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ABSTRACT

The Federal Emergency Management Agency (FEMA) recently released a large dataset (~2.5 million records) of flood insurance claim transactions from the National
Flood Insurance Program (NFIP) that are geolocated by census tract. In this study, we present a methodology for using these NFIP flood claims along with agency
rainfall and tide level data, combined with high-resolution rainfall data collected from growing networks of crowdsourced Personal Weather Stations (PWSs), to
investigate the characteristics of storm events that result in flood insurance claims. Using 25 cities/counties in five metropolitan areas in the Mid-Atlantic region as
case studies for testing the methodology, we find that the majority of flood claim events in this region were associated with rainfall below a 1-year return period and a
tide level below the NOAA minor flood risk tide level. When storm events exceeded these rainfall and tide thresholds, the probability of a flood claim occurring could
reach 100% for rainfall only events and 33% for tidal only events, depending on the region. While compound events of both high rainfall and high tide were rare,
when seen in Virginia Beach, the probability of insurance claims being made during these events far exceeded the probability that would be expected if rainfall and
tide were independent, showing how compound events in this region exacerbate flood impacts. Additionally, analysis of 110 heavy rainfall events showed that
crowdsourced PWSs, can better capture rainfall extremes associated with insurance claims due to their higher spatial density compared to federal agency rainfall
networks. This suggests that the PWS networks, once quality controlled, can offer greater insights into which rainfall events are likely to contribute to insurance
claims. These region-specific findings and the general methodology presented in this study can benefit multiple stakeholders including researchers, risk management
officials, insurers as well as the general public in understanding the impacts of rainfall, tidal, and compound flooding, along with the value of crowdsourced data in

assessing flood risk.

1. Introduction

Flooding is a leading cause of social and economic losses in the
United States (NOAA National Centers for Environmental Information
(NECI), 2022). In coastal cities, floods can be triggered by heavy rainfall
and high tide due to low-lying topography and impervious surfaces
(Hallegatte et al., 2013). However, due to the effects of climate change
and sea level rise, flooding has become more frequent and severe (Ezer
and Atkinson, 2014; Fowler et al., 2021). For example, recent studies
have shown that there has been an increase in both the frequency and
intensity of precipitation trends in the United States, which will likely
worsen the impacts from flooding (Davenport et al., 2021; Mosavi et al.,
2018; Netusil and Kousky, 2021). Moreover, sea level rise has also
caused increased flood risks even for low-return period storm events
(Moftakhari et al., 2015). Increased urbanization is another factor that
increases potential flood hazard and exposure due to impervious sur-
faces (Chang et al., 2021).
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Understanding the characteristics of rainfall and tide that lead to
flooding is a critical step toward effectively managing and building
resilience against flood risk (Nofal and van de Lindt, 2020; Shen et al.,
2019). This is especially important in areas that lack flooding observa-
tional data to calibrate complex flood prediction and drainage models
(Gaitan et al., 2016). However, due to insufficient spatial, temporal, and
geographic information regarding historical floods, past studies of flood
characteristics have focused on single case studies or a limited database
of flood events (Saharia et al., 2017). Recently, flood insurance claims
have emerged as a potential data source of flood impacts (Gradeci et al.,
2019). For example, outside the United States, flood insurance data has
been used to investigate the relationship between extreme rainfall event
and flood losses (Leal et al., 2019; Sorensen and Mobini, 2017; Spekkers
et al., 2013; Torgersen et al., 2015). The spatial relationships between
flood insurance claims and landcover have been explored to understand
flood risk. Studies have also shown that flood insurance claim data can
be used to inform the calibration of flood models (Wang and Sebastian,
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Fig. 1. (a) Comparison of NOAA rainfall network and crowdsourced PWS rainfall network for the five metropolitan areas. (b) The number of claims by county. (c)
Population by county, (d) Selected NOAA rainfall and tide stations and crowdsourced PWS rainfall network in the analyzed five metropolitan areas.

2021; Zischg et al., 2018).

In the United States, the Federal Emergency Management Agency’s
(FEMA) National Flood Insurance Program (NFIP) is the largest provider
of flood insurance policies. In the past, the NFIP flood insurance claim
dataset was not publicly available. Therefore, there are only a few
studies using NFIP flood insurance claims that either focus on policy
aspects (i.e., supply, demand and effectiveness of the NFIP program)

(Kousky, 2018; Kousky and Michel-Kerjan, 2017) or assessing flood risk
for certain study areas in case studies (Blessing et al., 2017; Czajkowski
et al., 2017; Mobley et al., 2021). In June 2019, in an effort to promote
FEMA'’s open data vision (OpenFEMA) (Federal Emergency Manage-
ment Agency (FEMA), 2022), FEMA made more than two million NFIP
flood claim transactions (1978 to present) available to the public in an
easily-accessible and machine-readable format (Dombrowski et al.,
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Table 1
NFIP flood claim information for the selected metropolitan areas (2016 — 2020). The number (percentage) of days with claims were calculated from the raw flood claim
data.
Metropolitan Area Population(‘000) Number offlood claims Total Payout ($K) Number (percentage) of days with claims
Virginia Beach (VB) 1,731 4,045 91,829 337 (18%)
Washington DC (DC) 6,176 1,591 21,284 382 (21%)
Baltimore (BAL) 2,797 686 22,200 198 (11%)
Philadelphia (PHL) 6,079 2,494 69,052 245 (13%)
New York (NY) 19,294 2,848 42,786 668 (37%)

2021; Federal Emergency Management Agency (FEMA), 2021). Since
the release, more studies have emerged to leverage this dataset for flood
studies. For example, prediction models for flood insurance claims and
flood damages have been explored to construct the relationship between
flooding and socioeconomic, geographic, demographic and environ-
mental factors (Collins et al., 2022; Mobley et al., 2021; Vishnu et al.,
2021; Wing et al., 2020; Yang et al., 2022). However, there is a lack of
studies that analyze how rainfall and tide characteristics in coastal cities
related to flood claims using this newly released NFIP flood claim
dataset.

It is possible to gain insight into how rainfall and tide characteristics
correspond to flood losses in coastal cities through the use of the NFIP
flood claims dataset. However, in the case of rainfall, high-resolution
and dense rainfall observation networks will be needed to capture
weather events that result in localized flooding (Maier et al., 2020).
While there are agency (government-operated) in situ rainfall moni-
toring networks and radar-based methods for measuring rainfall, these
approaches alone do not produce the resolution of rainfall data needed
to fully capture the storm event characteristics that lead to localized
urban flooding (Emmanuel et al., 2012; Smith et al., 2007). The recent
growth of crowdsourcing rainfall through the use of Personal Weather
Stations (PWSs) has been shown to have the potential to fill in obser-
vation gaps and provide high-resolution and reliable data to supplement
urban flood monitoring (Bardossy et al., 2021; Chen et al., 2022, 2021;
de Vos et al., 2019, 2017; Mandement and Caumont, 2020). Although
crowdsourced rainfall data have been utilized in several flooding-related
studies, they have not been applied to understand flood losses.

