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A B S T R A C T   

The Federal Emergency Management Agency (FEMA) recently released a large dataset (~2.5 million records) of flood insurance claim transactions from the National 
Flood Insurance Program (NFIP) that are geolocated by census tract. In this study, we present a methodology for using these NFIP flood claims along with agency 
rainfall and tide level data, combined with high-resolution rainfall data collected from growing networks of crowdsourced Personal Weather Stations (PWSs), to 
investigate the characteristics of storm events that result in flood insurance claims. Using 25 cities/counties in five metropolitan areas in the Mid-Atlantic region as 
case studies for testing the methodology, we find that the majority of flood claim events in this region were associated with rainfall below a 1-year return period and a 
tide level below the NOAA minor flood risk tide level. When storm events exceeded these rainfall and tide thresholds, the probability of a flood claim occurring could 
reach 100% for rainfall only events and 33% for tidal only events, depending on the region. While compound events of both high rainfall and high tide were rare, 
when seen in Virginia Beach, the probability of insurance claims being made during these events far exceeded the probability that would be expected if rainfall and 
tide were independent, showing how compound events in this region exacerbate flood impacts. Additionally, analysis of 110 heavy rainfall events showed that 
crowdsourced PWSs, can better capture rainfall extremes associated with insurance claims due to their higher spatial density compared to federal agency rainfall 
networks. This suggests that the PWS networks, once quality controlled, can offer greater insights into which rainfall events are likely to contribute to insurance 
claims. These region-specific findings and the general methodology presented in this study can benefit multiple stakeholders including researchers, risk management 
officials, insurers as well as the general public in understanding the impacts of rainfall, tidal, and compound flooding, along with the value of crowdsourced data in 
assessing flood risk.   

1. Introduction 

Flooding is a leading cause of social and economic losses in the 
United States (NOAA National Centers for Environmental Information 
(NECI), 2022). In coastal cities, floods can be triggered by heavy rainfall 
and high tide due to low-lying topography and impervious surfaces 
(Hallegatte et al., 2013). However, due to the effects of climate change 
and sea level rise, flooding has become more frequent and severe (Ezer 
and Atkinson, 2014; Fowler et al., 2021). For example, recent studies 
have shown that there has been an increase in both the frequency and 
intensity of precipitation trends in the United States, which will likely 
worsen the impacts from flooding (Davenport et al., 2021; Mosavi et al., 
2018; Netusil and Kousky, 2021). Moreover, sea level rise has also 
caused increased flood risks even for low-return period storm events 
(Moftakhari et al., 2015). Increased urbanization is another factor that 
increases potential flood hazard and exposure due to impervious sur
faces (Chang et al., 2021). 

Understanding the characteristics of rainfall and tide that lead to 
flooding is a critical step toward effectively managing and building 
resilience against flood risk (Nofal and van de Lindt, 2020; Shen et al., 
2019). This is especially important in areas that lack flooding observa
tional data to calibrate complex flood prediction and drainage models 
(Gaitan et al., 2016). However, due to insufficient spatial, temporal, and 
geographic information regarding historical floods, past studies of flood 
characteristics have focused on single case studies or a limited database 
of flood events (Saharia et al., 2017). Recently, flood insurance claims 
have emerged as a potential data source of flood impacts (Gradeci et al., 
2019). For example, outside the United States, flood insurance data has 
been used to investigate the relationship between extreme rainfall event 
and flood losses (Leal et al., 2019; Sörensen and Mobini, 2017; Spekkers 
et al., 2013; Torgersen et al., 2015). The spatial relationships between 
flood insurance claims and landcover have been explored to understand 
flood risk. Studies have also shown that flood insurance claim data can 
be used to inform the calibration of flood models (Wang and Sebastian, 
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2021; Zischg et al., 2018). 
In the United States, the Federal Emergency Management Agency’s 

(FEMA) National Flood Insurance Program (NFIP) is the largest provider 
of flood insurance policies. In the past, the NFIP flood insurance claim 
dataset was not publicly available. Therefore, there are only a few 
studies using NFIP flood insurance claims that either focus on policy 
aspects (i.e., supply, demand and effectiveness of the NFIP program) 

(Kousky, 2018; Kousky and Michel-Kerjan, 2017) or assessing flood risk 
for certain study areas in case studies (Blessing et al., 2017; Czajkowski 
et al., 2017; Mobley et al., 2021). In June 2019, in an effort to promote 
FEMA’s open data vision (OpenFEMA) (Federal Emergency Manage
ment Agency (FEMA), 2022), FEMA made more than two million NFIP 
flood claim transactions (1978 to present) available to the public in an 
easily-accessible and machine-readable format (Dombrowski et al., 

Fig. 1. (a) Comparison of NOAA rainfall network and crowdsourced PWS rainfall network for the five metropolitan areas. (b) The number of claims by county. (c) 
Population by county, (d) Selected NOAA rainfall and tide stations and crowdsourced PWS rainfall network in the analyzed five metropolitan areas. 
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2021; Federal Emergency Management Agency (FEMA), 2021). Since 
the release, more studies have emerged to leverage this dataset for flood 
studies. For example, prediction models for flood insurance claims and 
flood damages have been explored to construct the relationship between 
flooding and socioeconomic, geographic, demographic and environ
mental factors (Collins et al., 2022; Mobley et al., 2021; Vishnu et al., 
2021; Wing et al., 2020; Yang et al., 2022). However, there is a lack of 
studies that analyze how rainfall and tide characteristics in coastal cities 
related to flood claims using this newly released NFIP flood claim 
dataset. 

It is possible to gain insight into how rainfall and tide characteristics 
correspond to flood losses in coastal cities through the use of the NFIP 
flood claims dataset. However, in the case of rainfall, high-resolution 
and dense rainfall observation networks will be needed to capture 
weather events that result in localized flooding (Maier et al., 2020). 
While there are agency (government-operated) in situ rainfall moni
toring networks and radar-based methods for measuring rainfall, these 
approaches alone do not produce the resolution of rainfall data needed 
to fully capture the storm event characteristics that lead to localized 
urban flooding (Emmanuel et al., 2012; Smith et al., 2007). The recent 
growth of crowdsourcing rainfall through the use of Personal Weather 
Stations (PWSs) has been shown to have the potential to fill in obser
vation gaps and provide high-resolution and reliable data to supplement 
urban flood monitoring (Bardossy et al., 2021; Chen et al., 2022, 2021; 
de Vos et al., 2019, 2017; Mandement and Caumont, 2020). Although 
crowdsourced rainfall data have been utilized in several flooding-related 
studies, they have not been applied to understand flood losses. 

