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Abstract

Neural networks (NNs) have demonstrated strong capabilities of learning constitutive relations
from big data. However, most NN-based constitutive models require experimental data from a
considerable number of stress-strain paths that are expensive to collect. Here, we develop a hybrid
finite element method — NN (FEM-NN) framework for learning the constitutive relations from
full-field data. As a result, the non-uniform displacement field from a deformed sample with
geometrical inhomogeneities can be used for training NNs. Such full-field data have the advantage
of providing many different stress-strain paths at different locations in the sample by a single test,
thereby enabling the highly efficient training of NNs. We apply FEM-NN simulations to learn the
constitutive relations of several model materials characterized by rate-independent J> plasticity.
These FEM-NN studies demonstrate that the trained NNs produce the constitutive relations of
plasticity with high accuracy and efficiency.
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1. Introduction

Constitutive relations of plasticity are critically important for representing the mechanical
behavior of materials beyond their elastic limits. They are commonly established based on either
phenomenological [1, 2] or mechanistic models [3]. The development of a phenomenological
plasticity model usually requires a comprehensive, but expensive experimental program to
calibrate the stress-strain responses along many loading paths. In contrast, the development of a
mechanistic model, such as a crystal plasticity model, relies on some physical understanding of
the microscopic deformation processes that can be difficult to obtain. In recent years, a drastically
different approach has emerged that pursues the data-driven learning of constitutive relations
through neural networks (NNs) [4-6]. Such a machine learning approach does not necessarily

require much human input and is particularly amenable to the big data generated from experiments.

The NN-based learning of constitutive relations has been applied to study problems involving
heterogeneous elasticity [7, 8], rate-independent plasticity [9-11], temperature- and rate-dependent
plasticity [12-14], path-dependent plasticity [15-17], isotropic plasticity [18-20],
thermodynamically-informed plasticity [21] and crystal plasticity [22]. To train these NNs, most
studies require experimental measurements from a considerable number of stress-strain paths,
which are expensive to collect. It can become much more expensive to study the effects of multiple
principal elements on constitutive relations when exploring the nearly infinite compositional space
of high-entropy alloys [23, 24]. Moreover, when the conventional tests of dog-bone-shaped tensile
specimens are used, only the total force-displacement data are collected for training these NNs.
This mode of machine learning does not represent an efficient use of materials and testing effort.
Much unused information, such as the spatial distribution of displacements, could be exploited to

expedite the learning of constitutive relations.

Recently, a hybrid finite element method — NN (FEM-NN) framework was developed to
augment machine learning with physical constraints in the form of partial differential equations
[25], and it was implemented as an extension of the open-source FEM framework FEniCS [26].
This framework makes it possible to learn constitutive relations from the observations of full-field
data. In this work, we adapt the hybrid FEM-NN framework [25] to machine-learn constitutive
relations of plasticity from the full-field displacement data of deformed samples, together with the

sample-level force-displacement data. The constitutive relations are learned through the hybrid



FEM-NN simulations with an exemplar physical constraint in the form of rate-independent ./
plasticity. Namely, the yield stress is taken as a function of equivalent plastic strain and learned
through a NN. The experimentally measurable full-field data can be used as the ground truth. Each
training iteration involves the following steps: (i) generation/update of the NN-based plasticity
relation; (ii) solving a nonlinear FEM problem for obtaining the non-uniform displacement field
of a deformed sample using the plasticity relation under training; (iii) computing the cost and its
gradient by reverse mode algorithmic differentiation [27] for backpropagation toward minimizing

discrepancies between the FEM-NN simulation results with the ground truth [28].