The objective of this study, therefore, is to address these research
gaps by creating a method to assess how rainfall and tide characteristics
of storm events relate to the NFIP flood claims using exploratory data
analysis, and second exploring if crowdsourced rainfall data collected by
growing networks of Personal Weather Stations (PWSs) better captures
rainfall that leads to flood losses. We use regions in the mid-Atlantic
United States as test cases for applying the method and exploring the
PWS data. The contributions of this research are both the methodology
for analyzing the drivers of flood insurance claims in coastal regions that
could be applied to other regions and time periods using this national-
scale dataset, as well as region-specific findings of which hydrologic
conditions lead to flood insurance losses in the Mid-Atlantic.

2. Materials and methods
2.1. Data

2.1.1. Flood claim data

The flood insurance claims data used in this study were collected
from the OpenFEMA website (https://www.fema.
gov/openfema-data-page/fima-nfip-redacted-claims-vl), released by
the Federal Emergency Management Agency’s (FEMA) National Flood
Insurance Program (NFIP), the largest provider of flood insurance in the
U.S. (Federal Emergency Management Agency (FEMA), 2021). The NFIP
provides flood insurance to property owners, renters and businesses. The
policy holders file claims when their properties are flooded. The policy
and claims information are then documented in the NFIP system of re-
cord. This dataset provides claim-level fields for each claim transaction

including more than 40 attributes, such as the date of loss (date on which
water first entered the insured building), location (geocoded to census
tract), insurance payout (dollar amount paid on building and contents
claim), and other claim and building property related characteristics.

2.1.2. Agency rainfall and tide data

The agency rainfall and tide data used in this study were collected
from the National Oceanic and Atmospheric Administration (NOAA)’s
National Centers for Environmental Information (NCEI). The available
rainfall and tide stations, as well as their observed data, were queried and
downloaded using the rmoaa library in the R programming language (R
package version 1.3.4) (Chamberlain, 2021), which utilizes NCDC’s
Application Programming Interface (API) that provides access to NCDC’s
database (https://www.ncdc.noaa.gov/cdo-web/webservices/v2), as
well as the NOAA Tide & Currents CO-OPS API (https://api.
tidesandcurrents.noaa.gov/api/prod/). For the rainfall data, the NOAA
Local Climatological Data stations (referred as NOAA rainfall stations
hereafter) were queried automatically using NCDC’s API. For the tide
data, the available tide stations and data stored in the Tide & Current
Product database were queried and downloaded using the CO-OPS API
(https://api.tidesandcurrents.noaa.gov/api/prod/).

2.1.3. Crowdsourced rainfall data

The crowdsourced rainfall network used in this study consists of
PWSs available through the Weather Underground, one of the largest
platforms for PWS owners to share their data. The rainfall observations
from the PWSs were accessed through the API provided by the Weather
Underground. The PWS rainfall observation sampling interval varies
from station to station. Most of the sampling intervals are between 5 and
10 min per observation.

2.2. Study area

Five metropolitan areas (Virginia Beach, Washington DC, Baltimore,
Philadelphia, and New York) (Fig. 1) in the Mid-Atlantic region were
selected as case study regions given their susceptibility to flooding due
to their population density, low-lying topographic characteristics, rising
sea level and increasing rainfall intensities (Ezer and Atkinson, 2014;
Goddard et al., 2015; Wahl et al., 2015).

For these regions, agency (NOAA) rainfall and tide data and
crowdsourced (PWS) rainfall data were downloaded using the methods
mentioned in the previous section. Fig. 1a shows the available NOAA
rainfall stations and PWSs within the five selected metropolitan areas
based on the API queries. The rainfall station density of NOAA rainfall
stations ranged from 0.1 to 0.2 stations per 100 km?, while the density of
PWSs ranged from 5 to 15 stations per 100 km?. Based on the Weather
Underground database archive, PWSs have been growing exponentially
in recent years (Chen et al., 2022). Therefore, to assess the potential of
PWS rainfall observations to understand flood claim events, this study
focused on analyzing the flood claim data from 2016 to 2020 for all five
metropolitan areas. Fig. 1b and 1¢ show the number of NFIP flood claims
and the population for the selected metropolitan areas at county/city
level from 2016 to 2020. As shown in Table 1, the number of flood
claims ranges from 686 to 4045 per metropolitan region. The payout
ranges from 2.22 million to up to 9.18 million USD.
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Fig. 2. Workflow of data preprocessing and analysis methods used in this study.
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Fig. 3. (a) Flood claim events are categorized into groups based on the rainfall and tide thresholds. (b) Analysis of rainfall and tide characteristics for flood claim
events using Norfolk as an example. Blue dots represent non-flood-claim events while black “X”s represent flood claim events with non-zero rainfall. The size of the
symbol “X” corresponds to the number of claims. The vertical and horizontal dashed lines represent the rainfall and tide thresholds defined in Fig. 3a, respectively.
NZRE and TE represent non-zero rainfall events and total events, respectively. The comparison plots for the four other counties in the Virginia Beach metropolitan
area are shown in Fig. Al in the Appendix.

To account for the effect of tide level on flood losses, we first selected closer to the representative tide station have higher impacts from tide
one representative tide station for each metropolitan area that has the water, we chose five counties/cities for each selected metropolitan area
most consistent period of record (Fig. 1d). Next, assuming areas that are that (1) are the closest to the tide station and (2) touch the waterbody
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that the representative tide station observes. For the representative
rainfall station, we chose the NOAA rainfall station that is closest to the
centroid of each selected county/city (Fig. 1d).

2.3. Methods

The methodology presented in this study can be summarized as a
workflow of data pre-processing and additional steps used to investigate
the relationship between rainfall, tide level and flood losses (Fig. 2). The
details of each step are presented in the following subsections.

2.3.1. Flood claim data pre-processing

The raw flood claim data (claim level) was converted into flood claim
events (event level) to associate claims with the observed rainfall and
tide level using the following steps. For each city/county, we first subset
the flood claims that occurred inside the census tracts of the selected
city/county. We then sorted the subset data using the date of loss field.
Flood claims that occurred only on a single date with no claims on the
preceding and succeeding day were regarded as separate flood claim
events. On the other hand, flood claims that spanned across multiple
consecutive days were aggregated into a single flood claim event. In this
case, the start and the end date of such an event was considered the first
and the last date of these consecutive days, respectively This is usually
the case for typhoons or hurricanes which have prolonged flood impacts.
In addition, we also expect flood risk from typhoons or hurricanes to be
encompassed within the rainfall and tide level data. The tide level in-
cludes storm surge that can be caused by such events, and the rainfall
associated with these events should also be captured by the rainfall
gauges.

