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Abstract 

Neural networks (NNs) have demonstrated strong capabilities of learning constitutive relations 

from big data. However, most NN-based constitutive models require experimental data from a 

considerable number of stress-strain paths that are expensive to collect. Here, we develop a hybrid 

finite element method − NN (FEM-NN) framework for learning the constitutive relations from 

full-field data. As a result, the non-uniform displacement field from a deformed sample with 

geometrical inhomogeneities can be used for training NNs. Such full-field data have the advantage 

of providing many different stress-strain paths at different locations in the sample by a single test, 

thereby enabling the highly efficient training of NNs. We apply FEM-NN simulations to learn the 

constitutive relations of several model materials characterized by rate-independent J2 plasticity. 

These FEM-NN studies demonstrate that the trained NNs produce the constitutive relations of 

plasticity with high accuracy and efficiency.  
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1. Introduction 

 Constitutive relations of plasticity are critically important for representing the mechanical 

behavior of materials beyond their elastic limits. They are commonly established based on either 

phenomenological [1, 2] or mechanistic models [3]. The development of a phenomenological 

plasticity model usually requires a comprehensive, but expensive experimental program to 

calibrate the stress-strain responses along many loading paths. In contrast, the development of a 

mechanistic model, such as a crystal plasticity model, relies on some physical understanding of 

the microscopic deformation processes that can be difficult to obtain. In recent years, a drastically 

different approach has emerged that pursues the data-driven learning of constitutive relations 

through neural networks (NNs) [4-6]. Such a machine learning approach does not necessarily 

require much human input and is particularly amenable to the big data generated from experiments.  

 The NN-based learning of constitutive relations has been applied to study problems involving 

heterogeneous elasticity [7, 8], rate-independent plasticity [9-11], temperature- and rate-dependent 

plasticity [12-14], path-dependent plasticity [15-17], isotropic plasticity [18-20], 

thermodynamically-informed plasticity [21] and crystal plasticity [22]. To train these NNs, most 

studies require experimental measurements from a considerable number of stress-strain paths, 

which are expensive to collect. It can become much more expensive to study the effects of multiple 

principal elements on constitutive relations when exploring the nearly infinite compositional space 

of high-entropy alloys [23, 24]. Moreover, when the conventional tests of dog-bone-shaped tensile 

specimens are used, only the total force-displacement data are collected for training these NNs. 

This mode of machine learning does not represent an efficient use of materials and testing effort. 

Much unused information, such as the spatial distribution of displacements, could be exploited to 

expedite the learning of constitutive relations. 

 Recently, a hybrid finite element method − NN (FEM-NN) framework was developed to 

augment machine learning with physical constraints in the form of partial differential equations 

[25], and it was implemented as an extension of the open-source FEM framework FEniCS [26]. 

This framework makes it possible to learn constitutive relations from the observations of full-field 

data. In this work, we adapt the hybrid FEM-NN framework [25] to machine-learn constitutive 

relations of plasticity from the full-field displacement data of deformed samples, together with the 

sample-level force-displacement data. The constitutive relations are learned through the hybrid 
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FEM-NN simulations with an exemplar physical constraint in the form of rate-independent J2 

plasticity. Namely, the yield stress is taken as a function of equivalent plastic strain and learned 

through a NN. The experimentally measurable full-field data can be used as the ground truth. Each 

training iteration involves the following steps: (i) generation/update of the NN-based plasticity 

relation; (ii) solving a nonlinear FEM problem for obtaining the non-uniform displacement field 

of a deformed sample using the plasticity relation under training; (iii) computing the cost and its 

gradient by reverse mode algorithmic differentiation [27] for backpropagation toward minimizing 

discrepancies between the FEM-NN simulation results with the ground truth [28].  

 We emphasize that the non-uniform displacement field is an example of the full-field data used 

for training NNs, and it can be generated by geometrical inhomogeneities such as holes and surface 

undulations that are intentionally introduced into a tensile sample. As such, many different stress-

strain paths are produced at different locations in the sample by a single test and thus enable the 

highly efficient training of NNs. To expedite the development of the FEM-NN framework, we 

generate the ground truth through a surrogate computational model, which provides the reference 

full-field displacement data of a deformed sample from the FEM simulation based on a 

conventional rate-independent J2 plasticity model. In future studies, the ground truth from this 

surrogate model can be replaced by the experimental full-field data obtained from digital image 

correlation (DIC) [29] measurements. In this work, we further test the trained constitutive relations 

of plasticity using sample geometries that are not included in the training set. We also study 

materials with different strain hardening behaviors to demonstrate the general applicability of the 

hybrid FEM-NN framework for learning constitutive relations of plasticity. 