The objective of this study, therefore, is to address these research 
gaps by creating a method to assess how rainfall and tide characteristics 
of storm events relate to the NFIP flood claims using exploratory data 
analysis, and second exploring if crowdsourced rainfall data collected by 
growing networks of Personal Weather Stations (PWSs) better captures 
rainfall that leads to flood losses. We use regions in the mid-Atlantic 
United States as test cases for applying the method and exploring the 
PWS data. The contributions of this research are both the methodology 
for analyzing the drivers of flood insurance claims in coastal regions that 
could be applied to other regions and time periods using this national- 
scale dataset, as well as region-specific findings of which hydrologic 
conditions lead to flood insurance losses in the Mid-Atlantic. 

2. Materials and methods 

2.1. Data 

2.1.1. Flood claim data 
The flood insurance claims data used in this study were collected 

from the OpenFEMA website (https://www.fema. 
gov/openfema-data-page/fima-nfip-redacted-claims-v1), released by 
the Federal Emergency Management Agency’s (FEMA) National Flood 
Insurance Program (NFIP), the largest provider of flood insurance in the 
U.S. (Federal Emergency Management Agency (FEMA), 2021). The NFIP 
provides flood insurance to property owners, renters and businesses. The 
policy holders file claims when their properties are flooded. The policy 
and claims information are then documented in the NFIP system of re
cord. This dataset provides claim-level fields for each claim transaction 

including more than 40 attributes, such as the date of loss (date on which 
water first entered the insured building), location (geocoded to census 
tract), insurance payout (dollar amount paid on building and contents 
claim), and other claim and building property related characteristics. 

2.1.2. Agency rainfall and tide data 
The agency rainfall and tide data used in this study were collected 

from the National Oceanic and Atmospheric Administration (NOAA)’s 
National Centers for Environmental Information (NCEI). The available 
rainfall and tide stations, as well as their observed data, were queried and 
downloaded using the rnoaa library in the R programming language (R 
package version 1.3.4) (Chamberlain, 2021), which utilizes NCDC’s 
Application Programming Interface (API) that provides access to NCDC’s 
database (https://www.ncdc.noaa.gov/cdo-web/webservices/v2), as 
well as the NOAA Tide & Currents CO-OPS API (https://api. 
tidesandcurrents.noaa.gov/api/prod/). For the rainfall data, the NOAA 
Local Climatological Data stations (referred as NOAA rainfall stations 
hereafter) were queried automatically using NCDC’s API. For the tide 
data, the available tide stations and data stored in the Tide & Current 
Product database were queried and downloaded using the CO-OPS API 
(https://api.tidesandcurrents.noaa.gov/api/prod/). 

2.1.3. Crowdsourced rainfall data 
The crowdsourced rainfall network used in this study consists of 

PWSs available through the Weather Underground, one of the largest 
platforms for PWS owners to share their data. The rainfall observations 
from the PWSs were accessed through the API provided by the Weather 
Underground. The PWS rainfall observation sampling interval varies 
from station to station. Most of the sampling intervals are between 5 and 
10 min per observation. 

2.2. Study area 

Five metropolitan areas (Virginia Beach, Washington DC, Baltimore, 
Philadelphia, and New York) (Fig. 1) in the Mid-Atlantic region were 
selected as case study regions given their susceptibility to flooding due 
to their population density, low-lying topographic characteristics, rising 
sea level and increasing rainfall intensities (Ezer and Atkinson, 2014; 
Goddard et al., 2015; Wahl et al., 2015). 

For these regions, agency (NOAA) rainfall and tide data and 
crowdsourced (PWS) rainfall data were downloaded using the methods 
mentioned in the previous section. Fig. 1a shows the available NOAA 
rainfall stations and PWSs within the five selected metropolitan areas 
based on the API queries. The rainfall station density of NOAA rainfall 
stations ranged from 0.1 to 0.2 stations per 100 km2, while the density of 
PWSs ranged from 5 to 15 stations per 100 km2. Based on the Weather 
Underground database archive, PWSs have been growing exponentially 
in recent years (Chen et al., 2022). Therefore, to assess the potential of 
PWS rainfall observations to understand flood claim events, this study 
focused on analyzing the flood claim data from 2016 to 2020 for all five 
metropolitan areas. Fig. 1b and 1c show the number of NFIP flood claims 
and the population for the selected metropolitan areas at county/city 
level from 2016 to 2020. As shown in Table 1, the number of flood 
claims ranges from 686 to 4045 per metropolitan region. The payout 
ranges from 2.22 million to up to 9.18 million USD. 

Table 1 
NFIP flood claim information for the selected metropolitan areas (2016 – 2020). The number (percentage) of days with claims were calculated from the raw flood claim 
data.  

Metropolitan Area Population(‘000) Number offlood claims Total Payout ($K) Number (percentage) of days with claims 

Virginia Beach (VB) 1,731 4,045 91,829 337 (18%) 
Washington DC (DC) 6,176 1,591 21,284 382 (21%) 
Baltimore (BAL) 2,797 686 22,200 198 (11%) 
Philadelphia (PHL) 6,079 2,494 69,052 245 (13%) 
New York (NY) 19,294 2,848 42,786 668 (37%)  
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To account for the effect of tide level on flood losses, we first selected 
one representative tide station for each metropolitan area that has the 
most consistent period of record (Fig. 1d). Next, assuming areas that are 

closer to the representative tide station have higher impacts from tide 
water, we chose five counties/cities for each selected metropolitan area 
that (1) are the closest to the tide station and (2) touch the waterbody 

Fig. 2. Workflow of data preprocessing and analysis methods used in this study.  

Fig. 3. (a) Flood claim events are categorized into groups based on the rainfall and tide thresholds. (b) Analysis of rainfall and tide characteristics for flood claim 
events using Norfolk as an example. Blue dots represent non-flood-claim events while black “X”s represent flood claim events with non-zero rainfall. The size of the 
symbol “X” corresponds to the number of claims. The vertical and horizontal dashed lines represent the rainfall and tide thresholds defined in Fig. 3a, respectively. 
NZRE and TE represent non-zero rainfall events and total events, respectively. The comparison plots for the four other counties in the Virginia Beach metropolitan 
area are shown in Fig. A1 in the Appendix. 

A.B. Chen et al.                                                                                                                                                                                                                                 



Journal of Hydrology 625 (2023) 130123

5

that the representative tide station observes. For the representative 
rainfall station, we chose the NOAA rainfall station that is closest to the 
centroid of each selected county/city (Fig. 1d). 