2.3.2. Analysis of rainfall and tide characteristics of flood claim events

In this study, we used the maximum 1-H, 3-H, 6-H, and 24-H accu-
mulated rainfall and maximum tide level observed during the flood
claim event period as the rainfall and tide metrics, respectively. Since
different rain gauges may classify these events differently, for consis-
tency the rainfall and tide metrics of each event were calculated from the
representative NOAA rainfall and tide station for each city/county.
NOAA rainfall stations were used instead of PWS rain stations because of
their greater quality control, but data from these networks were later
compared under different events to see if the PWSs could capture greater
spatial variability in rainfall that might explain surprising flood claim
distributions.

To assess the rainfall characteristics of flood claim events, we
compared the rainfall metrics of the flood claim events with the 1-year
return period of maximum 1-H, 3-H, 6-H and 24-H accumulated rainfall
derived from NOAA Atlas 14 precipitation frequency estimates
(https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html). These
rainfall thresholds for the analyzed counties/cities were extracted using
the latitude and longitude of the representative NOAA rainfall station for
each city/county. Similarly, to quantify the tide characteristics of flood
claim events, the tide metrics calculated for each flood claim event were
compared with the minor flood threshold tide level defined by NOAA
(Sweet et al., 2018). This threshold is associated with tide levels when
minor flooding is likely, and a coastal flood warning of serious risks to
life and property is issued by NOAA (Sweet et al., 2018). Generally, this
minor flood threshold tide level ranges between a 1-year to 2-year return
period event. The rainfall and tide level thresholds (Mean Higher High
Water datum) for the analyzed cities/counties are shown in Table A1 in
the appendix.

Using the rainfall and tide thresholds from the previous section, each
flood claim event was categorized into LRLT (low rainfall low tide),
HRLT (heavy rainfall low tide), LRHT (low rainfall high tide), and HRHT
(heavy rainfall high tide) groups, based on the observed rainfall and tide
metrics. These divisions are shown in Fig. 3a.

Journal of Hydrology 625 (2023) 130123

2.3.3. Comparison of PWS rainfall with NOAA rainfall

2.3.3.1. Heavy rainfall flood claim events selection. To assess the value of
PWS data, we focus on flood claim events that are associated with heavy
rainfall. Heavy rainfall events in this study are defined as events falling
into the high rainfall low tide (HRLT) or high rainfall high tide (HRHT)
quadrants defined in Fig. 3a, based on NOAA observed rainfall. These
heavy rainfall events have rainfall exceeding the 1-year return period
and resulted in flood losses, which we referred to as heavy rainfall flood
claim events. These events were selected for the analysis in the next
section.

2.3.3.2. Comparison of NOAA and PWS rainfall in heavy rainfall flood
claim events. To assess the ability of PWSs to capture the spatial het-
erogeneity of observed rainfall for the heavy rainfall flood claim events,
the rainfall metrics computed from agency and crowdsourced rainfall
stations were compared. For each flood claim in the heavy rainfall claim
events, rainfall observations from the neighboring PWSs (defined as
PWSs within a specific distance from the centroid of the census tract
associated with flood claim) were extracted. The distance is determined
based on the availability of PWSs that were actively reporting rainfall
observations and the level of consensus between those PWSs. Typically,
distances of 4 km or less should be selected (Chen et al., 2021). To ensure
trustworthy and quality controlled PWS rainfall data, the Reputation
System for Crowdsourced Rainfall Network (RSCRN) (Chen et al., 2021)
approach was applied to the PWS data. Using neighboring PWSs as a
cluster for running the RSCRN, the trust score of each PWS was assigned
based on its agreement or disagreement with the neighboring PWSs in a
cluster. The PWSs that received trust scores above 5.0 (out of 10.0) were
considered trustworthy and included in the comparison analysis with
NOAA gauges. Using the trustworthy PWSs, the median of rainfall
metrics (the maximum 1-H, 3-H, 6-H, and 24-H accumulated rainfall) of
the neighboring PWSs were computed and compared with the average
rainfall metrics computed from NOAA rainfall stations.

3. Results and discussions
3.1. Rainfall and tide characteristics of flood claim events

We present the rainfall and tide characteristics of 58 flood claim
events in Norfolk, VA in the Virginia Beach metropolitan area as an
example (Fig. 3b). Among the 58 flood claim events (total flood claim
events, TE), there were 37 events associated with non-zero rainfall (non-
zero rainfall flood claim events, NZRE) and 19 flood claim events
associated with zero rainfall. To understand what event characteristics
lead to flood claim events on non-zero rainfall days, scatterplots of the
rainfall and tide metrics in Norfolk are shown in Fig. 3b for all non-zero
rainfall events that occurred during 2016 to 2020. These events include
both non-flood-claim events (defined as rainfall events during which no
flood claims were reported) and flood claim events (defined as rainfall
events during which flood claims were recorded). In this figure, we see
that the 37 non-zero flood claim events (black “X”s in Fig. 3b), are
generally associated with higher maximum 1-H, 3-H, 6-H, 24-H rainfall
and higher maximum tide level than the non-flood claim events (blue
dots in Fig. 3b), as shown by the size of the symbols. Fig. 3b also shows
the range of rainfall for each flood claim event duration in the boxplots
above the scatterplots, and of the tide level in the boxplot on the right.
From these we see that for the flood events that occurred in Norfolk, the
majority of 1-H maximum rainfall ranged from 0.3 to 1.5 in., with three
events (1.6, 2.4, 2.7 in.) above the boxplot’s upper whisker. The ma-
jority of tide levels were between 0.7 and 2.0 feet, with one event
associated with a significantly higher tide (3.4 feet).

The rainfall (1-year rainfall return period) and tide (minor flood risk)
threshold values are shown by the vertical and horizonal dotted lines in
Fig. 3b, respectively. These lines indicate that most flood claims events
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patterns of flood claim events characteristic were observed in the other

are in the low rainfall low tide (LRLT) or low rainfall high tide (LRHT)
group as defined in Fig. 3a, which is associated with lower than 1-year

four counties in the Virginia Beach metropolitan area (Fig. Al in the

appendix). These results imply that, although most of the flood insur-

return period rainfall, regardless of the duration, since these events

ance policies are based on the 100-year flood plain (Kousky and Michel-
Kerjan, 2017), flood losses can still occur when there is both low rainfall

and a low tide level.

happen more often than extreme events. The boxplot of the tide level

shows that the tide threshold for Norfolk was close to the third quantile

tide levels of flood claim events, which indicates that 25% of the flood
claim events are in the low rainfall high tide (LRLT) or high rainfall high

tide (HRHT) group with tide levels exceeding this threshold. Similar
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Fig. 5. Number and percentage of events exceeding the 1-year return period rainfall that resulted in flood claims. The darker blue bar represents the number of
rainfall events exceeding the 1-year rainfall level. The lighter blue bar represents the number of those events that resulted in flood claim events. The percentage above
the bars represents the percentage of those rainfall events that resulted in flood claim events.

