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_ INVERSE PROBLEMS FOR NONLINEAR MAGNETIC
SCHRODINGER EQUATIONS ON CONFORMALLY TRANSVERSALLY
ANISOTROPIC MANIFOLDS

KATYA KRUPCHYK AND GUNTHER UHLMANN

We study the inverse boundary problem for a nonlinear magnetic Schrddinger operator on a conformally
transversally anisotropic Riemannian manifold of dimension » > 3. Under suitable assumptions on
the nonlinearity, we show that the knowledge of the Dirichlet-to-Neumann map on the boundary of the
manifold determines the nonlinear magnetic and electric potentials uniquely. No assumptions on the
transversal manifold are made in this result, whereas the corresponding inverse boundary problem for the
linear magnetic Schrodinger operator is still open in this generality.

1. Introduction and statement of results

Let (M, g) be a smooth compact oriented Riemannian manifold of dimension n > 3 with smooth boundary.
Let A e C*®(M, T*M) be a 1-form with complex-valued C* coefficients, and let

dy=d+iA:C®(M)— C¥M, T*M),

where d : C*°(M) — C*°(M, T*M) is the de Rham differential. We define the formal Lz—adjoint of dy,
dy:CO(M, T*M) — C*(M), as

(dau, V) p20p.remy = W, d3V) 2041y, U E C8°(Mim), vE Cgo(Mim, T*M™),

where M™™ = M \ M stands for the interior of M. Here and in what follows, when u, v € C*(M),
we write

(M, U)LZ(M) = / uv dVg
M

for the natural L?-scalar product, where dV, is the Riemannian volume element on M. Similarly, when
o, B e C®(M, T*M) are 1-forms, we define the L?-scalar product

(a, ﬁ)LZ(M,T*M):/M<O" B)edVe(x),

where (-, - ), is the pointwise scalar product in the space of 1-forms induced by the Riemannian metric g.
In the local coordinates (xj, ..., X,), in which @ = 27:1 ajdxj, p= Z;’zl Bjdxj, and (g’%) is the

MSC2020: 35R30.

Keywords: inverse boundary problem, nonlinear Schrodinger equation, conformally transversally anisotropic manifold, Gaussian
beams.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.


http://msp.org/apde/
https://doi.org/10.2140/apde.2023.16-8
https://doi.org/10.2140/apde.2023.16.1825
http://msp.org
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/

1826 KATYA KRUPCHYK AND GUNTHER UHLMANN

matrix inverse of (gjx) with g = Z?,k:l gjk dx;j dxy, we have

n
(o, Bl =Y &'*a;pr.
jk=1
We also have
di=d*—i(A, ),

In local coordinates, we see that

n
d*v=—"Y"[g|""*0, (Ig"* ¢/ ve), (1-1)
jok=1

where [g| = det(gjx) and v = Z}T:l

In this paper we shall consider 1-forms and scalar functions depending holomorphically on a parameter
z € C. Specifically,let A: M x C— T*M and V : M x C +— C satisfy the following conditions:

Uj dxj.

(A;) The map C > z+ A(-, z) is holomorphic with values in CVY (M, T*M), the space of 1-forms with
complex-valued C LI(M) coefficients.

(Vi) The map C > z+ V (-, z) is holomorphic with values in chi(M).
(Vi) V(x,0)=0, for all x € M.

Here C!:1(M) is the space of C! functions on M with a Lipschitz gradient.
It follows from (A;), (V;), and (V;;) that A and V can be expanded into the power series

00 k
Ax,z) = ZAk(x)%, Ar(x) := ¥ A(x,0) e CHN (M, T*M), (1-2)
k=0 ’

converging in the C"! (M, T*M) topology, and
Vix,2) =) Vi) Ve =0tV (x, 00 € €M (M), (1-3)
k=1 )

converging in the C!*!(M) topology.
Let us introduce the nonlinear magnetic Schrédinger operator defined by

Lyyu= dh dac.wu+V(-,u)
=—Agu+d (A, wu) —i(AC-,u),du)g + (AC-,u), AC-,u)qu+ V(- ,u), (1-4)
for u € C°°(M). Notice that the first-order linearization of L 4 v is the standard linear magnetic Schrodinger
operator d}od,q0 + Vj. Furthermore, we also assume that Ao € C*°(M, T*M), V; € C*°(M), and that
(i) 0is not a Dirichlet eigenvalue of the operator d}od A0+ V1.
Consider the Dirichlet problem for the nonlinear magnetic Schrédinger operator
{LA,VM =0 in M™,

1-5
ulamy = f. (1)
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It is shown in Theorem B.1 that under the above assumptions, there exist § > 0 and C > 0 such that when
feBs(M) :={f € C>*OM): | fllcreamy < 8}, O <o < 1, the problem (1-5) has a unique solution
U=uysé€ C%%(M) satisfying lullc2epry < C8. Here C>%(M) stands for the standard Holder space of
functions on M. Associated to the problem (1-5), we define the Dirichlet-to-Neumann map

Aay f=0duslom, (1-6)

where f € Bs(dM) and v is the unit outer normal to the boundary.

The inverse problem that we are interested in is whether the knowledge of the Dirichlet-to-Neumann
map A 4 v determines the nonlinear magnetic and electric potentials, A and V, respectively.

When A =0 and V (x, z) = Vi(x)z, the inverse problem for the linear Schrodinger operator —Ag + V;
is related to the Calder6n problem, which has been the object of intense study but remains open in the
case of a general smooth Riemannian manifold (M, g) of dimension n > 3 with smooth boundary. Let us
mention that the unique determination of the potential V| from the knowledge of the Dirichlet-to-Neumann
map Aoy, was established in [Sylvester and Uhlmann 1987] in the Euclidean setting, in [Isozaki 2004]
for hyperbolic manifolds, and in [Kohn and Vogelius 1984; Lassas and Uhlmann 2001; Lee and Uhlmann
1989] in the analytic case. The uniqueness in the inverse boundary problem for the linear magnetic
Schrodinger operator d}od Ao + V1 up to a suitable gauge transformation was obtained in [Nakamura
et al. 1995] in the Euclidean setting; see also [Krupchyk and Uhlmann 2014]. Going beyond these
settings, the most general uniqueness results were obtained in the case when the manifold (M, g) is
conformally transversally anisotropic and the transversal manifold satisfies some additional assumptions.
Following [Dos Santos Ferreira et al. 2009; 2016], let us recall the definition of a conformally transversally
anisotropic manifold.

Definition 1.1. A compact smooth oriented Riemannian manifold (M, g) of dimension n > 3 with smooth
boundary is said to be conformally transversally anisotropic if there exists an (n—1)-dimensional smooth
compact Riemannian manifold (My, go) with smooth boundary such that M € R x My and g = c(e ® go),
where e is the Euclidean metric on R and c is a positive smooth function on M.

In the case when (M, g) is conformally transversally anisotropic, assuming that the transversal manifold
(My, go) is simple in the sense that the boundary d My is strictly convex and, for any point p € My, the
exponential map exp,, with its maximal domain of definition in 7}, My is a diffeomorphism onto My, the
global uniqueness for the inverse boundary problem for the linear magnetic Schrodinger equation up
to a gauge was proven in [Dos Santos Ferreira et al. 2009]; see also [Krupchyk and Uhlmann 2018].
Note that the geodesic ray transform on functions and 1-forms is invertible on simple manifolds; see
[Anikonov 1978; Muhometov 1977].

These uniqueness results were strengthened in [Dos Santos Ferreira et al. 2016], where the global
uniqueness in the inverse boundary problem for the linear Schrodinger equation was established under the
assumption that the geodesic ray transform on the transversal manifold is injective. Similar results for the
inverse boundary problem for the linear magnetic Schrodinger equation were obtained in [Cekié 2017,
Krupchyk and Uhlmann 2018]. The injectivity of the geodesic ray transform is open in general, and
has only been established under certain geometric assumptions. In particular, the injectivity of the
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geodesic ray transform is proven in [Stefanov et al. 2018; Uhlmann and Vasy 2016] when My has
strictly convex boundary and is foliated by strictly convex hypersurfaces, and in [Guillarmou 2017;
Guillarmou et al. 2021] when My has a hyperbolic trapped set and no conjugate points. As an example of
the latter, one can consider a negatively curved manifold My. We refer to [Dos Santos Ferreira et al. 2020]
where the linearized anisotropic Calderén problem was studied on a transversally anisotropic manifold
under certain mild conditions on the transversal manifold related to the geometry of pairs of intersecting
geodesics.

Turning the attention to inverse problems for nonlinear PDEs, it was discovered in [Kurylev et al.
2018] that nonlinearity can be helpful in solving inverse problems for hyperbolic equations; see also
[Feizmohammadi et al. 2021; Lassas et al. 2018]. Similar phenomena for inverse problems for semilinear
elliptic PDEs have been revealed in [Feizmohammadi and Oksanen 2020; Lassas et al. 2021a]; see also
[Krupchyk and Uhlmann 2020a; 2020b; Lai and Zhou 2020; Lassas et al. 2021b]. A common feature of
all of the aforementioned works is that the presence of a nonlinearity allows one to solve inverse problems
for nonlinear equations in cases where the corresponding inverse problem in the linear setting is open.

In particular, the inverse boundary problem for the nonlinear Schrédinger equation

Loyvu=—Aqu+V(,u)=0

on a conformally transversally anisotropic manifold (M, g) of dimension n > 3 was studied in [Feizmo-
hammadi and Oksanen 2020; Lassas et al. 2021a], and the following result was obtained: if V satisfies
the assumptions (V;), (V;;), and

(Vi) 9:V(x,0) =032V (x,0) =0, for all x € M,

then the knowledge of the Dirichlet-to-Neumann map A y determines V in M x C uniquely. Notice
that remarkably there are no assumptions on the transversal manifold in this result while the inverse
problem for the linear Schrodinger equation is still open in this generality. The proof of this result relies

on higher-order linearizations of the Dirichlet-to-Neumann map, which allow one to reduce the inverse
problem to the following density result; see [Lassas et al. 2021a].

Proposition 1.2. Let (M, g) be a conformally transversally anisotropic manifold of dimension n > 3, and
letq e CHY(M). If

/ quiuauzusdVy =0, (1-7)
M

for all harmonic functions u; € C*(M), j=1,2,3,4, then g =0.

The purpose of this paper is to extend the aforementioned result of [Feizmohammadi and Oksanen
2020; Lassas et al. 2021a] to the nonlinear magnetic Schrodinger equation L4 yu = 0 given by (1-4).
To state our result, similarly to the assumption (V;;;) on the potential V, we shall also suppose that the
nonlinear magnetic potential A satisfies

(Ai) A(x,0)=d,A(x,0) =0, for all x € M.

Our main result is as follows.
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Theorem 1.3. Let (M, g) be a conformally transversally anisotropic manifold of dimension n > 3. Let
AD AD - M xC—> T*M and VO, VO : M x C— C satisfy the assumptions (A;), (A;;), and
(Vi), (Vid), (Viiz), respectively. If A 400 vy = A o yo then AV = A® and vV = V@ in M x C.

Remark 1.4. Let us point out that there are no assumptions on the transversal manifold in Theorem 1.3,
whereas the corresponding inverse boundary problem for the linear magnetic Schrédinger operator is still
open in this generality.