2.3. Methods 

The methodology presented in this study can be summarized as a 
workflow of data pre-processing and additional steps used to investigate 
the relationship between rainfall, tide level and flood losses (Fig. 2). The 
details of each step are presented in the following subsections. 

2.3.1. Flood claim data pre-processing 
The raw flood claim data (claim level) was converted into flood claim 

events (event level) to associate claims with the observed rainfall and 
tide level using the following steps. For each city/county, we first subset 
the flood claims that occurred inside the census tracts of the selected 
city/county. We then sorted the subset data using the date of loss field. 
Flood claims that occurred only on a single date with no claims on the 
preceding and succeeding day were regarded as separate flood claim 
events. On the other hand, flood claims that spanned across multiple 
consecutive days were aggregated into a single flood claim event. In this 
case, the start and the end date of such an event was considered the first 
and the last date of these consecutive days, respectively This is usually 
the case for typhoons or hurricanes which have prolonged flood impacts. 
In addition, we also expect flood risk from typhoons or hurricanes to be 
encompassed within the rainfall and tide level data. The tide level in
cludes storm surge that can be caused by such events, and the rainfall 
associated with these events should also be captured by the rainfall 
gauges. 

2.3.2. Analysis of rainfall and tide characteristics of flood claim events 
In this study, we used the maximum 1-H, 3-H, 6-H, and 24-H accu

mulated rainfall and maximum tide level observed during the flood 
claim event period as the rainfall and tide metrics, respectively. Since 
different rain gauges may classify these events differently, for consis
tency the rainfall and tide metrics of each event were calculated from the 
representative NOAA rainfall and tide station for each city/county. 
NOAA rainfall stations were used instead of PWS rain stations because of 
their greater quality control, but data from these networks were later 
compared under different events to see if the PWSs could capture greater 
spatial variability in rainfall that might explain surprising flood claim 
distributions. 

To assess the rainfall characteristics of flood claim events, we 
compared the rainfall metrics of the flood claim events with the 1-year 
return period of maximum 1-H, 3-H, 6-H and 24-H accumulated rainfall 
derived from NOAA Atlas 14 precipitation frequency estimates 
(https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html). These 
rainfall thresholds for the analyzed counties/cities were extracted using 
the latitude and longitude of the representative NOAA rainfall station for 
each city/county. Similarly, to quantify the tide characteristics of flood 
claim events, the tide metrics calculated for each flood claim event were 
compared with the minor flood threshold tide level defined by NOAA 
(Sweet et al., 2018). This threshold is associated with tide levels when 
minor flooding is likely, and a coastal flood warning of serious risks to 
life and property is issued by NOAA (Sweet et al., 2018). Generally, this 
minor flood threshold tide level ranges between a 1-year to 2-year return 
period event. The rainfall and tide level thresholds (Mean Higher High 
Water datum) for the analyzed cities/counties are shown in Table A1 in 
the appendix. 

Using the rainfall and tide thresholds from the previous section, each 
flood claim event was categorized into LRLT (low rainfall low tide), 
HRLT (heavy rainfall low tide), LRHT (low rainfall high tide), and HRHT 
(heavy rainfall high tide) groups, based on the observed rainfall and tide 
metrics. These divisions are shown in Fig. 3a. 

2.3.3. Comparison of PWS rainfall with NOAA rainfall 

2.3.3.1. Heavy rainfall flood claim events selection. To assess the value of 
PWS data, we focus on flood claim events that are associated with heavy 
rainfall. Heavy rainfall events in this study are defined as events falling 
into the high rainfall low tide (HRLT) or high rainfall high tide (HRHT) 
quadrants defined in Fig. 3a, based on NOAA observed rainfall. These 
heavy rainfall events have rainfall exceeding the 1-year return period 
and resulted in flood losses, which we referred to as heavy rainfall flood 
claim events. These events were selected for the analysis in the next 
section. 

2.3.3.2. Comparison of NOAA and PWS rainfall in heavy rainfall flood 
claim events. To assess the ability of PWSs to capture the spatial het
erogeneity of observed rainfall for the heavy rainfall flood claim events, 
the rainfall metrics computed from agency and crowdsourced rainfall 
stations were compared. For each flood claim in the heavy rainfall claim 
events, rainfall observations from the neighboring PWSs (defined as 
PWSs within a specific distance from the centroid of the census tract 
associated with flood claim) were extracted. The distance is determined 
based on the availability of PWSs that were actively reporting rainfall 
observations and the level of consensus between those PWSs. Typically, 
distances of 4 km or less should be selected (Chen et al., 2021). To ensure 
trustworthy and quality controlled PWS rainfall data, the Reputation 
System for Crowdsourced Rainfall Network (RSCRN) (Chen et al., 2021) 
approach was applied to the PWS data. Using neighboring PWSs as a 
cluster for running the RSCRN, the trust score of each PWS was assigned 
based on its agreement or disagreement with the neighboring PWSs in a 
cluster. The PWSs that received trust scores above 5.0 (out of 10.0) were 
considered trustworthy and included in the comparison analysis with 
NOAA gauges. Using the trustworthy PWSs, the median of rainfall 
metrics (the maximum 1-H, 3-H, 6-H, and 24-H accumulated rainfall) of 
the neighboring PWSs were computed and compared with the average 
rainfall metrics computed from NOAA rainfall stations. 

3. Results and discussions 

3.1. Rainfall and tide characteristics of flood claim events 

We present the rainfall and tide characteristics of 58 flood claim 
events in Norfolk, VA in the Virginia Beach metropolitan area as an 
example (Fig. 3b). Among the 58 flood claim events (total flood claim 
events, TE), there were 37 events associated with non-zero rainfall (non- 
zero rainfall flood claim events, NZRE) and 19 flood claim events 
associated with zero rainfall. To understand what event characteristics 
lead to flood claim events on non-zero rainfall days, scatterplots of the 
rainfall and tide metrics in Norfolk are shown in Fig. 3b for all non-zero 
rainfall events that occurred during 2016 to 2020. These events include 
both non-flood-claim events (defined as rainfall events during which no 
flood claims were reported) and flood claim events (defined as rainfall 
events during which flood claims were recorded). In this figure, we see 
that the 37 non-zero flood claim events (black “X”s in Fig. 3b), are 
generally associated with higher maximum 1-H, 3-H, 6-H, 24-H rainfall 
and higher maximum tide level than the non-flood claim events (blue 
dots in Fig. 3b), as shown by the size of the symbols. Fig. 3b also shows 
the range of rainfall for each flood claim event duration in the boxplots 
above the scatterplots, and of the tide level in the boxplot on the right. 
From these we see that for the flood events that occurred in Norfolk, the 
majority of 1-H maximum rainfall ranged from 0.3 to 1.5 in., with three 
events (1.6, 2.4, 2.7 in.) above the boxplot’s upper whisker. The ma
jority of tide levels were between 0.7 and 2.0 feet, with one event 
associated with a significantly higher tide (3.4 feet). 

