

Catalytic, Sulfur-Free Chain Transfer Agents That Alter the Mechanical Properties of Cross-Linked Photopolymers

Nicholas R. Bagnall, Meredith H. Jones, G. Cole Jernigan, Chase Routt, Lisa C. Dar, and Brady T. Worrell*

Cite This: *J. Am. Chem. Soc.* 2023, 145, 14202–14207

Read Online

ACCESS |

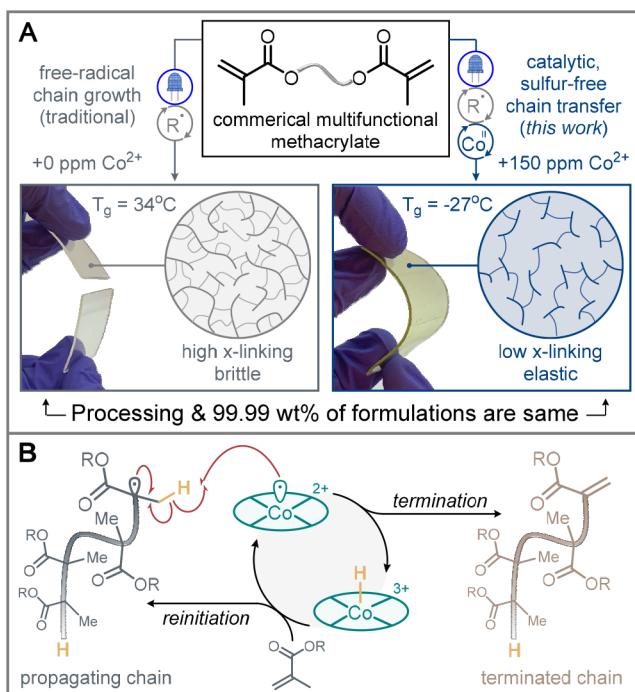
Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Thermosetting materials generated by photopolymerization frequently suffer from significant shrinkage stress, are often brittle, and have a limited range of mechanical properties. Various classes of chain transfer agents (CTAs) have been investigated and developed to reduce the cross-linking density of photopolymers by terminating chains and initiating new chains *in situ*. Although CTAs are successful in manipulating the mechanical properties of photopolymers, they are traditionally consumed during the polymerization and are therefore required in high loadings (up to 20 wt % of the total formulation). Moreover, traditional CTAs frequently contain sulfur, which is malodorous and can create unstable formulations. Presented here is a catalytic, sulfur-free CTA that can be added in ppm quantities to existing commercial monomer feedstocks to create photopolymers similar to those prepared using traditional CTAs, but at 10 000-fold lower loadings. These catalysts, which are based on macrocyclic cobaloximes, were found to tunably reduce the molecular weight of the chain proportional to catalyst loading. It was shown, using only commercial monomers, that this catalyst could reduce the glass-transition temperature (T_g), rubbery modulus (E'_{rubbery}), and stiffness of a cross-linked photopolymer while utilizing identical processing conditions and keeping 99.99 wt % of the formulation the same.

Thermosetting photopolymeric materials are most frequently fabricated from multifunctional (meth)acrylates via a free radical chain-growth polymerization.¹ Because photopolymers can be processed rapidly, in the absence of solvent, and often at room temperature, they have been identified as potentially green alternatives to traditional thermoplastics.² To date, this class of materials has application in protective coatings, dental restoratives,³ biomaterials,⁴ 3D printed parts,⁵ and others. Despite their utility, photopolymers offer practitioners access to only a limited window of mechanical properties. Accordingly, many new chemistries, classes of designer monomers, and additives have been developed and investigated to mitigate these shortcomings but are required in high loadings.^{6–11} Although catalytic methods have been utilized in thermally activated thermosets,^{12–14} no catalytic methods to reduce the cross-linking density (XLD) of a thermosetting photopolymer have been reported. Presented here is a catalytic method to effectively reduce the XLD of a photopolymer under standard, industrially relevant conditions (Figure 1A). This singular catalytic additive is potent (ppm quantities) and was found to reduce the glass-transition temperature (T_g) and rubbery modulus (E'_{rubbery}) of a representative methacrylate-based photopolymeric resin proportional to catalyst loading. We anticipate that given the low catalyst loadings required (over 99.99 wt % of the formulations were identical with and without catalyst) and realistic operating conditions, this catalytic chain transfer agent (CTA) could eventually supersede and supplant existing, consumptive sulfur-based CTAs currently used to modify the mechanical properties of cross-linked photopolymers. Pre-

