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Abstract

Rodents are the largest and most diverse group of mammals. Covering a wide range of structural and functional adaptations,
rodents successfully occupy virtually every terrestrial habitat, and they are often found in close association with humans,
domestic animals, and wildlife. Although a significant amount of research has focused on rodents’ prominence as known
reservoirs of zoonotic viruses, there has been less emphasis on the viral ecology of rodents in general. Here, we utilized a viral
metagenomics approach to investigate polyomaviruses in wild rodents from the Baja California peninsula, Mexico, using fecal
samples. We identified a novel polyomavirus in fecal samples from two rodent species, a spiny pocket mouse (Chaetodipus
spinatus) and a Dulzura kangaroo rat (Dipodomys simulans). These two polyomaviruses represent a new species in the genus
Betapolyomavirus. Sequences of this polyomavirus cluster phylogenetically with those of other rodent polyomaviruses and
two other non-rodent polyomaviruses (WU and KI) that have been identified in the human respiratory tract. Through our
continued work on seven species of rodents, we endeavor to explore the viral diversity associated with wild rodents on the

Baja California peninsula and expand on current knowledge of rodent viral ecology and evolution.

With an estimated number of >2,500 species, rodents are the
largest and most diverse group of mammals [1]. Due to the
adaptability of rodents, they occupy terrestrial habitats glob-
ally (except Antarctica) in both rural and urban environments
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[2, 3]. Rodents are vectors or reservoir hosts of some human
and livestock pathogens. An examination of 2,277 rodent
species revealed that approximately 10% of them served as
reservoirs of up to 11 zoonoses. Furthermore, among the
138 species carrying a single zoonotic pathogen, viruses
accounted for 41% of the infectious agents [4]. One severe
and life-threatening disease-causing RNA virus carried by
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rodents belongs to the family Hantaviridae and causes han-
tavirus pulmonary syndrome (HPS). In southwestern North
America in the late 1990s, deer mice (Peromyscus manicu-
latus) were identified as the primary reservoir for members
of the viral species Orthohantavirus sinnombreense (pre-
vious species name Sin Nombre orthohantavirus), which
become airborne from rodent urine, droppings, or saliva [5,
6]. In desert regions in North America, heteromyids are the
most abundant and speciose rodent guild. Most species in
this rodent family are nocturnal and granivorous and live in
underground burrows [7]. While rodent ecology has been
extensively studied, there remains a gap in our understand-
ing of the viruses that rodents harbor.

Towards filling fundamental gaps in our understanding of
the diversity of DNA viruses associated with wild rodents
—in this case, small double-stranded DNA viruses — we uti-
lized a viral metagenomics approach to analyze 99 rodent
fecal samples collected during the northern hemisphere Fall
2021 and Spring 2022 across the Baja California peninsula,
Mexico, in accordance with institutional guidelines under
ASU-TACUC # 22-1940R, and samples were transported to
the U.S. under CDC permit #20220221-0658A. Fecal sam-
ples were collected fresh (within 8 hours of being deposited)
from little desert pocket mouse (Chaetodipus arenarius, n
= 17), Bailey's pocket mouse (Chaetodipus baileyi, n = 6),
spiny pocket mouse (Chaetodipus spinatus, n = 10), Mer-
riam's kangaroo rat (Dipodomys merriami, n = 18), Dul-
zura kangaroo rat (Dipodomys simulans, n = 13), Bryant's
woodrat (Neotoma bryanti, n = 7), and eastern deer mouse
(Peromyscus maniculatus, n = 28). The fecal pellets were
collected inside Sherman traps used to temporarily capture
the rodents or while momentarily handling individuals for
tissue sampling. Pellets were stored in 0.5 ml tubes, kept
cold on wet ice for up to three weeks in the field, and then
stored at -20°C in the laboratory until processing for viral
DNA and downstream analysis. For nucleic acid extrac-
tion, 2 to 5 fecal pellets were transferred to a 1.5-ml screw-
cap tube containing stainless steel beads (Next-Advance,
Inc., USA), and 800 pl of SM buffer (0.1 M NaCl, 50 mM
Tris-HCI [pH 7.4], and 10 mM MgSO,) was added. Pel-
lets were homogenized using a Bullet Blender® Storm 24
(Next-Advance, Inc., USA) for 3 min at a speed setting of
10. The homogenate was centrifuged on a benchtop centri-
fuge (Eppendorf, Germany) for 1 min at 5,000 X g, and the
supernatant was filtered sequentially through 0.45-pm and
0.2-pm syringe filters (Cole-Parmer LLC., USA). Then, 200
pl of filtrate was used to extract viral DNA using a High Pure
Viral Nucleic Acid Kit (Roche Diagnostics, USA), following
the manufacturer’s protocol. To preferentially target circular
DNA, 2 ul of viral DNA extract from each sample was used
for rolling-circle amplification (RCA) using a TempliPhi Kit
(GE Healthcare, USA). RCA amplicons were used to gener-
ate Illumina sequencing libraries using an Illumina® DNA
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Prep Kit with IDT® Illumina Nextera DNA Unique Dual
Indexes. Libraries were sequenced on an Illumina HiSeq
2500 system at Psomagen, Inc. (USA), resulting in approxi-
mately 250 million reads.

