (1.3), (3.2), we have⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

𝐽𝑛
2 d𝑡

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

⟨
𝑊̃𝑊𝑊

𝑛+1
𝑄𝑄𝑄𝑛 −𝑄𝑄𝑄𝑛𝑊̃𝑊𝑊

𝑛+1
+ 𝜉
(︁
𝑄𝑄𝑄𝑛𝐷̃𝐷𝐷

𝑛+1
+ 𝐷̃𝐷𝐷

𝑛+1
𝑄𝑄𝑄𝑛
)︁

+
2𝜉
𝑑
𝐷̃𝐷𝐷

𝑛+1
− 2𝜉
𝑑2
∇ · 𝑢𝑢𝑢𝑛+1𝐼𝐼𝐼 − 2𝜉

(︁
𝐷̃𝐷𝐷

𝑛+1
: 𝑄𝑄𝑄𝑛

)︁(︂
𝑄𝑄𝑄𝑛 +

1
𝑑
𝐼𝐼𝐼

)︂
,𝜙𝜙𝜙
⟩

d𝑡

⃒⃒⃒⃒
⃒

≤
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

(︁⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
‖𝑄𝑄𝑄𝑛‖𝐿4‖𝜙𝜙𝜙(·, 𝑡)‖𝐿4 +

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
‖𝜙𝜙𝜙(·, 𝑡)‖

+
⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
‖𝑄𝑄𝑄𝑛‖2𝐿6‖𝜙𝜙𝜙(·, 𝑡)‖𝐿6

)︁
d𝑡

≤ 𝐶

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

(︁⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
‖∇𝑄𝑄𝑄𝑛‖‖𝜙𝜙𝜙(·, 𝑡)‖𝐿6 +

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
‖𝜙𝜙𝜙(·, 𝑡)‖𝐿6

+
⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
‖∇𝑄𝑄𝑄𝑛‖2‖𝜙𝜙𝜙(·, 𝑡)‖𝐿6

)︁
d𝑡

(3.18)

≤ 𝐶

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

(︀⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
‖𝜙𝜙𝜙(·, 𝑡)‖𝐿6 +

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
‖𝜙𝜙𝜙(·, 𝑡)‖𝐿6 +

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦
‖𝜙𝜙𝜙(·, 𝑡)‖𝐿6

)︀
d𝑡

≤ 𝐶

(︃
𝑁−1∑︁
𝑛=0

⃦⃦
∇𝑢𝑢𝑢𝑛+1

⃦⃦2
∆𝑡

)︃ 1
2
(︃∫︁ 𝑇

0

‖𝜙𝜙𝜙(·, 𝑡)‖2𝐿6 d𝑡

)︃ 1
2 (3.18)

≤ 𝐶‖𝜙𝜙𝜙‖𝐿2(0,𝑇 ;𝐿6).
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The last term 𝐽𝑛
3 satisfies⃒⃒⃒⃒

⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

𝐽𝑛
3 d𝑡

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

∫︁
Ω

𝐻𝐻𝐻𝑛+1 : 𝜙𝜙𝜙d𝑥d𝑡

⃒⃒⃒⃒
⃒ ≤

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝐻𝐻𝐻𝑛+1‖‖𝜙𝜙𝜙(·, 𝑡)‖ d𝑡

≤ 𝐶

(︃
𝑁−1∑︁
𝑛=0

‖𝐻𝐻𝐻𝑛+1‖2 ∆𝑡

)︃ 1
2
(︃∫︁ 𝑇

0

‖𝜙𝜙𝜙(·, 𝑡)‖2𝐿2 d𝑡

)︃ 1
2 (3.18)

≤ 𝐶‖𝜙𝜙𝜙‖𝐿2(0,𝑇 ;𝐿2).

Combining these estimates for 𝐽1, 𝐽2 and 𝐽3, we have shown 𝜕𝑡𝑄𝑄𝑄Δ𝑡 ∈ 𝐿2(0, 𝑇 ;𝐿
6
5 ). �

This estimate naturally leads to the following corollary:

Corollary 3.11. We have
𝜕𝑡𝑟Δ𝑡 ∈ 𝐿2

(︀
0, 𝑇 ;𝐿1(Ω)

)︀
∩ 𝐿6/5([0, 𝑇 ]× Ω),

uniformly in ∆𝑡.

Proof. We obtain from (3.1c) that∫︁ 𝑇

0

(︂∫︁
Ω

|𝜕𝑡𝑟Δ𝑡(𝑥, 𝑡)|d𝑥
)︂2

d𝑡 =
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝑃𝑃𝑃𝑛 : 𝜕𝑡𝑄𝑄𝑄Δ𝑡(·, 𝑡)‖2𝐿1 d𝑡

≤
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝑃𝑃𝑃𝑛‖2𝐿6‖𝜕𝑡𝑄𝑄𝑄Δ𝑡(·, 𝑡)‖2
𝐿

6
5

d𝑡

Lemma 2.9
≤ 𝐶

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝑄𝑄𝑄𝑛‖2𝐿6‖𝜕𝑡𝑄𝑄𝑄Δ𝑡(·, 𝑡)‖2
𝐿

6
5

d𝑡

≤ 𝐶

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖∇𝑄𝑄𝑄𝑛‖2‖𝜕𝑡𝑄𝑄𝑄Δ𝑡(·, 𝑡)‖2
𝐿

6
5

d𝑡

(3.18)

≤ 𝐶

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝜕𝑡𝑄𝑄𝑄Δ𝑡(·, 𝑡)‖2
𝐿

6
5

d𝑡 = 𝐶‖𝜕𝑡𝑄𝑄𝑄Δ𝑡‖2
𝐿2
(︁
0,𝑇 ;𝐿

6
5
)︁ <∞.

To obtain the second estimate, we instead compute(︃∫︁ 𝑇

0

∫︁
Ω

|𝜕𝑡𝑟Δ𝑡(𝑥, 𝑡)|
6
5 d𝑥d𝑡

)︃ 5
6

=

(︃
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝑃𝑃𝑃𝑛 : 𝜕𝑡𝑄𝑄𝑄Δ𝑡(·, 𝑡)‖
6
5
𝐿6/5d𝑡

)︃ 5
6

≤

(︃
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝑃𝑃𝑃𝑛‖3𝐿∞d𝑡

)︃ 1
3
(︃

𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝜕𝑡𝑄𝑄𝑄Δ𝑡(·, 𝑡)‖2
𝐿

6
5

d𝑡

)︃ 1
2

Lemma 2.9
≤ 𝐶

(︃
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝑄𝑄𝑄Δ𝑡‖3𝐿∞d𝑡

)︃ 1
3

‖𝜕𝑡𝑄𝑄𝑄Δ𝑡(·, 𝑡)‖
𝐿2
(︁
0,𝑇 ;𝐿

6
5
)︁

≤ 𝐶

(︃
𝑁−1∑︁
𝑛=0

∫︁ (𝑛+1)Δ𝑡

𝑛Δ𝑡

‖𝑄𝑄𝑄Δ𝑡‖3
𝑊 1, 18

5
d𝑡

)︃ 1
3

‖𝜕𝑡𝑄𝑄𝑄Δ𝑡(·, 𝑡)‖
𝐿2
(︁
0,𝑇 ;𝐿

6
5
)︁

Remark 3.8, (3.18)

≤ 𝐶‖𝜕𝑡𝑄𝑄𝑄Δ𝑡(·, 𝑡)‖
𝐿2
(︁
0,𝑇 ;𝐿

6
5
)︁ <∞.