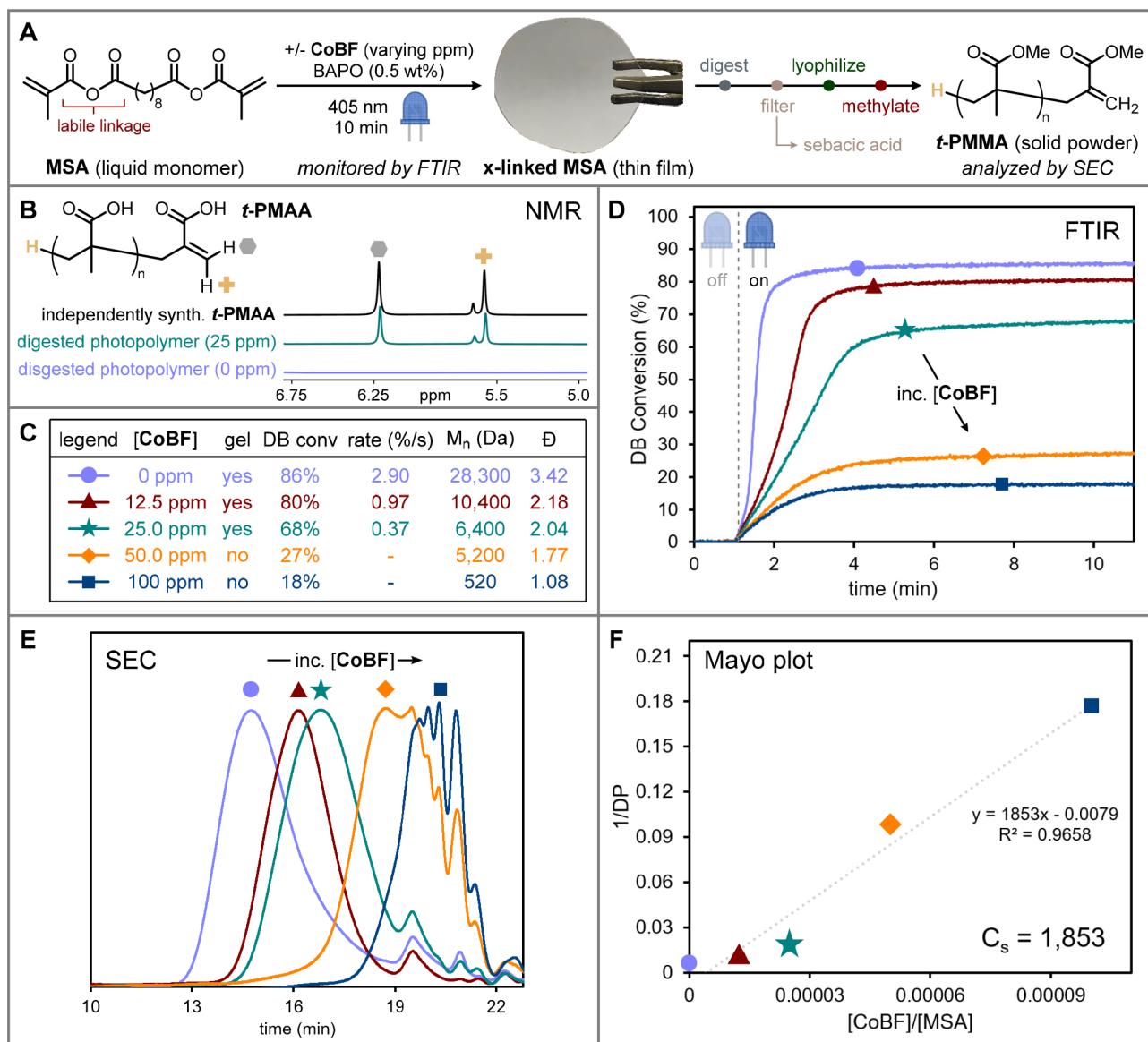

sented here are our findings and initial work toward realizing these long-term goals.

In the realm of free-radical chemistry, CTAs are molecules that terminate a growing polymer chain and create a transient radical-containing small molecule which subsequently creates a new polymer chain.¹⁵ CTAs can therefore be used as sacrificial additives that proportionately reduce the average molecular weight of the internal polymer chain. As sulfur is well-precedented in its capability of interacting with carbon-centered free radicals, many classes of CTAs based around the sulfur atom have been developed.^{16,17} Photopolymers prepared in the presence of sulfur-based CTAs have been shown to create materials with improved mechanical properties compared to those without. Unfortunately, high loadings (20–40 wt %) of these sacrificial CTAs must be added to formulations of multifunctional (meth)acrylates to achieve these benefits.^{18,19} Moreover, many sulfur-containing CTAs can create unstable formulations when added to multifunctional (meth)acrylates and/or require multistep synthesis, reducing the viability and attractiveness of these materials in industrial applications.^{20,21} As such, a catalytic, sulfur-free method to reduce the XLD of thermosetting photopolymers would be of great utility.