Raw paired-end reads (2x150 nt) were trimmed using
Trimmomatic v.0.39 [8] and subsequently assembled de novo
using MEGAHIT v.1.2.9 [9, 10]. Circular contigs were iden-
tified based on terminal redundancy, using a custom Python
script. All contigs >1,000 nt were analyzed using Diamond
BLASTx v.2.1.5 [11] against a local viral RefSeq protein
database (release 210, March 2022). Contigs were screened
using Cenote-Taker2 v.2.1.5 [12] for preliminary virus dis-
covery and genome annotation. Following de novo assembly
and annotation, we identified polyomavirus (PyV) sequences
from a spiny pocket mouse (Chaetodipus spinatus) sample
from the town of San Javier and a Dulzura kangaroo rat
(Dipodomys simulans) sample from the town of Santa Rita,
both located in Baja California Sur, Mexico. These de novo-
assembled sequences were ~5450 nt in length with terminal
redundancy and thus circular contigs with a length of 5311
nt. These contigs were 99.9% identical to each other and,
based on BLASTn analysis, shared 68.15% identity with
21% coverage (e-value, 3E-29) with porcine polyomavirus
strain PP214 (MH824513). A total of 2,744,509 (average
depth, 78,474.1) and 347 (average depth, 9.9) raw reads from
the spiny pocket mouse and Dulzura kangaroo rat samples,
respectively, mapped to each of these contigs. Based on
the de novo-assembled PyV sequence, we designed abut-
ting primers (F: 5’-CGTGTCTGCAGCAAACCCTATATA
CATGC-3’; R: 5’-CAGGGATGTAAAATGTGTGATGAT
AAAGCACTCC-3’) to amplify the complete viral genome
by polymerase chain reaction (PCR). Then, PCR reactions
were run with 10 pl of Kapa HiFi DNA Polymerase (Roche
Diagnostics, USA), 8 pl of sterile distilled water, 1 pl of
RCA DNA as template, and 1 pl of forward and reverse
primers. The PCR conditions were according to the manu-
facturer’s protocol, with an annealing temperature of 55°C
and an extension time of 5 min. Amplicons were resolved
by electrophoresis in a 0.7% agarose gel. A MEGAquick-
spin Plus Fragment DNA Purification Kit (iNtRON Biotech-
nology, South Korea) was used to purify the excised 5-kb
amplicons, which were then cloned into the pJET1.2 clon-
ing plasmid (Thermo Fisher Scientific, USA), and recombi-
nant plasmids were introduced into competent Escherichia
coli XL1-blue cells by transformation. Recombinant plas-
mids were purified and sequenced by the Sanger method at
Macrogen, Inc. (Korea) by primer walking. Open reading
frames were identified using ORFfinder (https://www.ncbi.
nlm.nih.gov/orffinder/) coupled with visual inspection. The
sequences were deposited in the GenBank database with the
accession numbers OQ799311 and OQ799312.

Polyomaviruses (PyVs) are small (~5,000 nt) double-
stranded circular DNA viruses with capsids that have
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Fig.1 (a) Genome organization of sonrod polyomavirus 1. Gen-
Bank accession numbers are shown in brackets, and the genome
size in base pairs is indicated. (b) Pairwise identity matrix generated
with SDT v1.24 [34] showing the percentage of pairwise similarity

icosahedral symmetry [13]. PyV genomes have a non-
coding control region (NCCR), an early region, and a late
region. The early and late encoding regions are transcribed
in opposite directions and are separated by the NCCR [14].
The NCCR is a key regulatory region of approximately
400 nt containing the origin of viral DNA replication and
sequences required for early and late transcription [15]. The
early region encodes the large T antigen (LT) and the small
T antigen (ST). Additional proteins such as the middle T
antigen are present in some PyVs that infect rodents. The
late region encodes at least two viral capsid proteins — VP1
and VP2 — although an OREF for a third structural protein
(VP3) is found in most PyVs, including murine polyomavi-
rus [15-17]. Additional proteins, such as ALTO and agno-
protein, have been described in some mammalian polyoma-
viruses, although their functions are still unknown [18, 19].

Polyomaviruses are known to infect an array of hosts,
including mammals [20-22], birds [23-25], fish [18, 26-29],
and arthropods [18, 30]. Murine polyomavirus (MPyV), or
mouse polyomavirus, was the first member of the family
Polyomaviridae confirmed in rodents. It was identified in
1953 by Dr. Ludwik Gross at the Veterans Administration
Hospital Cancer Research Unit in New York City, USA [31,

between nucleotide sequences of PyVs based on (b) the full genome
and (c) the large tumor antigen (LT) and the capsid proteins VP1 and
VP2. The PyV from this study is indicated in red.