�
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4. Convergence analysis

In this section, we will prove convergence of the semi-discrete numerical scheme constructed in the previous
section as the time step ∆𝑡 tends to zero. We will show that a subsequence of {𝑄𝑄𝑄Δ𝑡,𝑢𝑢𝑢

*
Δ𝑡,𝐻𝐻𝐻Δ𝑡, 𝑟Δ𝑡}Δ𝑡 converges

to a weak solution of system (1.10a)–(1.10e). This leads to the following main theorem:

Theorem 4.1. The piece-wise linear interpolations (3.19a)–(3.19g) computed using scheme (3.1a)–(3.4) con-
verge up to a subsequence to a weak solution of (1.10a)–(1.10e) (as in Def. 2.5) as ∆𝑡→ 0.

Proof. Our proof utilizes the energy estimates derived in the last section for the linear interpolations defined in
(3.19a)–(3.19g). Then we will use compactness theorems, such as Lemma 2.3, to extract a convergent subsequence
and pass the limit, obtaining a weak solution of system (1.10a)–(1.10e). We split the proof into several steps as
follows.

Step 1: Smoothing the initial data. In order for Lemma 3.7 to be useful, we need ∆𝑡
⃦⃦

∆𝑄𝑄𝑄0
⃦⃦2 to be uni-

formly bounded in ∆𝑡. However, the initial data 𝑄𝑄𝑄in may be less regular, for example, in 𝐻1(Ω) only. In
order to approximate 𝑄𝑄𝑄in with a sufficiently regular initial approximation 𝑄𝑄𝑄0, we proceed as follows: Given
𝑄𝑄𝑄in ∈ 𝐻1

0 , we determine 𝑄𝑄𝑄0 ∈ 𝐻1
0 ∩𝐻2 by solving the equation

(𝐼𝐼𝐼 −∆𝑡∆)𝑄𝑄𝑄0 = 𝑄𝑄𝑄in.

We obtain from an energy estimate that⃦⃦
∇𝑄𝑄𝑄0

⃦⃦2
+ ∆𝑡

⃦⃦
∆𝑄𝑄𝑄0

⃦⃦2 ≤ ‖∇𝑄𝑄𝑄in‖
⃦⃦
∇𝑄𝑄𝑄0

⃦⃦
≤ 1

2
‖∇𝑄𝑄𝑄in‖2 +

1
2

⃦⃦
∇𝑄𝑄𝑄0

⃦⃦2
. (4.1)

This implies that ∆𝑡‖∆𝑄𝑄𝑄0‖2 is bounded and, therefore, ‖∆𝑡∆𝑄𝑄𝑄0‖2 = 𝑂(∆𝑡). As ∆𝑡 tends to 0, ‖∆𝑡∆𝑄𝑄𝑄0‖2
tends to 0. Then we can conclude that 𝑄𝑄𝑄0 →𝑄𝑄𝑄in strongly in 𝐿2 and weakly in 𝐻1.

Step 2: Compactness. The a priori estimates from the previous section can be summarized as follows: For
any fixed 𝑇 > 0,

sup
Δ𝑡
‖𝑄𝑄𝑄Δ𝑡‖𝐿2(0,𝑇 ;𝐻2)∩𝐿∞(0,𝑇 ;𝐻1) <∞, sup

Δ𝑡
‖𝑄𝑄𝑄*Δ𝑡‖𝐿2(0,𝑇 ;𝐻2)∩𝐿∞(0,𝑇 ;𝐻1) <∞,

sup
Δ𝑡
‖𝑢𝑢𝑢Δ𝑡‖𝐿2(0,𝑇 ;𝐻1

𝜎)∩𝐿∞(0,𝑇 ;𝐿2
𝜎) <∞, sup

Δ𝑡
‖𝑢𝑢𝑢*Δ𝑡‖𝐿2(0,𝑇 ;𝐻1)∩𝐿∞(0,𝑇 ;𝐿2) <∞

sup
Δ𝑡
‖𝑟Δ𝑡‖𝐿∞(0,𝑇 ;𝐿2(Ω)) <∞. (4.2)

Lemmas 3.9 and 3.10 imply

sup
Δ𝑡
‖𝜕𝑡𝑢𝑢𝑢Δ𝑡‖𝐿2(0,𝑇 ;𝑉 ′) <∞, sup

Δ𝑡
‖𝜕𝑡𝑄𝑄𝑄Δ𝑡‖𝐿2(0,𝑇 ;𝐻−1) <∞. (4.3)

Noting that 𝐿2
𝜎(Ω) is continuously embedded into 𝑉 ′ =

(︀
𝑊 1,𝑝(Ω) ∩𝐻1

0,𝜎(Ω)
)︀′, we can apply Lemma 2.3

to obtain that there exists 𝑢𝑢𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻1
0,𝜎) ∩ 𝐿∞(0, 𝑇 ;𝐿2) and a subsequence of {𝑢𝑢𝑢Δ𝑡}Δ𝑡, which will be

denoted as {𝑢𝑢𝑢Δ𝑡𝑚
}𝑚, such that

𝑢𝑢𝑢Δ𝑡𝑚 ⇀𝑢𝑢𝑢 in 𝐿2
(︀
0, 𝑇 ;𝐻1

0,𝜎

)︀
, 𝑢𝑢𝑢Δ𝑡𝑚 → 𝑢𝑢𝑢 in 𝐿2

(︀
0, 𝑇 ;𝐿2

𝜎

)︀
, 𝑢𝑢𝑢Δ𝑡𝑚(𝑡) *

⇀𝑢𝑢𝑢(𝑡) in 𝐿2 for a.e. 𝑡 ∈ [0, 𝑇 ]. (4.4)