 

2. A hybrid FEM-NN framework for learning constitutive relations    

2.1 Displacement-based finite element method 

 The hybrid FEM-NN framework is developed by extending the general displacement-based 

finite element analysis. Here we describe its governing equations by representing tensors and 

vectors as bold symbols. The strong form of equilibrium equations is given by 

  0∇⋅ + =σ b  (1) 
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where σ  is the Cauchy stress tensor and b is the body force per unit volume. Focusing on small 

strain analysis, the strain tensor ε  is related to the displacement vector u by    

  ( )T1
2
 = ∇ + ∇ ε u u  (2) 

Since σ  depends on ε  through the constitutive relation used, the combination of Eq. (1) and (2) 

allows one to solve the displacement field u that satisfies the strong form of stress equilibrium. In 

contrast, the weak form of equilibrium equations can be expressed in terms of the virtual work 

principle over a volume of the material V bounded by its surface S 

  :
V S V

dV dS dVδ δ δ= ⋅ + ⋅∫ ∫ ∫σ ε t v b v  (3) 

where δv is the virtual velocity, ( )1
2

Tδ δ δ = ∇ + ∇ ε v v  is the virtual strain rate, and t is the 

surface traction vector on S. In Eq. (3), σ  also depends on the displacement field u through the 

constitutive relation used. The virtual work equation of Eq. (3) can be discretized through finite 

elements to solve the displacement field u by Newton’s method [30].  

 In this work, the FEM procedure is implemented using the open-source FEM library FEniCS 

[26] in Python. The variational problem could be specified in FEniCS using the domain-specific 

language UFL [31], such as the following Python statement 

  ( )inner ,F dδ= σ ε x   (4) 

where F stands for the formula of the variational problem, the “inner” represents the scalar product 

of two tensors through the double dot operator in Eq. (3), and dx indicates the integration over the 

whole volume V. In Eq. (4), the stress σ depends on an unknown displacement field u, and δε is 

the “virtual” strain field given by the trial function δv. Here, we assume only the displacement 

boundary conditions are applied, and no body force is present, such that both terms on the right- 

hand side of Eq. (3) become zeros. After defining the variational form of stress equilibrium in UFL, 

we use the FEniCS interface to automatically assemble and solve the nonlinear variational system 

F = 0 with Newton’s method. The Jacobian of such a system is calculated analytically by automatic 

differentiation in UFL. 
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2.2 Constitutive relations of plasticity   

 The constitutive relations are learned through an exemplar physical constraint in the form of 

rate-independent J2 plasticity. Specifically, the total strain rate is decomposed into the elastic strain 

rate eε  and plastic strain rate pε  

  e p= +ε ε ε    (5) 

The elastic strain rate determines the stress rate according to  

  ( )e etr 2λ µ= +σ ε ε    (6) 

where the Lamé constants λ  and µ  are related to Young’s modulus E and Poisson’s ratio ν by 

( )( )1 1 2
Eνλ

ν ν
=

+ −
 and 

( )2 1
Eµ
ν

=
+

. Assuming associated plastic flow, the plastic strain rate is given 

by    

  p 3
2

p ε
σ

=
sε 

  (7) 

where pε  is the equivalent plastic strain rate, s is the deviatoric stress tensor  

  ( )1 tr
3

= −s σ σ I  (8) 

and σ  is the von Mises effective stress 

  
3 :
2

σ = s s  (9) 

 In the conventional rate-independent J2 plasticity model, the yield criterion is met when σ  

equals the yield stress yσ , which is a function of the equivalent plastic strain p p

0
'

t
dtε ε= ∫   at time 

t. To study the quasi-static response of a rate-independent material, the time t has no physical 

meaning and represents a loading sequence. In the present hybrid FEM-NN framework, the yield 

criterion is met when σ  equals the yield stress given by a NN, denoted as NN
yσ  . Note that NN

yσ  
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depends on pε  without an explicit function form and is determined by training a NN. When σ   is 

smaller than the yield stress, the material behaves elastically and produces zero plastic strain rate.  