32]. The discovery of MPyV provided deep insights related
to experimental cancer research and the study of genes
implicated in many mouse and human cancers. In humans,
JC polyomavirus and BK polyomavirus were the first PyVs
to be identified. Although most human polyomavirus infec-
tions are asymptomatic, some PyVs, including JC and BK,
can cause severe disease in immunosuppressed individuals.
JCPyV can cause progressive multifocal leukoencephalopa-
thy and has been implicated in the development of various
human neoplasms. BKPyV is commonly associated with
ureteral stenosis, hemorrhagic cystitis, and nephropathy
[14]. PyVs have also been associated with malignant brain
tumors in free-ranging raccoons in the western United States
[33]. The family Polyomaviridae is currently composed of
117 species, most of which have been assigned to eight
genera: Alphapolyomavirus, Betapolyomavirus, Deltapoly-
omavirus, Epsilonpolyomavirus, Gammapolyomavirus,
Zetapolyomavirus, Etapolyomavirus, and Thetapolyomavi-
rus [13, 21].

The PyV identified in the two rodents in this study has
a genome organization typical of polyomaviruses with two
distinct transcription units extending in opposite directions
(early and late regions) separated by a non-coding region.

@ Springer
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Fig.2 Maximum-likelihood tree based on large T antigen (LT) pro-
tein sequences under the LG+I4+G+F model of amino acid sequence
evolution. Sonrod polyomavirus 1 sequences cluster with known
rodent PyVs and human KI and WU PyVs of the genus Betapolyoma-

The early coding region transcribes the large T antigen
(LT) and the small T antigen (ST), while the late coding
region encodes the structural proteins VP1, VP2, and VP3.
We identified the signature amino acid motif HPDKGG
in the LT antigen (Fig. 1). Pairwise comparisons using
SDT v.1.2 [34] revealed that the two genome sequences are
99.9% identical. In these two genomes, there are four poly-
morphisms, one in the VP2 protein, two in the LT protein,
and one in the splicing region of the LT. The LT protein is
required for viral DNA replication and plays a central role
regulating effective infection [17]. The full genomes share
~60% genome-wide sequence identity with other known
PyVs. Analysis of the LT, VP1, and VP2 proteins revealed
45-52%, 43-56%, and 34-49% identity, respectively. The
two PyV full genomes, LT, VP1, and VP2 were found to
be most closely related to those of porcine polyomaviruses

@ Springer
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virus. Branches with less than 0.8 aLRT were collapsed. Bars indicate
an evolutionary distance of 0.05 substitutions per site. The PyV from
this study is indicated in red.

(MN486202 and MH824513), sharing 62%, 52%, 56%, and
49% sequence identity, respectively. The sequence-based
criteria for creation of a new PyV species, as established
by the Executive Committee of the ICTYV, specify that the
LT sequence must be less than 85% identical to that of the
most closely related virus [35]. Since the sequence identity
of the LT to the most closely related PyV is 52%, the two
polyomavirus isolates from Sonoran rodents represent a
new species. Given that they are from two rodent species,
we have named the new polyomavirus sonrod polyomavi-
rus 1 (name derived from Sonoran desert rodents).

To investigate the phylogenetic relationship of son-
rod polyomavirus 1 to other PyVs, we downloaded LT
protein sequences of polyomaviruses from https://ccrod.
cancer.gov/confluence/display/LCOTF/Polyomavirus
and aligned them with those from sonrod polyomavirus
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1, using MAFFT v.7.471 [36]. The LT protein alignment
was used to construct a maximum-likelihood phyloge-
netic tree using PhyML v.3.3.2 [37] with the LG+I+G+F
amino acid substitution model, as determined by Prot-
Test3 v.3.4.2 [38], and with the Shimodaira—Hasegawa-
like approximate likelihood-ratio test (SH-like aLRT;
[37, 39]) for branch support. TreeGraph2 v.2.15.0 [40]
was used to collapse branches with <0.8 aLRT support.
The LT protein phylogeny placed the new polyomavirus
in the genus Betapolyomavirus. The LT proteins of sonrod
polyomavirus 1 forms a monophyletic clade with those
identified in rats (Rattus norvegicus), mice (Mus muscu-
lus), montane akodonts (Akodon montensis), vesper mice
(Calomys tener), common voles (Microtus arvalis), bank
voles (Myodes glareolus), and two human PyVs, KI and
WU, identified in children (Fig. 2).

Investigation of the viral diversity found in wild rodents
is important for expanding our limited knowledge about
DNA viruses and the viral ecology of rodents in general.
In this study, we used a viral metagenomics approach to
identify polyomaviruses in fecal samples from seven wild
rodent species from a wide geographic range on the Baja
California peninsula, Mexico. Few viruses from Sonoran
Desert rodents have been classified [e.g., 41], and, to our
knowledge, this is the first PyV recovered from wild rodents
of the family Heteromyidae.
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