Remark 1.5. Notice that as opposed to the inverse boundary problem for the linear magnetic Schrodinger
equation, where one can determine the magnetic potential up to a gauge transformation only, in our
nonlinear setting the unique determination of both potentials is possible, due to the assumptions (A;), (A;;),
and (V;), (Vi;), (Viii), which imply that the first-order linearization of the nonlinear equation is given by
—Agu =0, rather than by the linear magnetic Schrodinger equation.

Similarly to [Feizmohammadi and Oksanen 2020; Lassas et al. 2021a], the proof of Theorem 1.3 relies
on higher-order linearizations of the Dirichlet-to-Neumann map A 4 v, as well as a suitable consequence
of the following density result, which may be of some independent interest.

Proposition 1.6. Let (M, g) be a conformally transversally anisotropic manifold of dimension n > 3, and
let Ae CYY (M, T*M) be a 1-form. If

f (A,d(u1u2u3))gu4dvg 20, (1-8)
M

for all harmonic functions u; € C*(M), j=1,2,3,4, then A=0.

The starting point in the proof of Proposition 1.6 consists of showing that the boundary traces of the
1-form A, as well as of its normal derivative, vanish, as a consequence of the integral identity (1-8). This
allows us to extend A by zero to R x My \ M, while preserving its regularity. The proof of Proposition 1.6
then follows the strategy of the proof of Proposition 1.2 established in [Lassas et al. 2021a]. Specifically,
we construct harmonic functions to be used in (1-8), based on suitable Gaussian beams quasimodes
associated to two nontangential intersecting geodesics on the transversal manifold My. Using the freedom
of working with four harmonic functions, we construct a pair of harmonic functions based on a Gaussian
beam quasimode v and its complex conjugate v, concentrated near one geodesic, and another pair of
harmonic functions based on a Gaussian beam quasimode w and its complex conjugate w, concentrated
near the other geodesic. The product d(vvw)w is supported near the finitely many points of intersections
of these geodesics, and the product does not have high oscillations. This makes it possible to conclude
that A = 0, using both nonstationary as well as stationary phase arguments (the Laplace method).

Remark 1.7. Our regularity assumption on A in Proposition 1.6 is motivated by the fact that the continuity
of the zero extension of A to R x Mo\ M is needed for a rough stationary phase argument and the Lipschitz
continuity of the gradient of the zero extension of A is needed for a nonstationary phase argument in the
proof of Proposition 1.6.

Returning to the proof of Theorem 1.3, let us mention that due to the assumptions (A;;) and (V;;), (Viii),
only the linearizations of the Dirichlet-to-Neumann map of order > 3 become useful when recovering the
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nonlinear potentials A(x, z) and V (x, z). Considering the m-th order linearization, m > 3, leads to the
integral identity

/ ((m+ Di(A, dui - um))gtmsr — (mid*(A) + Viuy - - umi1) dVe =0, (1-9)
M

where A = A,(i)_l — Afj)_ pand V = V,ﬁ,l) — V,f,z), which is valid for any harmonic function u; € C2*(M)
with/=1,...,m+ 1. Setting u; =--- =u,,—3 = 1 in (1-9) gives the identity

(m+1)i/ (A, d(um—otm—1tm))gtm1dV, =f (mid*(A) + V)um—2Um—1tmumi1) dVs.  (1-10)
M M

To proceed, we first show that (1-10) implies that A|53; = 0 and 9,A|3) = 0, and then use a consequence
of Proposition 1.6 to obtain that A = 0; see Corollary 4.1 below. To recover V, we substitute A = 0
in (1-10) and rely on Proposition 1.2.

Remark 1.8. The assumptions (A;), (A;;), (Vi), (Vi;), and (V;;;) in Theorem 1.3 are made precisely so that
the higher-order linearizations of the Dirichlet-to-Neumann map A 4 v lead to the integral identities (1-9)
involving at least four harmonic functions, and the freedom of working with four harmonic functions
allows one to solve the inverse boundary problem without any assumption on the transversal manifold;
see also [Lassas et al. 2021a].

Let us point out that inverse boundary problems for the nonlinear magnetic Schrédinger equation in the
Euclidean space, both in the case of full and partial data, have been studied in [Lai and Zhou 2020]. The
density of certain products of gradients of harmonic functions in the Euclidean space has been recently
established in [Carstea and Feizmohammadi 2021], when solving an inverse boundary problem for certain
anisotropic quasilinear elliptic equations.

Finally, let us remark that inverse boundary problems for nonlinear elliptic PDEs have been studied
extensively in the literature. We refer to [Carstea and Feizmohammadi 2021; Carstea et al. 2019;
Feizmohammadi and Oksanen 2020; Hervas and Sun 2002; Isakov and Nachman 1995; Isakov and
Sylvester 1994; Kang and Nakamura 2002; Krupchyk and Uhlmann 2020a; 2020b; Lai and Zhou 2020;
Lassas et al. 2021a; 2021b; Sun 1996; 2004; 2010, Sun and Uhlmann 1997].

The paper is organized as follows. In Section 2 we recall the construction of harmonic functions on
a conformally transversally anisotropic manifold based on Gaussian beams quasimodes constructed on
R x My and localized near nontangential geodesics on the transversal manifold Mj. For the convenience
of the reader, in Section 3 we provide a proof of Proposition 1.6 in a simplified setting. Section 4
is devoted to the proof of Proposition 1.6 in the general case. The proof of Theorem 1.3 occupies
Section 5. Appendix A discusses a standard rough version of stationary phase needed in the proof of
Proposition 1.6. In Appendix B, we show the well-posedness of the Dirichlet problem for the nonlinear
magnetic Schrédinger equation, in the case of small boundary data. The determination of the first-order
boundary traces of a scalar function and a 1-form, via suitable orthogonality relations involving harmonic
functions on the manifold M, is presented in Appendix C. Finally, Appendix D discusses some basic
properties of geodesics which are used in the body of the paper.
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2. Gaussian beams quasimodes and construction of harmonic functions

Let (M, g) be a conformally transversally anisotropic manifold so that (M, g) € (R x My, c(e @ go)).
Let us write x = (x1, x”) for local coordinates in R x M. Note that ¢ (x) = *ax;, o > 0, is a limiting
Carleman weight for —hiA ¢> see [Dos Santos Ferreira et al. 2009].

Letting g = e ® go, we have

Do (A oI = Az 4 g, (2-1)

where

q= —C(n+2)/4Ag(C_(n_2)/4);

see [Dos Santos Ferreira et al. 2016]. Here g € C*°(R x My; R). It follows from (2-1) that in order
to construct harmonic functions on (M, g) based on Gaussian beams quasimodes, we shall need to
have Gaussian beams quasimodes for the Schrodinger operator —A; + g, conjugated by an exponential
weight corresponding to the limiting Carleman weight ¢. Our quasimodes will be constructed on the
manifold R x M and will be localized to nontangential geodesics on the transversal manifold M. A unit
speed geodesic y : [—S1, $2] = My, 0 < S, S < 00, is called nontangential if y (—S}), y(S2) € 9 M),
y(=S1), y(S,) are nontangential vectors to d My, and y(t) € M(i)nt for all —S; <t < Sy; see [Dos
Santos Ferreira et al. 2016]. As in [Lassas et al. 2021a], it will be convenient to normalize our quasimodes
in L*(M), as later we shall have to deal with products of four such quasimodes. We shall need the
following essentially well-known result, see [Feizmohammadi and Oksanen 2020, Section 4.1]; see also
[Dos Santos Ferreira et al. 2016; Lassas et al. 2021a].

Proposition 2.1. Let o > 0, and let Tt = s +iA, s > 1, with . € R fixed. Then for any k e Nand R > 1,
there exist N € N and families of Gaussian beam quasimodes v (-; s), v2(-; 5) € C®°(R x My) such that

le™ ™ (= Ag + @)™ 1 (-5 ) |k xmgymy = OG5,

QTXL (A - —aTx) . =0 _R (2-2)
[e“* " (—Az +q)e V205 ) Ek (1 x mgyimy = O(s ™),

and

0 C5 ) 4 rsmy = O, 10 Cs ) Lexmy = O(D)s™ 278, j=1,2, (2-3)

as s — o0o. Here I C R is an arbitrary bounded interval. The local structure of the quasimodes is as
follows: Let p € y([—S1, S2]) and let t; < --- < tp be the times in [—S1, S2] when y(t;)) = p. In a
sufficiently small neighborhood U of p, the quasimode vj is a finite sum

vilu = v}l) +-e —i—v;P).
Each vj(-l) has the form

ng) _ s(n—2)/88ioct(p(/>a(l), vg) _ S(n—Z)/Seiozr(p(”b(l)’ I=1,...,P,
where ¢ = ) € C®(U; C) satisfies, fort close to 1,

oy =t, Veoy®)=y@), Im(Ve(y®)) >0, Im(V’e)l; >0,
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and a®,b® € C*(R x U) are of the form

N N
a®(x1,t,y: ) = (Z r‘ja}”)x(g), bO(xr, 1, yi5) = <Z r‘jb}l)>x(§>,

j=0 Jj=0

where a(()l) = b(()l) is independent of x| and the potential q,

al’ (1, y) = ald @) + O(ly]), al) (1) £0, forall 1,
al"(xr, 1, ) =al e, +00yD, b, 1, y) =60, 1)+ Oy)).

Here aig (x1,1) = ef(l)(’)fzflo) (x1,1) and bilg (x1,1) = efm(t)l;% (x1, 1), where f(l) is independent of the
potential q, and further we have that &YO) and b%lg satisfy the equations

o~ 1 1 _r0
(mf+m»42=&(—7zf(Ayﬁnpﬂ+cﬁquhnm)

N 1/1 _sa
(B, —i0)b}g = a(ge I (AagaM) =0 — CPqx, 1, 0)>,

where C(()l) = 0 is a constant, independent of the potential q. Here (t, y) are the Fermi coordinates for y
fort closetot;, x € CSO(R”_Z) issuchthat0 < x <1, x =1for|y| < % and x =0 for |y| > l, and
8" > 0 is a fixed number that can be taken arbitrarily small.

Remark 2.2. In the special case when the conformal factor ¢ is equal to 1, we have ¢ =0, g = g, and
€T 6 (—Ag) 0 e = — A, F2ad,, — (@)
Thus, we can take the Gaussian beams quasimodes in (2-2) to be equal, v; = v, and independent of x;.

Next we shall construct harmonic functions on (M, g) based on the Gaussian beams quasimodes of
Proposition 2.1. To that end, we shall use the approach of [Dos Santos Ferreira et al. 2009], based on
Carleman estimates with limiting Carleman weights. The construction is standard, see [Dos Santos Ferreira
et al. 2016; Lassas et al. 2021a], and is presented here for the convenience of the reader only.

Assume, as we may, that (M, g) is embedded in a compact smooth manifold (N, g) without boundary
of the same dimension. Our starting point is the following Carleman estimates for the Schrédinger
operator, which is established in [Dos Santos Ferreira et al. 2009, Lemma 4.3].