 

2.3 Integration procedure 

 To solve a nonlinear problem under an applied load, we break the FEM simulation into a total 

of N load increments and obtain the equilibrium solution via time integration at the end of each 

load increment. It usually takes several iterations to find an acceptable solution of a load increment 

by Newton’s method. Here we introduce a smoothing scheme of elastic-plastic transition which 

can eliminate the need for iterations and also enhance the stability of NN training. The sum of all 

of the incremental responses gives the integration solution for the applied load.  

 At the load increment n, the stress-strain response at each material point is determined using 

the standard radial return algorithm [32]. That is, the elastic predictor prσ  is calculated by 

assuming the strain increment ∆ε  is purely elastic,  

  ( )pr tr 2n λ µ= + ∆ + ∆σ σ ε ε  (10) 

where nσ  is the stress tensor at the increment n. Then the deviatoric part of prσ  is calculated as

( )pr pr pr1 tr
3

= −s σ σ I  and the corresponding effective stress as pr pr pr3 :
2

σ = s s . If ( )pr p
y nσ σ ε< , 

the strain increment is indeed purely elastic, such that the plastic strain increment p 0ε∆ =  and the 

stress tensor at the end of this load increment is simply prσ . Otherwise, the backward Euler method 

is used to determine pε∆  via the following nonlinear equation [30], 

  ( )pr p p p
y3 nσ µ ε σ ε ε− ∆ = + ∆   (11) 

Since the elastic-plastic transition often involves an abrupt change of the slope in the stress-strain 

curve, this may cause a failure in the backpropagation during training of NN
yσ . To resolve this 

issue, we smoothen the elastic-plastic transition by using the sigmoid function ( ) ( )1/ 1 xS x e−= + ,  

a widely used activation function in NN studies [33]. Namely, Eq. (11) is modified as    
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  ( ) ( )pr p pr p p
y y3 , nfσ µ ε σ σ σ ε ε− ∆ = + ∆   (12) 

where the indicator function f  is defined as ( ) ( )( )pr pr
y y,f S kσ σ σ σ≡ − ; when k is sufficiently 

large, this indicator function gives a smooth transition between the elastic ( 0f = ) and plastic 

( 1f = ) response. To the first order of pε∆ , we expand ( ) ( )NN p p p p
y yn n Hσ ε ε σ ε ε+ ∆ ≈ + ∆ , where 

H is the hardening modulus y
pH

σ
ε
∂

=
∂

 calculated by automatic differentiation in FEniCS. Plugging 

this expansion into Eq. (12), we obtain the approximate equivalent plastic strain increment 

  ( ) ( )pr p
yp pr

y,
3

nf
H

σ σ ε
ε σ σ

µ

−
∆ ≈

+
 (13) 

While solving pε∆  through Eq. (11) requires numerical iterations in a load increment, Eq. (13) is 

an explicit solution of pε∆  and thus eliminates the need for iterations. The above integration 

procedure is implemented in FEniCS [26]. In Eq. (13), the yield stress ( )p
yσ ε  can be either a 

prescribed function, denoted as ref
yσ , to generate the ground truth data or a NN, denoted as NN

yσ , 

to train the constitutive relations of plasticity. The NN representation of constitutive relations is 

illustrated in Fig. 1, where the NN constitutive relation in  the left module of Fig. 1a provides the 

output of yield stresses based on the input of accumulated plastic strains. 
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Fig. 1. Illustration of the hybrid FEM-NN framework for learning constitutive relations based on 
full-field data. (a) Summary of FEM-NN training iterations. Each iteration involves the 
generation/update of the NN; solving a FEM problem for obtaining the displacement field of a 
deformed sample using the NN-based plasticity relation under training; computing the cost 
function and its gradient for backpropagation toward minimizing the discrepancy between the 
FEM-NN simulation results with the ground truth. (b) Flowchart of the hybrid FEM-NN algorithm. 
Backpropagation to update the NN yield stress is highlighted in red, as this step requires a key 
operation of reverse mode algorithmic differentiation. 
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2.4 Training NNs from full-field data 

