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Abstract

Conformer generation, the assignment of realistic 3D coordinates to a small molecule,

is fundamental to structure based drug design. Conformational ensembles are required

for rigid-body matching algorithms, such as shape-based or pharmacophore approaches,

and even methods that treat the ligand flexibly, such as docking, are dependent on the

quality of the provided conformations due to not sampling all degrees of freedom (e.g.

only sampling torsions). Here we empirically elucidate some general principles about
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the size, diversity and quality of conformational ensembles needed to get the best per-

formance in common structure-based drug discovery tasks. In many cases our findings

may parallel “common knowledge” well-known to practitioners of the field. Nonethe-

less, we feel it is valuable to quantify these conformational e↵ects while reproducing

and expanding upon previous studies. Specifically, we investigate the performance of

a state-of-the-art generative deep learning approach versus a more classical geome-

try based approach, the e↵ect of energy minimization as a post-processing step, the

e↵ect of ensemble size (maximum number of conformers), and construction (filtering

by RMSD for diversity) and how these choices influence the ability to recapitulate

bioactive conformations and perform pharmacophore screening and molecular docking.

Introduction

Generating a three-dimensional conformation of a molecule from its topological representa-

tion (e.g., a SMILES string) is a fundamental first step of most structure-based approaches to

drug discovery.1,2 Tasks such as 3D pharmacophore search,3–5 molecular docking,6–9 and 3D

QSAR10 all rely on the generation of a biochemically meaningful conformation. Traditionally,

conformer generation algorithms have adopted either a systematic or stochastic approach.

Systematic approaches attempt to enumerate all reasonable values for rotatable bonds, and

thus often have di�culty scaling. Stochastic approaches use random sampling to make the

search process more scalable. Distance geometry11,12 uses bond length, angle and other, pos-

sibly knowledge-based,13 constraints to constrain the stochastic search space. More recently,

machine learning has been used to either generate conformations directly14–16 or otherwise

assist in the generation process (e.g., torsional sampling).17–25 Although there are multiple

ways to evaluate the quality of a conformer generator,1 most relevant for structure-based

drug discovery is the ability to produce a bioactive conformation. That is, a conformation

close to the conformation found in a protein-ligand complex should be generated, even if it

is not the lowest energy conformation. Both free26 and commercial27 conformer generators
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were evaluated for this task and, provided that a su�ciently large ensemble is generated,

most approaches succeed at identifying a low RMSD (< 2Å) conformation. In particular,

the open source RDKit, which uses a stochastic distance geometry based approach com-

bined with experimental torsional-angle and ring geometry preferences (ETKDG),13 consis-

tently performs as well as or better than other approaches such as Balloon, Confab, Frog2,

Multiconf-DOCK, CREST, ConfGen, OMEGA, MOE and others (see Friedrich et al. 26 ,

Friedrich et al. 27 , and Folmsbee et al. 28), hence we limit our evaluation to RDKit as a rep-

resentative of a conventional conformer generator. We note the recently described Auto3D29

uses RDKit conformers as a starting point for optimizing with a modified version of the

ANI-2x deep learning molecular potential,30 but this does not result in better performance

than RDKit in the bioactive conformation identification task (see Figure S1).

The latest machine learning models have not been evaluated for their ability to generate

bioactive conformations. Instead, they are mostly trained and evaluated on the GEOM31

dataset, which contains 37 million conformers of more than 450,000 molecules with the goal

of accurately representing, at the level of semi-empirical density functional theory,32 the

vacuum conformer-rotamer ensembles of these molecules using CREST.33 Deep generative

models significantly outperform RDKit at this particular task, but an extended sampling and

clustering approach using RDKit achieves highly competitive performance.34 It is not clear

that it is a fair comparison to compare methods that utilize di↵erent amounts of sampling,35

so here we evaluate RDKit and a deep generative model using identical sampling and ensem-

ble formation criteria. As the Direct Molecular Conformation Generation (DMCG)14 was

found to perform best at the task of reconstituting the ensembles of the GEOM-Drugs subset

of GEOM, we evaluate it here at the task of bioactive conformation recovery. DMCG is an

end-to-end generative model with a variational encoder/decoder architecture that learns all

network parameters from the training data distribution, GEOM-Drugs.31 However, our main

goal is not to extend previous evaluations26,27,34 but to explore the impact of various choices

made in the conformer generation process, such as the size of the ensemble, the criteria for
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including conformers in the ensemble, and the use (or not) of energy minimization, has on

the ultimate endpoint of the common structure-based tasks of pharmacophore search and

molecular docking.

