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Abstract

Conformer generation, the assignment of realistic 3D coordinates to a small molecule,
is fundamental to structure based drug design. Conformational ensembles are required
for rigid-body matching algorithms, such as shape-based or pharmacophore approaches,
and even methods that treat the ligand flexibly, such as docking, are dependent on the
quality of the provided conformations due to not sampling all degrees of freedom (e.g.

only sampling torsions). Here we empirically elucidate some general principles about
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the size, diversity and quality of conformational ensembles needed to get the best per-
formance in common structure-based drug discovery tasks. In many cases our findings
may parallel “common knowledge” well-known to practitioners of the field. Nonethe-
less, we feel it is valuable to quantify these conformational effects while reproducing
and expanding upon previous studies. Specifically, we investigate the performance of
a state-of-the-art generative deep learning approach versus a more classical geome-
try based approach, the effect of energy minimization as a post-processing step, the
effect of ensemble size (maximum number of conformers), and construction (filtering
by RMSD for diversity) and how these choices influence the ability to recapitulate

bioactive conformations and perform pharmacophore screening and molecular docking.

Introduction

Generating a three-dimensional conformation of a molecule from its topological representa-
tion (e.g., a SMILES string) is a fundamental first step of most structure-based approaches to
drug discovery.*? Tasks such as 3D pharmacophore search,** molecular docking,®® and 3D
QSAR" all rely on the generation of a biochemically meaningful conformation. Traditionally,
conformer generation algorithms have adopted either a systematic or stochastic approach.
Systematic approaches attempt to enumerate all reasonable values for rotatable bonds, and
thus often have difficulty scaling. Stochastic approaches use random sampling to make the
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search process more scalable. Distance geometry uses bond length, angle and other, pos-

sibly knowledge-based,'® constraints to constrain the stochastic search space. More recently,

14416/ 1 otherwise

machine learning has been used to either generate conformations directly
assist in the generation process (e.g., torsional sampling).**2% Although there are multiple
ways to evaluate the quality of a conformer generator,® most relevant for structure-based
drug discovery is the ability to produce a bioactive conformation. That is, a conformation
close to the conformation found in a protein-ligand complex should be generated, even if it
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is not the lowest energy conformation. Both free?® and commercial?” conformer generators



were evaluated for this task and, provided that a sufficiently large ensemble is generated,
most approaches succeed at identifying a low RMSD (< 2A) conformation. In particular,
the open source RDKit, which uses a stochastic distance geometry based approach com-
bined with experimental torsional-angle and ring geometry preferences (ETKDG)," consis-
tently performs as well as or better than other approaches such as Balloon, Confab, Frog2,
Multiconf-DOCK, CREST, ConfGen, OMEGA, MOE and others (see Friedrich et al.%
Friedrich et al.?”, and Folmsbee et al.?®), hence we limit our evaluation to RDKit as a rep-
resentative of a conventional conformer generator. We note the recently described Auto3D?
uses RDKit conformers as a starting point for optimizing with a modified version of the
ANI-2x deep learning molecular potential ¥ but this does not result in better performance
than RDKit in the bioactive conformation identification task (see Figure [S1)).

The latest machine learning models have not been evaluated for their ability to generate
bioactive conformations. Instead, they are mostly trained and evaluated on the GEOM®3!
dataset, which contains 37 million conformers of more than 450,000 molecules with the goal
of accurately representing, at the level of semi-empirical density functional theory,3? the
vacuum conformer-rotamer ensembles of these molecules using CREST.?3 Deep generative
models significantly outperform RDKit at this particular task, but an extended sampling and
clustering approach using RDKit achieves highly competitive performance.** It is not clear
that it is a fair comparison to compare methods that utilize different amounts of sampling,=°
so here we evaluate RDKit and a deep generative model using identical sampling and ensem-
ble formation criteria. As the Direct Molecular Conformation Generation (DMCG)* was
found to perform best at the task of reconstituting the ensembles of the GEOM-Drugs subset
of GEOM, we evaluate it here at the task of bioactive conformation recovery. DMCG is an
end-to-end generative model with a variational encoder/decoder architecture that learns all
network parameters from the training data distribution, GEOM-Drugs.?* However, our main
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goal is not to extend previous evaluations but to explore the impact of various choices

made in the conformer generation process, such as the size of the ensemble, the criteria for



including conformers in the ensemble, and the use (or not) of energy minimization, has on
the ultimate endpoint of the common structure-based tasks of pharmacophore search and

molecular docking.
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Figure 1: Overall workflow for conformer ensemble generation and evaluation in structure-based
drug discovery tasks.