We emphasize that the non-uniform displacement field is an example of the full-field data used
for training NNs, and it can be generated by geometrical inhomogeneities such as holes and surface
undulations that are intentionally introduced into a tensile sample. As such, many different stress-
strain paths are produced at different locations in the sample by a single test and thus enable the
highly efficient training of NNs. To expedite the development of the FEM-NN framework, we
generate the ground truth through a surrogate computational model, which provides the reference
full-field displacement data of a deformed sample from the FEM simulation based on a
conventional rate-independent J2 plasticity model. In future studies, the ground truth from this
surrogate model can be replaced by the experimental full-field data obtained from digital image
correlation (DIC) [29] measurements. In this work, we further test the trained constitutive relations
of plasticity using sample geometries that are not included in the training set. We also study
materials with different strain hardening behaviors to demonstrate the general applicability of the

hybrid FEM-NN framework for learning constitutive relations of plasticity.

2. A hybrid FEM-NN framework for learning constitutive relations
2.1 Displacement-based finite element method

The hybrid FEM-NN framework is developed by extending the general displacement-based
finite element analysis. Here we describe its governing equations by representing tensors and

vectors as bold symbols. The strong form of equilibrium equations is given by

V-6+b=0 (1)



where ¢ is the Cauchy stress tensor and b is the body force per unit volume. Focusing on small

strain analysis, the strain tensor € is related to the displacement vector u by
1 T
8=5[Vu+(Vu) ] @)

Since ¢ depends on ¢ through the constitutive relation used, the combination of Eq. (1) and (2)
allows one to solve the displacement field u that satisfies the strong form of stress equilibrium. In
contrast, the weak form of equilibrium equations can be expressed in terms of the virtual work

principle over a volume of the material " bounded by its surface S

ch . 58dV = Ist-dvdS+IVb-§vdV (3)

where Jv is the virtual velocity, 0€ =%|:V5V+(V§V)T} is the virtual strain rate, and t is the

surface traction vector on S. In Eq. (3), o also depends on the displacement field u through the
constitutive relation used. The virtual work equation of Eq. (3) can be discretized through finite

elements to solve the displacement field u by Newton’s method [30].

In this work, the FEM procedure is implemented using the open-source FEM library FEniCS
[26] in Python. The variational problem could be specified in FEniCS using the domain-specific
language UFL [31], such as the following Python statement

F =inner (o, 5¢) dx (4)

where F' stands for the formula of the variational problem, the “inner” represents the scalar product
of two tensors through the double dot operator in Eq. (3), and dx indicates the integration over the
whole volume V. In Eq. (4), the stress ¢ depends on an unknown displacement field u, and dg is
the “virtual” strain field given by the trial function Jov. Here, we assume only the displacement
boundary conditions are applied, and no body force is present, such that both terms on the right-
hand side of Eq. (3) become zeros. After defining the variational form of stress equilibrium in UFL,
we use the FEniCS interface to automatically assemble and solve the nonlinear variational system
F =0 with Newton’s method. The Jacobian of such a system is calculated analytically by automatic

differentiation in UFL.



2.2 Constitutive relations of plasticity

The constitutive relations are learned through an exemplar physical constraint in the form of
rate-independent J2 plasticity. Specifically, the total strain rate is decomposed into the elastic strain

rate ¢° and plastic strain rate £°
=& +&P (5)
The elastic strain rate determines the stress rate according to
6 = Atr(&°)+ 28 (6)

where the Lamé constants A and y are related to Young’s modulus E and Poisson’s ratio v by

Ev E

A=—— _and ;= . Assuming associated plastic flow, the plastic strain rate is given
(1+v)(1-2v) 2(1+v)
by
=35
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where £7 is the equivalent plastic strain rate, s is the deviatoric stress tensor
1
s:c—gtr(c)l (8)
and o is the von Mises effective stress
_ 13
O =,[=S:s 9)
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In the conventional rate-independent J2 plasticity model, the yield criterion is met when &
t .
equals the yield stress o, which is a function of the equivalent plastic strain & b= J.O g’dt' at time

t. To study the quasi-static response of a rate-independent material, the time ¢ has no physical

meaning and represents a loading sequence. In the present hybrid FEM-NN framework, the yield

criterion is met when & equals the yield stress given by a NN, denoted as O'}I,\IN . Note that G;\IN



depends on £” without an explicit function form and is determined by training a NN. When & is

smaller than the yield stress, the material behaves elastically and produces zero plastic strain rate.