Similarly, for the Q-tensor, 𝐻1 is continuously embedded into 𝐻−1(Ω) and so we apply Lemma 2.3 again,
to obtain 𝑄𝑄𝑄,𝑄𝑄𝑄* ∈ 𝐿2(0, 𝑇 ;𝐻2) ∩ 𝐿∞(0, 𝑇 ;𝐻1) and subsequences of {𝑄𝑄𝑄Δ𝑡}Δ𝑡 and {𝑄𝑄𝑄*Δ𝑡}Δ𝑡 which will be
denoted by 𝑄𝑄𝑄Δ𝑡𝑚 and 𝑄𝑄𝑄*Δ𝑡𝑚

, such that

𝑄𝑄𝑄Δ𝑡𝑚
⇀𝑄𝑄𝑄 in 𝐿2(0, 𝑇 ;𝐻2), 𝑄𝑄𝑄Δ𝑡𝑚

→𝑄𝑄𝑄 in 𝐿2(0, 𝑇 ;𝐻1), 𝑄𝑄𝑄Δ𝑡𝑚
(𝑡) →𝑄𝑄𝑄(𝑡) in 𝐿2, ∀ 𝑡 ∈ [0, 𝑇 ], (4.5)
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𝑄𝑄𝑄*Δ𝑡𝑚
⇀𝑄𝑄𝑄* in 𝐿2(0, 𝑇 ;𝐻2), 𝑄𝑄𝑄*Δ𝑡𝑚

→𝑄𝑄𝑄* in 𝐿2(0, 𝑇 ;𝐻1), 𝑄𝑄𝑄*Δ𝑡𝑚
(𝑡) →𝑄𝑄𝑄*(𝑡) in 𝐿2, ∀ 𝑡 ∈ [0, 𝑇 ]. (4.6)

Since 𝑄𝑄𝑄Δ𝑡𝑚 , 𝑄𝑄𝑄*Δ𝑡𝑚
are symmetric and trace-free for every ∆𝑡, it follows that the limits 𝑄𝑄𝑄 and 𝑄𝑄𝑄* are also

symmetric and trace-free, since these are linear properties. According to Lemma 2.9, the Lipschitz continuity
of 𝑃 guarantees the strong convergence properties of subsequence {𝑄𝑄𝑄*Δ𝑡𝑚

}𝑚 hold as well for the sequence
{𝑃 (𝑄𝑄𝑄Δ𝑡𝑚

)}𝑚, that is,
𝑃𝑃𝑃Δ𝑡𝑚

→ 𝑃 (𝑄𝑄𝑄*) in 𝐿2([0, 𝑇 )× Ω). (4.7)

In view of the Banach–Alaoglu theorem [18] and Lemma 3.10, we can extract a weakly convergent subse-
quence {𝜕𝑡𝑄𝑄𝑄Δ𝑡𝑚

}𝑚 such that
𝜕𝑡𝑄𝑄𝑄Δ𝑡𝑚

⇀ 𝜕𝑡𝑄𝑄𝑄 in 𝐿2
(︀
0, 𝑇 ;𝐻−1

)︀
, (4.8)

and a weakly convergent subsequence of {𝑟Δ𝑡𝑚
}𝑚 from {𝑟Δ𝑡}Δ𝑡 such that

𝑟Δ𝑡𝑚

*
⇀ 𝑟 in 𝐿∞

(︀
0, 𝑇 ;𝐿2

)︀
. (4.9)

Step 3: Equivalence between 𝑄𝑄𝑄 and 𝑄𝑄𝑄* and convergence of 𝑢𝑢𝑢*Δ𝑡. This step’s primary purpose is to
show that the limit functions of the various subsequences coincide. Noting that 𝑄𝑄𝑄Δ𝑡𝑚

differs from 𝑄𝑄𝑄*Δ𝑡𝑚

since they are interpolations of numerical solutions obtained at consecutive time steps, we can make use of
the upper bound of the term

∑︀𝑁
𝑛=0 ‖∇𝑄𝑄𝑄𝑛+1 −∇𝑄𝑄𝑄𝑛‖2 obtained in Lemma 3.6 to deduce that

‖𝑄𝑄𝑄−𝑄𝑄𝑄*‖𝐿2(0,𝑇 ;𝐻1)

≤ ‖𝑄𝑄𝑄−𝑄𝑄𝑄Δ𝑡𝑚
‖𝐿2(0,𝑇 ;𝐻1) +

⃦⃦
𝑄𝑄𝑄Δ𝑡𝑚

−𝑄𝑄𝑄*Δ𝑡𝑚

⃦⃦
𝐿2(0,𝑇 ;𝐻1)

+
⃦⃦
𝑄𝑄𝑄* −𝑄𝑄𝑄*Δ𝑡𝑚

⃦⃦
𝐿2(0,𝑇 ;𝐻1)

= ‖𝑄𝑄𝑄−𝑄𝑄𝑄Δ𝑡𝑚
‖𝐿2(0,𝑇 ;𝐻1) +

𝑁∑︁
𝑛=0

⃦⃦⃦⃦
(𝑛+ 1)∆𝑡− 𝑡

∆𝑡
(︀
𝑄𝑄𝑄𝑛 −𝑄𝑄𝑄𝑛−1

)︀
+
𝑡− 𝑛∆𝑡

∆𝑡
(︀
𝑄𝑄𝑄𝑛+1 −𝑄𝑄𝑄𝑛

)︀⃦⃦⃦⃦
𝐿2(𝑆𝑛;𝐻1)

+
⃦⃦
𝑄𝑄𝑄* −𝑄𝑄𝑄*Δ𝑡𝑚

⃦⃦
𝐿2(0,𝑇 ;𝐻1)

= ‖𝑄𝑄𝑄−𝑄𝑄𝑄Δ𝑡𝑚
‖𝐿2(0,𝑇 ;𝐻1) +

𝑁∑︁
𝑛=0

[︀⃦⃦
𝑄𝑄𝑄𝑛 −𝑄𝑄𝑄𝑛−1

⃦⃦
𝐻1 +

⃦⃦
𝑄𝑄𝑄𝑛+1 −𝑄𝑄𝑄𝑛

⃦⃦
𝐻1

]︀
∆𝑡

+
⃦⃦
𝑄𝑄𝑄* −𝑄𝑄𝑄*Δ𝑡𝑚

⃦⃦
𝐿2(0,𝑇 ;𝐻1)

≤ ‖𝑄𝑄𝑄−𝑄𝑄𝑄Δ𝑡𝑚
‖𝐿2(0,𝑇 ;𝐻1) + 𝐶

(︃
𝑁∑︁

𝑛=0

⃦⃦
∇𝑄𝑄𝑄𝑛+1 −∇𝑄𝑄𝑄𝑛

⃦⃦2
∆𝑡

)︃ 1
2

+
⃦⃦
𝑄𝑄𝑄* −𝑄𝑄𝑄*Δ𝑡𝑚

⃦⃦
𝐿2(0,𝑇 ;𝐻1)