Received: April 12, 2023

Published: June 21, 2023

Figure 1. A. Free-radical chain growth photopolymerization leads to highly cross-linked, brittle polymers (*bottom left*), whereas catalytic, sulfur-free chain transfer photopolymerization leads to elastic photopolymers with low cross-linking (*bottom right*). B. Currently accepted mechanism of catalytic chain transfer of methacrylate-based polymers mediated by macrocyclic cobalt(II) complexes.


The capability of cobalt(II) complexes to act as catalytical CTAs was reportedly discovered by accident.²² When Enikolopyan and co-workers were exploring the possibility for a cobalt(II)-porphyrin complex to act as a catalytic redox initiator, they were surprised to find that, although the polymerization reaction was complete by calorimetry, the contents of the ampule remained liquid (high-molecular-weight poly(methyl methacrylate) [PMMA] would traditionally form a glass following polymerization). The liquid polymers were found to be composed of low-molecular-weight PMMA oligomers terminated with an alkene.²³ The currently accepted mechanism of this process is shown in Figure 1B.²⁴ In short, a hydrogen from the propagating polymer chain (*left*) is abstracted from the β -methyl by the $\text{Co}^{(II)}$ complex to form a $\text{Co}^{(III)}$ -hydride and an alkene-terminated polymer chain (*right*). The transient $\text{Co}^{(III)}$ -hydride is presumed to undergo hydrogen atom addition to methacrylate monomer, starting a new propagating chain and regenerating the active $\text{Co}^{(II)}$ catalyst.

Although many macrocyclic cobalt structures have been explored for their capacity to act as catalytic CTAs, cobaloximes^{25,26} with a bridging $-\text{BF}_2-$ group between the glyoxime units, specifically CoBF (N,N',N'',N''' -tetrafluorodiborato bis[μ -(2,3)-butanedionedioximato] cobalt(II)), have been shown to balance high chain-transfer activity, good solubility, and bench stability.^{27,28} Despite this, determining the purity and activity of CoBF as a catalytic CTA is historically challenging. To this end, we have developed a simple spectroscopic technique to reliably assess the activity of a given batch or source of CoBF by matching to chain transfer coefficients (C_s values) obtained from the thermal polymerization of methyl methacrylate (MMA) to a

ratio obtained from two absorption bands in the UV-vis spectra (see section 2.7 in the Supporting Information). Using this technique, different batches of CoBF can be benchmarked against each other spectroscopically.

We next sought to explore the activity of CoBF in the cross-linking photopolymerization of multifunctional methacrylates. We were interested to discover that Anseth and co-workers had previously developed a simple workflow to photopolymerize, degrade, and determine the molecular weight of polymers derived from hydrolytically unstable cross-linked thin films.^{29–31} Accordingly, we have devised a new synthetic route to Anseth's cross-linker MSA (methacrylated sebacic acid) that yields a nonviscous, uncolored oil (see section 2.2 in the Supporting Information). MSA synthesized by this method is bench-stable, and >500 g of this compound has been prepared to date. The ability of cobalt(II) catalysts to reduce XLD within cross-linked photopolymers was confirmed by the following workflow (Figure 2A): varying quantities of recrystallized CoBF (0–100 ppm) were added to MSA, and this resin was photopolymerized to yield an anhydride cross-linked thin film under relevant conditions (0.5 wt % bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide [photoinitiator, BAPO], 365 nm, $\sim 10 \text{ mW/cm}^2$, 10 min). These materials were then digested in refluxing water via hydrolysis of the anhydride linkage to form alkene-terminated poly(methacrylic acid) (*t*-PMAA) and sebacic acid. Upon cooling the solution to room temperature, the sebacic acid was found to precipitate from solution and could be easily filtered; the aqueous solution of *t*-PMAA was then lyophilized to form a free-flowing powder.

