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Abstract: Collecting, storing, and providing access to Internet of Things (IoT) data are fundamental
tasks to many smart city projects. However, developing and integrating IoT systems is still a
significant barrier to entry. In this work, we share insights on the development of cloud data storage
and visualization tools for IoT smart city applications using flood warning as an example application.
The developed system incorporates scalable, autonomous, and inexpensive features that allow users
to monitor real-time environmental conditions, and to create threshold-based alert notifications.
Built in Amazon Web Services (AWS), the system leverages serverless technology for sensor data
backup, a relational database for data management, and a graphical user interface (GUI) for data
visualizations and alerts. A RESTful API allows for easy integration with web-based development
environments, such as Jupyter notebooks, for advanced data analysis. The system can ingest data
from LoRaWAN sensors deployed using The Things Network (TTN). A cost analysis can support
users’ planning and decision-making when deploying the system for different use cases. A proof-of-
concept demonstration of the system was built with river and weather sensors deployed in a flood
prone suburban watershed in the city of Charlottesville, Virginia.

Keywords: Internet of Things; smart cities; environmental monitoring; LoRaWAN; cloud computing;
AWS; data management; cost analysis

1. Introduction

Recent advances in information and communication technologies (ICT) are enabling
Internet of Things (IoT) smart city projects to collect and analyze vast amounts of data in
an effort to support more environmentally and economically sustainable communities [1,2].
For instance, smart stormwater projects have shown successful IoT-based infrastructure-
monitoring applications to address communities” operation and planning challenges [3-5].
As IoT devices become more pervasive, the collected data is expected to play an increasingly
central role to inform communities” decisions and, therefore, it is critical to develop and
maintain cyber infrastructure to collect, store, and visualize sensor data.

However, as a growing number of new ICT technologies become available, the task of
developing and integrating hardware and software solutions for IoT smart city projects
can demand extensive specialized knowledge in different ICT domains [6,7], which can be
challenging for IoT system designers. To reduce IoT systems’ design effort and to make IoT
solutions more accessible, The Things Industry (TTI) [8] created and sponsored The Things
Network (TTN) [9], a set of open-source tools to provide the basic software infrastructure
to deploy IoT sensors based on LoRaWAN [10,11], a low-power and wide-area network
(LPWAN) wireless communication protocol. This open-source project enables contributors
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around the globe to publicly share TTN compatible gateways that can connect LoRaWAN
sensors to a network server known as The Things Stack, which is maintained by TTI. The
use of TTN for smart city projects has been successfully demonstrated in the literature for
different applications (e.g., [3,12]), while it also benefits communities by creating an open
LoRaWAN communication infrastructure that can be leveraged by other IoT projects such
as air quality monitoring [13].

Although deploying an IoT system is greatly simplified by using TTN tools, their
goal is to provide only the network server infrastructure and leave the application server
to be developed by users. For instance, long-term data storage, graphical user interfaces
(e.g., plotting tools), and the capacity to send alarm notifications are functionalities not
supported by TTN’s network server. To achieve such functionalities, users need to develop
their own application server or adopt third-party service providers such as Ubidots [14]
and myDevices [15]. Another possible solution is to develop a custom server using a TTN
open-source networking solution and modify it to include application layer functionali-
ties; however, this solution implies an increased server workload and code maintenance
requirements when compared to only developing and hosting application layer functions.

While third-party application servers might provide great value to many applications,
users might still decide to develop their own application server solution to achieve more
control over their data, to create customized application solutions, or to reduce recurring
costs. However, developing an application server implies selecting, developing, and
integrating software modules to achieve the application’s goals, which can be challenging
due to the large diversity of architecture options and software solutions currently available
as commercial products and open-source modules. In this context, IoT application case
studies can offer users a valuable insight into developing and integrating software systems
to meet application goals. To help guide users on the path of creating integrated IoT smart
city applications, we introduce our use case of a flood warning system for a suburban
watershed in Virginia, USA. Our system uses a pressure sensor and two ultrasonic sensors
to monitor water levels at three locations on the stream network, and a weather station to
monitor precipitation rates. All our monitoring devices use LORAWAN to communicate
to TTN’s network server. We developed and integrated a scalable set of cloud-based
application tools to perform long-term data storage, data visualization, and automated
alarm notification functionality. We discuss the implementation challenges and insights for
our system, as well as a cost analysis using Amazon Web Services (AWS). To support users’
planning and decision-making, we included a cost analysis section where we evaluate how
costs currently evolve with time, number of sensors, and data storage requirements.

This paper’s main contributions can be summarized as: (1) our work provides practical
insights on the development of cloud-based tools for IoT applications, an emerging area
that is frequently overlooked in empirical IoT research; (2) we propose a general cloud
backend system architecture that can guide IoT developers to quickly prototype smart
city applications by using our demonstrated tools such as serverless data ingestion for
IoT historical backup data storage, on-demand MySQL database and Grafana servers, and
a RESTful API for programmatical data access; and (3) we perform a cost analysis for
the first few years of using AWS cloud services in an IoT application, highlighting the
cost-effectiveness of our proposed solution, and providing to IoT developers a cost estimate
of these cloud services under a varying number of sensors and data rate.

This work is organized as follows: in Section 2, we present an overview of related
works on IoT for smart city projects that share similarities with our solution; in Section 3,
we introduce our example application along with its objective and goals; in Section 4, we
present the use case, the adopted overall system architecture, and the design requirements;
in Section 5, we present our main results and discussion; finally, in Section 6, we present
our final conclusions.
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2. Related Work

To illustrate some of the possible IoT architecture solutions to smart city projects, we
selected two works, the first one targeting Radon gas concentration monitoring [16] and
the second one a smart stormwater system using LoRaWAN and TTN [3]. The Radon gas
concentration monitoring work was selected to represent a typical IoT project, where the
study made use of available components and tools to build its own remote sensing solution.
The smart stormwater system work was selected as an example of a similar application goal
using LoRaWAN and TTN, but one adopting alternative design components to our system.