3.2. Categorizing flood claim events using rainfall and tide metrics

To obtain the rainfall and tide characteristics of the analyzed
metropolitan areas during the study period, we first analyzed the rela-
tionship between the rainfall threshold and the observed rainfall, as well
as the tide level threshold and the observed tide level in all events (both
flood claim and non-flood claim) that occurred during 2016-2020.
Fig. 4a and Table A2 show our findings using 24-H rainfall as an
example. Here we see that the majority of events were in the low rainfall

low tide (LRLT) (89.2 to 95.3%) and low rainfall high tide (LRHT)
groups (3.0 to 10.1%). However, we found that less than 1.5% of the
events were in high rainfall low tide (HRLT) group, and less than 0.8% of
the events were in the high rainfall high tide (HRHT) group. As shown in
Table A3 in the Appendix, across metropolitan areas, the number of
events that exceed 1-year rainfall and minor flood risk tide level range
from 19 to 63 and 1 to 12, respectively, which indicates minor flood risk
tide events occurred 4.8 to 15.8 times and 1-year rainfall events
occurred 0.25 to 3 times per year on average over the study period.
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Fig. 6. Number and percentage of events exceeding the minor flood risk tide level resulting in flood claims. Based on the percentage, the analyzed counties/cities
were be categorized into high (greater than15%), moderate (5-15%), and low (less than5%) tidal flood risk groups.

Based on the 24-H rainfall threshold, counties/cities in VB and DC both
have a greater number and percentage of high rainfall events compared
to BAL, PHL, and NY, implying a higher risk for rainfall-driven floods.
Similarly, based on the tide threshold, counties/cities in VB, DC, and NY
have a higher percentage of high tide events compared to BAL and PHL,
implying a higher risk of tidal floods. These findings were consistent
regardless of the durations of rainfall events, as shown in Fig. A2 and A3
in the Appendix.

3.3. Quantifying the characteristics of flood claim events

Following the analysis from the previous section, we calculated the
number of flood claim events in each rainfall and tide group, using 24-H
rainfall duration as an example (Fig. 4b). Using the Virginia Beach
metropolitan area as an example, we found that the percentage of events

resulting in flood claims are much higher in the high rainfall low tide
(HRLT) (50%) and high rainfall high tide (HRHT) (48%) groups than in
the low rainfall low tide (LRLT) group (4%) and the low rainfall high
tide (LRHT) group (10%). This shows the expected results that, although
heavy rainfall events are rare, they are much more likely to result in
flood insurance claims. Based on the rainfall threshold, VB and DC have
the highest number of events in the HRLT and HRHT groups, but the
percentages of events in high rainfall groups (HRLT and HRHT) range
from 16.7 to 75%. This also implies that not all the events exceeding the
1-year return period maximum 24-H rainfall resulted in flood loss.
Interestingly, the combination of high rainfall and tide (HRHT) occurred
in multiple events in VB, while no HRHT events occurred in DC, even
with a similar number of HRLT events. Based on the tide threshold, the
events in the LRHT group that resulted in flood losses varied. For
example, in Norfolk and Virginia Beach, the percentages of events in the
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Fig. 7. The comparison of NOAA and PWS observed rainfall metrics for heavy rainfall flood claim events. The x-axis represents the average NOAA observed rainfall
near the census tract (y-axis), while the y-axis represents a function of x-axis for the percent difference between (1) the median observed rainfall of neighboring
trustworthy PWSs (within 5 km from the census tract the flood claim is associated with) and (2) the average NOAA observed rainfall.

LRHT group that resulted in flood losses were 19%, compared to 8.1, 5.3
and even 0% in Newport News, Hampton, and Portsmouth, respectively.
This indicates that most flood claims in the analyzed counties/cites are
associated with less than a 1-year return period rainfall.

The data in Fig. 4b also allowed us to investigate how rainfall and
tide levels interact. If these variables are independent, the probability

that a flood event leads to flood claims when high rainfall and high tide
occur together is equal to (1) the product of the probability that a flood
event leads to flood claims when rainfall is high and (2) the probability

that a flood event leads to flood claims when the tide is high. If the

observed probability that a flood event leads to flood claims is higher
than this, the effects of these variables interact to increase the risk of
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Fig. 8. First example flood claim event of PWS capturing heterogeneous storms coinciding with the location of flood claims.

flooding. As shown in Table A4 in the Appendix, in the Virginia Beach
Region, the probability of a flood event leading to a claim when both the
rainfall and tide is high far exceeds what would be expected if the two
variables were independent, indicating a strong interaction. In the other
regions, there were only 1 or 2 events in which both high rainfall and
tide levels occurred together, consequently, there is not enough infor-
mation to determine if these variables interact there as well.

The rainfall threshold analysis was further expanded in Fig. 5. The
events that exceed the rainfall threshold (HRLT and HRHT groups) were
analyzed for each duration. In VB and DC, there are more high rainfall

10

events, and the percentage of high rainfall events that led to flood losses
varied across different durations of maximum rainfall. For example, in
Fairfax County, the percentage of heavy rainfall events exceeding the
rainfall threshold of 6-H and 24-H that resulted in flood losses were
100%, while one event in both the groups of exceeding 1-H and 3-H
rainfall did not result in flood loss. On the other hand, in Alexandria
City, 100% of the events exceeding the 1-H rainfall threshold resulted in
flood losses, while only 50-70% of the events above the other duration
thresholds resulted in flood losses. In summary, by comparing across
metropolitan areas, the analysis shows that VB and DC have relatively
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Fig. 9. Second example flood claim event of PWS capturing heterogeneous storms coinciding with the location of flood claims.

more high rainfall events and a higher percentage of high rainfall events
leading to flood losses.

In Fig. 6, the number and percentage of high tide events (events in
LRHT and HRHT) that resulted in flood losses were calculated. In the
twenty-five analyzed counties/cities, the flood loss percentage can be
categorized into high, moderate, and low tidal flood risk groups based
on the percentages of high tide events resulting in flood losses. Cities/
counties in the high tidal flood risk group have percentages greater than
15%, with Baltimore County in BAL (33%), Nassau County in NY (27%),
and Fairfax County (27%) having the three highest percentages. The
moderate flood risk groups have percentages ranging from 5 to 15%.
Example cities/counties include Newport News City, Hampton City in
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VB, Gloucester County in PHL, Hudson County and Kings County in NY.
In the low flood risk groups, the percentages are lower than 5%. Sur-
prisingly, the results showed that some coastal cities such as Portsmouth
City in VA, Alexandria City and Arlington County in DC have very low
percentages of high tide events resulting in flood losses, which may
imply that flood losses in these areas are more rainfall-driven than tidal-
driven.