. (4.10)

As ∆𝑡→ 0, the convergence results (4.5) and (4.6) imply that the first and third will go to 0 as ∆𝑡 tends to
0 while the second is 𝑂(

√
∆𝑡) by energy estimate (3.16), and so it goes to 0, too. So we conclude that 𝑄𝑄𝑄 is

equal to 𝑄𝑄𝑄* in 𝐿2(0, 𝑇 ;𝐻1).
For the velocity field, though the sequence {𝑢𝑢𝑢*Δ𝑡}𝑚 does not preserve the divergence-free property on each
step, we will show that the limit of its subsequence 𝑢𝑢𝑢*Δ𝑡𝑚

agrees with 𝑢𝑢𝑢. To see this, we infer from definitions
(3.19a) and (3.19b) that⃦⃦

𝑢𝑢𝑢− 𝑢𝑢𝑢*Δ𝑡𝑚

⃦⃦
𝐿2([0,𝑇 )×Ω)

≤ ‖𝑢𝑢𝑢− 𝑢𝑢𝑢Δ𝑡𝑚
‖𝐿2([0,𝑇 )×Ω) +

⃦⃦
𝑢𝑢𝑢Δ𝑡𝑚

− 𝑢𝑢𝑢*Δ𝑡𝑚

⃦⃦
𝐿2([0,𝑇 )×Ω)

≤ ‖𝑢𝑢𝑢− 𝑢𝑢𝑢Δ𝑡𝑚
‖𝐿2([0,𝑇 )×Ω) + 𝐶

(︃
𝑁∑︁

𝑛=0

⃦⃦
𝑢𝑢𝑢𝑛+1 − 𝑢𝑢𝑢𝑛+1

⃦⃦2
∆𝑡

)︃ 1
2

. (4.11)

As ∆𝑡→ 0, the convergence result (4.4) implies that the first term will go to 0 while the second is 𝑂(
√

∆𝑡)
by energy estimate (3.16), and so it goes to 0 as well. In this way, we have shown that 𝑢𝑢𝑢*Δ𝑡𝑚

→ 𝑢𝑢𝑢 strongly
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in 𝐿2([0, 𝑇 )× Ω). For each ∆𝑡, we note that 𝑢𝑢𝑢Δ𝑡 is divergence-free and therefore, by the weak convergence
in (4.4), we obtain that for almost every 𝑡 ∈ [0, 𝑇 ] and any smooth function 𝜑 ∈ 𝐶∞𝑐 (Ω),

0 = lim
𝑚→∞

∫︁
Ω

𝜑(𝑥)∇ · 𝑢𝑢𝑢Δ𝑡𝑚
(𝑡, 𝑥) d𝑥 = − lim

𝑚→∞

∫︁
∇𝜑(𝑥) · 𝑢𝑢𝑢Δ𝑡𝑚

(𝑡, 𝑥) d𝑥

=
∫︁

Ω

∇𝜑(𝑥) · 𝑢𝑢𝑢(𝑡, 𝑥) d𝑥 =
∫︁

Ω

𝜑(𝑥)∇ · 𝑢𝑢𝑢(𝑡, 𝑥) d𝑥. (4.12)

This implies that 𝑢𝑢𝑢 is weakly divergence-free which implies that it is divergence free almost everywhere in
[0, 𝑇 )× Ω.

Step 4: Weak convergence to 𝐻𝐻𝐻, 𝑆𝑆𝑆, ΣΣΣ. We let 𝐻𝐻𝐻 = 𝐿∆𝑄𝑄𝑄 − 𝑟𝑃 (𝑄𝑄𝑄). This is well-defined thanks to the
regularity estimates we obtained for 𝑄𝑄𝑄 in the previous steps. To obtain a representation of 𝐻𝐻𝐻Δ𝑡 in terms of
𝑟𝑛 and 𝑃𝑃𝑃𝑛, we introduce the following piece-wise linear function ̃︁𝑟𝑃𝑃𝑃Δ𝑡 to approximate 𝑟𝑃𝑃𝑃 ,

̃︁𝑟𝑃𝑃𝑃Δ𝑡 =
𝑁−1∑︁
𝑛=0

[︂
(𝑛+ 1)∆𝑡− 𝑡

∆𝑡
𝑟𝑛𝑃𝑃𝑃𝑛−1 +

𝑡− 𝑛∆𝑡
∆𝑡

𝑟𝑛+1𝑃𝑃𝑃𝑛

]︂
𝜒𝑆𝑛 . (4.13)

Recalling definitions (3.19f) and (3.1d), the interpolation 𝐻𝐻𝐻Δ𝑡 satisfies the following weak form

⟨𝐻𝐻𝐻Δ𝑡,𝜑𝜑𝜑⟩ = −𝐿⟨∇𝑄𝑄𝑄Δ𝑡,∇𝜑𝜑𝜑⟩ −
⟨̃︁𝑟𝑃𝑃𝑃Δ𝑡,𝜑𝜑𝜑

⟩
for any smooth matrix-valued test function 𝜑𝜑𝜑 with compact support in [0, 𝑇 ) × Ω. Accordingly, the subse-
quence 𝐻𝐻𝐻Δ𝑡𝑚

satisfies

⟨𝐻𝐻𝐻Δ𝑡𝑚
,𝜑𝜑𝜑⟩ = −𝐿⟨∇𝑄𝑄𝑄Δ𝑡𝑚

,∇𝜑𝜑𝜑⟩ −
⟨̃︁𝑟𝑃𝑃𝑃Δ𝑡𝑚

,𝜑𝜑𝜑
⟩
.

To show that ̃︁𝑟𝑃𝑃𝑃Δ𝑡𝑚
converges weakly to 𝑟𝑃 (𝑄𝑄𝑄), we introduce a piece-wise constant interpolation 𝑃𝑃𝑃 *Δ𝑡 to

approximate 𝑃𝑃𝑃 as

𝑃𝑃𝑃 *Δ𝑡 =
𝑁−1∑︁
𝑛=0

𝑃𝑃𝑃𝑛−1 𝜒𝑆𝑛
. (4.14)

Then for any smooth test function 𝜑𝜑𝜑, we have

∫︁ 𝑇

0

∫︁
Ω

(︁̃︁𝑟𝑃𝑃𝑃Δ𝑡𝑚
− 𝑟𝑃 (𝑄𝑄𝑄)