Datasets
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Figure 1: Overall workflow for conformer ensemble generation and evaluation in structure-based
drug discovery tasks.

Methods

The overall workflow of our evaluation is shown in Figure 1. We evaluate a number of options

for generating conformational ensembles from common datasets and evaluate them in two

common structure-based tasks: pharmacophore search and molecular docking.

Datasets

In order to evaluate the ability of a conformer generator to produce a bioactive conformation,

we use two datasets: Platinum 201727 and the refined subset of PDBBind 2020.36 The

PDBBind refined set curates high quality protein-ligand structures from the Protein Data

Bank with known binding a�nities. Of the 5316 ligand structures in this set, 5313 could

be processed by RDKit and are considered here (the remaining three all had a molecular
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Figure 2: Histogram of rotatable bonds within our datasets.

weight of more than 900 Da). The Platinum dataset was designed for conformer generation

evaluations and, in addition to considering the overall quality of a structure, evaluates the

quality of the fit of a ligand structure to the electron density map, ensuring that the included

conformations are accurate. It also imposes more stringent filtering, such as not considering

molecules with more than 16 rotatable bonds or fewer than one (see Figure 2). While the

Platinum dataset provides a high-quality ground truth, the PDBbind dataset contains more

challenging (i.e., flexible) ligands.

For assessing pharmacophore virtual screening performance, we use the Database of Use-

ful Decoys: Enhanced (DUDE),37 which contains 102 protein targets each with their own

set of experimentally confirmed actives and (possibly putative) decoys. We note that while

there are significant issues in using DUDE for training and evaluating machine learning

approaches38,39 due to inherent biases in the dataset construction that can result in mislead-

ing evaluations of generalization performance, the structure-based pharmacophore search we

evaluate does not have these drawbacks as it is not fitting to the data. We note that the
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use of decoy molecules that are not experimentally validated in DUDE may result in false

negatives, but this is not material for evaluating trends in virtual screening performance,

which is our goal here. We also note that the actives in DUDE are experimentally vali-

dated against their target, which is essential when evaluating target-focused approaches and

strongly preferable to using benchmarks, such as LIT-PCBA,40 where actives have uncertain

mechanisms of action due to being identified in phenotypic screens.

For assessing molecular docking performance, we use the refined set of PDBBind 2020 for

re-docking evaluations and for cross-docking the dataset of Wierbowski et al. 41 . Re-docking

evaluates docking a ligand to its cognate receptor while cross-docking docks a ligand to a

similar, but not cognate, receptor. As the number of protein-ligand pairs in a cross-docking

task grows combinatorially and we do not want to disproportionately weight targets with

more structures, we randomly downsample Wierbowski et al. 41 to have at most 100 protein-

ligand pairs for each of its 92 targets (63% of the targets require downsampling). Docking

success is measured by calculating the root mean squared deviation (RMSD) between the

top ranked docked pose and the crystal pose. In the case of cross-docking, the reference

pose is determined by aligning the protein structure of the cognate receptor to the target

receptor.

Conformer Ensemble Generation

We generate RDKit conformers using the ETKDG version 312,13 method of RDKit using

default values and version 2022.03.1. This method combines distance geometry11 sampling

with knowledge based potentials to increase the e�ciency of the algorithm without loss of

accuracy (see Friedrich et al. 26 and Figure S2). To generate DMCG14 conformers we use

the pre-trained model Large Drugs/checkpoint 94.pt with the recommended settings for

drug-like molecules. We strip the input SMILES strings of stereochemistry information,

as this information is often missing in virtual screening datasets and we want to evaluate

the ability of conformer generators to sample appropriate geometries (Figure S3 shows the
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relatively small contribution of stereochemistry in our evaluations). For both generators we

evaluate further refining generated conformations using the UFF molecular force field42 as

implemented by RDKit and default convergence criteria.

Consistent with previous evaluations,26,27 we generate ensembles with a maximum of

250 conformers. We consider di↵erent methods for sub-setting the full ensemble, including

unbiased sampling, energy ranking, and energy ranking with RMSD filtering.