 The NN-based constitutive relation of plasticity in Section 2.3 can be trained using the 

experimentally measurable full-field data, such as the non-uniform displacement of a tensile 

sample containing geometrical heterogeneities, together with the sample-level force-displacement 

data. In this work, we consider a thin-plate sample containing five randomly positioned circular 

holes. The elastic and plastic properties of the material are homogeneous. We generate the ground 

truth from a surrogate computational model instead of experimental measurements. That is, the 

material in this surrogate model obeys the J2 plasticity with a specified yield stress function 

( )ref p
yσ ε , and the corresponding displacement field in the plate is solved by implementing the 

integration procedure in section 2.3 in FEniCS. The obtained ground truth data include the in-plane 

displacement field ref
nu  and the sample-level force ref

nf  versus displacement ref
nu  for all the load 

increments 1...n N= . During each training iteration (see Fig. 1a), we obtain the hybrid FEM-NN 

solution of the plate using the NN
yσ  under training. The obtained data include the displacement 

field NN
nu  and the sample-level force NN

nf  versus displacement NN
nu for all the load increments 

1...n N= . Such training iterations aim to minimize the loss function 

  
2 2ref NN ref NN

u tmax max
1

1N
n n n n

V
n x x

L dV
V u f

λ λ
=

 − − = +
  

∑ ∫
u u f f  (14) 

where   ⋅  represent the L2 vector norm; max
xu  and max

xf  are the maximum displacement and 

force in the x-direction from the ground truth, respectively; uλ  and tλ  are the weights used to 

balance the relative contributions to the loss from discrepancies of the displacement field and 

external load between the hybrid FEM-NN result and the ground truth.  

 The detailed FEM-NN flowchart is described in Fig. 1b. Note that in order to update the NN 

weights and biases during each training iteration, the gradients of the loss with respect to these 

weights and biases are needed. Since the loss function is indirectly related to the NN weights and 

biases through the FEM solution, we employ reverse mode algorithmic differentiation to calculate 

the gradients by the adjoint of an expansion through the chain rule. It is challenging to obtain the 

automated adjoint for backpropagation. This operation is enabled by dolfin-adjoint [25, 27] and 
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highlighted in red in Fig. 1b. After the loss function and its gradient are evaluated, the limited-

memory BFGS algorithm [28] in the open-source Python library SciPy [34] is invoked to minimize 

the loss and update the NN weights and biases. Hence, each training iteration (Fig. 1b) involves 

an FEM simulation using the NN-based plasticity relation under training, evaluation of the loss 

and its gradients, backpropagation, update of NN weights and biases. Such iterations are repeated 

until the convergence tolerance for the loss function is met. 

 The dimension of the simulated thin plate in Fig. 2a is 100 cm × 50 cm × 1 cm, and the radii 

of the circular holes are 5 cm. A 3D mesh consisting of 4,155 four-node tetrahedral C3D4 elements 

is generated using an Abaqus script [30]. The Abaqus mesh is converted to an XDMF file by 

meshio [35] to feed into FEniCS. The sample is subjected to three symmetrical boundary 

conditions on the surfaces of x = 0, y = 0 and z = 0. A constant velocity v = 0.01 cm/s is applied 

on the right side of the sample (x = 100 cm) for 20 s, giving a total sample-level tensile strain of 

0.2%. The FEM simulations are solved with the time step of 1.0 s. As noted earlier, we focus on 

the quasi-static response of a rate-independent material, so that the loading time only represents a 

loading sequence instead of a physical time. The elastic properties are taken as follows: Young’s 

modulus E = 200 GPa and Poisson’s ratio v = 0.3. The ground truth data are generated for a 

nonlinear strain hardening material characterized by the yield stress function of 

( )ref p
y 100 50 tanh 2000  MPaσ ε= + . When the corresponding NN-based yield stress NN

yσ  is 

trained, we scale the NN input and output to improve the stability and efficiency of training, 

  ( ) ( )NN p p
y 0/ NNσ ε σ κε=  (15) 

where 0σ  (= 100 MPa) is the initial guess of the yield stress and the dimensionless parameterκ (= 

100) scales pε  in the activation functions (see below).  

 The NN used in this work consists of one hidden layer with three neurons. The activation 

functions in all the neurons are chosen to be the following exponential linear unit (ELU) function 

[36]. 