Termination of the obtained *t*-PMAA with an alkene was confirmed by comparing ^1H NMR spectra of the digested photopolymer prepared with 25 ppm of CoBF with a sample prepared independently by traditional catalytic chain transfer linear polymerization (see section 2.10 in the Supporting Information);³² both samples showed identical protons in the vinylic region (Figure 2B). Notably, digested photopolymers prepared in the absence of CoBF (0 ppm) had no vinylic protons. Monitoring the kinetics of the photopolymerization by FTIR (Figure 2C) revealed that added CoBF delayed gelation at lower loadings (12.5 and 25 ppm) or fully inhibited gelation at higher loadings (50 and 100 ppm). It was also noted in all circumstances that double bond (DB) conversions were lower in the presence of CoBF , likely due to the formation of chains terminated with a DB that could not be differentiated from monomer (Figure 2C–D). Finally, the obtained *t*-PMAA was converted to alkene-terminated poly(methyl methacrylate) (*t*-PMMA) via reaction with excess trimethylsilyldiazomethane (TMSCl_2N_2) and analyzed by size exclusion chromatography (SEC, CHCl_3 mobile phase).³³ It was discovered that low loadings (ppm quantities) of added CoBF could tunably and significantly reduce the degree of polymerization (DP) and dispersity (D) of the internal polymer (Figure 2D,E). Lower loadings of CoBF (12.5 and 25 ppm) resulted in lower degrees of polymerization and dispersity when compared to a sample without CoBF . Alternatively, samples with higher loadings (50 and 100 ppm) of CoBF did not gel and consisted mostly of small oligomers. Treatment of this SEC data by plotting $1/\text{DP}$ versus $[\text{CoBF}]/[\text{MSA}]$, as described by Haddleton and co-workers, yielded a Mayo plot which revealed a C_s value for recrystallized CoBF of 1853 (Figure 2F).³⁴ Furthermore, CoBF was also shown to be highly active with other commercially relevant

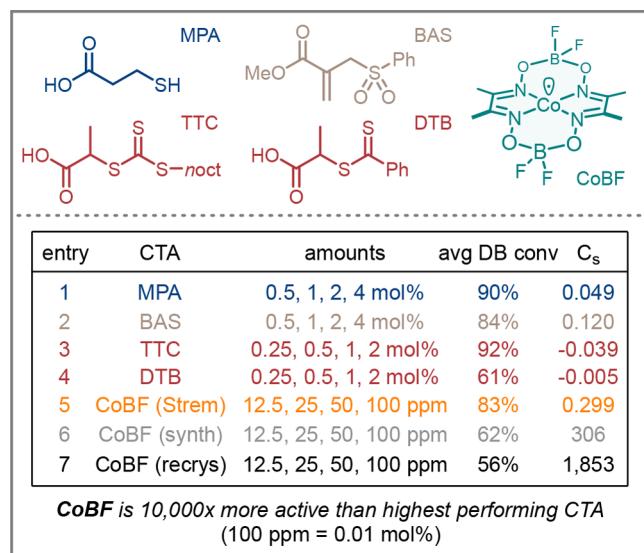


Figure 2. A. Photopolymerization of methacrylated sebacic acid (MSA) into a thin film which can be digested by refluxing in water. Removal of sebacic acid by filtration, lyophilization, and exhaustive methylation resulted in an alkene-terminated poly(methyl methacrylate) (*t*-PMMA), which is directly analyzable by NMR and SEC. B. Overlayed NMRs of *t*-PMMA showing alkene termination of the polymer chain in the presence of CoBF and no alkene termination in the absence CoBF, compared to independently synthesized *t*-PMMA. The small peak at 5.64 ppm was presumed to arise from the isomerization of the alkene internally. C. Representative FTIR and SEC data showing the effect of CoBF loading on the polymerization. D. FTIR kinetic plot of the photopolymerization of MSA in the presence of varying loadings of CoBF (365 nm, ~ 10 mW/cm 2 , light on at 1 min and irradiated continuously). E. SEC plot showing reduced molecular weight with increased loadings of CoBF. F. Mayo plot of SEC data. CoBF was calculated to have a chain transfer coefficient (C_s) of 10^3 .

type I-photoinitiators and photopolymerization wavelengths (see section 5.3 in the [Supporting Information](#)).

Although CoBF is a highly active CTA in the photopolymerization of MSA, we were interested to explore how this catalyst performed when compared under similar conditions with other traditional sulfur-based CTAs. Accordingly, a monofunctional thiol (mercaptopropionic acid, MPA),^{35–37} an addition–fragmentation agent (β -allyl sulfone, BAS),⁶ and two separate reversible addition–fragmentation chain transfer (RAFT) agents (trithiocarbonate, TTC and dithiobenzoate, DTB)³⁸ were added to MSA in varying quantities, photopolymerized, and submitted to a similar workflow as described above. An analysis of the data showed that MPA (entry 1) yielded a high DB conversion (90%) but a low C_s value (10^{-2}).