2.1. Radon Gas Monitoring Application

To monitor the concentrations of Radon gas in indoor locations, the authors of [16]
presented an IoT system that collects and transmits data to a remote server where values
are stored. We summarize the IoT system architecture used for the Radon gas application
in Figure 1.

Remote Server

Radon Scout
gas sensor

MQTT
Broker

Node-RED
(MQTT Client)

Raspberry Pi Publishes Subscribes

(MQTT Client)

SR g,

Users

database

Figure 1. IoT system architecture diagram for the Radon gas monitoring application.

As sensing devices, the authors adopted a commercially available Radon Scout gas
sensor connected to a Raspberry Pi 3 device, used as a controller, and connected to the in-
ternet. The Raspberry Pi was programmed to read and transmit sensor data to their remote
server through a message queuing telemetry transport protocol (MQTT) [17] communi-
cation interface. The server receives sensor data through a MQTT broker that publishes
received messages to a subscribed MQTT client managed by a Node-RED [18] application
responsible for parsing and storing the data in a MySQL database [19]. Finally, a web server
interface was created to read the database and display a table of stored sensor readings
to users.

For our flood warning use case, we adopted a commercially available LoRaWAN gate-
way and sensors. While our LoORaWAN gateway required internet connectivity similarly
to the Raspberry Pi controller used in this related work [16], the LoRaWAN sensors can
be deployed hundreds of meters away from the gateway, which allowed us to reach our
desired deployment locations. We used TTN as our network server to register and manage
devices, reducing development time and enabling better scalability as new sensors only
need to be registered to our TTN application. For this related work [16], authors needed to
individually configure the MQTT clients in each one of their Raspberry Pi devices to pub-
lish sensor measurements to their server’s MQTT broker, as well as individually manage
any security key. Instead of using Node-RED to parse and ingest data as adopted in this
related work [16], we used a python script to manage the data ingestion and parsing system
that periodically receives data from our TTN application through a MQTT client. As our
data storage solution, we also adopted a MySQL database, as similarly presented in [16],
but we also decided to create a dedicated long-term cloud-based storage solution using
AWS S3 [20] as a backup to the MySQL database. For this long-term data storage backup,
we used AWS Lambda [21] service to create a serverless and independent data ingestion
solution to periodically request data from TTN storage integration and store it in AWS S3.



Smart Cities 2023, 6

1419

LoRaWAN Sensor Infrastructure

Instead of displaying sensor data through a website server, we created a dashboard on a
Grafana application [22] to plot relevant sensor information such as measurements and
battery voltage level.

Although the authors of this related work were targeting an indoor Radon gas mon-
itoring application, some of their system components could be adopted by other IoT
applications such as in collecting and displaying data from LoRaWAN sensors connected to
TTN. For instance, TTN offers a MQTT Broker service that can publish received LoRaWAN
messages to subscribed clients, making it possible to re-use the server infrastructure de-
scribed in [16] by updating the broker address, client credentials, parsing function, database
configuration, and sensor measurement variables.

2.2. Smart Stormwater System Application

For the stormwater monitoring system introduced in [3], the authors deployed a set
of sensors around the Illawarra-Shoalhaven region in Australia. Their sensors relied on
either the LoRaWAN or 4G cellular network to communicate, depending on each sensor’s
required data rate. Sensing devices included water-level sensors, tipping bucket rain gauges
sensors, pressure and humidity sensors, lagoon monitoring devices, and a culvert blockage
monitoring system. To receive data collected by the LoRaWAN based sensors, the authors
deployed a network of TTN gateways in the study region. This gateway infrastructure was
also seen by the authors as an investment to support other future applications including
education-related projects. We summarize the IoT system architecture used for the smart
stormwater system application in Figure 2.
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Figure 2. IoT system architecture diagram for the stormwater monitoring application.

To store and display the collected data, authors of [3] adopted the open-source solution
provided by the ThingsBoard [23], using the MQTT protocol to receive LoRaWAN sensor
data from TTN and store it in a PostgreSQL database. ThingsBoard also provides alerting
and graphical interface tools to generate custom dashboards to display sensor data in
real time and send automated alert messages. The authors did not specify whether the
server solution was hosted in a computer owned by them or a cloud solution, however,
ThingsBoard offers a platform as a service solution where they host their system in the cloud
with pricing currently ranging from USD 10/month (Maker) to USD 749/month (Business).

Despite offering data storage, API access, and visualization tools, Thingsboard is a
turnkey software solution that requires users to have an always-running server to ingest,
store, and visualize data. On the other hand, our solution leverages cloud services to break
down data ingestion from other on-demand uses, namely: (1) a serverless data ingestion
and storage cloud application using AWS Lambda [21] and AWS S3 [20]; (2) a virtual
machine instance with a MySQL database to provide responsive data access; and (3) a
second virtual machine hosting a Grafana server [22] to provide data visualization. Our
serverless data ingestion solution requires only a few lines of code to query sensor data from
TTN, parse, and store data as a csv file in AWS S3, thus reducing the complexity to manage
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bugs and update the system when compared to full servers such as ThingsBoard [23]. Using
dedicated virtual machines for a database and visualization allows for tailored resource
allocation based on the application needs, the flexibility to provide only the needed service,
and code isolation to facilitate upgrading, adding, or switching services (e.g., replacing
MySQL with PostgreSQL).