2.3 Integration procedure

To solve a nonlinear problem under an applied load, we break the FEM simulation into a total
of N load increments and obtain the equilibrium solution via time integration at the end of each
load increment. It usually takes several iterations to find an acceptable solution of a load increment
by Newton’s method. Here we introduce a smoothing scheme of elastic-plastic transition which
can eliminate the need for iterations and also enhance the stability of NN training. The sum of all

of the incremental responses gives the integration solution for the applied load.

At the load increment 7, the stress-strain response at each material point is determined using
the standard radial return algorithm [32]. That is, the elastic predictor 6™ is calculated by

assuming the strain increment Ag is purely elastic,
6" =6, +Atr(Ag)+2uAe (10)

where 6, is the stress tensor at the increment n. Then the deviatoric part of ¢ is calculated as

1 . . —pr 3 r T —pr —
s" =¢" —gtr(cpr)l and the corresponding effective stress as " = /Esp $" L If 6" <o, (Enp),

the strain increment is indeed purely elastic, such that the plastic strain increment Az” =0 and the
stress tensor at the end of this load increment is simply ¢™ . Otherwise, the backward Euler method

is used to determine Az® via the following nonlinear equation [30],

~Pr ray - pad rad

5" —3uAE® =0, (2 +AZ") (11)
Since the elastic-plastic transition often involves an abrupt change of the slope in the stress-strain
curve, this may cause a failure in the backpropagation during training of O';] Y. To resolve this

issue, we smoothen the elastic-plastic transition by using the sigmoid function S (x) =1/ (1 + e*x) ,

a widely used activation function in NN studies [33]. Namely, Eq. (11) is modified as



5" -3uAe’ = f (57,0, )0, (&) +AZ") (12)

where the indicator function f is defined as f (5‘", ay) =S (k(&‘" -0, )) ; when £ is sufficiently
large, this indicator function gives a smooth transition between the elastic ( /' =0) and plastic

(f =1)response. To the first order of Az", we expand G}I,\IN (Enp + AE") ~ 0, (g_n" ) +HAE" , where

o
_[y) calculated by automatic differentiation in FEniCS. Plugging

H is the hardening modulus H = 3
g

this expansion into Eq. (12), we obtain the approximate equivalent plastic strain increment

~Dpr =P
& -, (2)

13
3u+H (13)

AZ" =~ f(5",0,)

While solving Ag® through Eq. (11) requires numerical iterations in a load increment, Eq. (13) is

an explicit solution of Ag” and thus eliminates the need for iterations. The above integration

procedure is implemented in FEniCS [26]. In Eq. (13), the yield stress o, (E P ) can be either a

prescribed function, denoted as O';ef , to generate the ground truth data or a NN, denoted as O'}I,\I N

to train the constitutive relations of plasticity. The NN representation of constitutive relations is
illustrated in Fig. 1, where the NN constitutive relation in the left module of Fig. 1a provides the

output of yield stresses based on the input of accumulated plastic strains.
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Fig. 1. lustration of the hybrid FEM-NN framework for learning constitutive relations based on
full-field data. (a) Summary of FEM-NN training iterations. Each iteration involves the
generation/update of the NN; solving a FEM problem for obtaining the displacement field of a
deformed sample using the NN-based plasticity relation under training; computing the cost
function and its gradient for backpropagation toward minimizing the discrepancy between the
FEM-NN simulation results with the ground truth. (b) Flowchart of the hybrid FEM-NN algorithm.
Backpropagation to update the NN yield stress is highlighted in red, as this step requires a key
operation of reverse mode algorithmic differentiation.