Proposition 2.3. Let g € C*°(M). Then given any t € R, we have for all h > 0 small enough and all
u € CO(M™) that

hllullge vy < Cle? " (=R* A+ 12 q)e " ull g vy, € >0. (2-4)
Here H'(N), t € R, is the standard Sobolev space, equipped with the natural semiclassical norm
2 2
el e vy = L= > D) Pull 2y

Using a standard argument, see [Dos Santos Ferreira et al. 2009], we convert the Carleman estimate (2-4)
into the following solvability result.
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Proposition 2.4. Let t € R. If h > 0 is small enough, then for any v € H' (M™), there is a solution
u € H' (M™) of the equation

M (=P A+ R e u=v  in M™
which satisfies
C
el gy iy = - W0l iy -
Here
H' (M™) = {V|ym:V € H(N)}, teR,

with the norm

Il g, (moy = inf IVl A, vy
A0y el V)=V ]y )

Let o > 0, and let
T=s+IiA withlfs:%, reR, X fixed.

In view of (2-1), to construct suitable harmonic functions on (M, g), we shall find complex geometric
optics solution to the equation

(—Az+q)i=0 in M™ (2-5)
having the form

uyp=e"""(w+ry) and i =e (v +12),

where v; and v, are the Gaussian beam quasimodes given in Proposition 2.1, and r; and r, are the
remainder terms. Thus, i is a solution of (2-5) provided that

e_axl/h(—thg _|_ th)eaxl/h(eianlrl) — _eiakxl e—arxl (—thg + th)earxl Ul . (2_6)

For any k € N and R > 1 arbitrarily large, Propositions 2.4 and 2.1 imply that there is r; € H*(M™) such
that

171 g gy < OCTDlle™ ™ (=h> Ag + R @)e*™ il yx (pgimy = ORF),
and therefore, for any K, there is R large enough so that
P aaimy < A5 gt gy = OG).

Similarly, one can construct r,. This together with (2-1) gives the following result concerning the
construction of harmonic functions on (M, g) based on Gaussian beams quasimodes.

Proposition 2.5. Let o > 0, and let t =s +iA, s = 1/h, with A € R being fixed. Forallk, K, and h >0
small enough, there are uy, uy € H*(M™) solutions of —Aguj =0in M™ having the form

uy =D L) and  uy = e e A0y 4 1y),

where vy =v1(-; ), v2=v2(-;5) € C*°(Rx My) are the Gaussian beam quasimodes from Proposition 2.1,
and ry, ry € H*(M™) are such that 7 11 2 (pginty = OHXyash — 0.
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Remark 2.6. Taking k > 17 + 3 and using the Sobolev embedding H*(M™) C C3(M), we see that
uj € C3(M) with

71l 3y = O 5,
ash—0, j=1,2.

3. Proof of Proposition 1.6 in a simplified setting

The proof of Proposition 1.6 will follow along the lines of the proof of [Lassas et al. 2021a, Proposition 5.1].
Before we prove Proposition 1.6 in the general case, let us explain the main ideas in a simplified setting.

Let us assume that each point p € M(i)nt is the unique intersection point of two distinct nontangential
non-self-intersecting geodesics ¢ and 1. Assume furthermore that the conformal factor ¢ equals 1. As we
shall see below, in this simplified setting the continuity of A suffices, and therefore to extend A by 0 to
the continuous form on R x My \ M, we only need to show A|yy = 0. This follows by taking u, = uz =1
in (1-8) and applying Proposition C.3.

In view of Proposition C.5, we see that (1-8) also holds for all harmonic functions u; € C 2 (M),
O<a<l, j=1,...,4.

Lets = 1/h, and let A € R be fixed. Our choice of the harmonic functions below will be similar to
[Lassas et al. 2021a]. Specifically, using Proposition 2.5 and Remark 2.6, we see that there exist harmonic
functions u; € C3(M), j=1,...,4,0on (M, g) of the form

up = e ST (Y4, up = eSTNN (Y 4 y), (3-1)
uz =e (w+rs), ug = e*1(w+ry),

where
I7illcran = OG5, (3-2)

ass —>o00, K> 1l,andv=v(-;s), w=w(-;s)eC>®(My) are Gaussian beams quasimodes concentrating
near the geodesics 1 and y, respectively, constructed in Proposition 2.1; see also Remark 2.2. We have

v(x's 5) = sDBLGHNOED g (1 6y and  w(x'ss) = sT DBV (x5, (3-3)
where
e =t Vo) =i, (Ve =0, (TPl >0,
Yy@) =1, VY@ @) =y@), ImV*¥y()) =0, Im(V*¥)|;q >0,
and
N N
a(t,y;s) = (Zr‘faj)x@), b(z,z;5) = (Zr‘f@)x(ﬁ) (3-5)
j=0 j=0
where

ao(t. y) = ag (1) + Oy, ap(t) #0. forall ¢,
bo(t, z) = apo(t) + O(z]), boo(r) #0, forall .

(3-6)
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Here (¢, y) and (7, z) are the Fermi coordinates for the geodesics n and v, x € CS"([RR”_Z) is such that
O0<x<1, xy=1for |yl < ‘—11 and x = 0 for |y| > 4, and 8’ > 0 is a fixed number that can be taken

arbitrarily small. We also have

Il 4t = lwll L4ty = O, IV llzoeatg) = lwllzoeay) = O 27%),
as s — oo. Similarly, we find that

”S(n—Z)/Sei(S-H)L)(pVa”L4(MO) — ”s(n—2)/86is¢Vb||L4(MO) — O(l),
IVUllLs gy = OCs), IVwiliLs gy = OCs),

VUl Loty = OG0B VW] L) = O TO7),
as s — 00.
Now it follows from (3-1) that

(u1uau3)(x) = e 21755 (Jy () Pw(x') + R(x)),
where

R = |[v|*r3 4+ (W +13) (via + by + r172).
Using (3-2), (3-7), and (3-8), we see that
IRl c1an) = OG™5),
where L is large depending on K. Hence, we have
Ay, (uiupuz) = e 217N (=2 — 5)(Jv[*w + R) + 8y, R],
and therefore, using (3-9), (3-2), and (3-7), we get

A, (inouz)ug = —se 212wl + Opi gy (1),
as s — oo. We also get
g (Urtauz) = e 2P (Jv]Pw) + 3y, (R))

for k =2, ..., n, and therefore, (3-9), (3-2), (3-7), and (3-8) yield
A, (ruouz)ug = e 213, (J*w)® + Opi gy (1),
as s — 0o. Writing A = (A, A’) and using (3-10) and (3-11), we conclude that
(A, d(uruzuz))gus = e 21 (=s Ar|o]?|w]® + (A, dv (01 w) D) gy) + Op1ary (1),
as s — oo. It follows from (1-8) with the help of (3-12) that

f e 2 (—s AP |w]? + (A, de (J0]Pw)D) g)) d Ve = O(1),
M

as s — OQ.

(3-7)

(3-8)

(3-9)

(3-10)

(3-11)

(3-12)

(3-13)
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Extending A by zero to R x My \ M, and denoting the extension again by A, we now see that
A e C(Rx My, T*(R x Myp)) as Alyp = 0. Denoting the partial Fourier transform of A in the x; variable
by AL, X)), we get from (3-13) that

(=s A1 Q2x, )P |w]? 4+ (A 24, ), de ([v*w)D) g) d Vg, = O(1), (3-14)
My
as s — 00. Since v and w can be chosen to be supported in arbitrarily small but fixed neighborhoods

of n and y, respectively, and since n and y only intersect at p, the products |v|2|w|2 and dxr(|v|2w)17)
concentrate in a small neighborhood U of p. Using (3-3) and (3-5), we see that in U,
[P |w]? = "2/ Amettmin) g =22 R¢ (100 12 | bg | + O oo () (1/9))
— S(nfz)/2672x(lm¢+lmz//)ef2k Re(p|a0|2|b0|2 + OLI(MO)(I/S)a (3_15)

and
dx’(|U|2w)w :s(ﬂ—2)/ze—23(1m§0+lmW)e—Z)»Reqﬂ[(is(zidlm(p_i_dv/)(|a0|2|b0|2+OLw(MO)(l/s))

—21(dRe@)|al*|b|*+dy (lal*b)b ]
= 517D/ 2 smetIm)  =2ARe 5. (2 d Tm @ +d ) lag | [bo >+ O L1 (4, (1), (3-16)

as s — oo. Substituting (3-15) and (3-16) into (3-14) and dividing by s!/2, we obtain

s<"—1>/2/ (A1 20, ) +i(A'Qh, ), 2i dIm@+dir) g e PR ag | bo>e ™Y AV, = O(s /2,
v (3-17)
as s — 00, where
¥ =2(Ime+Imy).
It follows from (3-4) that
W(p)=0, d¥(p)=0, V>W¥(p)>0,

where the later inequality is a consequence of the fact that the Hessians of Im ¢ and Im  at p are positive
definite in the directions orthogonal to n and y, respectively.

Let us now denote by z = (zy, ..., 2,—1) the geodesic normal coordinates in (Mg, go) with the origin
at p. Then

20(z) =14+ 0z, (3-18)

see [Petersen 2006, Chapter 2, Section 8, p. 56], and d Vy, = |go ()% dz. Passing to the limit as s — oo
in (3-17) and using the rough version of the stationary phase Lemma A.1, as well as (3-18), we obtain

(—A12%, p)+iA 21, p) (7 (10)))e R |agy () P 1boo(p)I* = O,
where p = y (fy), for all A € R. As ago(p) # 0, boo(p) # 0, and X is arbitrary, we see that
—Ai(x1, p)+iA'(x1, p)(y (1)) =0,

which is equivalent to
(iAr, A)(x1, p)(1, ¥ (1)) = 0. (3-19)
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Here we may replace y (f9) by —y (f9). Thus, (3-19) gives that A (x|, p) = 0, and since the point (x;, p)
is an arbitrary point in R x M, we get A} = 0. Hence, we only need to show that the 1-form A’(x, -)
vanishes on My, knowing that

A'(x1, p)(y (t9)) = 0. (3-20)
To that end, we assume without loss of generality that vy =y (ty) = (1,0, ...,0) € R"~!, and consider
the small perturbations of v; given by
1
n=——=1,¢0,...,0), ..., v-1=—=(,0,...,0,8), (3-21)
1+e2 SV prpe
for € > 0 small. The unit vectors vy, ..., v,_; are linearly independent, and thus, they span the tangent

space T, M. By Proposition D.2, for & > 0 sufficiently small, the unit speed geodesic y), ,; through (p, v)),
j=2,...,n—1,is nontangential between boundary points, does not have self-intersections, and inter-
sects 7 at the point p only. Applying the discussion above with y =y,, ,;, we obtain that A’(x, p)(v;) =0,
Jj=2,...,n— 1. This together with (3-20) gives that A’(x;, p) = 0. The proof of Proposition 1.6 in the
simplified case is complete.

4. Proof of Proposition 1.6 in the general setting

In the case of a general transversal manifold My, the nontangential geodesics y and n might have self-
intersections and may intersect more than in one point, which complicates the proof. To proceed we
shall follow [Lassas et al. 2021a] and introduce additional parameters in the construction of harmonic
functions. Furthermore, we shall implement the presence of the conformal factor ¢ which is assumed to
be equal to 1 in [Lassas et al. 2021a].