3.4. Comparison of NOAA and PWS rainfall in heavy rainfall flood claim
events

A total of 110 flood claim events associated with high rainfall (HRLT
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and HRHT groups) were used to compare the rainfall metrics observed
from agency (NOAA) and crowdsourced (PWS) rainfall stations. There
were 34, 32, 12, 14 and 18 flood claim events with flood claims that
occurred in 299, 228, 61, 118, and 88 census tracts in VB, DC, BAL, PHL,
and NY, respectively. In these flood claim events, the maximum accu-
mulated rainfall varied across events. The 1-H, 3-H, 6-H and 24-H
ranged from 0.08 to 3.18, 0.95 to 4.88, 1.23 to 6.69 and 1.68 to
10.07 in. respectively, based on the NOAA observed rainfall.

The comparison of NOAA and PWS observed rainfall for each heavy
rainfall flood claim event is shown in Fig. 7. The x-axis represents the
average observed rainfall from NOAA rainfall gauges within 10 km of
the census tract (y-axis), while the y-axis represents percent difference
between (1) the median observed rainfall of neighboring trustworthy
PWSs (within 5 km from the census tract the flood claim is associated
with) and (2) the average NOAA observed rainfall. Note that we used
median for PWSs for excluding the effect of untrustworthy PWSs and
average for NOAA rainfall stations because there are usually only 2-3
NOAA rainfall stations nearby. In Fig. 7, each dot represents the rainfall
metrics of census tracts associated with claims within a flood event, with
the blue dots representing events in which the PWSs observed greater
median rainfall than the average NOAA gauge, while the gray dots
represent the reverse. The results show that there can be significant
differences in rainfall measured by the PWS gauges and the NOAA
gauges, suggesting there is high spatial variability in rainfall during the
flood claim events. In BAL and PHL, the majority of flood claim events
have PWSs observing greater rainfall (91, 67, 57 and 57% for 1-H, 3-H,
6-H, and 24-H rainfall for BAL). In VB and DC, the number of PWSs
observing greater or lesser rainfall than NOAA is similar. However, the
percent differences in events in which the PWSs observe greater rainfall
are higher than in the events in which they observe less rainfall (e.g.,
31% compared to —22% for 1-H rainfall in VB). Overall, we see that
PWSs tend to observe higher rainfall than the NOAA gauges for less
extreme and shorter duration events, suggesting they may be capturing
more localized flooding, whereas the gauges are in closer agreement for
more extreme events that generally span a larger area.

Figs. 8 and 9 compare Inverse Distance Weighted (IDW) interpolated
maps of total accumulated rainfall observed from NOAA rainfall stations
and PWSs, as well as the rainfall hourly time series for an example
census tract and the derived rainfall metrics for two example flood claim
events (one on 11/11/2020 in Norfolk (Fig. 8) and the other on 9/9/
2020 in the District of Columbia (Fig. 9)). As shown in Fig. 8a (1) - (3), in
the 11/11/2020 event, there was a total of 25 claims distributed across
the city with $254,364 in insurance payout. The IDW interpolated maps
for NOAA and PWS in Fig. 8a (4) — (6) show that a significant difference

Table Al
Flood claim, rainfall, tide, and threshold values used in this study.
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(~2 in) in total accumulated rainfall occurred around the example
census tract area, with the PWS maps showing greater rainfall.
Comparing the hourly time series of the NOAA rainfall stations with the
PWS neighboring stations for the example census tract in Fig. 8b, we see
that PWSs captured a significantly larger rainfall peak (~1 in) on 11/12
01:00.

In the second example (9/9/2020 event), shown in Fig. 9a (1) - (3),
there were a total of 60 claims with $516,178 in insurance payout.
Similarly, the census tracts with the greatest number of flood claims
coincide with areas showing significant differences in interpolated
rainfall from NOAA gauges vs. PWS gauges, with the PWS gauges
showing greater rainfall (Fig. 9a (4) — (6)). This suggests the coverage
from the NOAA rainfall stations was insufficient to capture this area of
heavy rainfall that resulted in claims. As shown in Fig. 9b, the rainfall
peak on 9/10 13:00 observed from PWSs (~3 in) was more than 1 in.
greater than NOAA (~1.7 in). Both flood claim events suggest that the
spatial density of PWSs provides the ability to capture localized storms
that resulted in flood claims, which greatly assists understanding the
cause of the flood losses.

3.5. Limitations and future research

This study utilizes the recently released and publicly available NFIP
flood claim data to analyze the rainfall and tide characteristics during
storm events that lead to flood losses. Given the novelty of the dataset,
an exploratory analysis was presented that resulted in a straightforward
method for understanding the rainfall and tide characteristics of flood
claim events captured in the NFIP flood insurance claim data. The results
from this study provide a first step toward understanding the informa-
tion and potential insights from this newly released dataset, and our
hope is that it paves the road for more sophisticated statistical analysis in
future studies. The method used in this study can be easily generalized
and applied in other regions or time periods. However, there are limi-
tations within the dataset used and method presented in this study that
are worth pointing out for potential future studies.

First, in this dataset, there are more than 40 fields providing key
information such as locational, structural, occupancy and claim vari-
ables (Dombrowski et al., 2021). However, some important features of
the insured property (e.g., property value and financial damages) and,
the flood hazard characteristics (e.g., flood depth and flood category)
are not included or have been heavily redacted (Vishnu et al., 2021).
Most importantly, the finest geographical level of where the flood claims
occurred was the census tract level, as the coordinates of the insured
properties were redacted. Additionally, since the private flood insurance