Methods

The overall workflow of our evaluation is shown in Figure[l] We evaluate a number of options
for generating conformational ensembles from common datasets and evaluate them in two

common structure-based tasks: pharmacophore search and molecular docking.

Datasets

In order to evaluate the ability of a conformer generator to produce a bioactive conformation,
we use two datasets: Platinum 201727 and the refined subset of PDBBind 2020.%¢ The
PDBBind refined set curates high quality protein-ligand structures from the Protein Data
Bank with known binding affinities. Of the 5316 ligand structures in this set, 5313 could

be processed by RDKit and are considered here (the remaining three all had a molecular
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Figure 2: Histogram of rotatable bonds within our datasets.

weight of more than 900 Da). The Platinum dataset was designed for conformer generation
evaluations and, in addition to considering the overall quality of a structure, evaluates the
quality of the fit of a ligand structure to the electron density map, ensuring that the included
conformations are accurate. It also imposes more stringent filtering, such as not considering
molecules with more than 16 rotatable bonds or fewer than one (see Figure [2). While the
Platinum dataset provides a high-quality ground truth, the PDBbind dataset contains more
challenging (i.e., flexible) ligands.

For assessing pharmacophore virtual screening performance, we use the Database of Use-
ful Decoys: Enhanced (DUDE),%” which contains 102 protein targets each with their own
set of experimentally confirmed actives and (possibly putative) decoys. We note that while
there are significant issues in using DUDE for training and evaluating machine learning
approaches®¥32 due to inherent biases in the dataset construction that can result in mislead-
ing evaluations of generalization performance, the structure-based pharmacophore search we

evaluate does not have these drawbacks as it is not fitting to the data. We note that the



use of decoy molecules that are not experimentally validated in DUDE may result in false
negatives, but this is not material for evaluating trends in virtual screening performance,
which is our goal here. We also note that the actives in DUDE are experimentally vali-
dated against their target, which is essential when evaluating target-focused approaches and
strongly preferable to using benchmarks, such as LIT-PCBA ** where actives have uncertain
mechanisms of action due to being identified in phenotypic screens.

For assessing molecular docking performance, we use the refined set of PDBBind 2020 for
re-docking evaluations and for cross-docking the dataset of Wierbowski et al.%!. Re-docking
evaluates docking a ligand to its cognate receptor while cross-docking docks a ligand to a
similar, but not cognate, receptor. As the number of protein-ligand pairs in a cross-docking
task grows combinatorially and we do not want to disproportionately weight targets with
more structures, we randomly downsample Wierbowski et al.** to have at most 100 protein-
ligand pairs for each of its 92 targets (63% of the targets require downsampling). Docking
success is measured by calculating the root mean squared deviation (RMSD) between the
top ranked docked pose and the crystal pose. In the case of cross-docking, the reference
pose is determined by aligning the protein structure of the cognate receptor to the target

receptor.

Conformer Ensemble Generation

We generate RDKit conformers using the ETKDG version 3243 method of RDKit using
default values and version 2022.03.1. This method combines distance geometry* sampling
with knowledge based potentials to increase the efficiency of the algorithm without loss of
accuracy (see Friedrich et al.?d and Figure [S2). To generate DMCG™ conformers we use
the pre-trained model Large Drugs/checkpoint_94.pt with the recommended settings for
drug-like molecules. We strip the input SMILES strings of stereochemistry information,
as this information is often missing in virtual screening datasets and we want to evaluate

the ability of conformer generators to sample appropriate geometries (Figure shows the



relatively small contribution of stereochemistry in our evaluations). For both generators we
evaluate further refining generated conformations using the UFF molecular force field*? as
implemented by RDKit and default convergence criteria.

2627 we generate ensembles with a maximum of

Consistent with previous evaluations,
250 conformers. We consider different methods for sub-setting the full ensemble, including

unbiased sampling, energy ranking, and energy ranking with RMSD filtering.