)︁
: 𝜑𝜑𝜑d𝑥 d𝑡

=
∫︁ 𝑇

0

∫︁
Ω

(︁̃︁𝑟𝑃𝑃𝑃Δ𝑡𝑚
− 𝑟Δ𝑡𝑚

𝑃𝑃𝑃 *Δ𝑡𝑚

)︁
: 𝜑𝜑𝜑d𝑥d𝑡⏟  ⏞  

𝐾1

+
∫︁ 𝑇

0

∫︁
Ω

𝑟Δ𝑡𝑚

(︀
𝑃𝑃𝑃 *Δ𝑡𝑚

−𝑃𝑃𝑃Δ𝑡𝑚

)︀
: 𝜑𝜑𝜑d𝑥d𝑡⏟  ⏞  

𝐾2

+
∫︁ 𝑇

0

∫︁
Ω

𝑟Δ𝑡𝑚(𝑃𝑃𝑃Δ𝑡𝑚 − 𝑃 (𝑄𝑄𝑄)) : 𝜑𝜑𝜑d𝑥d𝑡⏟  ⏞  
𝐾3

+
∫︁ 𝑇

0

∫︁
Ω

(𝑟Δ𝑡𝑚 − 𝑟)𝑃 (𝑄𝑄𝑄) : 𝜑𝜑𝜑d𝑥d𝑡⏟  ⏞  
𝐾4

.
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Our goal is to show that when 𝑚 → ∞, each 𝐾𝑖, 𝑖 = 1, 2, 3, 4 tends to 0. With (3.19g), (4.13), (4.14) and
using Lemmas 2.9, 3.6, we can estimate 𝐾1 as

|𝐾1| =

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁
Ω

𝑁−1∑︁
𝑛=0

[︂
(𝑛+ 1)∆𝑡𝑚 − 𝑡

∆𝑡𝑚
𝑟𝑛𝑃𝑃𝑃𝑛−1 +

𝑡− 𝑛∆𝑡𝑚
∆𝑡𝑚

𝑟𝑛+1𝑃𝑃𝑃𝑛

]︂
𝜒𝑆𝑛 : 𝜑𝜑𝜑 d𝑥d𝑡

−
∫︁ 𝑇

0

∫︁
Ω

𝑁−1∑︁
𝑛=0

[︂
(𝑛+ 1)∆𝑡𝑚 − 𝑡

∆𝑡𝑚
𝑟𝑛𝑃𝑃𝑃𝑛−1 +

𝑡− 𝑛∆𝑡𝑚
∆𝑡𝑚

𝑟𝑛+1𝑃𝑃𝑃𝑛−1

]︂
𝜒𝑆𝑛

: 𝜑𝜑𝜑d𝑥d𝑡

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁
Ω

𝑁−1∑︁
𝑛=0

𝑡− 𝑛∆𝑡𝑚
∆𝑡𝑚

𝑟𝑛+1
(︀
𝑃𝑃𝑃𝑛 −𝑃𝑃𝑃𝑛−1

)︀
𝜒𝑆𝑛 : 𝜑𝜑𝜑 d𝑥 d𝑡

⃒⃒⃒⃒
⃒

≤ ∆𝑡𝑚‖𝜑𝜑𝜑‖𝐿∞([0,𝑇 )×Ω)

𝑁−1∑︁
𝑛=0

∫︁
Ω

⃒⃒
𝑟𝑛+1

⃒⃒⃒⃒
𝑃𝑃𝑃𝑛 −𝑃𝑃𝑃𝑛−1

⃒⃒
d𝑥

≤ 𝐿̃∆𝑡𝑚‖𝜑𝜑𝜑‖𝐿∞([0,𝑇 )×Ω)

𝑁−1∑︁
𝑛=0

∫︁
Ω

⃒⃒
𝑟𝑛+1

⃒⃒⃒⃒
𝑄𝑄𝑄𝑛 −𝑄𝑄𝑄𝑛−1

⃒⃒
d𝑥

≤ 𝐿̃∆𝑡𝑚

(︂
max

0≤𝑛≤𝑁−1

⃦⃦
𝑟𝑛+1

⃦⃦)︂
‖𝜑𝜑𝜑‖𝐿∞([0,𝑇 )×Ω)

𝑁−1∑︁
𝑛=0

⃦⃦
𝑄𝑄𝑄𝑛 −𝑄𝑄𝑄𝑛−1

⃦⃦

≤ 𝐿̃𝑇
1
2 ∆𝑡

1
2
𝑚

(︂
max

0≤𝑛≤𝑁−1

⃦⃦
𝑟𝑛+1

⃦⃦)︂
‖𝜑𝜑𝜑‖𝐿∞([0,𝑇 )×Ω)

(︃
𝑁−1∑︁
𝑛=0

⃦⃦
𝑄𝑄𝑄𝑛 −𝑄𝑄𝑄𝑛−1

⃦⃦2

)︃ 1
2

≤ 𝐶∆𝑡
1
2
𝑚

(︂
max

0≤𝑛≤𝑁−1

⃦⃦
𝑟𝑛+1

⃦⃦)︂
‖𝜑𝜑𝜑‖𝐿∞([0,𝑇 )×Ω)

(︃
𝑁−1∑︁
𝑛=0

⃦⃦
∇𝑄𝑄𝑄𝑛 −∇𝑄𝑄𝑄𝑛−1

⃦⃦2

)︃ 1
2

→ 0.

The estimate for 𝐾2 is similar. Specifically, we have

|𝐾2| =

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁
Ω

𝑟Δ𝑡𝑚

{︃
𝑁−1∑︁
𝑛=0

𝑃𝑃𝑃𝑛−1 𝜒𝑆𝑛
−

𝑁−1∑︁
𝑛=0

[︂
(𝑛+ 1)∆𝑡𝑚 − 𝑡

∆𝑡𝑚
𝑃𝑃𝑃𝑛−1 +

𝑡− 𝑛∆𝑡𝑚
∆𝑡𝑚

𝑃𝑃𝑃𝑛

]︂
𝜒𝑆𝑛

}︃
: 𝜑𝜑𝜑 d𝑥 d𝑡

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁
Ω

𝑟Δ𝑡𝑚

𝑁−1∑︁
𝑛=0

[︂
𝑡− 𝑛∆𝑡𝑚

∆𝑡𝑚

(︀
𝑃𝑃𝑃𝑛−1 −𝑃𝑃𝑃𝑛

)︀
𝜒𝑆𝑛

]︂
: 𝜑𝜑𝜑 d𝑥d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶∆𝑡𝑚‖𝑟Δ𝑡𝑚
‖𝐿∞([0,𝑇 );𝐿2(Ω))‖𝜑𝜑𝜑‖𝐿∞([0,𝑇 )×Ω)

𝑁−1∑︁
𝑛=0

⃦⃦
𝑄𝑄𝑄𝑛 −𝑄𝑄𝑄𝑛−1

⃦⃦

≤ 𝐶∆𝑡
1
2
𝑚‖𝑟Δ𝑡𝑚

‖𝐿∞([0,𝑇 );𝐿2(Ω))‖𝜑𝜑𝜑‖𝐿∞([0,𝑇 )×Ω)

(︃
𝑁−1∑︁
𝑛=0

⃦⃦
∇𝑄𝑄𝑄𝑛 −∇𝑄𝑄𝑄𝑛−1

⃦⃦2

)︃ 1
2

→ 0.