  ( ) ( )
                   if 0

ELU
exp 1     if 0
x x

x
x x

≥
=  − <

 (16) 
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The output of this single hidden layer NN can be expressed as 

  ( ) ( )
3

1 0 0 1
1

NN ELUi i i
i

x w w x b b
=

= + +∑  (17) 

where 1iw  and 0iw  represent the weights in the three neurons (i = 1…3), and 0ib  and 1b  represent 

the corresponding biases. The initial weights follow a Gaussian distribution with mean 0 and 

variance 1 and the initial biases are 0. The weights in Eq. (14) are taken as u 1λ =  and t 1λ =  such 

that the displacement and force have equal importance in the loss function. The convergence 

tolerance for L-BFGS optimization is 1×10-10. In addition to the focused study of a nonlinear strain 

hardening material, both the perfect plastic and linear strain hardening materials are studied to 

demonstrate the general applicability of the hybrid FEM-NN approach for learning constitutive 

relations of plasticity. 

 

3. Results and discussion 

 In this section, we focus on the hybrid FEM-NN results for a nonlinear strain hardening 

material characterized by the yield stress function ( )ref p
y 100 50 tanh 2000  MPaσ ε= + . The FEM-

NN results are compared with the FEM solutions based on ref
yσ , the latter of which are referred to 

the reference results representing the ground truth. Fig. 2a shows the finite element mesh of the 

thin plate. During the training iterations of  NN
yσ , both the loss and gradient magnitude are reduced 

significantly after 100 iterations (Fig. 2b). Given the relatively small NN used, rapid convergence 

is achieved by only 195 L-BFGS iterations. Using the trained NN, we calculate the FEM-NN-

predicted response of sample-level force versus displacement, which agrees closely with the 

reference result (Fig. 2c). The mean absolute percentage error (MAPE) is 0.083%. We also use the 

trained NN to simulate the tensile stress-strain response by a single element that agrees closely 

with the reference result (Fig. 2d). The MAPE is 0.375%. While the full-field data for NN training 

are taken from the thin plate loaded to the maximum sample-level strain of 0.2%, the local strains 

near the holes are substantially larger and thus enable the effective training of NN
yσ  through many 

large stress-strain pairs. Hence, a close agreement between the predicted and reference results is 
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achieved for the material stress-strain response when the yield stress becomes saturated, i.e., at the 

strain up to 0.5%. The consistently small MAPEs in both the predicted and reference results 

indicate no significant overfitting in our FEM-NN results. 

 

Fig. 2. FEM-NN results for learning the constitutive relation of a nonlinear strain-hardened material. (a) 
FEM setup of a thin plate containing randomly distributed holes. (b) Loss function and its gradient 
magnitude as functions of the number of training iterations by the L-BFGS algorithm. (c) Comparison 
between the reference and FEM-NN-predicted results of sample-level force-displacement response. (d) 
Comparison between the reference and FEM-NN-predicted results of tensile stress-strain response.  

 

 Although the displacement field is directly observable from experiments, its spatial derivatives 

give the strain field that provides more physically transparent information on the deformation 

distribution. In Fig. 3, we compare the FEM-NN-predicted and reference strain contour plots in 

the plate at the maximum sample-level strain of 0.2%. All strain contours are plotted using the 

open-source package ParaView [37]. We focus on the comparison of in-plane normal strain 

components of xxε  and yyε . It is seen from Fig. 3a that a strain-localized band arises in between 

the two neighboring holes close to the right end of the plate, giving about ten times higher ref
xxε  

x

y

z

a b

c d
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values than the sample-average tensile strain of 0.2%. Fig. 3b shows a similar strain localized band, 

where ref
yyε  is elevated but lower than ref

xxε . This is because ref
yyε  mainly results from the Poisson’s 

effect associated with ref
xxε  and thus give values smaller than ref

xxε ,  while ref
xxε  reflects a direct 

response from the applied tensile load along the x-direction. More importantly, the FEM-NN-

predicted strain contour plots in Figs. 3c and 3d are highly consistent with the reference results in 

Figs. 3a and 3b, respectively. In addition, the differences of NN ref
xx xxε ε−  and NN ref

yy yyε ε−  are plotted 

in Figs. 3e and 3f, respectively. Most areas have differences close to zero (green), while some 

minor differences are observed in strain-localized bands. Note that the maximum strain differences 

are one order of magnitude smaller than the corresponding reference strains, showing the accuracy 

of FEM-NN predictions.  