Pharmacophore Search

Pharmit“® is used to perform pharmacophore search on the DUDE benchmark. Search
databases are built from the relevant conformational ensembles of the active and decoy com-
pounds of each DUDE target. Due to the large number of conformers required, only RDKit
conformer generation was evaluated for this task. The provided reference crystal structure is
used to elucidate all possible interacting features (hydrogen bonds, hydrophobic interactions,
charge interactions, and aromatic interactions) between the ligand and receptor. Interactions
are identified using the built-in heuristics of Pharmit. From this set of interactions, all pos-
sible pharmacophores with at least three features are enumerated. As our goal is to evaluate
the effect of different conformer ensembles on virtual screening and not elucidating the best
single pharmacophore query, we screen all the enumerated queries. We set a tolerance radius
of 1.0A and no other constraints (e.g. direction) on each feature. Since Pharmit uses the
sub-linear time Pharmer“# algorithm, despite the combinatorial number of queries and many
thousands of compounds, this can be done efficiently. We emphasize that this algorithm finds
matches between the specified query and rigid conformers and so the quality of the ensemble
is essential. As only matching, not ranking, is performed, classification metrics are the most
appropriate choice to evaluate virtual screening performance in this context (i.e., without a
ranking it is not possible to calculate a meaningful AUC of a ROC or precision-recall curve).
We use the F1 score, the harmonic mean of the precision and recall, and report the best

F1 across all queries. Unlike an enrichment factor, the F1 score is a normalized quantity



(ranges from zero to one) and so can be sensibly compared across different screens, and it
encapsulates the goal of virtual screening - to maximum the number of true positives (recall)

while minimizing the number of false positives (higher precision).

Molecular Docking

GNINAT is used to perform molecular docking. GNINA is a fork of AutoDock Vina® that uses
a convolutional neural network protein-ligand scoring function% to select and ranking poses.

4748 of GNINA have found it to have comparable performance to the

Independent evaluations
commercial Glide software*? while outperforming other open source docking programs such
as smina.®® Poses are sampled using a Monte Carlo Metropolis algorithm that perturbs the
rigid body degrees of freedom (translation and rotation) and torsional degrees of freedom.
The output docked poses therefore depend on the input conformation to determine bond
lengths and angles. However, internal torsions are completely randomized at the start of
each Monte Carlo chain, so the result does not depend on the input torsions.

To assess the impact of the input conformation on docking results, we consider single

conformer and five conformer ensembles (larger ensembles were not considered due to the

computational overhead of docking).

Results

Retrieval of Bioactive Conformers

To compare generated conformers to the experimental crystal structure we use obrms from
the Open Babel toolkit,?! which properly handles internal symmetries by reporting the
lowest possible root mean squared deviation (RMSD) of any valid atom matching. In all
cases, the minimized RMSD (-m option) is reported (i.e., the structures are optimally aligned
before calculating the RMSD). For a variety of ensemble sizes (number of samples of the

specified method) we evaluate the fraction of the dataset where a conformer exists within
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Figure 3: Fraction of the Platinum (left) and PDBbind2020 Refined (right) data sets where a
conformer within a specified threshold (x-axis) of the experimental structure is retrieved for both
RDKit (top) and DMCG (bottom) for various sized ensembles. Results for poses before (dashed
line) and after (solid line) UFF minimization are shown.



Platinum 2017

1.0
.
()
£
S 0.8+
C
5] —
o
2
£ 0.6 1
<
oL
v
£ 0.4
2
S
B 0.2 1
g Wl RDKit ETKDGv3  /ml DMCG
Minimized ZA Unminimized
0.0 4| III'— II'_ ’ I
1 5 10 25 50 100
Size of Ensemble
Platinum 2017
1.0
0.8 1

0.6
0a] a
0.2

Wl RDKit ETKDGv3 Wl DMCG

Fraction With <1A RMSD Conformer

Minimized ZA Unminimized
0.0 | III'— II'_ ’ I
1 5 10 25 50 100

Size of Ensemble

Fraction With <2A RMSD Conformer

Fraction With <1A RMSD Conformer

Iy
o

PDBbind 2020 Refined

o
©
A

o
o
L

e
IS
R

°
N]
N

o
o
!