The rainfall (1-year rainfall return period) and tide (minor flood risk) 
threshold values are shown by the vertical and horizonal dotted lines in 
Fig. 3b, respectively. These lines indicate that most flood claims events 
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are in the low rainfall low tide (LRLT) or low rainfall high tide (LRHT) 
group as defined in Fig. 3a, which is associated with lower than 1-year 
return period rainfall, regardless of the duration, since these events 
happen more often than extreme events. The boxplot of the tide level 
shows that the tide threshold for Norfolk was close to the third quantile 
tide levels of flood claim events, which indicates that 25% of the flood 
claim events are in the low rainfall high tide (LRLT) or high rainfall high 
tide (HRHT) group with tide levels exceeding this threshold. Similar 

patterns of flood claim events characteristic were observed in the other 
four counties in the Virginia Beach metropolitan area (Fig. A1 in the 
appendix). These results imply that, although most of the flood insur
ance policies are based on the 100-year flood plain (Kousky and Michel- 
Kerjan, 2017), flood losses can still occur when there is both low rainfall 
and a low tide level. 

Fig. 4. (a) Percentage of events out of total events in each group. The numbers in the bar represent the number of flood claim events in LRHT and HRHT groups. (b) 
percentage of flood claim events out of all flood claim events in each group using 24-H rainfall duration threshold. 
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3.2. Categorizing flood claim events using rainfall and tide metrics 

To obtain the rainfall and tide characteristics of the analyzed 
metropolitan areas during the study period, we first analyzed the rela
tionship between the rainfall threshold and the observed rainfall, as well 
as the tide level threshold and the observed tide level in all events (both 
flood claim and non-flood claim) that occurred during 2016–2020. 
Fig. 4a and Table A2 show our findings using 24-H rainfall as an 
example. Here we see that the majority of events were in the low rainfall 

low tide (LRLT) (89.2 to 95.3%) and low rainfall high tide (LRHT) 
groups (3.0 to 10.1%). However, we found that less than 1.5% of the 
events were in high rainfall low tide (HRLT) group, and less than 0.8% of 
the events were in the high rainfall high tide (HRHT) group. As shown in 
Table A3 in the Appendix, across metropolitan areas, the number of 
events that exceed 1-year rainfall and minor flood risk tide level range 
from 19 to 63 and 1 to 12, respectively, which indicates minor flood risk 
tide events occurred 4.8 to 15.8 times and 1-year rainfall events 
occurred 0.25 to 3 times per year on average over the study period. 

Fig. 5. Number and percentage of events exceeding the 1-year return period rainfall that resulted in flood claims. The darker blue bar represents the number of 
rainfall events exceeding the 1-year rainfall level. The lighter blue bar represents the number of those events that resulted in flood claim events. The percentage above 
the bars represents the percentage of those rainfall events that resulted in flood claim events. 
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Based on the 24-H rainfall threshold, counties/cities in VB and DC both 
have a greater number and percentage of high rainfall events compared 
to BAL, PHL, and NY, implying a higher risk for rainfall-driven floods. 
Similarly, based on the tide threshold, counties/cities in VB, DC, and NY 
have a higher percentage of high tide events compared to BAL and PHL, 
implying a higher risk of tidal floods. These findings were consistent 
regardless of the durations of rainfall events, as shown in Fig. A2 and A3 
in the Appendix. 

3.3. Quantifying the characteristics of flood claim events 

Following the analysis from the previous section, we calculated the 
number of flood claim events in each rainfall and tide group, using 24-H 
rainfall duration as an example (Fig. 4b). Using the Virginia Beach 
metropolitan area as an example, we found that the percentage of events 

resulting in flood claims are much higher in the high rainfall low tide 
(HRLT) (50%) and high rainfall high tide (HRHT) (48%) groups than in 
the low rainfall low tide (LRLT) group (4%) and the low rainfall high 
tide (LRHT) group (10%). This shows the expected results that, although 
heavy rainfall events are rare, they are much more likely to result in 
flood insurance claims. Based on the rainfall threshold, VB and DC have 
the highest number of events in the HRLT and HRHT groups, but the 
percentages of events in high rainfall groups (HRLT and HRHT) range 
from 16.7 to 75%. This also implies that not all the events exceeding the 
1-year return period maximum 24-H rainfall resulted in flood loss. 
Interestingly, the combination of high rainfall and tide (HRHT) occurred 
in multiple events in VB, while no HRHT events occurred in DC, even 
with a similar number of HRLT events. Based on the tide threshold, the 
events in the LRHT group that resulted in flood losses varied. For 
example, in Norfolk and Virginia Beach, the percentages of events in the 

Fig. 6. Number and percentage of events exceeding the minor flood risk tide level resulting in flood claims. Based on the percentage, the analyzed counties/cities 
were be categorized into high (greater than15%), moderate (5–15%), and low (less than5%) tidal flood risk groups. 
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LRHT group that resulted in flood losses were 19%, compared to 8.1, 5.3 
and even 0% in Newport News, Hampton, and Portsmouth, respectively. 
This indicates that most flood claims in the analyzed counties/cites are 
associated with less than a 1-year return period rainfall. 

The data in Fig. 4b also allowed us to investigate how rainfall and 
tide levels interact. If these variables are independent, the probability 

that a flood event leads to flood claims when high rainfall and high tide 
occur together is equal to (1) the product of the probability that a flood 
event leads to flood claims when rainfall is high and (2) the probability 
that a flood event leads to flood claims when the tide is high. If the 
observed probability that a flood event leads to flood claims is higher 
than this, the effects of these variables interact to increase the risk of 

Fig. 7. The comparison of NOAA and PWS observed rainfall metrics for heavy rainfall flood claim events. The x-axis represents the average NOAA observed rainfall 
near the census tract (y-axis), while the y-axis represents a function of x-axis for the percent difference between (1) the median observed rainfall of neighboring 
trustworthy PWSs (within 5 km from the census tract the flood claim is associated with) and (2) the average NOAA observed rainfall. 
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flooding. As shown in Table A4 in the Appendix, in the Virginia Beach 
Region, the probability of a flood event leading to a claim when both the 
rainfall and tide is high far exceeds what would be expected if the two 
variables were independent, indicating a strong interaction. In the other 
regions, there were only 1 or 2 events in which both high rainfall and 
tide levels occurred together, consequently, there is not enough infor
mation to determine if these variables interact there as well. 