Let us proceed to discuss the choice of two nontangential geodesics to be used when constructing
Gaussian beams quasimodes. When doing so let us first observe that arguing as in the proof of Theorem 1.2
of [Salo 2017], we may assume that (My, go) has a strictly convex boundary. An application of [Salo 2017,
Lemma 3.1] gives therefore that there exists a null set E in (Mg, go) such that all points in Mg \ E lie on
some nontangential geodesic joining boundary points. Fix a point yy € M(i)m\E andlety : [—S1, S2] — My,
0 < 81, S2 < 00, be a unit speed nontangential geodesic such that y (0) = yg. Then by Proposition D.1,
moving the point yg along y a little and reparametrizing the geodesic, if necessary, there exists a small
neighborhood W C S, My of wo = y(0) such that for every w € W, w # wy, the unit speed geodesic
n:[—Ti, Tr] > My, 0 < Ty, T, < o0, such that n(0) = yp and 7(0) = w is also nontangential, and y
and 7 do not intersect each other at the boundary of M. Notice that y and n are distinct and are not
reverses of each other. As we shall see below, the fact that y and 5 do not intersect each other at the
boundary of Mj allows us to avoid the use of stationary and nonstationary phase on the boundary of Mj.

By [Lassas et al. 2021a], we know that y and » can intersect only finitely many times. Let us denote by
Pls---5s PN € Mé“‘ the distinct intersection points of  and n. Foreachr, r=1, ..., N, let tl(r) << t}([,rr)
be the times in [—T7}, T5] when n(tj’) = p,, and let rl(r) < e < ‘L'(er) be the times in [—S7, S>] when

y(rj(r)) = p,. Let U, be a small neighborhood of p,, r =1,..., N.
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Choosing harmonic functions. First it follows from Proposition C.5 that (1-8) continues to hold for all
harmonic functions u; € Cz’“(M), O<a<l, j=1,...,4.

Lets>1andlet L >0, A, u € R be fixed. By Proposition 2.5 and Remark 2.6, there are harmonic
functions u; € C 3(M) of the form

Uy = e(S-HH))Cl c—(n—2)/4(v1 +7), Uy = e—(‘s‘+iu)X1C—(n—2)/4(v2 +r), @)
Uy = e‘L(“'HA)x‘c_(”_z)/“(wl +7r3), us= eL(s+iA)x1C*(n72)/4(w2 +r4),
where
Irillcron = OGs ™), (4-2)

ass — 00, K> l,andv; € C*(R x My), j=1,2,and w; € C®(R x Mp), j =1, 2, are the Gaussian
beam quasimodes constructed in Proposition 2.1 and associated to the nontangential geodesics n and y,
respectively, such that

supp(vj(-;s)) C R x small neigh(n) and supp(w;(-;s)) C R x small neigh(y). 4-3)

Notice that here we follow [Lassas et al. 2021a], and the minor differences are as follows: in order to
incorporate the presence of the conformal factor our Gaussian beams quasimodes are constructed on all
of R x My rather than on My as in that work, and the parameters p and A are real.

Let us now recall a local description of the quasimodes v; and w; near the intersection points p, of y
and 7. In doing so, let us fix p to be one of the intersection points p, and let us set U = U,.. In the open
set U, the quasimodes v; are of the form

P
vlu=Y o j=1.2, (4-4)
k=1
where t| < --- < tp are the times in [—T77, T>] when n(#;) = p. Each vfk) and vék) in (4-4) has the form

_ . . (k)
vﬁk) — ((n=2)/8 i(s+iwe a(k),

o) = sDBCH LB = P, (4-5)
where ¢ = %) € C®(U; C) satisfies, for ¢ close to #,
p@) =1, Vo) =@, Im(Ven@) =0, Im(V )| >0, (4-6)

and each a®, p® € C®(R x U) is of the form

N N
—i y —j y
a®(xy, 1. y; s)=<§ T ’a;k)>x(§), bO(x1,1, y15) = (§ T ’b,(-k))x<§>, (4-7)
j=0

Jj=0

where a(()k) = b(()k) is independent of x; and
a1, y) =al) )+ Oy, aly) ) #£0, forall t. (4-8)

Here (2, y) are the Fermi coordinates for » for  close to #, x € C3° (R"2)issuchthat 0 < x <1, x =1
for |y| < % and x =0 for |y| > 1, and 8’ > 0 is a fixed number that can be taken arbitrarily small.
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Furthermore, in U, the quasimodes w; and w; are finite sums

0
wily =Y w, =12, (4-9)
k=1

where 71 < - - - < 7p are the times in [—S, S2] when y (1) = p. Each wgk) and wék) in (4-9) has the form

k) _ s(n—Z)/SeLi(s-i-ik)w(k)c(k)’

w) wit) = sOABLICHIN T g k=1, 0, (4-10)

where each i = w(k) € C®(U:; C) satisfies, for T close to t,
Y@ =1, VY @)=y@), IV @) =0, Im(V¥)lme >0, (4-11)
and each ¢®, d® e C®(R x U) is of the form

N N
_ Z . Z
c(k)(xl, 1,7;8) = (Z T fcj(.k))x (§>, d(k)(xl, T,2;8) = (Z T Jd;k))x (y), (4-12)

j=0 j=0
where c(()k) = dék) is independent of x; and
P, =c) (@ +03z]), (@) #0, forall t. (4-13)

Here (7, z) are the Fermi coordinates for y for ¢ close to ;.
We also have

vl L4y = O(D), VUil 4y = O(s),
lwjll L4y = O(D), Vw;ll L4y = OC(s),
(n=2)/8 (n+6)/8 (4-14)
lvjllLeo(ary = O(s ), IVvjllLeny = OC(s ),
lwjllzery = O "2, I Vw; Lo = O TO/%),
ass —> oo, j=1,2.
Now it follows from (4-1) that
Uyupuz = e(—LS+2i/l,—Li)»)X]C—3(n—2)/4(vl,62w1 + 1’5)’ (4_15)
where
R= r3v vy + (wy +r3)(viry + var +r1rp).
Using (4-2) and (4-14), we get
IRl ciomy = OG™5), (4-16)

where L is large. Hence, we have

Oy (rupuz) = e THFARTLDNL( L5 4 241 — Lin)e "2/ (v 5wy + R)
+ 8y, (N 1w + R) + ¢ TDA@, (vitowr) + 3y, R)],

and therefore, in view of (4-16), (4-2), and (4-14), we get

Ay, (Uitpuz)uy = X WL =D sy Byw o + By, (V1 D2w1)Wa] + Opiany (1), (4-17)
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as s — 0o. We also have from (4-15) that
Ox, (urupu3) = e TLHHUTLIIN[IOTD G (uiTw) + 8y R) + 81, (7P (0192w1 + R,
for k=2, ..., n, and therefore, in view of (4-16), (4-2), and (4-14), we get

Oy, (uiguz)uy = > WD (1w Wa + Op1 ary (1), (4-18)
as s — 00.
For future reference, we also note that

urtauzuy = e LN 07D (4 Gy + Rwy + (v Dawy 4 R)) = Opian(1), 4-19)

as s — 00.
Using (4-17) and (4-18), we obtain
(A, d(uiuouz))qus = X W=EWX (A (= Ls v w2 + 8y, (V1 52w1) W)
+ (A, do(v102w1)) g, W2) + Opian (1), (4-20)

as s — o0.
It follows from (1-8) in view of (4-20) that

fM (A1 (—Lsvy yw; Wy +dy, (V1 D2w1)Wa) + (A, dy (V1 T2w1)) g Wp)e* PEN¥ I gy, = O(1), (4-21)

as s — 0.

Now taking u, =u3 =1 in (1-8) and applying Proposition C.3, we obtain that A|3) =0 and 0,A|5p =0.
Let us extend A by zero to (R x My) \ M and denote this extension by A again. Since A € C1(M, T*M)
and Ay =0, 8,Alsm =0, we see that A € CHH(R x Moy, T*(R x Mg)). Now (4-21) implies that

/ (A1 (—LsviDw Wy + 8y, (Vi Lrw)Wo) + (A", dy (V1 D2w1)) gy W)
Rx My

x H=thxcl=n gy — 0(1), (4-22)
as s — 0. In view of (4-3), (4-22) gives

N
Z / (A1 (—Lsvivw Wy + 8y, (Vi Dow)W2) + (A, dy (V1 V2w1)) g, W2)
Rx U,

r=1

% e2i(,u—L)\)x1c]—n dVg — O(l), (4_23)

as s — 0, where the U, are sufficiently small neighborhoods of the points p, of the intersections of y
and 7. Using (4-4), (4-5), (4-7), (4-10), and (4-12), we obtain that in U,,

V1w iy = s/ Z Z eis%mieq)z’mfa(()k)’rag)’rc(()m)’rc(()j)’r +O0n1axmy1/s),  (4-24)
1<k, <P 1<m,j<Q,
where
Wiy = 90— 7 4 Ly — Ly 7, (4-25)

timj =~ — @ — Loy — a0, (4-26)
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and I C R is a bounded interval. Recall that all a(()k)’r and ¢ are independent of x;. This fact also
implies that
Ox, (V12w W2 = OL1(15py) (1/5)- (4-27)

Using (4-4), (4-5), (4-7), (4-10), and (4-12), we also get that in U,,

deiiw))Wy =s""22 Y N isde®" —de®r + Ldy™")
1<k, <P, 1<m,j<Q;

x ¢ Viimj ¢ Phimj a(k) " (l) rC(()m) e +OLiaxmy (D). (4-28)

Substituting (4-24), (4-27), and (4-28) into (4-23), using that dV, = *dxyd Vo, and dividing (4-23)

172

by s'/~, we obtain

CORSST T e av,=ou 29

r=1 1<k, I<P. 1<m,j<Q,
where

Bl =[—LA P Q(u—L2), ) +i(A " PQu—LA), ) dp® " —dgO7 +Ldy ™) ]

x e%hni g7 g {7 I (D7 (4.30)

Notice that the occurrence of the factor s~/ is natural here, in view of a subsequent application of the
stationary phase method, in its rough version, to the integral in the left-hand side of (4-29).

Choosing L. The argument below follows [Lassas et al. 2021a] closely and is presented here for com-
pleteness and the convenience of the reader only. We claim that L > 0 can be chosen sufficiently large
but fixed so that dWy,, . y (pr) =0 for all points p,, 1 <r < N, if and only if k =/ and m = j. Indeed, it

follows from (4-25) that
VU0 (pr) = (Vo = VeOr 4 Ly ™" — LVy()r)(p,)
=n(t) — () + Ly (z,) — Ly (7). 4-31)

If k=1[and m = j, (4-31) implies that V\Pklmu
nontangential, and therefore not closed, we have y () — y(rj’ )#£0, forallm # j,forallr, 1 <r <N.
Let

(pr) =0forall 1 <r < N. Now since the geodesic y is

o =min{ly(z,) —y@E)|im#j 1<m, j<Q, 1<r<N}>0.