MA County/City NFIP Flood Claim(2016 - 2020) NOAA Rainfall and Tide Threshold Values for Analysis
# of # of Payout Rainfall StationID / Name Tide Station Rainfall (in.) Tide
claims claim $ M ID / Name 1H 3H 6H 24H (ft.)
events
VB Norfolk City 472 58 6.1 72,308,013,737  Norfolk 8,638,610Sewell’s Point, 1.40 1.79 217 293 1.74
International Airport VA
Virginia Beach 1695 86 55.8 72,307,513,769 Oceana NAS 1.42 1.82 2.23 3.00
City
Portsmouth 269 37 5.7 72,308,513,750  Norfolk NAS 1.41 1.80 217 293
City
Newport News 94 21 3.9 72,308,693,741 Newport News 1.40 1.80 2.16 2.93
City International Airport
Hampton City 206 41 2.7 74,598,013,702 Langley Air Force 1.41 1.81 2.18 2.93
Base N
DC District of 212 69 1.4 72,405,013,743 Washington Reagan 8,594,900Washington, 1.22 1.50 1.84 2.56 1.77
Columbia National Airport DC
Alexandria City 214 26 5.1 72,405,013,743
Arlington 80 24 1.4 72,405,013,743
County
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Fairfax County 289 89 4.7 72,403,093,738 Washington Dulles 1.16 1.47 1.81 2.50
International Airport
Prince George’s 399 99 3.8 74,594,013,705  Camp Springs 1.20 1.52 1.86  2.62
County Andrews AFB
BAL  Baltimore City 150 41 4.0 74,594,493,784  Maryland Science 8,574,680 1.18 152 189 267 171
Baltimore 117 45 1.9 74,594,493,784 Center Baltimore, MD
County
Harford County 28 15 0.4 74,594,493,784
Anne Arundel 118 65 0.7 72,215,899,999 Annapolis US Naval 1.19 1.53 1.89 2.66
County Academy
Queen Anne’s 48 15 0.5 72,215,899,999
County
PHL Delaware 568 40 18.8 72,408,013,739 Philadelphia 8,551,910 1.19 1.56 1.93 2.68 1.87
County International Airport ~ Reedy Point, DE
Philadelphia 498 26 13.9 72,408,594,732  Northeast 1.18 156 196 275
County Philadelphia Airport
New Castle 106 35 2.0 72,418,013,781  Wilmington New 1.19 155 191 2.69
County Castle CO Airport
Salem County 37 12 0.8 72,418,013,781
Gloucester 59 13 0.6 72,408,013,739 Philadelphia 1.19 1.56 1.93 2.68
County International Airport
NY Hudson County 166 37 1.8 72,505,394,728  NY City Central 8,518,750The Battery, 1.07 1.63 206 293 1.84
Park, NY
Nassau County 375 129 4.7 74,486,094,789 JFK International 1.11 1.68 2.03 2.67
Airport
Richmond 70 31 0.3 72,502,014,734 Newark Liberty 1.13 1.54 1.98 2.73
County International Airport
Queens County 161 75 1.6 72,503,014,732 LaGuardia Airport 1.07 1.65 2.02 2.69
Kings County 109 55 0.3 72,505,394,728 NY City Central 1.07 1.63 2.06 2.93
Park,

markets have been growing in recent years, the NFIP flood claims may
only account for a portion of the flood losses that actually occurred
during the storm events (Kousky and Michel-Kerjan, 2017). These fac-
tors are important for understanding the effect of social inequality on
flood claims, as flood losses highly depend on the vulnerability of the
infrastructure and social-economic status of the populations affected
(Tate et al., 2021). Therefore, research into the characteristics of rainfall
and tide for flood claim events could be expanded in future studies if
more information about flood claims become available.

Second, we found that a relatively high percentage (~90%) of claims

Table A2

occurred with observed rainfall lower than a 1-year return period.
Moreover, about 30% of the claims occurred on zero-rainfall days (days
on which the total accumulated precipitation is zero). About 10-20% of
these non-zero rainfall flood claims were associated with high tide
levels. Another potential explanation for these claims is water-related
damage such as roof, wall, or pipe leakage (Spekkers et al., 2015). It
may also be possible that the date of loss documented in the flood claims
was incorrect. In these cases, the rainfall and tide observations on days
surrounding the occurrence of flood losses could be examined to verify
the cause of the flood losses.

Number (percentage) of events during 2016-2020 in each group among non-zero rainfall days using 24-H rainfall duration threshold.

MA County/City Number of non-zero rainfall days Number (percentage) in each group out of all days/events
LRLT LRHT HRLT HRHT
VB Norfolk 598 551 (92.1%) 37 (6.2%) 7 (1.2%) 3 (0.5%)
Virginia Beach 624 580 (92.9%) 36 (5.8%) 4 (0.6%) 4 (0.6%)
Portsmouth 622 578 (92.9%) 35 (5.6%) 3 (0.5%) 6 (1.0%)
Newport News 600 549 (91.5%) 37 (6.2%) 9 (1.5%) 5 (0.8%)
Hampton 795 746 (93.8%) 38 (4.8%) 6 (0.8%) 5 (0.6%)
DC District of Columbia 602 570 (94.7%) 27 (4.5%) 5 (0.8%) 0 (0.0%)
Alexandria 615 580 (94.3%) 28 (4.6%) 7 (1.1%) 0 (0.0%)
Arlington County 617 583 (94.5%) 28 (4.5%) 6 (1.0%) 0 (0.0%)
Fairfax County 598 570 (95.3%) 26 (4.3%) 2 (0.3%) 0 (0.0%)
Prince George’s County 787 746 (94.8%) 29 (3.7%) 12 (1.5%) 0 (0.0%)
BAL Baltimore 538 514 (95.5%) 20 (3.7%) 3 (0.6%) 1 (0.2%)
Baltimore County 540 516 (95.6%) 20 (3.7%) 3 (0.6%) 1 (0.2%)
Harford County 542 518 (95.6%) 20 (3.7%) 3 (0.6%) 1 (0.2%)
Anne Arundel County 732 703 (96.0%) 25 (3.4%) 3 (0.4%) 1 (0.1%)
Queen Anne’s County 740 709 (95.8%) 26 (3.5%) 5 (0.7%) 0 (0.0%)
PHL Delaware County 620 593 (95.6%) 22 (3.5%) 4 (0.6%) 1 (0.2%)
Philadelphia County 624 599 (96.0%) 22 (3.5%) 3 (0.5%) 0 (0.0%)
New Castle County 622 602 (96.8%) 19 (3.1%) 0 (0.0%) 1 (0.2%)
Salem County 626 606 (96.8%) 19 (3.0%) 0 (0.0%) 1 (0.2%)
Gloucester County 623 596 (95.7%) 22 (3.5%) 4 (0.6%) 1 (0.2%)
NY Hudson County 657 589 (89.6%) 63 (9.6%) 3 (0.5%) 2 (0.3%)
Nassau County 618 555 (89.8%) 61 (9.9%) 1 (0.2%) 1 (0.2%)
Richmond County 641 572 (89.2%) 65 (10.1%) 2 (0.3%) 2 (0.3%)
Queens County 641 577 (90.0%) 63 (9.8%) 1 (0.2%) 0 (0.0%)
Kings County 653 587 (89.9%) 62 (9.5%) 2 (0.3%) 2 (0.3%)

LRLT: low rainfall low tide; LRHT: low rainfall high tide; HRLT: high rainfall low tide; HRHT: high rainfall high tide.
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Another limitation of our analysis is that we only utilized the rainfall
data observed from NOAA rainfall stations to categorize the flood claim
events. We did this because it is a trustworthy and national consistent
dataset. However, other sources of rainfall data could be considered in
future studies. For example, regional rainfall networks could also be
available through local municipality agencies such as the Hampton

Table A3

Journal of Hydrology 625 (2023) 130123

Roads Sanitary District in the Hampton Roads, VA region, who maintain
their own rainfall monitoring network (Sadler et al., 2018). This study
also investigated the potential for crowdsourced rainfall data collected
through PWSs to supplement the rainfall observations from NOAA
rainfall stations. Future studies could also incorporate remote sensing
rainfall (e.g., radar-derived rainfall estimates from Next Generation

Number (percentage) of flood claim events out of all events for each group using 24-H rainfall duration threshold.