3. Example Application Motivation and Objectives

With the increase in weather variability and flooding [24], it is vital that communities
launch flood mitigation initiatives for the safety and quality of life of their residents. To
create a sensing and alert system, we need to collect real-time sensor data from various
locations around a city, and parse, store, provide responsive visualization, and transmit
alert messages. For preemptive flood management strategies, we also need to collect data
about existing infrastructure and land features to model stormwater flow and forecast
future flood conditions.

This example application’s main goal was to demonstrate cloud-based application
solutions to support the monitoring and alerting of flooding events. The basic features of
our application system include data collection, storage, visualization, and alert creation
as well as a RESTful API to provide data access to data-driven environmental forecasting
and physics-based stormwater flow simulation. Although this use case is focused on flood
warning, we describe each component and lessons learned in a general way, so it can be
easily translated to other smart city use cases.

4. Methodology
4.1. System Architecture Overview

Data flows from sensors to our cloud-based software solution as depicted in the system
architecture diagram in Figure 3. We built our cloud-based system using Amazon Web
Services (AWS) to take advantage of their latest resources and capabilities such as serverless
functions (AWS Lambda [21]), data storage (Amazon S3 [20]), API gateway interfaces
(Amazon API Gateway [25]), and computing instances (Amazon EC2 [26]).

LoRaWAN Sensor Infrastructure Cloud Application Tools Hosted in Amazon Web Services

Al

>
’E [ |’4:.\‘|

Sensors  Gateway

AWS Services:
5\\, Lambda Fun

S3 Bucket
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HTTPGET |
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3
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aws

Network Server — HTTP GET —
e B
[> MQTT Data ingestion Long-term

mETTvllﬂglsf data storage

& =
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retrieval

- Users Grafana MySQL Data
dashboards database ingestion
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Figure 3. Our system architecture diagram using Amazon Web Services and The Things Network.

Using AWS Lambda [21], sensor measurements are queried from our TTN application,
transformed, and uploaded as csv files to our long-term cloud data storage solution in an
AWS S3 bucket [20]. We adopted a MySQL database server to provide responsive data
access to our application. The MySQL database is hosted in an AWS EC2 instance [26]
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alongside a python script that ingests historical sensor data when the virtual machine starts
up, and another script that connects to our application’s TTN MQTT broker to receive and
ingest real time sensor data. The data is then queried for visualization, monitoring, and
alerts through a graphical user interface (GUI) tool, Grafana [22]. Both MySQL and Grafana
EC2 instances are only started under demand if users need fast access to structured data or a
monitoring dashboard, respectively. Sensor data can also be programmatically downloaded
using our RESTful AP], as, for instance, in scripts to perform data analysis tasks in Jupyter
notebooks [27], or to perform modeling tasks with Storm Water Management Model
(SWMM) software [28]. We also hosted a static website to document the API interface and
offer users direct access to data download using Swagger UI [29]. While not explicitly
shown, we assume simulation and modeling tasks will be performed by users in their own
servers that could either be hosted by EC2 instances in AWS, by other cloud providers, or
also hosted on their own computer machines.

4.2. Design Requirements

Our cloud-based system requires several different components to work in conjunction
to meet application requirements. Firstly, the deployed IoT sensors must successfully relay
messages to the TTN network server to deliver real time data. The data must then be
received, processed, and stored in our MySQL database and the S3 long-term data storage
for backup purposes. To make the system simpler to develop and manage, we adopted
a single cloud service provider to develop our application’s services and tools. In this
system’s case, it was hosted by provisioning services through Amazon Web Services (AWS).
Next, for this system to be sustainable and meet different users’ cost constraints, it must
operate at minimum cost and have efficient resource consumption. The system must also
be intuitive and straightforward to deploy, use, maintain, and modify.

4.3. System Components
4.3.1. Sensors, TTN, and Ingestion to Cloud Platform

As proof-of-concept, we deployed three water level monitoring sensors and one
weather station in a flood prone watershed in Charlottesville, VA. All four devices were
connected to The Things Network (TTN) through a LoRaWAN gateway installed in the
same neighborhood region as the devices. We utilized commercial sensors from Decent-
lab [30] to focus efforts on data gathering, storage, and analysis systems rather than on the
sensor’s hardware and software. Another motivation behind this decision was to make our
solution more general and easily translatable to other smart city projects based on sensor
hardware compatible with The Things Network (TTN). We have left sensor deployment
details out of the scope of this work, since our main goal is to advance the software backend
infrastructure of IoT systems.

The sensors communicated using LoRaWAN [10,11] with TTN-compatible gateways
that interfaced with TTN network server through an internet connection. The sensors were
connected to TTN to enable cost effective interfacing and management, and to utilize the
platform’s available single-day storage via TTN’s data storage integration service. To query
data from TTN and upload it to the Amazon Web Service (AWS) stack, we wrote a python
function to perform a HTTP GET request to retrieve data for a particular application. This
data querying python function runs as an Amazon Lambda service that is periodically
executed, set initially to run in one-hour intervals. To ingest real-time data to our MySQL
database, we used MQTT clients connected to our TTN applications” MQTT brokers. TTN
network server MQTT broker publishes new sensor data to our MQTT clients as soon as it
is available in their server, providing our application with timely access to information.

4.3.2. Cloud Platform and Used Services

We decided to develop our application using AWS tools, but the same application
architecture can be reproduced using equivalent services from other cloud providers. For
regions impacted by flooding, high availability of the computing backend is imperative
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due to the need for quick analysis of the incoming weather and real time water level data.
AWS offers high availability, which includes regional failovers in case a data center is
taken offline. Deploying and redeploying resources on AWS can also be quickly automated
using AWS CloudFormation [31], a tool used to provision specified resources (such as
Lambda, EC2, RDS, etc.) through a provided script. The code written for the backend of
the cloud-based system can be found at [32].