1.0

Wl RDKit ETKDGv3 /i DMCG
Minimized A Unmin

I/'-- II'_ I

5 10 25 50

Size of Ensemble

PDBbind 2020 Refined

imized
100

250

0.8 1

0.6 1

0.4

0.2 1

0.0 -

"1

WM RDKit ETKDGv3 i DMCG
Minimized A Unmin

I/'-- II'_ I

5 10 25 50

Size of Ensemble

imized
100

250
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conformer within 2.0A (top) or 1.0A (bottom) RMSD of the experimental structure is retrieved for
both RDKit and DMCG for various sized ensembles. Results for poses before (hashed bars) and

after (solid bars) UFF minimization are shown.
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Figure 5: Comparison of RDKit ETKDGv3 (left) and DMCG (right) on the Platinum 2017 dataset
when evaluated on different ensemble sizes where the ensemble is constructed by selecting the N
lowest energy minimized conformers are selected from an ensemble of 250. Results for the PDBbind
Refined dataset are shown in Figure [S6|and exhibit a similar trend.

the ensemble for a specified RMSD threshold. That is, we consider the best possible RMSD
across the ensemble. Results for a variable threshold are shown in Figure [3| with more
ensemble sizes shown for two fixed thresholds, 1.0A and 2.0A in Figure . For reference,
example structures at different RMSD values are shown in Figure [S20. In general, we find
that RDKit consistently matches or outperforms DMCG at conformer retrieval at every
RMSD threshold (a more direct visual comparison is found in Figure . This advantage
is greater on the PDBbind dataset as RDKit better handles larger, more flexible ligands
(Figure [S5)). The larger, more flexible ligands in the PDBbind dataset result in consistently
lower retrieval rates for both methods, but the trends between the two datasets are consistent.
Energy minimization has a small, not always beneficial, effect that is more pronounced and
generally beneficial for DMCG. Unless otherwise specified, we limit ourselves to evaluating
minimized conformers for the remainder of our analysis.

Generating a larger ensemble will monotonically increase the likelihood of retrieving a
bioactive conformation, but for efficiency reasons it is desirable to generate smaller ensembles.
As shown in Figures [5| and selecting the lowest energy poses from a larger ensemble does
not improve the retrieval of bioactive conformations with the exception of reducing down to

a single conformer. This is due to the lack of geometric diversity of subsets chosen using only
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Figure 6: Evaluation of different methods of constructing an ensemble of 25 conformers selected
from a 250 conformer ensemble generated using RDKit ETKGDv3 (left) or DMCG (right) on the
Platinum 2017 dataset. PDBbind Refined results are shown in Figure

energy as a criteria, as well as the energy evaluation reflecting an isolated ligand, neglecting
non-bonded dispersion interactions with the surrounding protein. In Figures [6] [S7, and
[S9 we show the effect of imposing an RMSD cutoff when selecting conformers. In this case,
the conformers of the full 250 conformer ensemble are sorted by increasing energy and we
greedily add conformers to the selected subset only if their RMSD to every already selected
conformer is greater than an RMSD threshold. This approach results in an improved retrieval
rate relative to unbiased sampling or lowest energy selection when the RMSD threshold used
to select conformers is similar to the RMSD cutoff used to classify a conformer as matching
the experimental structure. For example, selecting 25 RDKit conformers for Platinum 2017
using an RMSD of 1.0 results in ensembles that contain a conformer within 1.0 RMSD of
the true conformer 72.7% of the time, compared to 67.8% when unbiased sampling is used
and 57.6% when the 25 lowest energy conformations are selected. However, if the RMSD
criteria for determining what qualifies as a matching conformation deviates significantly from
the RMSD threshold used to select the subset (either lower or higher), unbiased sampling
can outperform the filtered subsets. Finally, we note that in our analysis the bioactive
conformation depends on the structure of a receptor, which is hidden information from the

conformer generator, but we observe similar trends in retrieval rates when we evaluate using

12



a curated subset?® of the Crystallography Open Database2 (see Figure [S10) which contains

a broader array of single molecule experimental structures.
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Conformer Ensemble Effect on Pharmacophore Search

Although retrieval of bioactive conformations within a conformational ensemble is clearly

desirable, it is not clear such an analysis is sufficient to determine the best approach for

constructing conformational ensembles for structure-based tasks. To more directly address

this question, we consider rigid pharmacophore matching against differently sized conformer
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ensembles. We consider generating conformers with RDKit and then unbiased sampling from
energy minimized poses as well as sorting by energy and then filtering by a specified root
mean squared deviation (RMSD) threshold, as this approach was found to be most effective at
retrieving bioactive conformations. This threshold specifies the minimum distance between
any two conformers in the ensemble.