Pharmacophore Search

Pharmit43 is used to perform pharmacophore search on the DUDE benchmark. Search

databases are built from the relevant conformational ensembles of the active and decoy com-

pounds of each DUDE target. Due to the large number of conformers required, only RDKit

conformer generation was evaluated for this task. The provided reference crystal structure is

used to elucidate all possible interacting features (hydrogen bonds, hydrophobic interactions,

charge interactions, and aromatic interactions) between the ligand and receptor. Interactions

are identified using the built-in heuristics of Pharmit. From this set of interactions, all pos-

sible pharmacophores with at least three features are enumerated. As our goal is to evaluate

the e↵ect of di↵erent conformer ensembles on virtual screening and not elucidating the best

single pharmacophore query, we screen all the enumerated queries. We set a tolerance radius

of 1.0Å and no other constraints (e.g. direction) on each feature. Since Pharmit uses the

sub-linear time Pharmer44 algorithm, despite the combinatorial number of queries and many

thousands of compounds, this can be done e�ciently. We emphasize that this algorithm finds

matches between the specified query and rigid conformers and so the quality of the ensemble

is essential. As only matching, not ranking, is performed, classification metrics are the most

appropriate choice to evaluate virtual screening performance in this context (i.e., without a

ranking it is not possible to calculate a meaningful AUC of a ROC or precision-recall curve).

We use the F1 score, the harmonic mean of the precision and recall, and report the best

F1 across all queries. Unlike an enrichment factor, the F1 score is a normalized quantity
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(ranges from zero to one) and so can be sensibly compared across di↵erent screens, and it

encapsulates the goal of virtual screening - to maximum the number of true positives (recall)

while minimizing the number of false positives (higher precision).

Molecular Docking

Gnina7 is used to perform molecular docking. Gnina is a fork of AutoDock Vina45 that uses

a convolutional neural network protein-ligand scoring function46 to select and ranking poses.

Independent evaluations47,48 of Gnina have found it to have comparable performance to the

commercial Glide software49 while outperforming other open source docking programs such

as smina.50 Poses are sampled using a Monte Carlo Metropolis algorithm that perturbs the

rigid body degrees of freedom (translation and rotation) and torsional degrees of freedom.

The output docked poses therefore depend on the input conformation to determine bond

lengths and angles. However, internal torsions are completely randomized at the start of

each Monte Carlo chain, so the result does not depend on the input torsions.

To assess the impact of the input conformation on docking results, we consider single

conformer and five conformer ensembles (larger ensembles were not considered due to the

computational overhead of docking).

Results

Retrieval of Bioactive Conformers

To compare generated conformers to the experimental crystal structure we use obrms from

the Open Babel toolkit,51 which properly handles internal symmetries by reporting the

lowest possible root mean squared deviation (RMSD) of any valid atom matching. In all

cases, the minimized RMSD (-m option) is reported (i.e., the structures are optimally aligned

before calculating the RMSD). For a variety of ensemble sizes (number of samples of the

specified method) we evaluate the fraction of the dataset where a conformer exists within
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Figure 3: Fraction of the Platinum (left) and PDBbind2020 Refined (right) data sets where a
conformer within a specified threshold (x-axis) of the experimental structure is retrieved for both
RDKit (top) and DMCG (bottom) for various sized ensembles. Results for poses before (dashed
line) and after (solid line) UFF minimization are shown.
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Figure 4: Fraction of the Platinum (left) and PDBbind2020 Refined (right) data sets where a
conformer within 2.0Å (top) or 1.0Å (bottom) RMSD of the experimental structure is retrieved for
both RDKit and DMCG for various sized ensembles. Results for poses before (hashed bars) and
after (solid bars) UFF minimization are shown.
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Figure 5: Comparison of RDKit ETKDGv3 (left) and DMCG (right) on the Platinum 2017 dataset
when evaluated on di↵erent ensemble sizes where the ensemble is constructed by selecting the N
lowest energy minimized conformers are selected from an ensemble of 250. Results for the PDBbind
Refined dataset are shown in Figure S6 and exhibit a similar trend.

the ensemble for a specified RMSD threshold. That is, we consider the best possible RMSD

across the ensemble. Results for a variable threshold are shown in Figure 3 with more

ensemble sizes shown for two fixed thresholds, 1.0Å and 2.0Å in Figure 4. For reference,

example structures at di↵erent RMSD values are shown in Figure S20. In general, we find

that RDKit consistently matches or outperforms DMCG at conformer retrieval at every

RMSD threshold (a more direct visual comparison is found in Figure S4). This advantage

is greater on the PDBbind dataset as RDKit better handles larger, more flexible ligands

(Figure S5). The larger, more flexible ligands in the PDBbind dataset result in consistently

lower retrieval rates for both methods, but the trends between the two datasets are consistent.