Amazon Lambda

AWS provides a serverless computing platform known as Amazon Lambda [21], which
allows users to run their custom functions on demand. The underlying infrastructure of
Lambda is maintained by AWS, which means the system developer must only worry about
choosing the correct runtime environment to deploy their code. Using Lambda, the sensors
are queried for uplink data at specified intervals. The uplink is then parsed, and the data is
transformed to only include information pertinent to the application. The sensors” uplink
data is uploaded to S3 for long-term storage and becomes available to be queried into
the MySQL database when needed. After the Lambda function finishes uploading the
transformed data, it automatically shuts off, allowing the user to pay only for the computing
time and memory resources used rather than provisioning a continuously running machine
(e.g., EC2). Lambda was chosen for our solution due to ease of scalability with future added
devices, monitoring, high availability, and resource efficiency. For instance, if a new TTN
application is added to the system, the existing Lambda function can be promptly updated
to query sensor data. Should multiple applications need to report data in overlapping
intervals, the same Lambda function can run in parallel of up to 1000 instances if needed.

The Lambda functions for this use case require modification from the default settings.
We used the AWS SDK Pandas Lambda Layer [33] to query from TTN, parse data, and to
store or read data from a S3 bucket. Python’s Pandas module is used to quickly transform
and manipulate data. The urllib3 module is used to send HTTP requests to The Things
Network’s storage integration and to retrieve sensor data. Other configurations for the
Lambda function include setting the allocated memory to 192 MB (determined by AWS
Compute Optimizer [34]), a timeout limit of 1 min, and being triggered to run once every
hour. The lambda function triggering period can be adjusted based on application needs,
where shorter periods translate to lower latency between data being available on TTN
and stored in the S3 bucket but also resulting in higher costs for the lambda function
computing service.

Another use we make of AWS Lambda is to return stored sensor data requested by our
RESTful API and to manage user authentication. When receiving a query from Amazon
Gateway API, a lambda function is initially executed to check an authorization token
provided in the API request and authorize or deny the API request. If authorization is
granted, a second lambda function reads, and parse data stored in the long-term data
storage solution in the S3 bucket to return the required data to the API gateway. This
lambda function to query data from S3 and return to the API gateway is configured to
allocate 512 MB of data as a compromise between cost and performance to serve the API
functionality and timeout limit of 1 min. The authorizer function uses the default settings
of 128 MB memory allocation and 3 s timeout due to the simplicity of our currently adopted
solution that only checks if the authorization key input matches a hardcoded string value.

Amazon S3 Data Storage

Amazon Simple Storage Solution (S3) is a cost-effective way to store data for extended
periods. Data collected by sensors are uploaded in S3 for long-term storage as a read-only
resource of the raw data feed. These readings can be used to repopulate the database in
case of a database failure or migration and can be performed using the python library
created for this system. AWS also maintains a python module (BOTO3 [35]) that allows
users to download a copy of the readings from S3 to a local machine. All readings in S3 are
currently stored as the AWS Standard tier for regular access for this application example.
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Another use for the 53 storage is hosting static websites. We used a S3 bucket to store
our RESTful API documentation using the Swagger Ul interface [29]. Our website is based
on the Swagger Ul demonstration provided in their github page, and adapted to read an
OpenAPI 3.0 description of our API service. The static website contains the API server
address, a description of the required header, all accepted parameters, and the possibility
to perform an API GET request trial with parameters provided by the user.

Amazon Elastic Cloud Compute

To host MySQL and Grafana, two Amazon Elastic Compute Cloud (Amazon EC2)
instances were provisioned. Amazon EC2 allows for a continuous computing platform on
the cloud, which allows access to the database and Grafana when needed. The developed
system uses t3.micro instances with 10 GB storage, which fits the needs of this example
application by minimizing costs while still maintaining a reliable performance for the
relatively low number of sensors currently in the system. A more capable instance could
be used to serve a larger number of users or for a use case requiring quicker response
times. For this study, MySQL and Grafana were hosted on two separate EC2 instances for
simpler management and increased flexibility, allowing, for example, the easy replacement
of visualization software or on-demand use of MySQL database to allow fast data access
to applications. It may also be worthwhile to adopt an AWS Relational Database Service
(RDS) [36] instead of an EC2 instance running MySQL as the system database solution and
then scale the RDS database based on the application’s requirements for maintainability
and access speed. This was considered, but not implemented in this study because RDS
comes at a higher cost. However, RDS has the advantage that it provides built-in scalability
as data volumes and users grows. The Section 5 includes a cost comparison between these
alternatives for hosting the database and a discussion of pros and cons of each alternative.

4.3.3. Relational Database Design and Implementation

As our relational database, we selected MySQL as a simple solution with wide com-
munity support. We deployed MySQL on the cloud through Bitnami [37], which provides
a pre-configured virtual machine image which is ready to be loaded to an Amazon EC2
instance. We created an entity relationship diagram (ERD) to normalize the sensor readings
as shown in Figure 4. The ERD is centered around the Measurements entity, which stores
the value of individual data points along with the time of data collection (Received_at).
The Devices entity stores the device’s unique identifier (Device_ID), the device’s model
(Device_model), the last received battery reading of the device (Last_battery), and the
last activity timestamp (Last_activity). Similarly, the Locations entity contains data on the
latitude, longitude, and altitude for each location that data is collected from, along with a
unique identifier for each location. For each value in the values table, the Variables entity
stores the data points’ unique display name and the unit of the variable. The Measurements
entity has a one-to-many relationship with the three other entities, meaning that each value
data point can only have one device, variable, and location, while the remaining entities
can have many values for each data point in their tables. This ERD was developed by
advancing an approach from previous related research [38]. This design of the database
allows for easy further advancement and change as additional devices and variables can be
more easily incorporated.