The overall average effect on F1 score as the RMSD threshold and maximum number
of conformers in a generated ensemble are varied is shown in Figure [/} For smaller en-
sembles (e.g. < 10 conformers), using lower energy poses filtered by RMSD provides the
best average performance. For moderately sized ensembles, a larger RMS threshold reduces
performance. Larger RMS thresholds result in significantly smaller ensembles (e.g., filter-
ing at a 2A threshold results in a reduction from 250 conformers to an average of only 6
conformers per a molecule - see Figure , hence larger amounts of filtering result in re-
duced performance and are relatively insensitive to increasing the maximum allowed number
of conformers. While increasing the number of conformers can only increase the recall of
known actives, it can also reduce the precision (i.e., increase the number of false positives
due to more inactive compounds matching the pharmacophore). This leads to a reduction
in average performance as the maximum size of the ensemble is increased with minimal
filtering.

The average effect size shown in Figure [7]is small, however, as shown in Figure [§ and [9)
the average trends hide a wide array of responses to changes in conformational ensemble size
and the effect of ensemble size can be significant and varied. For the 0.5A RMS filtered set
there are 29 of the 102 targets where the best F'1 score is achieved using a single conformer
compared to 16 where the best F1 score is achieved using an ensemble of 200 conformers.
For the majority of targets (68), the best F1 score requires 25 or fewer conformers and for
cases where more conformers are preferred, the improvement over smaller ensembles is often
minimal.

For the previous analysis we consider only the best performing (by F1 score) pharma-
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cophore query, essentially assuming the pharmacophore query was designed by an omniscient
oracle, in order to separate the issue of pharmacophore elucidation from the effect of the
choice of conformer ensemble. However, it is instructive to consider the change in trends if
the oracle is restricted to pharmacophore queries with a fixed number of features, as shown
in Figure [10. As the number of features is increased, the specificity of the query increases
and the number of matches decreases. For low specificity queries, small ensembles maximize
the F1 as they counter-balance the lack of specificity while conversely high specificity queries
benefit from large ensembles. In order to achieve the best F1 performance, a balance of both

query specificity and ensemble size is needed.
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Figure 11: The effect of using different input conformer ensembles on docking performance as
measured by the fraction of systems where a low (<2A) RMSD pose is identified as the top ranked
docked pose. Error bars indicate the 95% confidence interval determined from 1000 bootstraps.
Figures [S16] [S17], [S18] and [S19|show similar trends for different choices of RMSD cutoff.
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Conformer Ensemble Effect on Molecular Docking

While screening approaches that use rigid conformer ensembles are used for some structure-
based screens, many approaches, such as molecular docking, treat input molecules as partially
flexible and the rotatable bonds are explicitly optimized. While it might seem conforma-
tional ensembles are unnecessary for these approaches, exploring the non-torsional degrees of
freedom may still have some value. For example, the popular Glide docking program explic-
itly considers non-torsional degrees of freedom by sampling alternative ring conformations
and nitrogen inversions.4?

We explore the impact of providing different conformer ensembles as input on docking per-
formance in Figure RDKit consistently outperforms DMCG at recapitulating low (<2A)
RMSD poses. We hightlight performance at a 2A cutoff due to its frequent use in dock-
ing evaluations.?¥4 Similar trends are observed for different choices of cutoffs (Figures @,
@, @, and . Using the lowest energy sampled conformation (from an ensemble of
250 conformers) performs better than a randomly sampled conformation for both methods.
DMCG in particular benefits from using an energy minimized conformation (Figure
as energy minimization fixes non-standard geometries. Interestingly, using an ensemble of
five conformations outperforms a single conformation, even when the amount of Monte Carlo
sampling during docking increased 5X to match the additional sampling performed using the
ensemble input. This difference is statistically significant (p-value < 0.001), although there
is not always statistically significant difference between a randomly selected ensemble and
seemingly more principled methods (with the exception of imposing a 2.0A RMSD cutoff
which can reduce the ensemble size to less than five in some cases). These results point to the
need to go beyond sampling only the torsional space when docking, but also indicate docking
performance can be improved simply by providing conformational ensembles to dock; it may

not be necessary to change the internal docking sampling algorithm.
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Discussion

We have evaluated two conformer generators, the popular RDKit ETKDG method and the
current state-of-the-art deep generative DMCG method, with a focus on exploring the effect
of different choices in constructing conformer ensembles for structure-based drug discovery

tasks. From the exercise we draw several conclusions.