Then in view of the fact that 7 is a unit speed geodesic, it follows from (4-31) that forallr, 1 <r <N,
and for all m # j,
VWt (Pr)l = Lo —2 > 1, (4-32)

provided that L > 3/«. Hence, if d¥[, .(p,) =0 then m = j, and therefore, (4-31) implies that

klmj
VL (pr) = 0(t) —n(t)). (4-33)

This completes the proof of the claim since 7(#;) — 7 (/) #0O forallk #/ and all , 1 <r < N.
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In what follows we choose L > 3/«. Furthermore, it follows from (4-32) and (4-33) that for such L,

there exists 8 > 0 such that
IVUimi(Pr) = B >0, (4-34)

for (k,l,m, j)ye{k,l,m, j): 1<k, I <P, 1<m,j<QOI\{k,I,m,j):k=I[, m=j}, 1 <r<N.
Returning to (4-29), we write the integral there as

[ =50 “/ZZ‘ ooy /B,dm] Yiimi d Vg, Z(IIJFI2 (4-35)

r=1 1<k, I<P. 1<m,j<Q,

_s(n 1)/2 Z Z / Bkkmm lS kkmm dVgO’

1<k<P, 1<m=<Q,

I — g(n=D/2 Z Z / Bklm] Wi dV

1<k#I<P. 1<m#j<Q,

where

(4-36)

Rough stationary phase calculation. Here the analysis is concerned with the integrals /7. It follows
from (4-25) that
W = 20 Am @7 4 LIm ),

and therefore, d\¥y,,,,. (p,) =0, ¥, (p;) =0, and Im VW Wmm (Pr) > 0, where p, € M(‘)nt is the point
of intersection of y and n. Note that U, C M(l)m, and hence, there will be no contributions from the
boundary.

Let us denote by z = (zy, ..., 2,—1) the geodesic normal coordinates in (My, go) with origin at p,.
Writing d Vg, = |go )|V?*dz, applying Lemma A.1, and using (4-30) and (4-26), we obtain that

§—>00

. (n—1)/2 r isy;
lim s . Bipme” Hmm dVe,
r

= Jim st / Bl’c‘kmm (Z)|gO(Z)|1/zeiswkkmm(Z) dz= Cl:kmm Bl:kmm (pr)
neigh(0,R"—1)

§—>00

= Crimm —LA1" ™22 — L1), py) +i LA ™22 — LA, pr) (¥ (th)]
x e 22T GO (p ) L (p) 2, (4-37)

where (zn)(n—l)/z
Cl:kmm = > 0.
(detIm V2, (p,))!/?

Here we also used that
e®(p)y=1; and Y™ (p,) =71,

Thus, we see from (4-36) and (4-37) that

lim 17 = " Y Chpml—LAic" Q@ —LA), p) +iLA'c' ™22 — L1, p) 3 ()]
S—>00
1<k<P, 1=m=Q;

« o2t —2LAT,, la (k)r(pr)l |C(m)r(pr)|2. (4-38)
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Nonstationary phase calculation. Here the analysis is concerned with /7 in (4-36). It follows from
(4-25) that
Wy = @,:lmj +ilme® £itme® 4+ Li Im ™" + Li Tm ¢ 07, (4-39)
where
lilelmj —Re (p(k),r _ Rego(’)” + LRey ™" — [ Rey " e C® (4-40)

is real such that IV\IJklm] (pr)| = IV\IJklmJ (pr)| = B > 0 provided L > 3/« in view of (4-34).
Let us denote by z = (z1, ..., zs—1) the geodesic normal coordinates in (M, go) with origin at p.
Motivated by (4-30) and (4-39), we set

f@) =[=LA 22— L), 2) + (A ™22 — L1), 2)de®" —depDr 4+ Ldy ™", ]
x e%imi|go(2)'/? € €y (My),

and
&(()k),r — ((n=2)/8 ,—sIm <p<k)*’a(()k),r, 6(()m),r — ((n=2)/8 ,—sIm Py C(()m),r' (4-41)
Thus,
B =" / Biymje'* i dVy =s'17 / F@al 74D e e Vi) g7 (4-42)
- U, neigh(0,R"—1)

Note that f is independent of s, and

157 | ooz = O 1ES" N L agey) = O(D), (4-43)

as s — 0o. We next claim that

A (k),r

IVGE " sty = OGY), IIVES sy = O/, (4-44)

as s — oo; see [Lassas et al. 2021a]. Let us recall the argument briefly. It is enough to show the first
bound in (4-44). To that end, we have from (4-41) that

V&(()k),f’ — s(n—Z)/se—s Im(p(k),r (—S(V Im(p(k),r)a(()k),r + Va(()k),r)‘ (4_45)

It suffices to control the first term in the right-hand side of (4-45), and to this end we note that in the
Fermi coordinates (¢, y), associated with the geodesic 1, we have

IVIme® " (2, y)| = O(y]) (4-46)
and
Imo®7" (1, y) > c|y|% (4-47)

for some ¢ > 0; see (4-6). Thus, using (4-46) and (4-47), we get

s =2/ e (7 Tm ’)a("“Hu(Mo)=0(s("‘2>/8s></
y

(k) 14
e 4s Im ) | |4 I ) O(SI/Z)
ly|=<1/2

This bound together with (4-45) shows the first bound in (4-44). Similarly to (4-44), we also have

18%a5™ " sy = O™, 19%E5™ gy = OG™), forall o, (4-48)
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as s — oo. Furthermore, as 8’ > 0 can be chosen as small as we wish, we see that a(k) " and c(k) " have
compact support in U,.
Letting
I = V\Dl’;lmzl \
! |vqjklml] |
we have L(e”qjklmzf) — st Vi Integrating by parts in (4-42), we get
15 s = 5_1/2/ o O L1 (£ (2 > rA(1> 7 m. n(]) ) dz.
neigh(0,R” 1)
where L' = —L — div L. Now in view of (4-40) and (4-43), we see that
172 / %@ (div L) (£ @)a 407 TG raDH 47 = 0117,
neigh(0,R*—1)
and in view of (4-44),
S—1/2/ k,,,,,(z)f(z)v(wk)n(l)rA(m)rA(j) "zl = o),
neigh(0,R” 1)
as s — 00. As f is independent of s, we see, after one integration by parts in (4-42), that 12” kimj = O(1).
Since V f is Lipschitz, we can integrate by parts a second time, and using (4-48), we get
I3 timj = OGs ™12, (4-49)

as s — 00. Notice that it is precisely here that we need the assumption that our 1-form A is an element of
Co (R x My, T*(R x My)).
We get, in view of (4-36) and (4-49),
=071, (4-50)

as s — OQ.

Completion of the proof. Passing to the limit s — oo in (4-29) and using (4-35), (4-36), (4-38), and
(4-50), we obtain

N P O

S SN Gl —L A @ = L), p) +iLAC P @ — L), p) (7 (5)]
r=1 k=1 m=1

x e 22T g () Plegy " (pP = 0. (4-51)

Next we would like to determine each term in the sum in (4-51) separately. To do this, we shall follow
[Lassas et al. 2021a]. First choosing u = (1 — L)X, we get

N P 0O

S LA TR - 2L), pp) +ILAE TR 2L, p) (G (z)]

r=1 k=1 m=1
_ ro__4r k
X Clppume M@ =IOF 80T (2187 (p,) 2 = 0. (4-52)
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It is shown in [Lassas et al. 2021a] that for all L > 1 sufficiently large,
L(ty, — i)+t # L(t,, — ) + 14 (4-53)

when (71, k1, m1) # (r2, ko, my), and fixing L > 3/« large enough, we may assume in what follows
that (4-53) holds. We shall next need Lemma 5.2 from [Lassas et al. 2021a] which can be stated as
follows: let f1, ..., fv € £ (R) be such that for some distinct real numbers ay, ..., ay, one has

N
D fiet =0, reR,
j=1
then f; =---= fx = 0. Applying this result, we get for all r, k, m, A,
(=Aic" ™2 @r(1 =2L), p) +i AP = 2L), p) G G Chimlagy” (P Plegy ™ (p)IP =0,
and as CJ,  #0, aly"" (p,) #0, and ¢ (p,) # 0, we get, taking the inverse Fourier transform in xi,
—Ai(x1, pr) +iA (x1, p) (Y (z,)) =0,

for all x; € R, p,, and 7/,

m*

Since yo was one of the points p,, and y(z,,) = yo, we know

(i A1, AN (x1, y0)(1, ¥ (z,)) = 0. (4-54)

Here we may replace y (z),) by —y(z,,), and thus, (4-54) implies that A;(x, yo) = 0, for all x; € R and
almost all yg € My, and therefore, by continuity, A; = 0. Hence, we are left with proving that the 1-form
A’(x1, -) vanishes on M from the fact that

A'(x1, y0)(y (1)) =0. (4-55)
To proceed we assume without loss of generality that v; := y (7)) =(1,0,...,0) € R”~! and consider its
small perturbations vo, ..., v,—; given by (3-21). The unit vectors vy, ..., v,—1 are linearly independent,

and therefore, they span the tangent space Ty, M. By Proposition D.1, for ¢ > 0 sufficiently small, the
unit speed geodesic yy, v, j =2, ...,n— 1, through (yo, v;) is nontangential between boundary points,
and y and yy, », do not intersect each other at the boundary of M. Applying the discussion above with
n=yand y = yy,,;, we get

A'(x1, y0)(v)) =0, j=2,....,n—1. (4-56)

It follows from (4-55) and (4-56) that the 1-form A’(x1, yo) equals 0, and therefore, A’ =0. This completes
the proof of Proposition 1.6 in the general setting.
In the course of the proof of Proposition 1.6, we also proved the following result.

Corollary 4.1. Let (M, g) be a conformally transversally anisotropic manifold of dimension n > 3. Let
AeCYY (M, T*M) be a 1-form such that Alypy = 0 and 0, A|yp = 0. If

/ (A, d(uiuzusz))gus dVy = O(1),
M

as s — 00, for all harmonic functions u; € c3 (M), l=1,...,4, of the form (4-1), then A = 0.
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5. Proof of Theorem 1.3

Lete =(eq,...,e,) € C", m > 3, and consider the Dirichlet problem (1-5) with

m
f=Y efe. fieC™®@OM), k=1,....m.
k=1

Then for all |¢]| sufficiently small, the problem (1-5) has a unique small solution u( -, &) € C 2@ M), which
depends holomorphically on ¢ € neigh(0, C™); see Theorem B.1.

We shall use an induction argument on m > 3 to show that all the coefficients A,, and V,, in (1-2)
and (1-3), see also (1-5), can be determined from the Dirichlet-to-Neumann map A 4 v given in (1-6).