4.3.4. Graphical User Interface

This system allows users to visualize and monitor data through Grafana, an open-
source analytics platform for querying, visualizing, and alerting on data metrics. Grafana
was selected as the software solution to visualize incoming data due to its dynamic dash-
boards, built-in alerting capabilities, and its specialization in time series data.

Grafana was deployed on the cloud through Bitnami [37], which provides a system
image of a pre-configured Grafana stack on AWS. A connection was then made to the
MySQL database in Grafana to access the data for visualization. Dashboards of each
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monitoring station were created to display relevant information for users. In Figure 5 we
show an example of the dashboard for the water depth monitoring station. This dashboard
includes a graph of the water depth over time, statistics on the water depth values for
the set time range, a water level gauge of the current depth, a map of the sensor station
location, and a gauge of the sensor battery level. The water depth graph and gauge allow
users to view the current and past water levels in relation to a threshold of 0.4 m to signify
flooding. Grafana’s built-in alert system can send alert notifications if the incoming data
triggers a set alert rule. As an example, the water depth dashboard has alert rules set to
send a notification through the messaging application Slack [39] if the 0.4 m threshold is
met, although sending alerts to other systems or via email is also possible.
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Figure 4. Entity relationship diagram for database design.
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Figure 5. Grafana decision support dashboard of a water depth monitoring sensor.

4.3.5. RESTful API

Our RESTful API serves as a programmatic interface for users to quickly download
data from sensors. We created the API using the Amazon API Gateway service [25] and
lambda functions, both to manage API access and to read, parse, and return data from our
long-term data storage solution in AWS S3. To document our RESTful API and provide
easy access to sensor data, we created a static website using Swagger Ul and it is currently
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hosted using AWS S3 buckets. We also enabled CORS in our API Gateway service, and we
added a custom header with an authorization token for access control.

We described our API following the Open API 3.0 framework and stored it as a json file
loaded to a specification variable in the javascript code for our documentation website. To
download data using the API, the user will be required to input a valid authorization token
to be granted access. Although we are currently using a simple custom lambda function to
grant access, other more comprehensive user access management tools can be used in future
versions, such as Amazon Cognito [40]. Other available parameters to customize the sensor
data request are: “application”, which selects which TTN application to download data
from; “device_id” which selects devices using a unique identifier; and “last” or “start_date”
and “end_date” which allow the selection of periods of time to download data. Using the
“last” parameter, users can retrieve data collected by the sensors from the time of querying
to the day specified. Using the “start_date” parameter, users can specify the beginning
of the time range of the dataset to download. By default, if only one of “start_date” or
“end_date” parameters are provided, data from the single specified day will be returned.
Using the API, the user can request datasets for any of the available sensors. In Figure 6,
we illustrate a typical use of the API to request data from a pressure sensor by using the
Swagger graphical user interface. In Figure 7, we show a typical API call with parameters
and the response.

GET /download-sensor-data Downloads historical data from LoRa sensors. N

This GET request downloads stored sensor data filtered by the following parameters.

Parameters Try it out

Name Description

authorizationToken * reauired

string Authorization key token.

(header)

application

et ine TTN application to download data from.

(query)

device_id

integer Device identification number of the sensor to query data from.
(query)

last

string Filters most recent data within the given number of days (e.g,

(query) '4d' for the last 4 days).

start_date

string Request data starting on a specific day on the format YYYY-
(auery) MM-DD (e.g, '2022-12-1' for december first of year 2022).
end_date

string Request data ending on a specific day on the format YYYY-
(duery) MM-DD (e.g, '2022-12-2' for december second of year 2022).

Figure 6. Example of parameters for the sensor data download API, with the asterisk representing
the required authorization token field.
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Curl

curl -X "GET' \
'https://nh7610mswb.execute-api.us-east-1.amazonaws.com/test/download-sensor-data?application=dl

-H 'accept: application/json' \
-H "authorizationToken: @M7m504h5Hbh%z!Hlphf16' Ei

Request URL

https://nh7618mswb.execute-api.us-east-1.amazonaws.com/test/download-sensor-data?application=dl-
mbx&device_id=5450

Server response
Code Details
200

Response body
{

"columns": [
"battery_voltage_ displayName",
"battery_voltage unit",
"battery_voltage value”,
"device_id",
"distance_displayName”,
"distance_unit",
"distance_value",
"number_of_valid_samples_displayName",
"number_of_valid_samples_value",
"protocol_version",
"metadata_gateway_ids_gateway_id",
"metadata_gateway_ids_eui",
"metadata_time",
"metadata_timestamp”,
"metadata_rssi”,
"metadata_channel rssi”,
"metadata_snr",
"metadata_location_latitude”,
"metadata_location_longitude",
"metadata_location_altitude",
"metadata_location_source",
"metadata_received_at"

B¢  Download

Response headers
content-length: 41237
content-type: application/json

Figure 7. Response from API using example parameters.

5. Results and Discussion
5.1. Discussion of Alternative System Components and Potential System Enhancements
5.1.1. Cost Analysis of Cloud Services