Liska's addition–fragmentation reagent BAS (entry 2) was found to have similarly high DB conversions (84%) and 1 magnitude higher C_s values (10^{-1}). Interestingly, although the trithiocarbonate (TTC, entry 3) maintained high DB conversions, the dithiobenzoate (DTB, entry 4) was found to both slow the rate of polymerization and limit DB conversion, while both showed negligible chain transfer activity. Further mechanistic exploration of RAFT agents in photopolymers is ongoing. CoBF from commercial sources (entry 5) or as synthesized by Espenson's procedure (entry 6) gave negligible or lower C_s values, respectively, when compared to CoBF recrystallized from methanol (entry 7). From these studies, it can be noted that sufficiently pure CoBF acts as a potent catalytic CTA in photopolymeric materials.

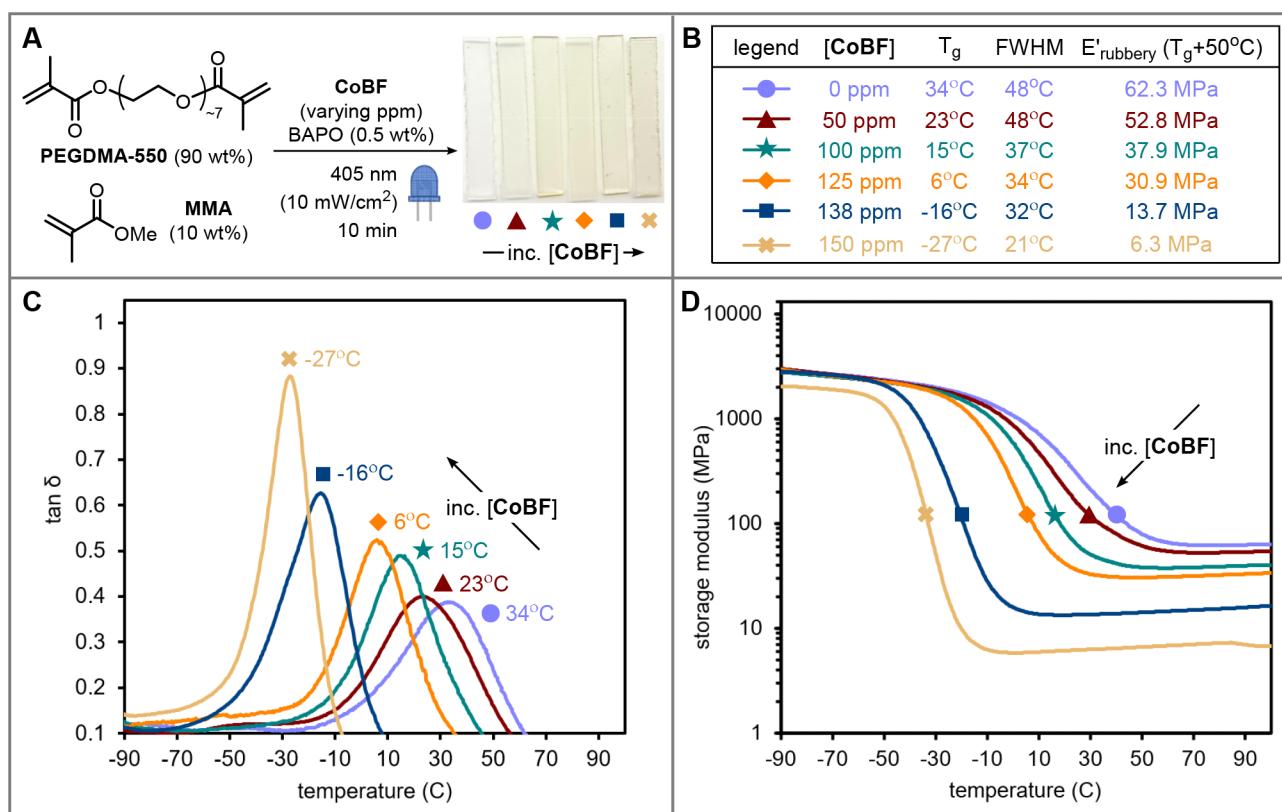


Figure 3. Structures of CTAs explored in the photopolymerization of MSA (top). Amounts of each CTA used to obtain data, average double bond conversion, and calculated C_s values (bottom).

We next investigated the effect of **CoBF** in methacrylate containing photopolymeric formulations derived from commercial monomers. Specifically, to formulations containing commercial poly(ethylene glycol) dimethacrylate (PEGDMA-550, 90 wt %), MMA (10 wt %), and photoinitiator BAPO

(0.5 wt %) were added varying amounts of **CoBF** (0–150 ppm), following by photopolymerization (405 nm, ~ 10 mW/cm², 10 min) under standard conditions (Figure 4A).³⁹ Submitting these samples to mechanical testing revealed that increased loadings of **CoBF** resulted in reduced and progressively sharp glass-transition temperatures (T_g), which is indicative of more uniform networks being formed through chain transfer (Figure 4B,C). Moreover, as higher loadings of **CoBF** were employed, the rubbery modulus (E' rubbery), which is determined by the modulus ~ 50 °C above the T_g , was consistently found to be lower, indicating reduced XLD.