The rainfall threshold analysis was further expanded in Fig. 5. The 
events that exceed the rainfall threshold (HRLT and HRHT groups) were 
analyzed for each duration. In VB and DC, there are more high rainfall 

events, and the percentage of high rainfall events that led to flood losses 
varied across different durations of maximum rainfall. For example, in 
Fairfax County, the percentage of heavy rainfall events exceeding the 
rainfall threshold of 6-H and 24-H that resulted in flood losses were 
100%, while one event in both the groups of exceeding 1-H and 3-H 
rainfall did not result in flood loss. On the other hand, in Alexandria 
City, 100% of the events exceeding the 1-H rainfall threshold resulted in 
flood losses, while only 50–70% of the events above the other duration 
thresholds resulted in flood losses. In summary, by comparing across 
metropolitan areas, the analysis shows that VB and DC have relatively 

Fig. 8. First example flood claim event of PWS capturing heterogeneous storms coinciding with the location of flood claims.  
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more high rainfall events and a higher percentage of high rainfall events 
leading to flood losses. 

In Fig. 6, the number and percentage of high tide events (events in 
LRHT and HRHT) that resulted in flood losses were calculated. In the 
twenty-five analyzed counties/cities, the flood loss percentage can be 
categorized into high, moderate, and low tidal flood risk groups based 
on the percentages of high tide events resulting in flood losses. Cities/ 
counties in the high tidal flood risk group have percentages greater than 
15%, with Baltimore County in BAL (33%), Nassau County in NY (27%), 
and Fairfax County (27%) having the three highest percentages. The 
moderate flood risk groups have percentages ranging from 5 to 15%. 
Example cities/counties include Newport News City, Hampton City in 

VB, Gloucester County in PHL, Hudson County and Kings County in NY. 
In the low flood risk groups, the percentages are lower than 5%. Sur
prisingly, the results showed that some coastal cities such as Portsmouth 
City in VA, Alexandria City and Arlington County in DC have very low 
percentages of high tide events resulting in flood losses, which may 
imply that flood losses in these areas are more rainfall-driven than tidal- 
driven. 

3.4. Comparison of NOAA and PWS rainfall in heavy rainfall flood claim 
events 

A total of 110 flood claim events associated with high rainfall (HRLT 

Fig. 9. Second example flood claim event of PWS capturing heterogeneous storms coinciding with the location of flood claims.  
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and HRHT groups) were used to compare the rainfall metrics observed 
from agency (NOAA) and crowdsourced (PWS) rainfall stations. There 
were 34, 32, 12, 14 and 18 flood claim events with flood claims that 
occurred in 299, 228, 61, 118, and 88 census tracts in VB, DC, BAL, PHL, 
and NY, respectively. In these flood claim events, the maximum accu
mulated rainfall varied across events. The 1-H, 3-H, 6-H and 24-H 
ranged from 0.08 to 3.18, 0.95 to 4.88, 1.23 to 6.69 and 1.68 to 
10.07 in. respectively, based on the NOAA observed rainfall. 

The comparison of NOAA and PWS observed rainfall for each heavy 
rainfall flood claim event is shown in Fig. 7. The x-axis represents the 
average observed rainfall from NOAA rainfall gauges within 10 km of 
the census tract (y-axis), while the y-axis represents percent difference 
between (1) the median observed rainfall of neighboring trustworthy 
PWSs (within 5 km from the census tract the flood claim is associated 
with) and (2) the average NOAA observed rainfall. Note that we used 
median for PWSs for excluding the effect of untrustworthy PWSs and 
average for NOAA rainfall stations because there are usually only 2–3 
NOAA rainfall stations nearby. In Fig. 7, each dot represents the rainfall 
metrics of census tracts associated with claims within a flood event, with 
the blue dots representing events in which the PWSs observed greater 
median rainfall than the average NOAA gauge, while the gray dots 
represent the reverse. The results show that there can be significant 
differences in rainfall measured by the PWS gauges and the NOAA 
gauges, suggesting there is high spatial variability in rainfall during the 
flood claim events. In BAL and PHL, the majority of flood claim events 
have PWSs observing greater rainfall (91, 67, 57 and 57% for 1-H, 3-H, 
6-H, and 24-H rainfall for BAL). In VB and DC, the number of PWSs 
observing greater or lesser rainfall than NOAA is similar. However, the 
percent differences in events in which the PWSs observe greater rainfall 
are higher than in the events in which they observe less rainfall (e.g., 
31% compared to –22% for 1-H rainfall in VB). Overall, we see that 
PWSs tend to observe higher rainfall than the NOAA gauges for less 
extreme and shorter duration events, suggesting they may be capturing 
more localized flooding, whereas the gauges are in closer agreement for 
more extreme events that generally span a larger area. 

Figs. 8 and 9 compare Inverse Distance Weighted (IDW) interpolated 
maps of total accumulated rainfall observed from NOAA rainfall stations 
and PWSs, as well as the rainfall hourly time series for an example 
census tract and the derived rainfall metrics for two example flood claim 
events (one on 11/11/2020 in Norfolk (Fig. 8) and the other on 9/9/ 
2020 in the District of Columbia (Fig. 9)). As shown in Fig. 8a (1) - (3), in 
the 11/11/2020 event, there was a total of 25 claims distributed across 
the city with $254,364 in insurance payout. The IDW interpolated maps 
for NOAA and PWS in Fig. 8a (4) – (6) show that a significant difference 

(~2 in) in total accumulated rainfall occurred around the example 
census tract area, with the PWS maps showing greater rainfall. 
Comparing the hourly time series of the NOAA rainfall stations with the 
PWS neighboring stations for the example census tract in Fig. 8b, we see 
that PWSs captured a significantly larger rainfall peak (~1 in) on 11/12 
01:00. 

In the second example (9/9/2020 event), shown in Fig. 9a (1) – (3), 
there were a total of 60 claims with $516,178 in insurance payout. 
Similarly, the census tracts with the greatest number of flood claims 
coincide with areas showing significant differences in interpolated 
rainfall from NOAA gauges vs. PWS gauges, with the PWS gauges 
showing greater rainfall (Fig. 9a (4) – (6)). This suggests the coverage 
from the NOAA rainfall stations was insufficient to capture this area of 
heavy rainfall that resulted in claims. As shown in Fig. 9b, the rainfall 
peak on 9/10 13:00 observed from PWSs (~3 in) was more than 1 in. 
greater than NOAA (~1.7 in). Both flood claim events suggest that the 
spatial density of PWSs provides the ability to capture localized storms 
that resulted in flood claims, which greatly assists understanding the 
cause of the flood losses. 