Energy minimization has a small, not always beneficial, e↵ect that is more pronounced and

generally beneficial for DMCG. Unless otherwise specified, we limit ourselves to evaluating

minimized conformers for the remainder of our analysis.

Generating a larger ensemble will monotonically increase the likelihood of retrieving a

bioactive conformation, but for e�ciency reasons it is desirable to generate smaller ensembles.

As shown in Figures 5 and S6, selecting the lowest energy poses from a larger ensemble does

not improve the retrieval of bioactive conformations with the exception of reducing down to

a single conformer. This is due to the lack of geometric diversity of subsets chosen using only
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Figure 6: Evaluation of di↵erent methods of constructing an ensemble of 25 conformers selected
from a 250 conformer ensemble generated using RDKit ETKGDv3 (left) or DMCG (right) on the
Platinum 2017 dataset. PDBbind Refined results are shown in Figure S8.

energy as a criteria, as well as the energy evaluation reflecting an isolated ligand, neglecting

non-bonded dispersion interactions with the surrounding protein. In Figures 6, S7, S8, and

S9 we show the e↵ect of imposing an RMSD cuto↵ when selecting conformers. In this case,

the conformers of the full 250 conformer ensemble are sorted by increasing energy and we

greedily add conformers to the selected subset only if their RMSD to every already selected

conformer is greater than an RMSD threshold. This approach results in an improved retrieval

rate relative to unbiased sampling or lowest energy selection when the RMSD threshold used

to select conformers is similar to the RMSD cuto↵ used to classify a conformer as matching

the experimental structure. For example, selecting 25 RDKit conformers for Platinum 2017

using an RMSD of 1.0 results in ensembles that contain a conformer within 1.0 RMSD of

the true conformer 72.7% of the time, compared to 67.8% when unbiased sampling is used

and 57.6% when the 25 lowest energy conformations are selected. However, if the RMSD

criteria for determining what qualifies as a matching conformation deviates significantly from

the RMSD threshold used to select the subset (either lower or higher), unbiased sampling

can outperform the filtered subsets. Finally, we note that in our analysis the bioactive

conformation depends on the structure of a receptor, which is hidden information from the

conformer generator, but we observe similar trends in retrieval rates when we evaluate using
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a curated subset28 of the Crystallography Open Database52 (see Figure S10) which contains

a broader array of single molecule experimental structures.

Figure 7: The average and median best F1 score achieved from pharmacophore search across the
102 DUDE targets as the maximum number of conformers allowed in the library is varied.

.

Figure 8: The best F1 score achieved from pharmacophore as the maximum number of conformers
allowed in the library is varied for three distinctly di↵erent targets. Note the y-axis scales di↵er to
better illustrate the trends. Individual F1 plots are shown for all targets in Figures S12 and S13.

Conformer Ensemble E↵ect on Pharmacophore Search

Although retrieval of bioactive conformations within a conformational ensemble is clearly

desirable, it is not clear such an analysis is su�cient to determine the best approach for

constructing conformational ensembles for structure-based tasks. To more directly address

this question, we consider rigid pharmacophore matching against di↵erently sized conformer
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Figure 9: For each DUDE target, the di↵erence in best achieved F1 score relative to the best F1
achieved by unbiased sampling of a single conformation is shown for di↵erent numbers of maximum
allowed conformations. Conformers are selected by sorting by energy and then filtered by an RMS
threshold of 0.5Å. Targets are sorted by the slope of the best fit line through the conformer/F1
data. Box outlines highlight the choice of maximum number of conformers that provides the highest
F1 score.

Figure 10: The best F1 score achieved from pharmacophores with a specified number of features for
di↵erent choices of conformer ensembles. Only a subset of 63 targets is evaluated as the remaining
targets have fewer than 8 interaction features to select from. For reference, the mean F1 when the
number of features is not fixed (“Any”) is shown.
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ensembles. We consider generating conformers with RDKit and then unbiased sampling from

energy minimized poses as well as sorting by energy and then filtering by a specified root

mean squared deviation (RMSD) threshold, as this approach was found to be most e↵ective at

retrieving bioactive conformations. This threshold specifies the minimum distance between

any two conformers in the ensemble.