It has been shown here that macrocyclic cobalt(II) complexes can act as potent CTAs in cross-linking photopolymerizations. Although this initial work indicates that such a catalyst could open a vast formulation space for practitioners to explore, issues related to this catalyst regarding the rate of polymerization remains unresolved. Likely the addition of exogenous σ -donating ligands,²⁶ the *in situ* reduction of macrocyclic cobalt(III) complexes to active catalysts, or using blends of monomers with orthogonal polymerization units (e.g., acrylates) will alleviate issues related to rate. This work, however, is ongoing in our laboratory. The impact of these catalysts to alter and improve the mechanical performance of commercially relevant photopolymeric materials used in dentistry and 3D printing resins will be explored in due course.

Figure 4. A. Thin films were created by photopolymerizing (405 nm, ~ 10 mW/cm², 10 min) commercial monomers PEGDMA-550 (90 wt %), MMA (10 wt %), photoinitiator BAPO (0.5 wt %), and varying ppm quantities of **CoBF** (0–175 ppm). Little color difference can be noted between samples prepared with the lowest (left) and highest (right) loadings of **CoBF**. B. Representative mechanical data of photopolymers prepared in the presence of **CoBF**. C. tan δ curves showing increased **CoBF** loadings result in photopolymers with lower and sharper glass-transition temperatures (T_g). D. Storage modulus curves showing increased **CoBF** loadings result in a reduced modulus in the rubbery plateau.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/jacs.3c03811>.

NMR spectra for all compounds, additional experimental details, materials, and methods including photographs of experimental setups where necessary ([PDF](#))

AUTHOR INFORMATION

Corresponding Author

Brady T. Worrell – Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States; orcid.org/0000-0001-7472-2063; Email: brady.worrell@du.edu

Authors

Nicholas R. Bagnall – Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States

Meredith H. Jones – Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States

G. Cole Jernigan – Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States

Chase Routt – Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States

Lisa C. Dar – Department of Chemistry & Biochemistry, University of Denver, Denver, Colorado 80210, United States

Complete contact information is available at:

<https://pubs.acs.org/10.1021/jacs.3c03811>

Funding

This material is based upon work supported by the National Science Foundation under grant no. 2240141, a PROF grant from the University of Denver (DU), and startup funds from the Department of Chemistry & Biochemistry at DU.

Notes

The authors declare the following competing financial interest(s): A provisional patent on this work has been submitted.

ACKNOWLEDGMENTS

B.T.W. thanks Dr. Matthew McBride, Prof. Gareth Eaton, Prof. Sandra Eaton, and Prof. Brian Michel for helpful scientific discussions related to this work. This paper is dedicated to Professor David Haddleton on the occasion of his 60th birthday.