The first two versions of the databases created for this application example were
hosted in a MySQL database using Amazon Aurora [41] and then Amazon RDS [36]. For
the application example needs, Aurora and RDS costs presented a constraint, which is the
reason we chose two EC2 instances to host MySQL and Grafana that meet user requirements
at a lower average cost. The current virtual machine cyber infrastructure costs between
USD 24 and USD 210/year, depending on how long the EC2 instances will be required
to be available. However, the database hosted this way may require maintenance such
as updating software, or services to fix bugs, along with providing no regional failover.
In the event that an AWS region experiences an outage, regional failover allows a copy
of the database hosted in a separate region to quickly take over operations. Since in our
use case we might not need Grafana and the MySQL database to be always available, the
EC2 instances can be shut down and only started under demand, for example when users
expect an incoming storm. Turning off the EC2 instances reduces the recurring costs to
only the instance’s storage units, which costs around USD 12/year for each instance using
currently 10 GB of memory space or around USD 24/year for both EC2 instances. Should
the application require seamless regional failover and high database performance, one
alternative solution is the provision of two redundant instances running Amazon RDS for
MySQL with multi-availability zone support. This configuration’s estimated costs are USD
623.28 /year, considering on-demand instance base costs and 10 GB of SSD storage. Memory
storage calculations and their associated costs with S3 and the database configurations
were based on the sensors used in the proof-of-concept system (Table 1).
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Table 1. Adopted Sensors for the Proof-of-Concept IoT System.
Device Type Model Measured Variables Readings/Month
Atmospheric DL-ATM-41 18 4800
Pressure DL-PR-26 3 4800
Ultrasonic (unit 1) DL-MBX 3 4800
Ultrasonic (unit 2) DL-MBX 3 4800

Our calculations for Tables 2—7 were carried out based on the current sensor device
configuration of the system (Table 1), pricing rates at the development time (January
2023), and a projected 5-year use. The default measurement frequency for the system is
1 measurement every 10 min, averaging 4380 readings per month. To account for temporary
measurement frequency increases during storm events, calculations instead used a figure of
4800 readings per month. One csv file is uploaded every hour to S3 for each registered TTN
application, with each write request to S3 costing USD 0.000005. Sensor devices currently
in use are one eleven parameter weather station (DL-ATM41), one pressure/liquid level
and temperature sensor (DL-PR26), and two ultrasonic distance/level sensors (DL-MBX),
with one TTN application for each sensor model type, resulting in a total of three TTN
applications. The average payload size for these four sensors is 343 bytes after parsing and
transforming, and the csv file header average size is 822 bytes. Since the weather station
contains more measurements per reading than the other two sensor types, its sampling
frequency has the most significant impact in the used data storage space. It is important to
note that, when data is stored in the MySQL database, the weather station requires almost
five times as much storage capacity as either of the other two sensor devices. Since the
current system is based on these four sensor devices, AWS storage configurations may need
to be readjusted based on the chosen sensors for the application’s system.

Table 2. MySQL database storage (MB) requirements over time per device type (4800 readings/

month).
Device 1 Month 1 Year 5 Years
Atmospheric 7.13 85.58 427.92
Pressure 1.50 18.02 90.098
Ultrasonic 1.50 18.02 90.09
Current Config (CC) 11.63 139.64 698.19
Average (CC) 291 34.91 174.54

Table 3. S3 storage costs calculations for generic sensor devices in the first year (343 Bytes/sensor
payload, 828 Bytes/csv header, 4800 sensor payloads/month, and 3 TTN applications).

Number of Devices Q1 Q2 Q3 Q4 Total
1 Storage (GB) 0.006 0.012 0.018 0.025 -
1 Cost (USD) 0.03 0.03 0.03 0.03 0.12
4 Storage (GB) 0.023 0.046 0.070 0.093 -
Cost (USD) 0.03 0.03 0.04 0.04 0.14
50 Storage (GB) 0.23 047 0.70 0.93 -
Cost (USD) 0.04 0.06 0.07 0.09 0.26
100 Storage (GB) 0.46 0.47 0.70 0.93 -
Cost (USD) 0.05 0.08 0.11 0.14 0.38

1 Only one TTN application was considered for this case.



Smart Cities 2023, 6

1428

Table 4. MySQL database storage (GB) requirements over time based on number of generic IoT
devices (1 kB/reading and 4800 readings/month).

Number of Devices 1 Month 1 Year 5 Years
1 0.01 0.05 0.27
5 0.02 0.27 1.37
25 0.11 1.37 6.87
50 0.23 2.75 13.73
100 0.46 5.49 27.47

Table 5. Database cost on single EC2 instance (t3.micro) assuming a single instance, storage require-
ments for 5 years, and generic IoT devices (1 kB/reading and 4800 readings/month).

Number of Devices Storage Requirement (GB) Cost/Month (USD) Cost/Year (USD)
1 5 8.09 97.10
4 5 8.09 97.10
25 10 8.59 103.10
50 15 9.09 109.10
100 30 10.59 127.10
Every 5 new devices +2 +0.20 +2.40

Table 6. Database cost on 2 separate RDS EC2 instance (db.t3.micro) with multi-availability zone
deployment and assuming generic IoT devices (1 kB/reading and 4800 readings/month).

Number of Devices Storage Requirement (GB) Cost/Month (USD) Cost/Year (USD)
1 5 51.94 623.28
4 5 51.94 623.28
25 10 54.24 650.88
50 15 56.54 678.48
100 30 63.44 761.28
Every 5 devices +2 +0.40 +2.40

Table 7. Database cost on Aurora (t3.small) ! and assuming generic IoT devices (1 kB/reading and
4800 readings/month).

Number of Devices Storage Requirement (GB) Cost/Month (USD) Cost/Year (USD)
1 5 61.39 736.68
4 5 61.39 736.68
25 10 62.39 748.68
50 15 64.44 773.28
100 30 67.44 809.28
Every 5 devices +2 +0.30 +3.60

1 For 50 devices and more, we estimated higher IOPS to handle the average measurement writing load. The cost
also includes running 2 EC2 instances by default for regional failover.