3.5. Limitations and future research 

This study utilizes the recently released and publicly available NFIP 
flood claim data to analyze the rainfall and tide characteristics during 
storm events that lead to flood losses. Given the novelty of the dataset, 
an exploratory analysis was presented that resulted in a straightforward 
method for understanding the rainfall and tide characteristics of flood 
claim events captured in the NFIP flood insurance claim data. The results 
from this study provide a first step toward understanding the informa
tion and potential insights from this newly released dataset, and our 
hope is that it paves the road for more sophisticated statistical analysis in 
future studies. The method used in this study can be easily generalized 
and applied in other regions or time periods. However, there are limi
tations within the dataset used and method presented in this study that 
are worth pointing out for potential future studies. 

First, in this dataset, there are more than 40 fields providing key 
information such as locational, structural, occupancy and claim vari
ables (Dombrowski et al., 2021). However, some important features of 
the insured property (e.g., property value and financial damages) and, 
the flood hazard characteristics (e.g., flood depth and flood category) 
are not included or have been heavily redacted (Vishnu et al., 2021). 
Most importantly, the finest geographical level of where the flood claims 
occurred was the census tract level, as the coordinates of the insured 
properties were redacted. Additionally, since the private flood insurance 

Table A1 
Flood claim, rainfall, tide, and threshold values used in this study.  

MA County/City NFIP Flood Claim(2016 – 2020) NOAA Rainfall and Tide Threshold Values for Analysis 
# of 
claims 

# of 
claim 
events 

Payout 
($ M) 

Rainfall StationID / Name Tide Station 
ID / Name 

Rainfall (in.) Tide 
(ft.) 1H 3H 6H 24H 

VB Norfolk City 472 58 6.1 72,308,013,737 Norfolk 
International Airport 

8,638,610Sewell’s Point, 
VA 

1.40 1.79 2.17 2.93 1.74 

Virginia Beach 
City 

1695 86 55.8 72,307,513,769 Oceana NAS 1.42 1.82 2.23 3.00 

Portsmouth 
City 

269 37 5.7 72,308,513,750 Norfolk NAS 1.41 1.80 2.17 2.93 

Newport News 
City 

94 21 3.9 72,308,693,741 Newport News 
International Airport 

1.40 1.80 2.16 2.93 

Hampton City 206 41 2.7 74,598,013,702 Langley Air Force 
Base 

1.41 1.81 2.18 2.93 

DC District of 
Columbia 

212 69 1.4 72,405,013,743 Washington Reagan 
National Airport 

8,594,900Washington, 
DC 

1.22 1.50 1.84 2.56 1.77 

Alexandria City 214 26 5.1 72,405,013,743 
Arlington 
County 

80 24 1.4 72,405,013,743 

(continued on next page) 

A.B. Chen et al.                                                                                                                                                                                                                                 



Journal of Hydrology 625 (2023) 130123

13

markets have been growing in recent years, the NFIP flood claims may 
only account for a portion of the flood losses that actually occurred 
during the storm events (Kousky and Michel-Kerjan, 2017). These fac
tors are important for understanding the effect of social inequality on 
flood claims, as flood losses highly depend on the vulnerability of the 
infrastructure and social-economic status of the populations affected 
(Tate et al., 2021). Therefore, research into the characteristics of rainfall 
and tide for flood claim events could be expanded in future studies if 
more information about flood claims become available. 

Second, we found that a relatively high percentage (~90%) of claims 

occurred with observed rainfall lower than a 1-year return period. 
Moreover, about 30% of the claims occurred on zero-rainfall days (days 
on which the total accumulated precipitation is zero). About 10–20% of 
these non-zero rainfall flood claims were associated with high tide 
levels. Another potential explanation for these claims is water-related 
damage such as roof, wall, or pipe leakage (Spekkers et al., 2015). It 
may also be possible that the date of loss documented in the flood claims 
was incorrect. In these cases, the rainfall and tide observations on days 
surrounding the occurrence of flood losses could be examined to verify 
the cause of the flood losses. 

Table A1 (continued ) 

Fairfax County 289 89 4.7 72,403,093,738 Washington Dulles 
International Airport 

1.16 1.47 1.81 2.50 

Prince George’s 
County 

399 99 3.8 74,594,013,705 Camp Springs 
Andrews AFB 

1.20 1.52 1.86 2.62 

BAL Baltimore City 150 41 4.0 74,594,493,784 Maryland Science 
Center 

8,574,680 
Baltimore, MD 

1.18 1.52 1.89 2.67 1.71 
Baltimore 
County 

117 45 1.9 74,594,493,784 

Harford County 28 15 0.4 74,594,493,784 
Anne Arundel 
County 

118 65 0.7 72,215,899,999 Annapolis US Naval 
Academy 

1.19 1.53 1.89 2.66 

Queen Anne’s 
County 

48 15 0.5 72,215,899,999 

PHL Delaware 
County 

568 40 18.8 72,408,013,739 Philadelphia 
International Airport 

8,551,910 
Reedy Point, DE 

1.19 1.56 1.93 2.68 1.87 

Philadelphia 
County 

498 26 13.9 72,408,594,732 Northeast 
Philadelphia Airport 

1.18 1.56 1.96 2.75 

New Castle 
County 

106 35 2.0 72,418,013,781 Wilmington New 
Castle CO Airport 

1.19 1.55 1.91 2.69 

Salem County 37 12 0.8 72,418,013,781 
Gloucester 
County 

59 13 0.6 72,408,013,739 Philadelphia 
International Airport 

1.19 1.56 1.93 2.68 

NY Hudson County 166 37 1.8 72,505,394,728 NY City Central 
Park, 

8,518,750The Battery, 
NY 

1.07 1.63 2.06 2.93 1.84 

Nassau County 375 129 4.7 74,486,094,789 JFK International 
Airport 

1.11 1.68 2.03 2.67 

Richmond 
County 

70 31 0.3 72,502,014,734 Newark Liberty 
International Airport 

1.13 1.54 1.98 2.73 

Queens County 161 75 1.6 72,503,014,732 LaGuardia Airport 1.07 1.65 2.02 2.69 
Kings County 109 55 0.3 72,505,394,728 NY City Central 

Park, 
1.07 1.63 2.06 2.93  

Table A2 
Number (percentage) of events during 2016–2020 in each group among non-zero rainfall days using 24-H rainfall duration threshold.  