REFERENCES

- (1) Kaur, M.; Srivastava, A. K. Photopolymerization: A Review. *Journal of Macromolecular Science, Part C* **2002**, *42* (4), 481–512.
- (2) Tehfe, M. A.; Louradour, F.; Lalevée, J.; Fouassier, J.-P. Photopolymerization Reactions: On the Way to a Green and Sustainable Chemistry. *Applied Sciences* **2013**, *3* (2), 490–514.
- (3) Cramer, N. B.; Stansbury, J. W.; Bowman, C. N. Recent Advances and Developments in Composite Dental Restorative Materials. *J. Dent Res.* **2011**, *90* (4), 402–416.
- (4) Felipe-Mendes, C.; Ruiz-Rubio, L.; Vilas-Vilela, J. L. Biomaterials Obtained by Photopolymerization: From UV to Two Photon. *emergent mater.* **2020**, *3* (4), 453–468.
- (5) Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. *ACS Appl. Polym. Mater.* **2019**, *1* (4), 593–611.
- (6) Gorsche, C.; Griesser, M.; Gescheidt, G.; Moszner, N.; Liska, R. β -Allyl Sulfones as Addition–Fragmentation Chain Transfer Reagents: A Tool for Adjusting Thermal and Mechanical Properties of Dimethacrylate Networks. *Macromolecules* **2014**, *47* (21), 7327–7336.
- (7) Ligon, S. C.; Seidler, K.; Gorsche, C.; Griesser, M.; Moszner, N.; Liska, R. Allyl Sulfides and α -Substituted Acrylates as Addition–Fragmentation Chain Transfer Agents for Methacrylate Polymer Networks. *J. Polym. Sci., Part A: Polym. Chem.* **2016**, *54* (3), 394–406.
- (8) Peer, G.; Eibel, A.; Gorsche, C.; Catel, Y.; Gescheidt, G.; Moszner, N.; Liska, R. Ester-Activated Vinyl Ethers as Chain Transfer Agents in Radical Photopolymerization of Methacrylates. *Macromolecules* **2019**, *52* (7), 2691–2700.
- (9) Moszner, N.; Salz, U. Recent Developments of New Components for Dental Adhesives and Composites. *Macromol. Mater. Eng.* **2007**, *292* (3), 245–271.
- (10) Moraes, R. R.; Garcia, J. W.; Barros, M. D.; Lewis, S. H.; Pfeifer, C. S.; Liu, J.; Stansbury, J. W. Control of Polymerization Shrinkage and Stress in Nanogel-Modified Monomer and Composite Materials. *Dental Materials* **2011**, *27* (6), 509–519.
- (11) Braga, R. R.; Ballester, R. Y.; Ferracane, J. L. Factors Involved in the Development of Polymerization Shrinkage Stress in Resin-Composites: A Systematic Review. *Dental Materials* **2005**, *21* (10), 962–970.
- (12) Kurmaz, S. V.; Perepelitsina, E. O. Cross-Linking Radical Polymerization of Di(Meth)Acrylates in the Presence of Cobalt(II) Porphyrin. *Russ. Chem. Bull.* **2006**, *55* (5), 835–844.
- (13) Kurmaz, S. V.; Perepelitsina, E. O.; Bubnova, M. L.; Estrina, G. A. High-Efficiency Approach to Control Network Structure Formation in the Cross-Linking Radical Copolymerization of Ethylene Glycol Dimethacrylate. *Mendelev Commun.* **2004**, *14* (3), 125–127.
- (14) Kurmaz, S. V.; Bubnova, M. L.; Perepelitsina, E. O.; Estrina, G. A. Macromolecular Design of the Network Structure of Copolymers of Ethylene Glycol Dimethacrylate with Methyl Methacrylate Using the Catalytic Chain Transfer Reaction. *e-Polym.* **2004**, *4* (1), 047.
- (15) Radical Chain Polymerization. In *Principles of Polymerization*; John Wiley & Sons, Ltd, 2004; pp 198–349. DOI: [10.1002/047147875X.ch3](https://doi.org/10.1002/047147875X.ch3).
- (16) Bingham, N. M.; Abousalman-Rezvani, Z.; Colling, K.; Roth, P. J. Thiocarbonyl Chemistry in Polymer Science. *Polymer Chemistry* **2022**, *13* (20), 2880–2901.
- (17) Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Thiyl Radicals in Organic Synthesis. *Chem. Rev.* **2014**, *114* (5), 2587–2693.
- (18) Ligon-Auer, S. C.; Schwentenwein, M.; Gorsche, C.; Stampfli, J.; Liska, R. Toughening of Photo-Curable Polymer Networks: A Review. *Polym. Chem.* **2016**, *7*, 257.
- (19) Seidler, K.; Griesser, M.; Kury, M.; Harikrishna, R.; Dorfinger, P.; Koch, T.; Svirkova, A.; Marchetti-Deschmann, M.; Stampfli, J.; Moszner, N.; Gorsche, C.; Liska, R. Vinyl Sulfonate Esters: Efficient Chain Transfer Agents for the 3D Printing of Tough Photopolymers without Retardation. *Angew. Chem., Int. Ed. Engl.* **2018**, *57* (29), 9165–9169.
- (20) Esfandiari, P.; Ligon, S. C.; Lagref, J. J.; Frantz, R.; Cherkaoui, Z.; Liska, R. Efficient Stabilization of Thiol-Ene Formulations in Radical Photopolymerization. *J. Polym. Sci., Part A: Polym. Chem.* **2013**, *51* (20), 4261–4266.
- (21) Belbakra, Z.; Cherkaoui, Z. M.; Allonas, X. Photocurable Polythiol Based (Meth)Acrylate Resins Stabilization: New Powerful Stabilizers and Stabilization Systems. *Polym. Degrad. Stab.* **2014**, *110*, 298–307.
- (22) Gridnev, A. The 25th Anniversary of Catalytic Chain Transfer. *J. Polym. Sci., Part A: Polym. Chem.* **2000**, *38* (10), 1753–1766.
- (23) Cacioli, P.; Hawthorne, D. G.; Johns, S. R.; Solomon, D. H.; Rizzardo, E.; Willing, R. I. The Detection of Preferred Conformations in Oligomers of Methyl Methacrylate in Solution by 1 H n.m.r. 2D-Correlation Spectroscopy. *J. Chem. Soc., Chem. Commun.* **1985**, No. 19, 1355–1356.