MA County/City Number (percentage) of flood claim days/events out of the number of days/events in each group
LRLT LRHT HRLT HRHT

VB Norfolk 25/551 (4.5%) 7/37 (18.9%) 3/7 (42.9%) 2/3 (66.7%)
Virginia Beach 45/580 (7.8%) 7/36 (19.4%) 3/4 (75.0%) 3/4 (75.0%)
Portsmouth 21/578 (3.6%) 0/35 (0.0%) 2/3 (66.7%) 1/6 (16.7%)
Newport News 9/549 (1.6%) 3/37 (8.1%) 3/9 (33.3%) 1/5 (20.0%)
Hampton 19/746 (2.5%) 2/38 (5.3%) 2/6 (33.3%) 3/5 (60.0%)

DC District of Columbia 32/570 (5.6%) 6/27 (22.2%) 4/5 (80.0%) 0/0 (N/A)
Alexandria 9/580 (1.6%) 1/28 (3.6%) 4/7 (57.1%) 0/0 (N/A)
Arlington County 9/583 (1.5%) 1/28 (3.6%) 3/6 (50.0%) 0/0 (N/A)
Fairfax County 51/570 (8.9%) 7/26 (26.9%) 2/2 (100.0%) 0/0 (N/A)
Prince George’s County 52/746 (7.0%) 6/29 (20.7%) 7/12 (58.3%) 0/0 (N/A)

BAL Baltimore 18/514 (3.5%) 4/20 (20.0%) 1/3 (33.3%) 0/1 (0.0%)
Baltimore County 16/516 (3.1%) 7/20 (35.0%) 1/3 (33.3%) 0/1 (0.0%)
Harford County 6/518 (1.2%) 0/20 (0.0%) 0/3 (0.0%) 0/1 (0.0%)
Anne Arundel County 41/703 (5.8%) 4/25 (16.0%) 1/3 (33.3%) 1/1 (100.0%)
Queen Anne’s County 7/709 (1.0%) 1/26 (3.8%) 1/5 (20.0%) 0/0 (N/A)

PHL Delaware County 21/593 (3.5%) 4/22 (18.2%) 0/4 (0.0%) 1/1 (100.0%)
Philadelphia County 15/599 (2.5%) 1/22 (4.5%) 1/3 (33.3%) 0/0 (N/A)
New Castle County 19/602 (3.2%) 2/19 (10.5%) 0/0 (0.0%) 1/1 (100.0%)
Salem County 4/606 (0.7%) 2/19 (10.5%) 0/0 (0.0%) 1/1 (100.0%)
Gloucester County 7/596 (1.2%) 2/22 (9.1%) 2/4 (50.0%) 0/1 (0.0%)

NY Hudson County 13/589 (2.2%) 4/63 (6.3%) 2/3 (66.7%) 1/2 (50.0%)

57/555 (10.3%)
13/572 (2.3%)
38/577 (6.6%)
26/587 (4.4%)

Nassau County
Richmond County
Queens County
Kings County

16/61 (26.2%)
4/65 (6.2%)
14/63 (22.2%)
4/62 (6.5%)

1/1 (100.0%)
2/2 (100.0%)
0/1 (0.0%)
1/2 (50.0%)

1/1 (100.0%)
0/2 (0.0%)
0/0 (N/A)
1/2 (50.0%)

LRLT: low rainfall low tide; LRHT: low rainfall high tide; HRLT: high rainfall low tide; HRHT: high rainfall high tide.

Table A4

The interaction probability between tide and rainfall. Column 1-4 represent the probability a rainfall event results in a claim given (1) the rainfall event exceeds the 1-
year level, (2) the tide level is above NOAA’s minor tide level, or (3) both and compares to the probability in case 3 to (4) for what the probability would be if the

variables’ effects were independent.

MA County/City (1)P(claim | HR) (2)P(claim | HT) (3)P(claim | HR and HT) (4) ObservedP(claim | HR and HT)
if independent [# HR and HT events]

Norfolk 0.50 0.23 0.11 0.67 [3]
Virginia Beach 0.75 0.25 0.19 0.75 [4]
Portsmouth 0.33 0.02 0.01 0.17 [6]
Newport News 0.29 0.10 0.03 0.2 [5]
Hampton 0.45 0.12 0.05 0.6 [5]
District of Columbia 0.80 0.22 0.18 NA [0]
Alexandria 0.57 0.04 0.02 NA [0]
Arlington County 0.50 0.04 0.02 NA [0]
Fairfax County 1.00 0.27 0.27 NA [0]
Prince George’s County 0.58 0.21 0.12 NA [0]
Baltimore 0.25 0.19 0.05 0[1]
Baltimore County 0.25 0.33 0.08 0 [1]
Harford County 0.00 0.00 0.00 0[1]
Anne Arundel County 0.50 0.19 0.10 1[1]
Queen Anne’s County 0.20 0.04 0.01 NA [0]
Delaware County 0.20 0.22 0.04 11[1]
Philadelphia County 0.33 0.05 0.02 NA [0]
New Castle County 1.00 0.15 0.15 1[1]
Salem County 1.00 0.15 0.15 1[1]
Gloucester County 0.40 0.09 0.03 0[1]

NY Hudson County 0.60 0.08 0.05 0.5 [2]
Nassau County 1.00 0.27 0.27 11[2]
Richmond County 0.50 0.06 0.03 0 [2]
Queens County 0.00 0.22 0.00 NA [0]
Kings County 0.50 0.08 0.04 0.5 [2]

MA: Metropolitan area.

Red indicates P > if independent.
Blue indicates P < if independent.
Black indicates no observed events.
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Fig. Al. Analysis of rainfall and tide characteristics for flood claim events for other cities/counties in the Virginia Beach metropolitan area.