First, let m = 3, and let us proceed to carry out a third-order linearization of the Dirichlet-to-Neumann
map. Let u; = u;(x, ¢) be the unique small solution of the Dirichlet problem

—Aguj+id* (X3 A (0w /kuy) =i (72, AL () ik /KD, duj),
+(3002, A @k D, 30 AL )@ /D)y + 02 VP 0@k k) =0 in M, (5-1)
uj=¢e1fi+erfrt+efz on dM,

for j =1, 2. Differentiating (5-1) with respect to &/, [ =1, 2, 3, and using that u; (x, 0) =0, we get

) _ :
{—Agvj =0 in M, (52)

v]@ = fi on oM,

where v;l) = 0, Uj|e=0. By the uniqueness and the elliptic regularity for the Dirichlet problem (5-2), we
have that v® := vil) = vg) e C>%(M), | = 1,2, 3; see [Gilbarg and Trudinger 1983, Theorem 6.15].
Applying 9, 9, |¢=0, k.l =1, 2,3, to (5-1), we next get

—Agw*P =0 in M,
! (5-3)

wj(.k’l) =0 on dM,

where w;k’l) = 0g, 05} |¢=0, and therefore, w}k’l) =0forall j=1,2and k,/ =1, 2, 3. Finally, applying

0g, 0, 0gs | e=0 tO (5-1), we obtain the third-order linearization

—Agw; +3id*(AY vV 2@y — i (AY dDv@ @), 4 VD@3 =0 in M, 5-4)
w; =0 on 0M,
where w; = 0, 0;,0¢,u|c—0. Using that
d*(Av) = (d*A)v — (A, dv),, (5-5)
for any 1-form A and a function v, we can rewrite (5-4) as
—Agw; — 4 (AY dDv@u®)), 4+ Gid*(AY) + VI Dp@y® =0 in M, 56
w; =0 on oM.
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The fact that
Ao yo(erfi+erfatesfz)=Asoyvalerfitefr+esfi)
for all small ¢ and all f; € C2*(9M) implies that d,u |y = dyuz|sm. Therefore, an application of

De, De, Dy | e=0 yields d,wy|apr = dywy|yar. Multiplying (5-6) by v € C**(M) harmonic in (M, g) and
applying Green’s formula, we get

/ @i(A, dwPvPv)) 0@ — 3Bid*(A) + V)v V@@ dv, =0, (5-7)
M

for all v® € C>*(M) harmonic in (M, g), I=1,...,4. Here A = Agl) — Aéz) and V = V;l) — V3(2). An
application of Proposition C.4 implies that Ay =0 and 3, A|yy = 0.

Choosing v =u; e C3(M), [=1,...,4,tobe harmonic functions of the form (4-1), and using (4-19),
we first observe that (5-7) implies that

/ (A, d(uiuzusz))gus dVy = O(1),
M

M _

as s — o0. By Corollary 4.1, we get A =0, and therefore, A, f). Substituting A = 0 into (5-7), we

‘7 1 2 3 4 ‘7

for all harmonic functions v) € C>*(M), I =1, ..., 4. Using Proposition 1.2, we obtain that V =0,
and thus, V(l) V(z)
Let m > 4 and assume that

Av=A"=4P fork=2,....m—-2, V=V =V? fork=3...m—-1 (58)

To show that A(l) | = A(z) and V(l) V,,(,z), we shall perform the m-th order linearization of the
Dirichlet-to-Neumann map. To that end, let u; = u;(x, ¢) be the unique small solution of the Dirichlet
problem

—Agutj+id* (7%, AL () @k kDuy) =i 332, AL (Ol / kD), duy),
+(0, A @k /D, 3%, AP ()@ /D)y + 02 Vi 0@k k) =0 in M, (5-9)
uj=81f1+"'+8mfm on dM,

for j =1, 2. We would like to apply ¢, - - 95, |s=0 to (5-9). First we observe that

0 k k
i (A 0 ) S AP0 ) + 3 W)
k=m :

8  k=m+1
is a sum of terms, each of them containing positive powers of u; which vanish when ¢ = 0. The only
term in the expression for o, - - 8gm(V,,(1J )(x)u;” /m!) which does not contain a positive power of u;
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is v,/ )(x)aglu.,- -+ - g, uj. Furthermore, the only term in the expression for

. W
Oeres (’d (A'"1<m—1>'))

which does not contain a positive power of u; is mi d*(A,(dllagl uj -9, u;). The only terms in

Mm—l
€)) J
-9, (AY I qu;
€1 é\m< m—1 (” l)’ u]>g

which do not contain a positive power of u; can be written as (Aﬁ,{)_1 , d(Og,uj - -+ 3¢, uj)),. The expression

m—1

m—2
381...3%(,-61*(214/((1)()6)1 j)—z<ZA(1)(x) J du,> +ZV(1)(x) >
k=2 &

is independent of j =1, 2, in view of (5-8) and the fact that it contains only derivatives of u; of the form

8511 ..... 8lkuj|‘9=0 withk=1,....m—2and¢,,..., & €{e1,...,en}. Here we use the fact that
k k
881 ------ azk”1|€=0 = 8811 ,,,,, g,k”2|s=0
. ) L
fork=1,...,m—1landeg,,...,¢& €{e1,...,&n}. This follows by applying the operators O .ty le=0

to (5-9), using (5-8) and the unique solvability of the Dirichlet problem for the Laplacian.
The terms in the expression for

00 0 uk 00 0 I/t]-(
J
o (<Z AT@ 3 2 A >guj>
k=2

k=2

which do not contain a positive power of u;, only contain AV Ai{) 3> and only derivatives of u; of
the form Bfll ..... e, ujle—owithk=1,...,m—4andg,,..., ¢, € {81, ..., &m}, which are independent of
j=1,2

Hence, the m-th order linearization has the form
—Agw; —|—mid*(A,(,{)_]v(1) gy — i(A’(r{)_] Ld® ... v('”)))g 4y Py =g in M,
w; =0 on M,

where wj = 0;,- - - 0, j|¢=0 and H,, is known and independent of j = 1, 2. Using (5-5), the previous
system can be written as

—Agwj — (m+1)i(AY d@D ..oy 4 mid* (A Y+ VD = |, in M,
w; =0 on dM.

Proceeding as in the case m = 3, we see that

/M((m +1Di(A, d@® - 0™ 0D — (mid*(A) + VoD .ty gV, =0,

for any v® e CZ*“(M) harmonic, /=1, ..., m+1. Here A = AW —A(Z) jand V = V(l) V(z) Setting

m—1
v =... =93 =1 and arguing as in the case m = 3, we complete the proof of Theorem 1.3.
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Appendix A: A rough stationary phase argument

We need the following rough version of the stationary phase; see [Lassas et al. 2021a].

Lemma A.1. Let ¥ € C*°(R"; R) be such that
v(0)=0, v(0)=0, and V') >0. (A-1)

Let V C R" be a sufficiently small neighborhood of zero, and let a € C(V). Then

) 2?2
. )2 —sW(z) _ -
Slggos /Ve a(z)ydz = (det\Iﬂ’(O))l/za(O)' (A-2)
Proof. Taylor expanding the phase function ¥ and using (A-1), we get
W(z) = $W"(0)z-z+0(z]),
and therefore,
V() = clzl?, (A-3)

with some ¢ > 0, for all z € V, a sufficiently small neighborhood of zero. Making the change of variables

7 +> s'/2z in the integral in (A-2) and using the dominated convergence theorem, we obtain that
lim s”/2/ e_slp(Z)a(z) dz = lim e_“'\l'(z/sl/z)a(z/sl/z) dz
§—> 00 v s—o00 [o12y

v Q)2
— W7 (0)z-z/2 —
= (f . dz)a(O) = (det\IJ”(O))l/za(o)'

Here we use the following consequence of (A-3),
xgave Y ag/s ) < 0(e ™ e L @),

where x,1,2y is the characteristic function of the set s'/2V. Thus, (A-2) follows. 0

Appendix B: Well-posedness of the Dirichlet problem
for a nonlinear magnetic Schrodinger equation

The purpose of this appendix is to show the well-posedness of the Dirichlet problem for a nonlinear
magnetic Schrodinger equation with small boundary data. The argument is standard, see [Krupchyk and
Uhlmann 2020a; Lassas et al. 2021a], and is given here for completeness and the convenience of the
reader.

Let (M, g) be a smooth compact Riemannian manifold of dimension n > 2 with smooth boundary.
Let C5%(M) stand for the Holder space on M, where k € NU {0} and 0 < o < 1; see [Hérmander 1976,
Appendix A]. Let us note that C¥*(M) is an algebra under pointwise multiplication, and

k
luvllcraary < CUlullcraanllvliemn + lullzeanlvlicren),  u, v e CH*(M); (B-1)

see [Hormander 1976, Theorem A.7].
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Consider the Dirichlet problem for the nonlinear magnetic Schrédinger operator
L A, vu = 0O inM y
u=f on oM,
where L4 v is given in (1-4). Here the 1-form A mapping M x C to T*M and the function V mapping
M x C to C satisty the following conditions:

(B-2)

(A) The map C> z+> A(-, z) is holomorphic with values in C Le(Mm, T*M), the space of 1-forms with
complex-valued C L (M) coefficients.

(Vi) The map C > z+— V (-, z) is holomorphic with values in C*(M).
(Vi) V(x,0)=0, for all x € M.

The condition (V;;) guarantees that u = 0 is a solution to (B-2) when f = 0. It follows from (A), (V;),
and (V;;) that A and V can be expanded into the power series

00 k
Ax,7) = ZAk(x)%, Ar(x) := 0FA(x, 0) € C*(M, T*M), (B-3)
k=0 ’

converging in the C"*(M, T*M) topology, and

o0 k
V(x,z):ZVk(x)%, Vi(x) := afV(x,O)eC“(M), (B-4)
k=1 ’

converging in the C*(M) topology. We also assume that Ag € C®°(M, T*M) and V| € C*°(M). Let us
assume furthermore that

(1) 0 1is not a Dirichlet eigenvalue of the operator dji da, + V1.
0
Under all of the assumptions above, we have the following result.

Theorem B.1. There exist § > 0 and C > 0 such that for any
f€Bs(OM):={f € C**@OM) : || fllczaom) <8},
the problem (B-2) has a solutionu =uy € C 2.9 (M) which satisfies

lullczeary < Clf I c2eom-
The solution u is unique within the class {u € C 2A(M) : ||u | c2e(my < €8} and it depends holomorphically
on f € Bs(OM). Furthermore, the map
Bs(0M) — C*(M),  f > duuyslom
is holomorphic.

Proof. We shall follow [Lassas et al. 2021a], see also [Krupchyk and Uhlmann 2020a], and in order to
prove this result we shall rely on the implicit function theorem for holomorphic maps between complex
Banach spaces; see [Poschel and Trubowitz 1987, p. 144]. To that end, we let

By =C>*(OM), B,=C**M), and B3=C%M)x C>*(OM),
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and introduce the map
F:By x By — B3, F(f,u)=(Lavu,ulym— f). (B-5)

Let us verify that the map F indeed enjoys the mapping properties given in (B-5). To that end, let
u € C>%(M) and note first that —Agu € C*(M). Let us check that A(-,u(-)) € Clh*(M, T*M). By
Cauchy’s estimates, the coefficients Ax in (B-3) satisfy

k!
Akl crem,repmy < RE Sup IAC, Dllcrer,rmy, R >0, (B-6)
|zI=R

forall k =0,1,.... Using (B-1) and (B-6), we obtain

[ k

. = IIMIICW(M) Sup IAC. Dllcrem,mm) (B-7)
CLo(M,T*M) Izl
forallk =0, 1,.... Choosing R =2C||u| c1.«(sr), it follows from (B-7) that the series Z;?o:o Ar(x)u*/k!
converges in C*(M, T*M), and thus, A(-, u(-)) € C"*(M, T*M). Similarly, V (-, u(-)) € C*(M);
see also [Krupchyk and Uhlmann 2020a]. Hence, using (1-4), we see that L4 yu € C*(M).