(24) Kukulj, D.; Davis, T. P. Mechanism of Catalytic Chain Transfer in the Free-Radical Polymerisation of Methyl Methacrylate and Styrene. *Macromol. Chem. Phys.* **1998**, *199* (8), 1697–1708.

(25) Gridnev, A. A. Features of the Radical Polymerization of Styrene and Methacrylates in the Presence of Cobalt-Oximes. *Polymer Science U.S.S.R.* **1989**, *31* (10), 2369–2376.

(26) Janowicz, A. Molecular Weight Control in Free Radical Polymerizations. U.S. Patent US4,886,861, 1989.

(27) Janowicz, A. Cobalt(II) Chelates as Chain Transfer Agents in Free Radical Polymerizations. U.S. Patent US4,694,054, 1987.

(28) Slavin, S.; McEwan, K.; Haddleton, D. M. Cobalt-Catalyzed Chain Transfer Polymerization. In *Polymer Science: A Comprehensive Reference*; Elsevier, 2012; pp 249–275.

(29) Anseth, K. S.; Shastri, V. R.; Langer, R. Photopolymerizable Degradable Polyanhydrides with Osteocompatibility. *Nat. Biotechnol.* **1999**, *17* (2), 156–159.

(30) Anseth, K. S.; Quick, D. J. Polymerizations of Multifunctional Anhydride Monomers to Form Highly Crosslinked Degradable Networks. *Macromol. Rapid Commun.* **2001**, *22* (8), 564–572.

(31) Burdick, J. A.; Lovestead, T. M.; Anseth, K. S. Kinetic Chain Lengths in Highly Cross-Linked Networks Formed by the Photo-initiated Polymerization of Divinyl Monomers: A Gel Permeation Chromatography Investigation. *Biomacromolecules* **2003**, *4* (1), 149–156.

(32) Schreur-Piet, I.; Heuts, J. P. A. In Situ Stabilizer Formation from Methacrylic Acid Macromonomers in Emulsion Polymerization. *Polym. Chem.* **2017**, *8* (43), 6654–6664.

(33) Lacík, I.; Stach, M.; Kasák, P.; Semák, V.; Uhelská, L.; Chovancová, A.; Reinhold, G.; Kilz, P.; Delaittre, G.; Charleux, B.; Chaduc, I.; D'Agosto, F.; Lansalot, M.; Gaborieau, M.; Castignolles, P.; Gilbert, R. G.; Szablan, Z.; Barner-Kowollik, C.; Hesse, P.; Buback, M. SEC Analysis of Poly(Acrylic Acid) and Poly(Methacrylic Acid). *Macromol. Chem. Phys.* **2015**, *216* (1), 23–37.

(34) Haddleton, D. M.; Maloney, D. R.; Suddaby, K. G.; Muir, A. V. G.; Richards, S. N. Catalytic Chain Transfer Polymerisation (Cctp) of Methyl Methacrylate: Effect of Catalyst Structure and Reaction Conditions on Chain Transfer Coefficient. *Macromol. Symp.* **1996**, *111* (1), 37–46.

(35) Cramer, N. B.; Bowman, C. N. Kinetics of Thiol–Ene and Thiol–Acrylate Photopolymerizations with Real-Time Fourier Transform Infrared. *J. Polym. Sci., Part A: Polym. Chem.* **2001**, *39* (19), 3311–3319.

(36) Cramer, N. B.; Davies, T.; O'Brien, A. K.; Bowman, C. N. Mechanism and Modeling of a Thiol–Ene Photopolymerization. *Macromolecules* **2003**, *36* (12), 4631–4636.

(37) Cramer, N. B.; Reddy, S. K.; O'Brien, A. K.; Bowman, C. N. Thiol–Ene Photopolymerization Mechanism and Rate Limiting Step Changes for Various Vinyl Functional Group Chemistries. *Macromolecules* **2003**, *36* (21), 7964–7969.

(38) Bobrin, V. A.; Zhang, J.; Corrigan, N.; Boyer, C. The Emergence of Reversible–Deactivation Radical Polymerization in 3D Printing. *Advanced Materials Technologies* **2023**, *8* (5), No. 2201054.

(39) Yakacki, C. M.; Shandas, R.; Safranski, D.; Ortega, A. M.; Sassaman, K.; Gall, K. Strong, Tailored, Biocompatible Shape-Memory Polymer Networks. *Adv. Funct. Mater.* **2008**, *18* (16), 2428–2435.