MA County/City Number of non-zero rainfall days Number (percentage) in each group out of all days/events 
LRLT LRHT HRLT HRHT 

VB Norfolk 598 551 (92.1%) 37 (6.2%) 7 (1.2%) 3 (0.5%) 
Virginia Beach 624 580 (92.9%) 36 (5.8%) 4 (0.6%) 4 (0.6%) 
Portsmouth 622 578 (92.9%) 35 (5.6%) 3 (0.5%) 6 (1.0%) 
Newport News 600 549 (91.5%) 37 (6.2%) 9 (1.5%) 5 (0.8%) 
Hampton 795 746 (93.8%) 38 (4.8%) 6 (0.8%) 5 (0.6%) 

DC District of Columbia 602 570 (94.7%) 27 (4.5%) 5 (0.8%) 0 (0.0%) 
Alexandria 615 580 (94.3%) 28 (4.6%) 7 (1.1%) 0 (0.0%) 
Arlington County 617 583 (94.5%) 28 (4.5%) 6 (1.0%) 0 (0.0%) 
Fairfax County 598 570 (95.3%) 26 (4.3%) 2 (0.3%) 0 (0.0%) 
Prince George’s County 787 746 (94.8%) 29 (3.7%) 12 (1.5%) 0 (0.0%) 

BAL Baltimore 538 514 (95.5%) 20 (3.7%) 3 (0.6%) 1 (0.2%) 
Baltimore County 540 516 (95.6%) 20 (3.7%) 3 (0.6%) 1 (0.2%) 
Harford County 542 518 (95.6%) 20 (3.7%) 3 (0.6%) 1 (0.2%) 
Anne Arundel County 732 703 (96.0%) 25 (3.4%) 3 (0.4%) 1 (0.1%) 
Queen Anne’s County 740 709 (95.8%) 26 (3.5%) 5 (0.7%) 0 (0.0%) 

PHL Delaware County 620 593 (95.6%) 22 (3.5%) 4 (0.6%) 1 (0.2%) 
Philadelphia County 624 599 (96.0%) 22 (3.5%) 3 (0.5%) 0 (0.0%) 
New Castle County 622 602 (96.8%) 19 (3.1%) 0 (0.0%) 1 (0.2%) 
Salem County 626 606 (96.8%) 19 (3.0%) 0 (0.0%) 1 (0.2%) 
Gloucester County 623 596 (95.7%) 22 (3.5%) 4 (0.6%) 1 (0.2%) 

NY Hudson County 657 589 (89.6%) 63 (9.6%) 3 (0.5%) 2 (0.3%) 
Nassau County 618 555 (89.8%) 61 (9.9%) 1 (0.2%) 1 (0.2%) 
Richmond County 641 572 (89.2%) 65 (10.1%) 2 (0.3%) 2 (0.3%) 
Queens County 641 577 (90.0%) 63 (9.8%) 1 (0.2%) 0 (0.0%) 
Kings County 653 587 (89.9%) 62 (9.5%) 2 (0.3%) 2 (0.3%) 

LRLT: low rainfall low tide; LRHT: low rainfall high tide; HRLT: high rainfall low tide; HRHT: high rainfall high tide. 
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Another limitation of our analysis is that we only utilized the rainfall 
data observed from NOAA rainfall stations to categorize the flood claim 
events. We did this because it is a trustworthy and national consistent 
dataset. However, other sources of rainfall data could be considered in 
future studies. For example, regional rainfall networks could also be 
available through local municipality agencies such as the Hampton 

Roads Sanitary District in the Hampton Roads, VA region, who maintain 
their own rainfall monitoring network (Sadler et al., 2018). This study 
also investigated the potential for crowdsourced rainfall data collected 
through PWSs to supplement the rainfall observations from NOAA 
rainfall stations. Future studies could also incorporate remote sensing 
rainfall (e.g., radar-derived rainfall estimates from Next Generation 

Table A3 
Number (percentage) of flood claim events out of all events for each group using 24-H rainfall duration threshold.  

MA County/City Number (percentage) of flood claim days/events out of the number of days/events in each group 
LRLT LRHT HRLT HRHT 

VB Norfolk 25/551 (4.5%) 7/37 (18.9%) 3/7 (42.9%) 2/3 (66.7%) 
Virginia Beach 45/580 (7.8%) 7/36 (19.4%) 3/4 (75.0%) 3/4 (75.0%) 
Portsmouth 21/578 (3.6%) 0/35 (0.0%) 2/3 (66.7%) 1/6 (16.7%) 
Newport News 9/549 (1.6%) 3/37 (8.1%) 3/9 (33.3%) 1/5 (20.0%) 
Hampton 19/746 (2.5%) 2/38 (5.3%) 2/6 (33.3%) 3/5 (60.0%) 

DC District of Columbia 32/570 (5.6%) 6/27 (22.2%) 4/5 (80.0%) 0/0 (N/A) 
Alexandria 9/580 (1.6%) 1/28 (3.6%) 4/7 (57.1%) 0/0 (N/A) 
Arlington County 9/583 (1.5%) 1/28 (3.6%) 3/6 (50.0%) 0/0 (N/A) 
Fairfax County 51/570 (8.9%) 7/26 (26.9%) 2/2 (100.0%) 0/0 (N/A) 
Prince George’s County 52/746 (7.0%) 6/29 (20.7%) 7/12 (58.3%) 0/0 (N/A) 

BAL Baltimore 18/514 (3.5%) 4/20 (20.0%) 1/3 (33.3%) 0/1 (0.0%) 
Baltimore County 16/516 (3.1%) 7/20 (35.0%) 1/3 (33.3%) 0/1 (0.0%) 
Harford County 6/518 (1.2%) 0/20 (0.0%) 0/3 (0.0%) 0/1 (0.0%) 
Anne Arundel County 41/703 (5.8%) 4/25 (16.0%) 1/3 (33.3%) 1/1 (100.0%) 
Queen Anne’s County 7/709 (1.0%) 1/26 (3.8%) 1/5 (20.0%) 0/0 (N/A) 

PHL Delaware County 21/593 (3.5%) 4/22 (18.2%) 0/4 (0.0%) 1/1 (100.0%) 
Philadelphia County 15/599 (2.5%) 1/22 (4.5%) 1/3 (33.3%) 0/0 (N/A) 
New Castle County 19/602 (3.2%) 2/19 (10.5%) 0/0 (0.0%) 1/1 (100.0%) 
Salem County 4/606 (0.7%) 2/19 (10.5%) 0/0 (0.0%) 1/1 (100.0%) 
Gloucester County 7/596 (1.2%) 2/22 (9.1%) 2/4 (50.0%) 0/1 (0.0%) 

NY Hudson County 13/589 (2.2%) 4/63 (6.3%) 2/3 (66.7%) 1/2 (50.0%) 
Nassau County 57/555 (10.3%) 16/61 (26.2%) 1/1 (100.0%) 1/1 (100.0%) 
Richmond County 13/572 (2.3%) 4/65 (6.2%) 2/2 (100.0%) 0/2 (0.0%) 
Queens County 38/577 (6.6%) 14/63 (22.2%) 0/1 (0.0%) 0/0 (N/A) 
Kings County 26/587 (4.4%) 4/62 (6.5%) 1/2 (50.0%) 1/2 (50.0%) 

LRLT: low rainfall low tide; LRHT: low rainfall high tide; HRLT: high rainfall low tide; HRHT: high rainfall high tide. 