𝐾3 tends to 0 as well thanks to the strong convergence of 𝑃𝑃𝑃Δ𝑡𝑚
to 𝑃 (𝑄𝑄𝑄), see (4.7), (4.10). The last term

𝐾4 goes to 0 as 𝑚 tends to infinity by the weak convergence of 𝑟Δ𝑡𝑚
towards 𝑟. Thus, ̃︁𝑟𝑃𝑃𝑃Δ𝑡𝑚

⇀ 𝑟𝑃 (𝑄𝑄𝑄).
Using this, we prove 𝐻𝐻𝐻Δ𝑡𝑚 ⇀𝐻𝐻𝐻 in 𝐿2([0, 𝑇 )× Ω). Indeed, we have∫︁ 𝑇

0

∫︁
Ω

𝐻𝐻𝐻Δ𝑡𝑚
: 𝜑𝜑𝜑 d𝑥 d𝑡−

∫︁ 𝑇

0

∫︁
Ω

𝐻𝐻𝐻 : 𝜑𝜑𝜑 d𝑥 d𝑡

= −
∫︁ 𝑇

0

∫︁
Ω

𝐿(∇𝑄𝑄𝑄Δ𝑡𝑚
−∇𝑄𝑄𝑄) : ∇𝜑𝜑𝜑−

∫︁ 𝑇

0

∫︁
Ω

(︁̃︁𝑟𝑃𝑃𝑃Δ𝑡𝑚
− 𝑟𝑃 (𝑄𝑄𝑄)

)︁
: 𝜑𝜑𝜑 d𝑥 d𝑡→ 0, (4.15)
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as 𝑚 tends to infinity since ∇𝑄𝑄𝑄Δ𝑡𝑚
→𝑄𝑄𝑄 in 𝐿2. This shows that 𝐻𝐻𝐻Δ𝑡𝑚

⇀𝐻𝐻𝐻 in 𝐿2([0, 𝑇 )×Ω). Since 𝐻𝐻𝐻Δ𝑡𝑚

are trace-free and symmetric for every ∆𝑡, by Lemma 3.3, it follows that the limit 𝐻𝐻𝐻 is also trace-free and
symmetric since these are linear properties.
According to (3.2), we can define

𝑠𝑠𝑠Δ𝑡 = 𝑊𝑊𝑊Δ𝑡𝑄𝑄𝑄
*
Δ𝑡 −𝑄𝑄𝑄*Δ𝑡𝑊𝑊𝑊Δ𝑡 + 𝜉(𝑄𝑄𝑄*Δ𝑡𝐷𝐷𝐷Δ𝑡 +𝐷𝐷𝐷Δ𝑡𝑄𝑄𝑄

*
Δ𝑡) +

2𝜉
𝑑
𝐷𝐷𝐷Δ𝑡 − 2𝜉(𝐷𝐷𝐷Δ𝑡 : 𝑄𝑄𝑄*Δ𝑡)

(︂
𝑄𝑄𝑄*Δ𝑡 +

1
𝑑
𝐼𝐼𝐼

)︂
,

ΣΣΣΔ𝑡 = 𝑄𝑄𝑄*Δ𝑡𝐻𝐻𝐻Δ𝑡 −𝐻𝐻𝐻Δ𝑡𝑄𝑄𝑄
*
Δ𝑡 − 𝜉(𝐻𝐻𝐻Δ𝑡𝑄𝑄𝑄

*
Δ𝑡 +𝑄𝑄𝑄*Δ𝑡𝐻𝐻𝐻Δ𝑡)−

2𝜉
𝑑
𝐻𝐻𝐻Δ𝑡 + 2𝜉(𝑄𝑄𝑄*Δ𝑡 : 𝐻𝐻𝐻Δ𝑡)

(︂
𝑄𝑄𝑄*Δ𝑡 +

1
𝑑
𝐼𝐼𝐼

)︂
,

where

𝐷𝐷𝐷*Δ𝑡 =
1
2

(∇𝑢𝑢𝑢*Δ𝑡 +∇𝑢𝑢𝑢* ᵀ
Δ𝑡), 𝑊𝑊𝑊 *

Δ𝑡 =
1
2

(∇𝑢𝑢𝑢*Δ𝑡 −∇𝑢𝑢𝑢
* ᵀ
Δ𝑡).

Taking 𝑆𝑆𝑆 = 𝑆(∇𝑢𝑢𝑢,𝑄𝑄𝑄), ΣΣΣ = Σ(𝑄𝑄𝑄,𝐻𝐻𝐻) and 𝐷𝐷𝐷 = 1
2 (∇𝑢𝑢𝑢 +∇𝑢𝑢𝑢ᵀ), 𝑊𝑊𝑊 = 1

2 (∇𝑢𝑢𝑢−∇𝑢𝑢𝑢ᵀ), we claim that 𝑠𝑠𝑠Δ𝑡𝑚 ⇀ 𝑆𝑆𝑆
and ΣΣΣΔ𝑡𝑚

⇀ ΣΣΣ. Using formula (3.5), we can rewrite 𝑠𝑠𝑠Δ𝑡𝑚
as

𝑠𝑠𝑠Δ𝑡𝑚
= 𝑆

(︀
𝑢𝑢𝑢*Δ𝑡𝑚

,𝑄𝑄𝑄*Δ𝑡𝑚

)︀
− 2𝜉
𝑑2

(︀
∇ · 𝑢𝑢𝑢*Δ𝑡𝑚

)︀
𝐼𝐼𝐼.