The overall yearly system costs can also be lowered by configuring S3 and EC2
instance provisioning and by using built-in AWS cost optimization tools. For S3, if the
backup data will not be frequently accessed, it is recommended to change the access tiers
of the data. For this application example, the data is stored under Standard tier, which
costs USD 0.023 per GB. In future iterations of the system, it is recommended to use
Intelligent-Tiering: Standard-Infrequent Access (USD 0.0125 per GB), One Zone-Infrequent
Access (USD 0.01 per GB), or even Glacier tiers (USD 0.004 per GB). For the Infrequently
Accessed and Glacier tiers, there is a retrieval fee for every gigabyte retrieved. Infrequently
Accessed will allow for millisecond latency to the user when requesting data, whereas
with Glacier it can take minutes or hours. Deleting data from non-standard S3 tiers before
their minimum storage durations will charge the user for the respective minimum storage
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durations. Infrequently Accessed and Glacier tiers also have a minimum capacity charge
per object, so it is recommended to combine individual readings into larger datasets (i.e.,
monthly readings per sensor) to store as one file in these tiers. To reduce costs of EC2
instance provisioning (including for RDS and Aurora), AWS allows for reserving instances
in 1 and 3 year increments instead of using on-demand instances, bringing costs down by
up to 38%. The costs calculated in this paper use the current configuration of the system
which uses on-demand EC2 instances and consider they will remain always on.

As shown in Table 2, our current configuration of four sensors reporting on aver-
age between six and seven samples per hour (4800 samples/month) results in a MySQL
database of less than 140 MB of data at the end of the first year of operation. In Table 3,
we show that storing this amount of data in AWS S3 service would cost USD 0.14 for the
first year and even scaling to 100 sensors with the same average data rate would result in
USD 0.38 storage costs. This indicates that many small to medium scale applications could
benefit from this data storage service to backup sensor data at low costs.

In Table 4, we estimate the size of a MySQL database for the first five years, assuming
generic sensor samples of 1 kB size being uploaded at the rate of 4800 samples/month
as we adopted in our example application. The estimated MySQL database size is then
used to inform the storage requirement of the virtual machines hosting the respective
MySQL databases as shown in Table 5. Our system with 4 sensors would cost about USD
97.10/year with each one GB increase in storage space resulting in an additional cost of
USD 1.20/year. This analysis shows that the uptime of EC2 servers has the greatest impact
on the overall system cost and turning them off while they are not required can result in
substantial savings. To reduce costs even further, MySQL server disk images can be saved
in the S3 data storage service, eliminating EC2 server costs while they are shut down for
long periods.

As a brief exploration of the alternative robust database services offered by AWS,
we assume, in Table 6, two Amazon RDS EC2 instances with multi-availability zone
deployment, and, in Table 7, the Amazon Aurora managed database on a more powerful
EC2 instance. Both solutions result in total costs over USD 600/ year, representing six times
the cost of running a database in a single EC2 MySQL server. Therefore, we recommend
using our proposed EC2 MySQL server solution when a failover system is not critical to
the application due to the substantial cost savings.

In Figure 8, we estimate how the cost of S3 data storage varies with sampling rate,
operation total duration, number of sensors, and sampling rate. For these calculations we
used a simplified estimation model considering only a fee of USD 0.023 per GB stored, and
USD 0.000005 fee of per write request. As in the tables previously introduced, we assume
up to three TTN applications and one data request and ingestion operation per hour.

With the S3 storage costs curves depicted in Figure 8, IoT application developers can
estimate how the number of sensors and data rate parameters influence the total S3 storage
costs, as well as how these costs accumulate with time. For instance, in Figure 8d, we can
verify that the cost of S3 data storage of an application with 50 sensors for the first ten years
is comparable to an application with 200 sensors for the first five years.
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Figure 8. S3 storage costs with varying parameters. Plots (a,c) evaluate the total cost of S3 data
storage at the end of 5 years. Plot (b,d) assume devices with sampling rate of 4800 samples per month.

5.1.2. Discussion about the RESTful API Limitations and Data Access

We identified some limitations when testing the sensor data download application
programming interface (API). Through an endpoint provided by the Amazon API Gateway,
a user request is passed to the Lambda function to retrieve datasets from the S3 storage,
which needs to be parsed before being returned to the user. The first limitation of the
solution adopted in this example application is the maximum 30 s timeout on API Gateway
requests when large datasets are requested. Even after the retrieval code was optimized to
run faster, there was a second limitation through Lambda, which is a payload limit size of
6 MB. For large datasets (e.g., 1 month of data from the weather sensor), the Lambda is not
able to send to the user their requested dataset. Therefore, we recommend only using the
RESTful API to download data for a few days at each GET request. An alternative and faster
solution to download a large amount of data is using the AWS provided BOTO3 python
library [35] and downloading the raw csv files directly. We recommend downloading
the raw csv files when data is needed in order of a few months of sensor data. Another
available alternative solution to perform more responsive data exchange in larger sizes is to
query data directly from the MySQL database running in the EC2 instance. We recommend
using the MySQL database when data in order of a few weeks is needed for applications
such as dynamic websites requiring fast responses or time sensitive simulations.

5.1.3. Security Considerations

Cloud service providers such as AWS acknowledge that security is a major concern
for users and provide management tools to support the creation of secure applications.
For instance, when deploying a cloud-based system, it is recommended to create an AWS
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organization with trusted users to manage AWS identity and access management (IAM)
roles and policies. Although, in hindsight, we agree that creating an AWS organization
from the beginning would be best, our research team initially used separate AWS accounts
to create and manage Lambda, S3, and EC2 instances based on who was working in each
part of the system, resulting in a poor managing practice. Therefore, we recommend access
privileges to AWS services to be tailored to the developers and systems administrators that
oversee each subsystem.

We utilized a secure shell (SSH) with a key pair generated by AWS to access the
EC2 instances, using SSH port forwarding to access the Grafana user interface. Although
this approach limits the number of EC2 instance ports accessible through the web, it also
results in a worse user experience due to the increased number of required steps to access
the Grafana dashboards. For future versions of the system, we recommend creating a
user access webpage using AWS Cognito service and reverse proxy to serve the Grafana
application, without having the need to use SSH tunnels and still avoiding directly exposing
ports of the EC2 instance to the web.