Table A4 
The interaction probability between tide and rainfall. Column 1–4 represent the probability a rainfall event results in a claim given (1) the rainfall event exceeds the 1- 
year level, (2) the tide level is above NOAA’s minor tide level, or (3) both and compares to the probability in case 3 to (4) for what the probability would be if the 
variables’ effects were independent.  

MA County/City (1)P(claim | HR) (2)P(claim | HT) (3)P(claim | HR and HT) 
if independent 

(4) ObservedP(claim | HR and HT) 
[# HR and HT events]  

Norfolk  0.50  0.23  0.11 0.67 [3] 
Virginia Beach  0.75  0.25  0.19 0.75 [4] 
Portsmouth  0.33  0.02  0.01 0.17 [6] 
Newport News  0.29  0.10  0.03 0.2 [5] 
Hampton  0.45  0.12  0.05 0.6 [5]  
District of Columbia  0.80  0.22  0.18 NA [0] 
Alexandria  0.57  0.04  0.02 NA [0] 
Arlington County  0.50  0.04  0.02 NA [0] 
Fairfax County  1.00  0.27  0.27 NA [0] 
Prince George’s County  0.58  0.21  0.12 NA [0]  
Baltimore  0.25  0.19  0.05 0 [1] 
Baltimore County  0.25  0.33  0.08 0 [1] 
Harford County  0.00  0.00  0.00 0 [1] 
Anne Arundel County  0.50  0.19  0.10 1 [1] 
Queen Anne’s County  0.20  0.04  0.01 NA [0]  
Delaware County  0.20  0.22  0.04 1 [1] 
Philadelphia County  0.33  0.05  0.02 NA [0] 
New Castle County  1.00  0.15  0.15 1 [1] 
Salem County  1.00  0.15  0.15 1 [1] 
Gloucester County  0.40  0.09  0.03 0 [1] 

NY Hudson County  0.60  0.08  0.05 0.5 [2] 
Nassau County  1.00  0.27  0.27 1 [2] 
Richmond County  0.50  0.06  0.03 0 [2] 
Queens County  0.00  0.22  0.00 NA [0] 
Kings County  0.50  0.08  0.04 0.5 [2] 

MA: Metropolitan area. 
Red indicates P > if independent. 
Blue indicates P < if independent. 
Black indicates no observed events. 
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Fig. A1. Analysis of rainfall and tide characteristics for flood claim events for other cities/counties in the Virginia Beach metropolitan area.  
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Fig. A2. Percentage of events out of total events in each group for all cities/counties in this study.  
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Fig. A3. Percentage of flood claim events out of all flood claim events in each group using 24-h rainfall duration thresholds for all cities/counties in this study.  
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Weather Radar (NEXRAD) (Cunha et al., 2015)) into the analysis to 
better compare and contrast the rainfall spatial heterogeneity and its 
relationship to flood claims. Extending the rainfall analysis geographical 
extent and time period could also be completed for a more compre
hensive understanding of the trends and patterns in flood claims. 

Lastly, as mentioned earlier, this study utilized only exploratory 
analysis for the comparison of NOAA and PWS rainfall during heavy 
rainfall flood claim events. Future studies could focus on building a 
model of the number (Poisson regression), presence (logistic regression), 
or amount (linear regression) of claims as a function of rainfall in the 
census tract to determine if using PWSs for these models yields more 
accurate predictions than NOAA gauges. This would provide additional 
confirmation of the value of PWSs in contributing to our understanding 
of localized flooding resulting in flood losses. 

4. Conclusion 

This study presents a methodology for using the NFIP flood insurance 
claim data to investigate rainfall and tide characteristics of storm events 
that result in flood losses. The methodology was applied to twenty-five 
counties/cities in five metropolitan areas (Virginia Beach, Washington 
DC, Baltimore, Philadelphia, and New York) in the mid-Atlantic region 
in the U.S. The results showed that the majority of flood claim events in 
this region are associated with rainfall lower than the 1-year return 
period and tide level lower than a minor flood risk tide level. However, 
in storm events exceeding the rainfall and tide threshold, the probability 
of the occurrence of flood claims could average more than 50% and 
20%, respectively. In Virginia Beach, this probability far exceeds what 
would be expected if these two variables were independent, suggesting 
they interact to exacerbate flood impacts, while there were not enough 
compound events to see if this was the case in the other metropolitan 
areas. 

In the analyzed metropolitan areas, storm events associated with 
longer duration (6H and 24H) rainfall exceeding 1-year return period 
were found to generally have higher probability of resulting in flood 
losses. Storm events associated with shorter duration (1H and 3H) 
exceeding the 1-year return period were also found to increase the 
chance of flood losses in cities/counties in Virginia Beach and Wash
ington DC metropolitan areas. With respect to tide levels, their effect on 
flood losses was found to vary across the analyzed cities/counties, with 
53% of the analyzed cities/counties having higher than 20%, and 24% 
having lower than 5% of the high tide events resulting in flood losses, 
respectively. 

Comparison of observed rainfall from NOAA stations and crowd
sourced personal weather stations (PWSs) showed that PWSs observe an 
average of 30% more rainfall than agency rainfall stations at the location 
of the flood claims across analyzed heavy rainfall events. This suggests 
the high spatial density of PWSs may be capturing localized rainfall 
missed by the lower spatial density NOAA gauges, better representing 
the rainfall spatial heterogeneity of storms that contribute to localized 
flood losses. 

The methodology presented in this paper can be used in future work 
in other regions or time periods to further advance understanding of the 
rainfall and tide characteristics of flood claim events captured in the 
NFIP flood insurance claim data. The results for the Mid-Atlantic region 
provide a start toward better understanding the role of rainfall-driven 
and high-tide flood losses based on the flood insurance claims. These 
findings could benefit multiple stakeholders in the region, including 
researchers, risk management officials, insurers, and the general public 
in assessing and building resilience against increased flood risks in 
coastal cities. 
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