Conventional methods remain preferable to deep generative models for practical
applications. We find that the classical RDKit method is generally superior to DMCG at
recovering bioactive conformations (Figures , and and providing conformations suitable
for docking (Figure . Given the current rate of progress, it is likely that newer deep
generative methods will be able to outperform RDKit, although this may require adapting
the metrics these methods are trained for. We speculate that the performance gap between
these two methods is due to DMCG being trained to maximize coverage of the GEOM-QM9
and GEOM-Drugs sets. That is, it prefers to sample uniformly from the space of reasonable
conformers while RDKit may sample from something closer to a Boltzmann distribution.
This speculation is supported by reports that resampling RDKit ensembles using clustering

can substantially improve its coverage metric on GEOM-QM9 and GEOM-Drugs.34

Energy minimization is a valuable post-processing step. Energy minimizing gener-
ated conformers generally improves their ability to recapitulate bioactive conformers (Fig-
ures |3| and [4) and selecting the lowest energy conformer generally performs better than a
random conformer (Figures , and . Energy minimization is particularly important
for improving the quality of DMCG generated conformers, while the built-in geometric and

knowledge-based constraints of RDKit’s ETKDG v3 algorithm need less refinement.

Selecting only the lowest-energy conformers is not sufficient to achieve the best
retrieval of bioactive conformations. While energy minimization improves poor-quality

geometries, selecting the lowest energy poses from a larger ensemble does not improve re-
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trieval of bioactive conformations when selecting more than a single conformer (Figure [5).
The structure of a receptor, and the non-bonded interactions with the ligand or solvent
are hidden information from the conformer generation, and thus the energy from an isolated
molecule calculation, whether with UFF or a dispersion-corrected semiempirical method such
as CREST-GFN2, is less useful than geometric diversity via RMSD clustering. Similarly,
machine learning methods such as DMCG which train on CREST-generated ensembles may

reflect a bias towards low-energy and not bioactive conformations.?

Larger ensembles are not always better. Larger ensembles will always have higher
likelihood at sampling a bioactive conformation, but for reasonable RMSD thresholds, the
point of diminishing returns is achieved relatively quickly. It is not necessary to generate
many hundreds of conformations to achieve nearly perfect recall within 2A RMSD (Figures
and . Furthermore, in screening tasks generating larger ensembles can decrease perfor-
mance (Figures and @ due to increasing the number of false positives. Although the
best observed ensemble size for maximal pharmacophore screening performance varied dra-
matically (from one to the maximum of 200, Figure @, the diminishing returns in screening
performance and increased computational complexity incurred by increasing the ensemble
size suggest a reduced conformational ensemble of less than 25 conformers is likely sufficient
for most structure-based screening tasks that rely on conformational sampling ][] We empha-
size this recommendation is not primarily motivated by the reduced computational demands
of generating and screening more conformers, but by the potential decrease in accuracy that
arises when generating more conformers increases the false positive rate faster than the true

positive rate.

Filtering for structural diversity can enhance the performance of a given ensem-

ble size. Unsurprisingly, when constructing a smaller ensemble from a larger ensemble,

1ChatGPT 4.0, when asked the right number of conformers for such tasks, suggests 100-500 conformers
per a molecule, suggesting that the data presented here runs counter to prevailing sentiment.

19



there is benefit to increasing diversity by filtering conformations by their respective RMSDs.
When the goal is to recapitulate a bioactive conformer, the optimal choice of filtering thresh-
old is strongly related to what RMSD value is used to determine a sufficiently close match
(Figure @ When performing pharmacophore search, more stringent thresholds are required

and are especially important when smaller ensembles are used (Figure [7)).

Conformer ensembles are useful even for tasks that sample torsional degrees of
freedom. Finally, we note that conformational sampling is often focused on the sampling

22:23) - However, the non-torsional

of torsions (indeed, some methods only sample torsions
degrees of freedom also matter and can materially affect docking performance, as illustrated
in Figure[11] which shows that providing an ensemble conformers with different non-torsional

parameters improves docking performance over providing a single conformer.

Data and Software Availability

Instructions and scripts for reproducing all the described analyses can be found at https:

//github.com/dkoes/conformer_analysis under an open source Apache license.
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