5.1.4. Alternatives for Graphical User Interface

Providing users with easily understandable information in a clear and efficient manner
is paramount when working with large amounts of time series data. In this application
example, three data visualization platforms were compared in order to find the best tool to
effectively communicate information, namely, Grafana, AWS QuickSight [42], and AWS
SageMaker [43]. QuickSight was initially determined as the platform that best met cost,
visualization, analysis, and alerting capabilities requirements. However, after creating a
QuickSight account and working with the platform, we found that it does not support
embedding visualizations in websites without assigning each user with permissions to
view. We then determined that QuickSight was not a suitable tool as it did not meet
some of our envisioned uses for the application. After conducting more research on data
visualization platforms, we decided that Grafana would be the best tool for this application
due to its ability to easily share and embed visualizations. Grafana allows for the creation
of snapshots of dashboards which can then be used to share interactive dashboards publicly
through snapshot links. Additionally, Grafana is designed for time series data and allows
for alerts to be sent out through many alert notifiers such as text message, email, and Slack.

5.1.5. Opportunities for Forecasting and Advanced Analytics

The long-term data gathered by this monitoring system can support the generation of
accurate forecasting real time models in the areas of interest. Developing such models with
longer observation periods would better assess seasonality effects and, therefore, could
reduce the uncertainty arising from precipitation effects, creating more accurate forecasts.
Users can feed sensor data from our RESTful API to simulate the generated models and
provide real time forecasts on demand. Another potential study that could benefit the
creation of forecasting models would be an evaluation of the optimized sampling intervals
for each location, as the wide variation of water depth between collection intervals can hide
patterns and result in less accurate statistical analysis.

5.2. Discussion of the System Performance

To analyze the system performance, we can break down the proposed system to a
few main data paths, namely: (1) serverless data ingestion, receiving data from TTN, and
saving to the 53 bucket; (2) MySQL server startup and historical data ingestion from the 53
bucket; (3) MySQL live data ingestion through MQTT; (4) Grafana data query from MySQL;
and (5) RESTful API data query.

The serverless data ingestion operates independently from the other system compo-
nents and its latency is dominated by the lambda function execution time, which takes up
to 4.8 s. The MySQL server startup includes the EC2 instance boot up, queries to historical
data from the S3 bucket, and most recent data from TTN storage integration, leading to
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a startup latency of up to 10 min in the current version of the system. This startup time
can be improved, but we assume that the MySQL server can typically be turned on hours
before an event of interest (in our example application, triggered by a storm forecast). For
the live data ingestion, data is received from TTN through MQTT and a python script
ingests data to the database within milliseconds. More in depth study is still required to
analyze the impact of high sensor data rates, but EC2 instance computational power can be
upgraded to avoid possible bottlenecks. For the Grafana query from the MySQL database,
the co-location of EC2 servers in the same availability zone results in overall good perfor-
mance. Again, more in depth study is required to analyze performance degradation when
scaling the number of users logged to the Grafana server. Finally, as previously discussed
in Section 5.1.2, the RESTful API has some significant limitations, and its use should be
restricted to accessing small batches of data. RESTful API latency can be improved by
optimizing the S3 querying lambda function and creating larger S3 objects aggregating a
larger number of measurements.

5.3. Broader Impacts of This Study

In this work, we introduced a cloud-based data storage and visualization tool for
smart city IoT projects that can be leveraged by researchers in academia and industry to
quickly prototype applications, allowing them to promptly evaluate the impact of their
solutions in the real world. The low cost and maintenance requirements of cloud solu-
tions can enable a higher range of experimentation and collaboration between smart city
projects, combining IoT data accessibility with computational resources for modeling and
simulation. Furthermore, lowering the barrier-to-entry of cloud systems can foster the de-
velopment of new smart city solutions, supporting more environmentally and economically
sustainable communities.

6. Conclusions

While data collected by IoT smart city applications are a central asset in supporting
management and planning decisions for many communities, designing and deploying IoT
solutions is still challenging due to system integration complexity, reliability limitations,
and cost. We presented a cloud data storage and visualization system for smart cities,
leveraging reliable existing technology to integrate a complete IoT monitoring solution
hosted in AWS and costing under USD 26/year for long-term data storage and USD
0.0204 /hour of use for MySQL database and Grafana servers. By using this cloud-based
solution together with TTN infrastructure and commercial LoORaWAN sensors, users can
collect, store, and visualize datasets to address their needs and integrate their own services.
We demonstrated the use of the system for a flood warning system application example with
river and weather LoORaWAN sensors. The cloud-based system design uses serverless data
ingestion to provide a simple and cost-effective data storage solution that is independent
of other services such as data visualization. An on-demand database and visualization
servers offer flexibility to adapt to application needs while saving costs and simplifying
maintenance operations. Furthermore, we explored the different AWS tiers and their
respective reliability/cost tradeoff so users can make informed decisions when tailoring
our system to their own application. As opposed to focusing mainly on the example
application, as commonly seen in the literature, we highlight common tasks that are
required by an IoT project and share our insights in leveraging modern cloud services to
simplify IoT backend system design and optimize costs.

As a future research avenue, we intend to explore the use of new serverless cloud
backend architectures in smart city IoT applications and investigate practical tradeoffs to
server solutions. We intend to analyze in particular the on-demand allocation of compu-
tational resources as we scale the number of sensors, total sensor data rate, and number
of clients connecting to user interfaces in cloud IoT backend systems. We also intend to
explore the integration of modeling and simulation tools with IoT data acquisition systems
while efficiently allocating computational resources.
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