2.4 Training NNs from full-field data

The NN-based constitutive relation of plasticity in Section 2.3 can be trained using the
experimentally measurable full-field data, such as the non-uniform displacement of a tensile
sample containing geometrical heterogeneities, together with the sample-level force-displacement
data. In this work, we consider a thin-plate sample containing five randomly positioned circular
holes. The elastic and plastic properties of the material are homogeneous. We generate the ground
truth from a surrogate computational model instead of experimental measurements. That is, the

material in this surrogate model obeys the J2 plasticity with a specified yield stress function
O';ef (E p) , and the corresponding displacement field in the plate is solved by implementing the
integration procedure in section 2.3 in FEniCS. The obtained ground truth data include the in-plane
displacement ficld """ and the sample-level force f* versus displacement u™" for all the load
increments #n=1...N . During each training iteration (see Fig. 1a), we obtain the hybrid FEM-NN

solution of the plate using the UyN under training. The obtained data include the displacement

field unNN and the sample-level force f:m versus displacement u:m for all the load increments

n=1..N . Such training iterations aim to minimize the loss function

frcf
max H ] ( 14)

and /™ are the maximum displacement and

rcf 2

dv + 4,

n=l1

LZ{AJ‘

max

where || || represent the L2 vector norm; u;

force in the x-direction from the ground truth, respectively; A4, and A, are the weights used to

balance the relative contributions to the loss from discrepancies of the displacement field and

external load between the hybrid FEM-NN result and the ground truth.

The detailed FEM-NN flowchart is described in Fig. 1b. Note that in order to update the NN
weights and biases during each training iteration, the gradients of the loss with respect to these
weights and biases are needed. Since the loss function is indirectly related to the NN weights and
biases through the FEM solution, we employ reverse mode algorithmic differentiation to calculate
the gradients by the adjoint of an expansion through the chain rule. It is challenging to obtain the

automated adjoint for backpropagation. This operation is enabled by dolfin-adjoint [25, 27] and



highlighted in red in Fig. 1b. After the loss function and its gradient are evaluated, the limited-
memory BFGS algorithm [28] in the open-source Python library SciPy [34] is invoked to minimize
the loss and update the NN weights and biases. Hence, each training iteration (Fig. 1b) involves
an FEM simulation using the NN-based plasticity relation under training, evaluation of the loss
and its gradients, backpropagation, update of NN weights and biases. Such iterations are repeated

until the convergence tolerance for the loss function is met.

The dimension of the simulated thin plate in Fig. 2a is 100 cm % 50 cm X 1 cm, and the radii
of the circular holes are 5 cm. A 3D mesh consisting of 4,155 four-node tetrahedral C3D4 elements
is generated using an Abaqus script [30]. The Abaqus mesh is converted to an XDMF file by
meshio [35] to feed into FEniCS. The sample is subjected to three symmetrical boundary
conditions on the surfaces of x =0, y = 0 and z = 0. A constant velocity v = 0.01 cm/s is applied
on the right side of the sample (x = 100 cm) for 20 s, giving a total sample-level tensile strain of
0.2%. The FEM simulations are solved with the time step of 1.0 s. As noted earlier, we focus on
the quasi-static response of a rate-independent material, so that the loading time only represents a
loading sequence instead of a physical time. The elastic properties are taken as follows: Young’s
modulus £ = 200 GPa and Poisson’s ratio v = 0.3. The ground truth data are generated for a

nonlinear strain hardening material characterized by the yield stress function of

a;ef :100+50tanh(20005 p) MPa . When the corresponding NN-based yield stress G;W is

trained, we scale the NN input and output to improve the stability and efficiency of training,

a;“N(gp)/aO=|NN(K§p) (15)

where o, (= 100 MPa) is the initial guess of the yield stress and the dimensionless parameter k° (=

100) scales £" in the activation functions (see below).

The NN used in this work consists of one hidden layer with three neurons. The activation
functions in all the neurons are chosen to be the following exponential linear unit (ELU) function

[36].