We next claim that the map F in (B-5) is holomorphic. To this end, we first note that F' is locally
bounded as F is continuous in ( f, #). Thus, it suffices to show that F is weakly holomorphic; see [Pdschel
and Trubowitz 1987, p. 133]. In doing so, let (fo, ug), (f1, 1) € B1 X By, and let us prove that the map

A= F((fo, uo) +A(f1,u1))

is holomorphic in C with values in Bs. It suffices to check that the map A +— A(x, ug(x) + Aui(x)) is
holomorphic in C with values in C'%(M, T*M), as the fact that the map A — V (x, uo(x) 4+ Auj(x)) is
holomorphic in C with values in C*(M) can be proved similarly; see [Krupchyk and Uhlmann 2020a].
The holomorphy of A — A(x, ug(x) + Aui(x)) follows from the fact that in view of (B-7), the series

o0

Ak k

E —(Mo + Auy)
k!

k=0

converges in C'%(M, T*M), locally uniformly in A € C.
We have F (0, 0) =0, and the partial differential 9, F (0, 0) : B, — B3 is given by

0,F (0, 0)v = (d% dayv+ Viv, vlam).

By the assumption (i), we have that the map d, F (0, 0) : B, — B3 is a linear isomorphism; see [Gilbarg
and Trudinger 1983, Theorem 6.15].

An application of the implicit function theorem, see [Poschel and Trubowitz 1987, p. 144], allows
us to conclude that there exists § > 0 and a unique holomorphic map S : Bs(dM) — C>*(M) such
that S(0) =0 and F(f, S(f)) =0 for all f € Bs(dM). Setting u = S(f) and noting that S is Lipschitz
continuous with S(0) = 0, we see that

lullcze gy < ClIf lc2e@om- O
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Appendix C: First-order boundary determination of potentials

When proving Theorem 1.3 and Proposition 1.6, an important step consists in determining the boundary
values, as well as the normal derivatives, of a scalar function and a 1-form, via suitable orthogonality
relations involving harmonic functions on the manifold. The purpose of this section is to carry out this step.
In doing so, we shall rely on the methods developed in [Brown 2001; Brown and Salo 2006], with suitable
modifications in [Guillarmou and Tzou 2011, Appendix], where the boundary values of a scalar potential
and a vector field are recovered. The main contribution of this section is that we push the methods a
little further, in order to recover the first-order normal derivatives of the potential and the 1-form under
limited regularity assumptions; see also [Alessandrini et al. 2018]. We would like to mention the works
[Brown and Salo 2006; Garcia and Zhang 2016, Appendix], where the gradient of a C'-conductivity at
the boundary of a Euclidean domain is recovered; see also [Alessandrini 1990; Caro and Garcia 2017;
Caro and Merofo 2020]. We refer to [Kohn and Vogelius 1984; Lee and Uhlmann 1989; Nakamura et al.
1995; Sylvester and Uhlmann 1988], where the entire Taylor series at the boundary of C*°-coefficients
are recovered.

To proceed, we shall need the following density result for the space of L?-harmonic functions; see also
[Choe et al. 2004, Corollary 2.14] for a different approach in the Euclidean setting.

Proposition C.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n > 2 with smooth
boundary. The set of harmonic functions on M™ that are smooth up to the boundary is dense in the space
of L?-harmonic functions in the L* topology.

Proof. Let u € L>(M) be harmonic, i.e., —A ¢u=01in M™. Then by the partial hypoellipticity of the
Laplacian, see [Eskin 2011, Theorem 26.1], we have f = u|sy € H~'/2(dM). There exists therefore
a sequence f; € C*(0M), j=1,2,...,suchthat || fj — fllg-120m) — 0, as j — oo. The Dirichlet
problem 4
{—Aguj =0 in M™,
ujlom = fj,

has a unique solution u; € H (M), and by the boundary elliptic regularity, u ; € C>(M). By [Eskin 2011,
Theorem 26.3], we get

luj —ullpzony < CNSj— flla-120m) = 0,
as j — oo, establishing the proposition. O

Our first boundary determination result follows. While this result is not used in this work, the construc-
tion of a family of harmonic functions given in the proof is needed for the proof of Proposition C.3 below.
Furthermore, we state this result and provide the proof for completeness and the convenience of the reader.

Proposition C.2. Let (M, g) be a conformally transversally anisotropic manifold of dimension n > 3,
andlet V. e CHY(M). If

/ Vu1u2dvg=0, (C—])
M

for all harmonic functions uy, uy € C°(M), then V |y =0 and 9,V |3y = 0.
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Proof. By Proposition C.1, we see that (C-1) continues to hold for all harmonic functions u, u, € L*(M).
To proceed, we shall follow [Brown 2001; Brown and Salo 2006], constructing a family of functions,
whose boundary values have a highly oscillatory behavior while becoming increasingly concentrated near
a given point on the boundary of M. To convert such functions to harmonic functions, we follow the idea
of [Guillarmou and Tzou 2011, Appendix] and rely on a Carleman estimate for the conjugated Laplacian
with a gain of two derivatives, established in [Salo and Tzou 2009, Lemma 2.1] in the Euclidean case
and in [Krupchyk and Uhlmann 2018, Proposition 2.2] in the conformally transversally anisotropic case.

Let xo € 9M and let (xy, ..., x,) be the boundary normal coordinates centered at xg so that in these
coordinates, xo = 0, the boundary dM is given by {x, = 0}, and M™ is given by {x, > 0}. We have, see
[Lee and Uhlmann 1989],

n—1

g, x) = Y gap(x) dxy dxg+ (dx,)’, (C-2)
o, B=1
and we may also assume that the coordinates x" = (x, ..., x,_1) are chosen so that
gl 0 =8 +0(x'P), 1<a B<n-—1; (C-3)

see [Petersen 2006, Chapter 2, Section 8, p. 56]. Therefore,

P (X, xy) = P (x', 0) + O(x,) = 8% + O(x'*) + O(xy). (C-4)
In view of (C-3), we have
n—1
—Ag=D} + > g (x)Dy, Dy, + f(X) Dy, + R(x, Dy), (C-5)
o,f=1

where f is a smooth function and R is a differential operator of order 1 in x” with smooth coefficients;
see [Lee and Uhlmann 1989]. Notice that in the local coordinates, T,,d0 M = R"~!, equipped with the
Euclidean metric. The unit tangent vector t is then given by T = (z/, 0), where t’ € R 7| = 1.
Associated to the tangent vector 7’ is the covector &, = Zg;ll 8ap(0)Tp =7, € T OM.

Let n € C5°(R"; R) be such that supp(n) is in a small neighborhood of 0, and

/ n(x’, 02 dx = 1. (C-6)
Rnfl
Let % <a< % Following [Brown and Salo 2006], in the boundary normal coordinates, we set

vo(x) = n(xi) ST 0 << 1, (C-7)

so that vy € C*° (M), with supp(vg) in an O(A%) neighborhood of xo = 0. Here 1’ is viewed as a covector.
A direct computation

o0
IvolZ2 sy = O ™M dx' dxy = O D) / e M hdr =002, (C8)
0

[x|<cA®, x, >0
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as A — 0, shows that
lvoll L2(ary = OA* = D/2H1/2) (C-9)

Following [Guillarmou and Tzou 2011, Appendix], we shall construct a harmonic function u € L?(M)
of the form

u=vy+r,
and therefore, we need to find » € L?>(M) satisfying
Agr = —Agug in M™. (C-10)

To that end, we shall rely on the following Carleman estimate for the conjugated Laplacian with a
gain of two derivatives established in [Salo and Tzou 2009, Lemma 2.1; Krupchyk and Uhlmann 2018,
Proposition 2.2]: for all 0 < h < 1 and all v € C°(M inty " we have

vl 2 (Mlm)<—||e¢/ho( h*Ag) o e vl 2 an)- (C-11)

Here the limiting Carleman weight ¢(x) equals x;. Using a standard argument, one can convert the
Carleman estimate (C-11) into a solvability result. Applying this solvability result with 4 > 0 small but
fixed, we see that there exists a solution » € L?(M) of (C-10) such that

Irllz2m) = CllAgoll -2 (pginty - (C-12)
Next we claim that
1A g0l gr-2qpginy = OS2y - L < < 5, (C-13)

as & — 0. In order to prove (C-13), we first compute the Euclidean Laplacian acting on vg:

Avg —el<”+”‘">/*[x 2“(A17)< >+2zr“ Yvy )< )(r =22, i) (T, l)n( )]

=™ H”‘n)“[x 2“(An)( )+2m o« l(vn)< ) (', )], (C-14)

where we have used that (t/,i) - (t/,i) = 0. The second term in the right-hand side of (C-14) has the
worst growth as @ — 0 and we will analyze it. The first term in the right-hand side of (C-14) can be
treated in a similar fashion. To that end, we note that the second term in the right-hand side of (C-14) has

)L—ot—l X l(‘[/ x’+1xn)/k
X )»0‘

the form

where x € C*°(R") is supported in a small neighborhood of 0, and we can proceed similarly to [Guillarmou
and Tzou 2011, Appendix]. Setting

VgV 1

=_—Vo¢-V, =17"-x'+ix,,
= iver 2 ? p=T X i
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we get Le! (7 ¥/ = 3 1ol xFix)/% L etting ¢ € C°(M™) and integrating by parts twice using the
operator L, we obtain

)\‘—Ol—l ‘/1;4 X (;j)w(x)ei(f/-xl-‘rixn)/)\ dVg
X T
— )\47(}[71)\’2 / (L)2 (X (A_a>w(x)|g(x)|1/2>el(f X +l)Cn)/)L dx, (C—15)
M

since the transpose L' equals —L. The term in the right-hand side of (C-15), where the bound cannot
be improved integrating by parts further, will occur when the operator (L)? falls on 1, and in this case,
using the Cauchy—Schwarz inequality and a computation similar to (C-8), we get

‘r““ / x<m) (L) (Y () d Vg

X\ i@ tixg) /A
(50

Proceeding similarly, integrating by parts using the operator L, if needed, we can bound all the other
terms in (C-15) with the same bound as in (C-16). Therefore, it follows from (C-14) and (C-16) that for

O<a<%,wehave

< )\‘—Ol-i-]

IV Il g2 pging < O IZE2Y 1yl ygimy. (C-16)
L2(M)

1AV 2 agimy = OQE /272, (C-17)

as A — 0. To get the bound (C-13) for the Laplace—Beltrami operator, we notice that in view of (C-3),
(C-5), and (C-17), we have to bound

n—1

> (¢ (x) = 8*P) Dy, Diyvo + f (x) Dy, v0 + R(x, Der)vg (C-18)
o, B=1

in H=2(M™). Let us proceed to bound the first term. To that end, we compute

Sl _ X 1 X
R [A 2“(Danxﬁn>(k—a>+x ‘ “(Dxm(A—a)rﬁ

i a(Dxﬁn)( )ra+/\ rarﬂn(;—a)}. (C-19)

The worst growth as A — 0 is in the fourth term in (C-19), and therefore, in view of (C-18), we proceed
to bound