The overall average e↵ect on F1 score as the RMSD threshold and maximum number

of conformers in a generated ensemble are varied is shown in Figure 7. For smaller en-

sembles (e.g. < 10 conformers), using lower energy poses filtered by RMSD provides the

best average performance. For moderately sized ensembles, a larger RMS threshold reduces

performance. Larger RMS thresholds result in significantly smaller ensembles (e.g., filter-

ing at a 2Å threshold results in a reduction from 250 conformers to an average of only 6

conformers per a molecule - see Figure S11), hence larger amounts of filtering result in re-

duced performance and are relatively insensitive to increasing the maximum allowed number

of conformers. While increasing the number of conformers can only increase the recall of

known actives, it can also reduce the precision (i.e., increase the number of false positives

due to more inactive compounds matching the pharmacophore). This leads to a reduction

in average performance as the maximum size of the ensemble is increased with minimal

filtering.

The average e↵ect size shown in Figure 7 is small, however, as shown in Figure 8 and 9,

the average trends hide a wide array of responses to changes in conformational ensemble size

and the e↵ect of ensemble size can be significant and varied. For the 0.5Å RMS filtered set

there are 29 of the 102 targets where the best F1 score is achieved using a single conformer

compared to 16 where the best F1 score is achieved using an ensemble of 200 conformers.

For the majority of targets (68), the best F1 score requires 25 or fewer conformers and for

cases where more conformers are preferred, the improvement over smaller ensembles is often

minimal.

For the previous analysis we consider only the best performing (by F1 score) pharma-
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cophore query, essentially assuming the pharmacophore query was designed by an omniscient

oracle, in order to separate the issue of pharmacophore elucidation from the e↵ect of the

choice of conformer ensemble. However, it is instructive to consider the change in trends if

the oracle is restricted to pharmacophore queries with a fixed number of features, as shown

in Figure 10. As the number of features is increased, the specificity of the query increases

and the number of matches decreases. For low specificity queries, small ensembles maximize

the F1 as they counter-balance the lack of specificity while conversely high specificity queries

benefit from large ensembles. In order to achieve the best F1 performance, a balance of both

query specificity and ensemble size is needed.

Figure 11: The e↵ect of using di↵erent input conformer ensembles on docking performance as
measured by the fraction of systems where a low (<2Å) RMSD pose is identified as the top ranked
docked pose. Error bars indicate the 95% confidence interval determined from 1000 bootstraps.
Figures S16, S17, S18, and S19 show similar trends for di↵erent choices of RMSD cuto↵.
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Conformer Ensemble E↵ect on Molecular Docking

While screening approaches that use rigid conformer ensembles are used for some structure-

based screens, many approaches, such as molecular docking, treat input molecules as partially

flexible and the rotatable bonds are explicitly optimized. While it might seem conforma-

tional ensembles are unnecessary for these approaches, exploring the non-torsional degrees of

freedom may still have some value. For example, the popular Glide docking program explic-

itly considers non-torsional degrees of freedom by sampling alternative ring conformations

and nitrogen inversions.49

We explore the impact of providing di↵erent conformer ensembles as input on docking per-

formance in Figure 11. RDKit consistently outperforms DMCG at recapitulating low (<2Å)

RMSD poses. We hightlight performance at a 2Å cuto↵ due to its frequent use in dock-

ing evaluations.53,54 Similar trends are observed for di↵erent choices of cuto↵s (Figures S16,

S17, S18, and S19). Using the lowest energy sampled conformation (from an ensemble of

250 conformers) performs better than a randomly sampled conformation for both methods.

DMCG in particular benefits from using an energy minimized conformation (Figure S16)

as energy minimization fixes non-standard geometries. Interestingly, using an ensemble of

five conformations outperforms a single conformation, even when the amount of Monte Carlo

sampling during docking increased 5X to match the additional sampling performed using the

ensemble input. This di↵erence is statistically significant (p-value < 0.001), although there

is not always statistically significant di↵erence between a randomly selected ensemble and

seemingly more principled methods (with the exception of imposing a 2.0Å RMSD cuto↵

which can reduce the ensemble size to less than five in some cases). These results point to the

need to go beyond sampling only the torsional space when docking, but also indicate docking

performance can be improved simply by providing conformational ensembles to dock; it may

not be necessary to change the internal docking sampling algorithm.
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Discussion

We have evaluated two conformer generators, the popular RDKit ETKDG method and the

current state-of-the-art deep generative DMCG method, with a focus on exploring the e↵ect

of di↵erent choices in constructing conformer ensembles for structure-based drug discovery

tasks. From the exercise we draw several conclusions.