As it is shown in (4.4), (4.11) and (4.12), ∇·𝑢𝑢𝑢*Δ𝑡𝑚
⇀ ∇·𝑢𝑢𝑢 = 0, and so we only need to show 𝑆(𝑢𝑢𝑢*Δ𝑡𝑚

,𝑄𝑄𝑄*Δ𝑡𝑚
) ⇀

𝑆𝑆𝑆. The most challenging term to treat within 𝑆(𝑢𝑢𝑢*Δ𝑡𝑚
,𝑄𝑄𝑄*Δ𝑡𝑚

) is (𝐷𝐷𝐷Δ𝑡𝑚
: 𝑄𝑄𝑄*Δ𝑡𝑚

)𝑄𝑄𝑄*Δ𝑡𝑚
. The weak convergence

of other terms follows in a similar way. Applying the generalized Hölder’s inequality and Sobolev inequality,
for any smooth function 𝜙𝜙𝜙 with compact support in [0, 𝑇 )× Ω, we obtain,⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁
Ω

(︀
𝐷𝐷𝐷Δ𝑡𝑚

: 𝑄𝑄𝑄*Δ𝑡𝑚

)︀
𝑄𝑄𝑄*Δ𝑡𝑚

: 𝜙𝜙𝜙d𝑥d𝑡−
∫︁ 𝑇

0

∫︁
Ω

(𝐷𝐷𝐷 : 𝑄𝑄𝑄)𝑄𝑄𝑄 : 𝜙𝜙𝜙d𝑥d𝑡

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁
Ω

(︀
𝐷𝐷𝐷Δ𝑡𝑚 : 𝑄𝑄𝑄*Δ𝑡𝑚

)︀ (︀
𝑄𝑄𝑄*Δ𝑡𝑚

−𝑄𝑄𝑄
)︀

: 𝜙𝜙𝜙d𝑥d𝑡+
∫︁ 𝑇

0

∫︁
Ω

(︀
𝐷𝐷𝐷Δ𝑡𝑚 :

(︀
𝑄𝑄𝑄*Δ𝑡𝑚

−𝑄𝑄𝑄
)︀)︀
𝑄𝑄𝑄 : 𝜙𝜙𝜙d𝑥 d𝑡

+
∫︁ 𝑇

0

∫︁
Ω

((𝐷𝐷𝐷Δ𝑡𝑚
−𝐷𝐷𝐷) : 𝑄𝑄𝑄)𝑄𝑄𝑄 : 𝜙𝜙𝜙d𝑥d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶‖𝜙𝜙𝜙‖𝐿∞([0,𝑇 )×Ω)‖𝐷𝐷𝐷Δ𝑡𝑚
‖𝐿2([0,𝑇 )×Ω)

⃦⃦
𝑄𝑄𝑄*Δ𝑡𝑚

⃦⃦
𝐿∞(0,𝑇 ;𝐿4)

⃦⃦
𝑄𝑄𝑄*Δ𝑡𝑚

−𝑄𝑄𝑄
⃦⃦

𝐿2([0,𝑇 );𝐿4)

+ 𝐶‖𝜙𝜙𝜙‖𝐿∞([0,𝑇 )×Ω)‖𝐷𝐷𝐷Δ𝑡𝑚
‖𝐿2([0,𝑇 )×Ω)‖𝑄𝑄𝑄‖𝐿∞([0,𝑇 );𝐿4)

⃦⃦
𝑄𝑄𝑄*Δ𝑡𝑚

−𝑄𝑄𝑄
⃦⃦

𝐿2([0,𝑇 );𝐿4)

+

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁
Ω

((𝐷𝐷𝐷Δ𝑡𝑚
−𝐷𝐷𝐷) : 𝑄𝑄𝑄)𝑄𝑄𝑄 : 𝜙𝜙𝜙d𝑥d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶
(︁⃦⃦
𝑄𝑄𝑄*Δ𝑡𝑚

⃦⃦
𝐿∞(0,𝑇 ;𝐻1)

+ ‖𝑄𝑄𝑄‖𝐿∞(0,𝑇 ;𝐻1)

)︁⃦⃦
𝑄𝑄𝑄*Δ𝑡𝑚

−𝑄𝑄𝑄
⃦⃦

𝐿2(0,𝑇 ;𝐻1)

+

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁
Ω

((𝐷𝐷𝐷Δ𝑡𝑚 −𝐷𝐷𝐷) : 𝑄𝑄𝑄)𝑄𝑄𝑄 : 𝜙𝜙𝜙d𝑥d𝑡

⃒⃒⃒⃒
⃒. (4.16)

As 𝑚 tends to infinity, the first term goes to 0 since 𝑄𝑄𝑄*Δ𝑡𝑚
→ 𝑄𝑄𝑄 in 𝐿2(0, 𝑇 ;𝐻1). While the second term

tends to 0 because 𝐷𝐷𝐷*Δ𝑡𝑚
⇀𝐷𝐷𝐷 in 𝐿2, and (𝑄𝑄𝑄 : 𝜙𝜙𝜙)𝑄𝑄𝑄 ∈ 𝐿2([0, 𝑇 )× Ω).

To show ΣΣΣΔ𝑡𝑚 ⇀ Σ in 𝐿2([0, 𝑇 ) × Ω) is similar, therefore, we will only present the treatment of the most
challenging term within ΣΣΣΔ𝑡𝑚

, which is (𝑄𝑄𝑄*Δ𝑡𝑚
: 𝐻𝐻𝐻Δ𝑡𝑚

)𝑄𝑄𝑄*Δ𝑡𝑚
. For any smooth function 𝜙𝜙𝜙 with compact
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support in [0, 𝑇 )× Ω, we have⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁
Ω

(︀
𝑄𝑄𝑄*Δ𝑡𝑚

: 𝐻𝐻𝐻Δ𝑡𝑚

)︀
𝑄𝑄𝑄*Δ𝑡𝑚

: 𝜙𝜙𝜙d𝑥d𝑡−
∫︁ 𝑇

0

∫︁
Ω

(𝑄𝑄𝑄 : 𝐻𝐻𝐻)𝑄𝑄𝑄 : 𝜙𝜙𝜙d𝑥d𝑡

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁
Ω

(︀
𝑄𝑄𝑄*Δ𝑡𝑚

: 𝐻𝐻𝐻Δ𝑡𝑚

)︀ (︀
𝑄𝑄𝑄*Δ𝑡𝑚

−𝑄𝑄𝑄
)︀

: 𝜙𝜙𝜙d𝑥d𝑡+
∫︁ 𝑇

0

∫︁
Ω

(︀(︀
𝑄𝑄𝑄*Δ𝑡𝑚

−𝑄𝑄𝑄
)︀

: 𝐻𝐻𝐻Δ𝑡𝑚

)︀
𝑄𝑄𝑄 : 𝜙𝜙𝜙d𝑥d𝑡

+
∫︁ 𝑇

0

∫︁
Ω

(𝑄𝑄𝑄 : (𝐻𝐻𝐻Δ𝑡𝑚
−𝐻𝐻𝐻))𝑄𝑄𝑄 : 𝜙𝜙𝜙d𝑥d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶‖𝜙𝜙𝜙‖𝐿∞([0,𝑇 )×Ω)

(︁⃦⃦
𝑄𝑄𝑄*Δ𝑡𝑚

⃦⃦
𝐿∞(0,𝑇 ;𝐿4)

+ ‖𝑄𝑄𝑄‖𝐿∞(0,𝑇 ;𝐿4)

)︁
‖𝐻𝐻𝐻Δ𝑡𝑚

‖𝐿2([0,𝑇 )×Ω)