 

Fig. 3. Comparison between the reference and FEM-NN-predicted strain fields. (a) Contour plot of the 
reference strain ref

xxε  along the horizontal direction of tensile loading. (b) Reference strain ref
yyε  along the 

transverse direction. (c) Predicted strain NN
xxε . (d) Predicted strain NN

yyε . (e) Difference between (a) and (c) 
NN ref
xx xxε ε− . (f) Difference between (b) and (d) NN ref

yy yyε ε− . 

 
 

 
 

  

 

3.1 %

0 %

 

0.3 %

-1.7 %

 

0.1 %

-0.1 %
 

0.1 %

-0.1 %

a b

c d

e f

ref
xxε ref

yyε

NN
xxε NN

yyε

NN ref
xx xxε ε− NN ref

yy yyε ε−



14 
 

  

 We test the trained NN using a thin plate not included in the training set. As shown in Fig. 4a, 

this thin plate has the same size, but a different hole arrangement compared with the plate (Fig. 2a) 

used for NN training. The predicted sample-level force-displacement curve in Fig. 4b closely 

matches the reference result, with the MAPE of 0.055%. This test shows the high accuracy and 

transferability of the trained NN from the hybrid FEM-NN approach. 

 

Fig. 4. FEM-NN results for a thin-plate geometry that is not included in the training set. (a) FEM mesh in 
the plate with hole arrangement different from that in Fig. 2(a). (b) Comparison between the reference and 
FEM-NN-predicted results of sample-level force-displacement response. 

  

 We also test the general applicability of the hybrid FEM-NN approach for learning different 

constitutive relations of plasticity. To this end, we train the NN-based plasticity relations using the 

ground truths given by other strain hardening models. With the same thin plate in Fig. 2a, the 

ground truths are generated by a perfect plasticity model with ref
y 150σ = MPa and a linear 

hardening model with ref p p
y ( ) 100 50000  MPaσ ε ε= + . After the training of  respective NN

yσ , the 

FEM-NN predictions are validated by the simulations of tensile stress-strain response through a 

single element, are shown in Fig. 5. The FEM-NN-predicted stress-strain curves are consistent 

with the ground truths; the MAPEs are 0.029% and 0.176% for perfect plastic and linear strain 

a b
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hardening materials, respectively. These tests demonstrate the high accuracy and general 

applicability of learning the constitutive relations of plasticity by the hybrid FEM-NN approach. 

 

Fig. 5. Comparison between the reference and FEM-NN-predicted results of tensile stress-strain responses 
for (a) a perfectly plastic material, and (b) a linearly strain-hardened material.  

  

 The present FEM-NN framework shows excellent capability and flexibility for learning the 

constitutive relations of rate-independent J2 plasticity. The hybrid FEM-NN training of 

constitutive relations utilizes both the full-field and sample-level data, while the conventional 

training only relies on the latter. We focus on learning the constitutive relations that depend on 

accumulated plastic strain in this work, and are working to extend the FEM-NN framework for 

learning more complex constitutive relations dependent on temperature, strain rate, composition, 

etc. The FEM-NN learning of complex constitutive relations will be reported in a future paper. We 

envision the hybrid FEM-NN approach can be combined with high throughput experiments to 

accelerate the material design and selection [38], for example, when exploring the large 

composition space of high-entropy alloys. This integrated approach may greatly accelerate the 

screening of alloy compositions for further in-depth investigation.  

 

4. Conclusion 

a b
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 We have developed a hybrid FEM-NN framework for learning constitutive relations using the 

full-field data such as a displacement field, in conjunction with the sample-level data such as a 

force-displacement curve. The non-uniform displacement field in a deformed sample is used for 

training NNs. It has the advantage of providing many different stress-strain paths at different 

locations in the sample by a single test, thereby enabling the highly efficient training of NNs. Our 

studies of the model materials characterized by rate-independent J2 plasticity demonstrate that the 

FEM-NN framework can learn their constitutive relations accurately and efficiently. The open-

source FEM framework FEniCS is a general and powerful platform that can greatly facilitate the 

future development of the FEM-NN approach. Furthermore, the NN is designed to be compatible 

with the displacement-based FEM framework, such that the trained NN constitutive relations can 

be transferred to other FEM programs without additional modification. Broadly, the integration of 

the FEM-NN approach and full-field data enables the effective constitutive modeling of materials 

through big data. 
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