Conventional methods remain preferable to deep generative models for practical

applications. We find that the classical RDKit method is generally superior to DMCG at

recovering bioactive conformations (Figures 3, 4, and 5) and providing conformations suitable

for docking (Figure 11). Given the current rate of progress, it is likely that newer deep

generative methods will be able to outperform RDKit, although this may require adapting

the metrics these methods are trained for. We speculate that the performance gap between

these two methods is due to DMCG being trained to maximize coverage of the GEOM-QM9

and GEOM-Drugs sets. That is, it prefers to sample uniformly from the space of reasonable

conformers while RDKit may sample from something closer to a Boltzmann distribution.

This speculation is supported by reports that resampling RDKit ensembles using clustering

can substantially improve its coverage metric on GEOM-QM9 and GEOM-Drugs.34

Energy minimization is a valuable post-processing step. Energy minimizing gener-

ated conformers generally improves their ability to recapitulate bioactive conformers (Fig-

ures 3 and 4) and selecting the lowest energy conformer generally performs better than a

random conformer (Figures 5, S6, 7, and 11). Energy minimization is particularly important

for improving the quality of DMCG generated conformers, while the built-in geometric and

knowledge-based constraints of RDKit’s ETKDG v3 algorithm need less refinement.

Selecting only the lowest-energy conformers is not su�cient to achieve the best

retrieval of bioactive conformations. While energy minimization improves poor-quality

geometries, selecting the lowest energy poses from a larger ensemble does not improve re-
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trieval of bioactive conformations when selecting more than a single conformer (Figure 5).

The structure of a receptor, and the non-bonded interactions with the ligand or solvent

are hidden information from the conformer generation, and thus the energy from an isolated

molecule calculation, whether with UFF or a dispersion-corrected semiempirical method such

as CREST-GFN2, is less useful than geometric diversity via RMSD clustering. Similarly,

machine learning methods such as DMCG which train on CREST-generated ensembles may

reflect a bias towards low-energy and not bioactive conformations.28

Larger ensembles are not always better. Larger ensembles will always have higher

likelihood at sampling a bioactive conformation, but for reasonable RMSD thresholds, the

point of diminishing returns is achieved relatively quickly. It is not necessary to generate

many hundreds of conformations to achieve nearly perfect recall within 2Å RMSD (Figures 5

and S6). Furthermore, in screening tasks generating larger ensembles can decrease perfor-

mance (Figures 7, 8, and 9) due to increasing the number of false positives. Although the

best observed ensemble size for maximal pharmacophore screening performance varied dra-

matically (from one to the maximum of 200, Figure 9), the diminishing returns in screening

performance and increased computational complexity incurred by increasing the ensemble

size suggest a reduced conformational ensemble of less than 25 conformers is likely su�cient

for most structure-based screening tasks that rely on conformational sampling.1 We empha-

size this recommendation is not primarily motivated by the reduced computational demands

of generating and screening more conformers, but by the potential decrease in accuracy that

arises when generating more conformers increases the false positive rate faster than the true

positive rate.

Filtering for structural diversity can enhance the performance of a given ensem-

ble size. Unsurprisingly, when constructing a smaller ensemble from a larger ensemble,

1ChatGPT 4.0, when asked the right number of conformers for such tasks, suggests 100-500 conformers
per a molecule, suggesting that the data presented here runs counter to prevailing sentiment.
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there is benefit to increasing diversity by filtering conformations by their respective RMSDs.

When the goal is to recapitulate a bioactive conformer, the optimal choice of filtering thresh-

old is strongly related to what RMSD value is used to determine a su�ciently close match

(Figure 6). When performing pharmacophore search, more stringent thresholds are required

and are especially important when smaller ensembles are used (Figure 7).

Conformer ensembles are useful even for tasks that sample torsional degrees of

freedom. Finally, we note that conformational sampling is often focused on the sampling

of torsions (indeed, some methods only sample torsions22–25). However, the non-torsional

degrees of freedom also matter and can materially a↵ect docking performance, as illustrated

in Figure 11, which shows that providing an ensemble conformers with di↵erent non-torsional

parameters improves docking performance over providing a single conformer.

Data and Software Availability

Instructions and scripts for reproducing all the described analyses can be found at https:

//github.com/dkoes/conformer_analysis under an open source Apache license.
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