×
⃦⃦
𝑄𝑄𝑄*Δ𝑡𝑚

−𝑄𝑄𝑄
⃦⃦

𝐿2(0,𝑇 ;𝐿4)
+

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁
Ω

(𝑄𝑄𝑄 : (𝐻𝐻𝐻Δ𝑡𝑚 −𝐻𝐻𝐻))𝑄𝑄𝑄 : 𝜙𝜙𝜙d𝑥d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶
⃦⃦
𝑄𝑄𝑄*Δ𝑡𝑚

−𝑄𝑄𝑄
⃦⃦

𝐿2(0,𝑇 ;𝐻1)
+

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

∫︁
Ω

(𝑄𝑄𝑄 : (𝐻𝐻𝐻Δ𝑡𝑚
−𝐻𝐻𝐻))𝑄𝑄𝑄 : 𝜙𝜙𝜙d𝑥d𝑡

⃒⃒⃒⃒
⃒. (4.17)

As 𝑚 tends to infinity, the first term goes to 0 since 𝑄𝑄𝑄*Δ𝑡𝑚
→ 𝑄𝑄𝑄 in 𝐿2(0, 𝑇 ;𝐻1). The second term tends to

0 because 𝐻𝐻𝐻Δ𝑡𝑚 ⇀𝐻𝐻𝐻 in 𝐿2([0, 𝑇 )× Ω), and (𝑄𝑄𝑄 : 𝜙𝜙𝜙)𝑄𝑄𝑄 ∈ 𝐿2([0, 𝑇 )× Ω).
Step 5: Passing the limit. Using the results from the previous steps, we can pass to the limit in most terms

in weak formulation (3.1a), and (3.1b) after integrating over [0, 𝑇 ). The convergence of the terms in the
equation for 𝑟Δ𝑡 follows by combining the weak convergence of 𝜕𝑡𝑄𝑄𝑄Δ𝑡 with the Lipschitz continuity of 𝑃
and the strong convergence of 𝑄𝑄𝑄Δ𝑡 in 𝐿2([0, 𝑇 ]×Ω) (see also [20] for details). The only two remaining terms
remaining are

∫︀ 𝑇

0

∫︀
Ω
𝐻𝐻𝐻Δ𝑡𝑚

∇𝑄𝑄𝑄*Δ𝑡𝑚
·𝜓𝜓𝜓 d𝑥 d𝑡 and

∫︀ 𝑇

0

∫︀
Ω

(𝑢𝑢𝑢*Δ𝑡𝑚
·∇𝑄𝑄𝑄*Δ𝑡𝑚

) : 𝜙𝜙𝜙d𝑥d𝑡. Combining weak and strong
convergence as in Step 4, it follows that∫︁ 𝑇

0

∫︁
Ω

𝐻𝐻𝐻Δ𝑡𝑚∇𝑄𝑄𝑄*Δ𝑡𝑚
·𝜓𝜓𝜓 d𝑥d𝑡 ⇀

∫︁ 𝑇

0

∫︁
Ω

𝐻𝐻𝐻∇𝑄𝑄𝑄 ·𝜓𝜓𝜓 d𝑥d𝑡,∫︁ 𝑇

0

∫︁
Ω

(︀
𝑢𝑢𝑢*Δ𝑡𝑚

· ∇𝑄𝑄𝑄*Δ𝑡𝑚

)︀
: 𝜙𝜙𝜙d𝑥d𝑡 ⇀

∫︁ 𝑇

0

∫︁
Ω

(𝑢𝑢𝑢 · ∇𝑄𝑄𝑄) : 𝜙𝜙𝜙d𝑥d𝑡. (4.18)

This shows that (𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻, 𝑟) is a weak solution satisfying Definition 2.5. �

In order to conclude, we need to show that the reformulated system (1.10a)–(1.10e) and the original hydro-
dynamics system (1.1a)–(1.1c) are equivalent in the weak sense. This follows from the following lemma that was
proved in Lemma 5.2 of [20]:

Lemma 4.2. Assume that (𝑢𝑢𝑢,𝑄𝑄𝑄,𝐻𝐻𝐻, 𝑟) is a weak solution in the sense of Definition 2.5. Then for any smooth
function 𝜑 with compact support in (0, 𝑇 )× Ω (compactly supported in both time and space), we have∫︁ 𝑇

0

∫︁
Ω

𝑟𝜑d𝑥 d𝑡 =
∫︁ 𝑇

0

∫︁
Ω

𝑟(𝑄𝑄𝑄)𝜑 d𝑥 d𝑡 (4.19)

where 𝑟(𝑄𝑄𝑄) is defined in (1.8).

Proof. We only provide a sketch of the proof here since this result follows in a similar way as in Lemma 5.2
of [20]. Firstly, in Corollary 3.11, we have shown that 𝜕𝑡𝑟Δ𝑡 ∈ 𝐿2(0, 𝑇 ;𝐿1(Ω)), uniformly in ∆𝑡, from which it
follows that the weak limit 𝑟 satisfies the same regularity estimate. Thus, it follows from Lemma 1.1, p. 250 of
[38] that 𝑟 is absolutely continuous in time with values in 𝐿1(Ω). Moreover, from the a priori estimates, we have
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that the limit 𝑄𝑄𝑄 ∈ 𝐿2(0, 𝑇 ;𝐻2(Ω)) which implies that 𝑄𝑄𝑄 ∈ 𝐿2(0, 𝑇 ;𝐿∞(Ω)) (and also 𝑄𝑄𝑄 ∈ 𝐿∞(0, 𝑇 ;𝐻1) which
implies 𝑄𝑄𝑄 ∈ 𝐿∞(0, 𝑇 ;𝐿6(Ω))). With the Lipschitz continuity of 𝑃 (𝑄𝑄𝑄), this implies that 𝑃 (𝑄𝑄𝑄) ∈ 𝐿2(0, 𝑇 ;𝐿∞(Ω))
(and 𝑃 (𝑄𝑄𝑄) ∈ 𝐿∞(0, 𝑇 ;𝐿6(Ω))). Combining this with 𝑄𝑄𝑄𝑡 ∈ 𝐿2(0, 𝑇 ;𝐿6/5(Ω)) from Lemma 3.10, we obtain that
the product 𝑃 (𝑄𝑄𝑄) : 𝑄𝑄𝑄𝑡 ∈ 𝐿1([0, 𝑇 ]× Ω) (or better) as in Lemma 5.2 of [20]. Thus, the rest of the proof follows
in the same way as in Lemma 5.2 of [20]. �

Remark 4.3. For a similar reason as Remark 2.6, it is also valid to choose 𝐿2 functions as test functions
in (4.19) since 𝑟 is bounded in 𝐿2.
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