ELU () = X ifx>0 6
(x)= exp(x)-1 ifx<0 (16)
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The output of this single hidden layer NN can be expressed as

3
NN(x) =Y w,ELU(w,x+b,)+b (17)
i=1
where w, and w,, represent the weights in the three neurons (i = 1...3), and b,, and b, represent
the corresponding biases. The initial weights follow a Gaussian distribution with mean 0 and

variance 1 and the initial biases are 0. The weights in Eq. (14) are taken as 4, =1 and 4, =1 such

that the displacement and force have equal importance in the loss function. The convergence
tolerance for L-BFGS optimization is 1x107°. In addition to the focused study of a nonlinear strain
hardening material, both the perfect plastic and linear strain hardening materials are studied to
demonstrate the general applicability of the hybrid FEM-NN approach for learning constitutive

relations of plasticity.

3. Results and discussion

In this section, we focus on the hybrid FEM-NN results for a nonlinear strain hardening

material characterized by the yield stress function O';ef =100+ 50 tanh (20005 P ) MPa . The FEM-

NN results are compared with the FEM solutions based on O';ef , the latter of which are referred to

the reference results representing the ground truth. Fig. 2a shows the finite element mesh of the
thin plate. During the training iterations of G;JN , both the loss and gradient magnitude are reduced
significantly after 100 iterations (Fig. 2b). Given the relatively small NN used, rapid convergence
is achieved by only 195 L-BFGS iterations. Using the trained NN, we calculate the FEM-NN-
predicted response of sample-level force versus displacement, which agrees closely with the
reference result (Fig. 2¢). The mean absolute percentage error (MAPE) is 0.083%. We also use the
trained NN to simulate the tensile stress-strain response by a single element that agrees closely
with the reference result (Fig. 2d). The MAPE is 0.375%. While the full-field data for NN training

are taken from the thin plate loaded to the maximum sample-level strain of 0.2%, the local strains

near the holes are substantially larger and thus enable the effective training of O'yNN through many

large stress-strain pairs. Hence, a close agreement between the predicted and reference results is

11



achieved for the material stress-strain response when the yield stress becomes saturated, i.e., at the
strain up to 0.5%. The consistently small MAPEs in both the predicted and reference results

indicate no significant overfitting in our FEM-NN results.
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Fig. 2. FEM-NN results for learning the constitutive relation of a nonlinear strain-hardened material. (a)
FEM setup of a thin plate containing randomly distributed holes. (b) Loss function and its gradient
magnitude as functions of the number of training iterations by the L-BFGS algorithm. (¢) Comparison
between the reference and FEM-NN-predicted results of sample-level force-displacement response. (d)
Comparison between the reference and FEM-NN-predicted results of tensile stress-strain response.

Although the displacement field is directly observable from experiments, its spatial derivatives
give the strain field that provides more physically transparent information on the deformation
distribution. In Fig. 3, we compare the FEM-NN-predicted and reference strain contour plots in
the plate at the maximum sample-level strain of 0.2%. All strain contours are plotted using the

open-source package ParaView [37]. We focus on the comparison of in-plane normal strain

components of ¢, and & . It is seen from Fig. 3a that a strain-localized band arises in between

the two neighboring holes close to the right end of the plate, giving about ten times higher &'

12



values than the sample-average tensile strain of 0.2%. Fig. 3b shows a similar strain localized band,

£ .
where 8;; is elevated but lower than &™

XX

.. f . .
. This is because 6‘;; mainly results from the Poisson’s

f

effect associated with £ and thus give values smaller than &, while & reflects a direct

response from the applied tensile load along the x-direction. More importantly, the FEM-NN-

predicted strain contour plots in Figs. 3¢ and 3d are highly consistent with the reference results in

Figs. 3a and 3b, respectively. In addition, the differences of £ —&*' and 5FyN —g