Virginia Beach

Hampton

Max. Tide (ft)

New Port News

Max. Tide (ft)

Portsmouth

Max. Tide (ft)

Max. Tide (ft)

Journal of Hydrology 625 (2023) 130123

-
o
a
3
NZRE / TE
ST F—— e of 1H I F—— of {H I 3+ of {HZI}—+ o oo o 58//86
£
©
(-4
3 x X x X X X x X °
2] % % X . X x T
1 i-‘. L X x x e X’)‘( xx ;! b xx
:‘-"_ Xx ?<' . x x x E'n x
0= # of claims B
- = (1,5] ‘
. 14
-1 x ;:4‘2]71
- X. (27, 1407]
0 1 2 0 2 4 0 2 0.0 2.5 5.0 7.5  Tide Boxplot
1-H Max. Rainfall (in) 3-H Max. Rainfall (in) 6-H Max. Rainfall (in) 24-H Max. Rainfall (in)
k]
[=8
8
NZRE / TE
BT ol T e of 1T o o T34~ e o o 26//41
£
‘©
-4
3 X X X X T
iE | _ | 1
A - X 3 . X * . x E - . X
L) e k3
0 P ~ #ofclaims F } E-’ t
. .41 3 i E
? (4, 8] ?
-1 :( 8,191
2 . X (19,132] . . o
0 1 2 0 2 4 0 2 4 00 25 50 75 Tide Boxplot
1-H Max. Rainfall (in) 3-H Max. Rainfall (in) 6-H Max. Rainfall (in) 24-H Max. Rainfall (in)
k)
Q
g NZRE / TE
bl I S—— of yH___ T H—t H T I I 16,/21
£
©
o<
3 X X X X o
21 ' 4y T
! x* h x h x ! x
Nk b . b
2 ‘3 ‘8 AT
0% . #ofclaims | |~ } t
BRG]
-1 x :::u
2 H X (11,56)
0 1 2 0 1 2 0 1 2 3 0 2 4 6 Tide Boxplot
1-H Max. Rainfall (in) 3-H Max. Rainfall (in) 6-H Max. Rainfall (in) 24-H Max. Rainfall (in)
k]
[=3
5
NZRE / TE
O HL | (L o of fHIF{ o o e oy
€
‘©
-4
3 X X X X °
2 - £ . -
) :‘. R :‘ )_( g_._.._. ., xX '-3._.;... X x & X x %
0 . # of claims - . - )
- 2]
x (2,86]
-1 X (6,19]
_2 X (19,191]
0 1 0 0 2 4 6 0 5 10 Tide Boxplot

2
1-H Max. Rainfall (in)

1 2 3
3-H Max. Rainfall (in)

6-H Max. Rainfall (in)

15

24-H Max. Rainfall (in)



Journal of Hydrology 625 (2023) 130123

A.B. Chen et al.

New York

Philadelphia

Baltimore

Washington DC

Virginia Beach

Ayuno) s8ury
Awno) suaanp
Auno) puowydry
Auno) nesseN

Auno) uospnH

Auno) Js1sa0no|n
Ayuno) wajes
Ano) ajise) maN
Auno) eydjspe|iyd

Auno) atemejaqg

Auno) s,auuy uaany

Ayuno) [apuniy auuy

Auno) atownjeg

alownyjeg

HRHT

Auno) s,281099 aduld
Ano) xepiey4

Ayuno) uojBuijy
elipuexa|y

eiquin|o) Jo 30131

W LRLT ®LRHT m HRHT

e

uoydwey
SMaN Hodman
y1nowsyod

N —
O ——

N —

- ——

N c—

A S —

A

- —

O —

A S
i

A
S /1U 07 PiOyIEH
A e

A o

L —

L

L cI——

LS —

O ——

N I
o I

O e

S S I {025 ©1U1S)IA
M S ——

Jl|0JION
ES R X R S R X R SIS R xR R S R X R X
o n o n o Qo n =) n o 9 n =) n o o n o n =)
o a a 0 0 O a a ©0 0 O a o 0 0 O o a -] 0
- - - —
SJUDAS || JO IN0 SJUBAS JUdIIdd SIUSAD || JO INO SJUBAS JU3d1ad SJUSAS ||€ JO 1IN0 SJUBAS JUdJad SJUBAS || JO 1IN0 SJUBAS JUdIIdd
HT HE H9 HPC

Fig. A2. Percentage of events out of total events in each group for all cities/counties in this study.
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Weather Radar (NEXRAD) (Cunha et al., 2015)) into the analysis to
better compare and contrast the rainfall spatial heterogeneity and its
relationship to flood claims. Extending the rainfall analysis geographical
extent and time period could also be completed for a more compre-
hensive understanding of the trends and patterns in flood claims.

Lastly, as mentioned earlier, this study utilized only exploratory
analysis for the comparison of NOAA and PWS rainfall during heavy
rainfall flood claim events. Future studies could focus on building a
model of the number (Poisson regression), presence (logistic regression),
or amount (linear regression) of claims as a function of rainfall in the
census tract to determine if using PWSs for these models yields more
accurate predictions than NOAA gauges. This would provide additional
confirmation of the value of PWSs in contributing to our understanding
of localized flooding resulting in flood losses.

4. Conclusion

This study presents a methodology for using the NFIP flood insurance
claim data to investigate rainfall and tide characteristics of storm events
that result in flood losses. The methodology was applied to twenty-five
counties/cities in five metropolitan areas (Virginia Beach, Washington
DC, Baltimore, Philadelphia, and New York) in the mid-Atlantic region
in the U.S. The results showed that the majority of flood claim events in
this region are associated with rainfall lower than the 1-year return
period and tide level lower than a minor flood risk tide level. However,
in storm events exceeding the rainfall and tide threshold, the probability
of the occurrence of flood claims could average more than 50% and
20%, respectively. In Virginia Beach, this probability far exceeds what
would be expected if these two variables were independent, suggesting
they interact to exacerbate flood impacts, while there were not enough
compound events to see if this was the case in the other metropolitan
areas.

In the analyzed metropolitan areas, storm events associated with
longer duration (6H and 24H) rainfall exceeding 1-year return period
were found to generally have higher probability of resulting in flood
losses. Storm events associated with shorter duration (1H and 3H)
exceeding the 1-year return period were also found to increase the
chance of flood losses in cities/counties in Virginia Beach and Wash-
ington DC metropolitan areas. With respect to tide levels, their effect on
flood losses was found to vary across the analyzed cities/counties, with
53% of the analyzed cities/counties having higher than 20%, and 24%
having lower than 5% of the high tide events resulting in flood losses,
respectively.

Comparison of observed rainfall from NOAA stations and crowd-
sourced personal weather stations (PWSs) showed that PWSs observe an
average of 30% more rainfall than agency rainfall stations at the location
of the flood claims across analyzed heavy rainfall events. This suggests
the high spatial density of PWSs may be capturing localized rainfall
missed by the lower spatial density NOAA gauges, better representing
the rainfall spatial heterogeneity of storms that contribute to localized
flood losses.

The methodology presented in this paper can be used in future work
in other regions or time periods to further advance understanding of the
rainfall and tide characteristics of flood claim events captured in the
NFIP flood insurance claim data. The results for the Mid-Atlantic region
provide a start toward better understanding the role of rainfall-driven
and high-tide flood losses based on the flood insurance claims. These
findings could benefit multiple stakeholders in the region, including
researchers, risk management officials, insurers, and the general public
in assessing and building resilience against increased flood risks in
coastal cities.
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