., are plotted

in Figs. 3e and 3f, respectively. Most areas have differences close to zero (green), while some
minor differences are observed in strain-localized bands. Note that the maximum strain differences

are one order of magnitude smaller than the corresponding reference strains, showing the accuracy

of FEM-NN predictions.
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Fig. 3. Comparison between the reference and FEM-NN-predicted strain fields. (a) Contour plot of the

f

reference strain &, along the horizontal direction of tensile loading. (b) Reference strain 8;;f along the

transverse direction. (c) Predicted strain €;N . (d) Predicted strain E;N . (e) Difference between (a) and (c)

8§N - 8;;f . () Difference between (b) and (d) E;N - E;;f )
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We test the trained NN using a thin plate not included in the training set. As shown in Fig. 4a,

this thin plate has the same size, but a different hole arrangement compared with the plate (Fig. 2a)

used for NN training. The predicted sample-level force-displacement curve in Fig. 4b closely

matches the reference result, with the MAPE of 0.055%. This test shows the high accuracy and
transferability of the trained NN from the hybrid FEM-NN approach.
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Fig. 4. FEM-NN results for a thin-plate geometry that is not included in the training set. (a) FEM mesh in
the plate with hole arrangement different from that in Fig. 2(a). (b) Comparison between the reference and
FEM-NN-predicted results of sample-level force-displacement response.

We also test the general applicability of the hybrid FEM-NN approach for learning different

constitutive relations of plasticity. To this end, we train the NN-based plasticity relations using the

ground truths given by other strain hardening models. With the same thin plate in Fig. 2a, the

ground truths are generated by a perfect plasticity model with G;ef =150 MPa and a linear

hardening model with G;ef (€")=100+50000e" MPa . After the training of respective G;W , the

FEM-NN predictions are validated by the simulations of tensile stress-strain response through a

single element, are shown in Fig. 5. The FEM-NN-predicted stress-strain curves are consistent

with the ground truths; the MAPEs are 0.029% and 0.176% for perfect plastic and linear strain



hardening materials, respectively. These tests demonstrate the high accuracy and general

applicability of learning the constitutive relations of plasticity by the hybrid FEM-NN approach.
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Fig. 5. Comparison between the reference and FEM-NN-predicted results of tensile stress-strain responses
for (a) a perfectly plastic material, and (b) a linearly strain-hardened material.

The present FEM-NN framework shows excellent capability and flexibility for learning the
constitutive relations of rate-independent J> plasticity. The hybrid FEM-NN training of
constitutive relations utilizes both the full-field and sample-level data, while the conventional
training only relies on the latter. We focus on learning the constitutive relations that depend on
accumulated plastic strain in this work, and are working to extend the FEM-NN framework for
learning more complex constitutive relations dependent on temperature, strain rate, composition,
etc. The FEM-NN learning of complex constitutive relations will be reported in a future paper. We
envision the hybrid FEM-NN approach can be combined with high throughput experiments to
accelerate the material design and selection [38], for example, when exploring the large
composition space of high-entropy alloys. This integrated approach may greatly accelerate the

screening of alloy compositions for further in-depth investigation.

4. Conclusion
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We have developed a hybrid FEM-NN framework for learning constitutive relations using the
full-field data such as a displacement field, in conjunction with the sample-level data such as a
force-displacement curve. The non-uniform displacement field in a deformed sample is used for
training NNs. It has the advantage of providing many different stress-strain paths at different
locations in the sample by a single test, thereby enabling the highly efficient training of NNs. Our
studies of the model materials characterized by rate-independent J2 plasticity demonstrate that the
FEM-NN framework can learn their constitutive relations accurately and efficiently. The open-
source FEM framework FEniCS is a general and powerful platform that can greatly facilitate the
future development of the FEM-NN approach. Furthermore, the NN is designed to be compatible
with the displacement-based FEM framework, such that the trained NN constitutive relations can
be transferred to other FEM programs without additional modification. Broadly, the integration of
the FEM-NN approach and full-field data enables the effective constitutive modeling of materials
through big data.
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