A2 (g — 8Py (%)e"‘f"’““xﬁ“, X (X) = T, T80 (%),

in H=2(M™). The other terms in the first term in (C-18) can be bounded similarly. As before, integrating
by parts twice using the operator L, we get

/(gaﬂ 80”8))(( ) t(r’x’+1xn)/kl//dv

= / <L>2<<g“ﬂ—6“ﬁ>x(f;)w|g(x>|1/2)e"<’“)"+”">“dx. (C-20)
M
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The term in the right-hand side of (C-20) where the bound cannot be improved occurs when the opera-
tor (L)? falls on v, and in this case, using the Cauchy—Schwarz inequality, (C-4), and a computation
similar to (C-8), we get

/ (gOl,B _ Saﬂ)x (%)ei(f’.x/ﬁ-ix,,)/A(L)Zw dvg‘
M

12
X _
< < /M (O(Ix/|4)+0(x,f))xz</\—a)e Zx'l/*dvg) 1V 1| 2 agim

00 1/2
< (O()\Z(x)\a(nl)/Z#»l/Z) _i_(/)()\’a(nfl)/Z) (/ xr%efo,l/)u d.xn) )”1//”[-12(/\/[“11)
0

The growth in A in (C-21) is smaller than or equal to that in the desired bound (C-13) provided that o > %
Proceeding similarly integrating by parts, using the operator L if needed, we can bound all the other
terms in (C-20) by the bound which is the same or better than

OGN 1 | g2 agim
Thus, using this and in view of (C-18)—(C-21), we conclude that

— O(ka(n—3)/2+3/2), (C—22)

n—1
> (@ (x) = 8*F) Dy, Dyyvo
H—Z (Mint)

o,f=1

provided that % <a< % Finally, as R(x, D,) is a differential operator of order 1 in x’, similarly, we get
ILf () Dy, v0 + R(x, D) voll r-2pgimy = OG" =D/, (C-23)

which is better than the desired bound (C-13). Hence, combining (C-17), (C-22), and (C-23), we
get (C-13).
Now it follows from (C-12) and (C-13) that

17l L2y = OO 0 L <g < 1) (C-24)

as A — 0. Notice that the bound for r in L? is better than the bound for vy in L?; see (C-9).
Letting
uy=vo+r, ur=vy+r, (C-25)

in (C-1) and multiplying (C-1) by A~¢®#=D=1 e get
0= =Dl / V(vo+7) (o +7)dVe =27 07N + L+ B). (C-26)
M
Here
I = f Vivl?dV,, ©Lb= f V(voF +0or)dV,, and I3= f Virl*dv,.
M M M
Using (C-9) and (C-24), we obtain

270D L < 007V Dol 2an Il 2y = OGH), (C-27)
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and

A—et=D=1 1) < O(A‘“(’l_l)_l)llrlliz = O\, (C-28)

(M)

as A — 0. Using (C-7), (C-6), the fact that V is continuous, and making the change of variables y’ = x’/A*
and y, = x,/A, we get

o0
Alin})/\“"(”‘”‘lll=Alin})/ 1/ VSY, Ay (0 M T y)e g (Y, ayn) |2 dy dy,
— g Rn— 0

+00
—V(0)g0)]"? /0 e dy, = Lv o). (C-29)

Passing to the limit A — 0 in (C-26) and using (C-27)—(C-29), we obtain V (0) =0, showing that V' |3,, = 0.
1 1

3 2°
Next we would like to prove that 9,V |33 = 0. To that end, as before, we let xo € dM and consider

Notice that here we can consider any o, 3z <o <

boundary normal coordinates centered at xo. As V € C''! and V(x’,0) = 0, using the fundamental
theorem of calculus and integrating by parts, we have for x near xo =0,

1 d 1 d2
V(x/,xn)=/ — Vi, tx,)d(t—1)= V;n(x/,O)xn—l—/ (1 —t)ﬁV(x/, 1Xn)
0 0

dt
1
=V, (x, 0)x, +/(; (1-nVv] (&, tx,)x2 dt = Ve (x',0)x, + O(x2). (C-30)
Now substituting u; and u> as given by (C-25) into (C-1), multiplying (C-1) by A~*®=D=2 and then
using (C-30), we get
0= en=h=2 / V(o +r) (o +7)dVy =27 D721+ Lo+ L+ I). (C-31)
M

Here

11,1=/ V. (', 0)xylvol* d Vg, 11,2=/ Ox)vol* d Vg,
M M
12=/ V (vor + tor) d V, 13=/ Viri*dv,.

M M

Using (C-7) and (C-6), making the change of variables y’ = x'/A% and y, = x, /A, and using that V| is
continuous, we obtain

o
lim A=~ D72], ) = lim / | / VL EY, 0mP (AT y) ywe T2 gy, Ayn) |2 dy dy,
R=1.J0

r—0 r—0
+o00 1
=V, 01" f e dyy = 2V, (0). (C-32)
0
Using (C-7), we get
)\—a(l’l—l)—zlll’ﬂ < O(A—a(n—l)—Z) xie_zx"/)‘ dx’' dxn _ O()\,) (C_33)

[x|<cA?, x, >0
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Using (C-24), we see that

27021 < 007D |2, = OGN = 0(1), (C-34)

(M)

as A — 0, provided that o < %

In view of (C-7) and (C-30), we have

1/2
IV voll 2y = ( f O(xe >/ dx’dxn) = 00N DIER),
[x|<cA¥,x, >0
and therefore, using (C-24), we obtain
AT 2IL1 <007 A I 2an IV voll 2y = O 9). (C-35)

Passing to the limit A — 0 in (C-31), and using (C-32), (C-33), (C-23), and (C-35), we get V;n 0 =0
provided that « is a fixed number satisfying % <a< % This shows that 9,V |33 = 0. O

In order to prove Proposition 1.6, we shall need the following boundary determination result.

Proposition C.3. Let (M, g) be a conformally transversally anisotropic manifold of dimension n > 3. Let
AeCVY (M, T*M) be a 1-form. If

/ (A, duy)guzy dVy =0, (C-36)
M

for all harmonic functions uy, uy € C*(M), then Alypy =0 and 9, A|yp = 0.

Proof. First by Proposition C.1, we see that (C-36) holds for all harmonic functions u; € L*>(M). To prove
this result, we shall test the integral identity (C-36) with harmonic functions u, € L?(M), constructed in
Proposition C.2, of the form

U =vo+r. (C-37)

Since for u; we need estimates in H'(M™), we shall construct u; following [Brown 2001; Brown and
Salo 2006]; see also [Krupchyk and Uhlmann 2018, Appendix A]. We let

Uy =vy+ri, (C-38)

where r € HO1 (M™) is a solution to the Dirichlet problem

{—Agrl =Agvy in M, (C-39)
rilam = 0.
Note that by boundary elliptic regularity, r; € C>°(M), and therefore, u; € C*°(M).
Applying the Lax—Milgram lemma to (C-39), we get
||7"1||H01(Mim) < C”AgUO”H—](Mint). (C—40)

Similarly to the bound (C-13), one can show that

”AgUOHH_l(Mint) — O()\’O((n—:’,)/z_i_l/z)’
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see also [Krupchyk and Uhlmann 2018, Appendix A]. This bound together with (C-40) implies that

711l 1 pgimy = OO/ L <o < 1 (C-41)

as A — 0.
We shall also need the bound

Idvoll L2y = O D272, (C-42)

as A — 0, which is in view of (C-7) implied by the estimate

ldvollL2m) < O(l)</|

x|<cA?, x,>0

1/2
)L—Ze—Zx,,/)L dx/dxn) — O()\'Ol(n—])/z—l/Z).

Now substituting u; and u, given by (C-38) and (C-37), respectively, into (C-36) and multiplying
(C-36) by A7*=D we get
0 =) =D / (A, dvg+dri)g(Bo+7)dVy =17Vl + L+ Iy), (C-43)
M

where
I :/ (A,dv()>gl_)0dv , 122/ (A,drl)g(ﬁo—l-i_‘)dv, and 132/ <A,dvo)gl7dvg.
M M M

First using (C-7), we write
L=1,+.,

where

O . X _
I1=iA I/M(A’t/'dx/dl_ldx”é’#(k_a)e Zx"/deg,

X X
Lo=2"%[ (A, (dp)| = = Ne /> qv,.
1.2 /M< ( ﬂ)(ka>>gﬂ(ka>e g

Using (C-2), and making the change of variables y’ = x’/A% and y, = x,, /A, we get

r—0 A—>

+o0
limk’“‘”’l)ll,1=ilin%) / 1 f 18Oy Ay 22 (v Ay )e P
Re=1J0O
n—1

x ( D &Py ) Aa(R Y Ay Ty + An (R, m)i) dy' dy,
o, B=1
n—1

+00
= i( Z g% (O)Aa(O)r,; + An(O)i) |g(0)|1/2/ e dy,
o, B=1 0

=10, ). (C-44)

()
onll \A*

Estimating similarly as in (C-8), we get

X
(dn) ()T"‘)

= o179/, (C-45)
L2(M)

A0 o < 0
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Using (C-9), (C-24), and (C-41), we see that

274 0DIL) < 0T D) dr 2 llvo + 7l 2y = O, (C-46)
Finally, using (C-42) and (C-24), we obtain

270D ) < 0 D) dvoll 2y Irll 2y = O ™). (C-47)
Passing to the limit A — 0 in (C-43) and using (C-44)—(C-47), we conclude that (A(0), (t/,i)) = 0. Now
changing t/ to —1/, we see that A, (0) = 0, and therefore, (A’(0), ') =0, where A’ = (A1, ..., A,_1).
As 7' e R"isan arbitrary tangent vector to dM at xo = 0, we get A’(0) = 0. This shows that A|yy = 0.
Next we shall show that 9, A|33 = 0. To that end, as before, we let xg € M and consider the boundary
normal coordinates centered at xg. Applying computations similar to (C-30) to each component of A,

we get
A x) = (AL, oy ALY, 0)x, + O(2) = 8, AKX, 0)x, + O(x2). (C-48)

1x,°

Substituting u; and u, given by (C-38) and (C-37) into (C-36), and multiplying (C-36) by Axn=h=1/
we have in view of (C-48),

0:;:01("—‘)—1/ (A, dvg+dr) (Vo +7)dVe =27 DNy + Lo+ L+ B+ 1), (C-49)
M

where

Iy =/ (0, A(x", 0)xy, dvo) gV d Vg, 11,2=/ (O(x7), dvo) Do d Vs,
M M

12=/ (A, dry) D0 dVy, 13=/ (A, dry) 7 dV,. 14=/ (A, dvo) 7 dV,.
M M M

In view of (C-7) we write

L =ik‘1/ (9, A(x, 0)xy, T"dx’+ian)g772<;—a>e_2x”/)‘dVg,
M

x x\ _
Lip=1" /M<8x,,A(X/,O)xn’ (dn)<k_“>> n(k_“)e 2alk v,
g

Using (C-2), and making the change of variables y’ = x'/A% and y, = x, /A, we get

+00
lim A=D1 g =i lim lgY )Py (v, A1 e
r—0 r=0 Jre-1 Jo

n—1

X ( D g Y Ay, Aa (XY, 0)T) + By, Ay (A% Y, o)i) dy'dy,
o, B=1

(S +00
=i< 2 gaﬁ(°)3XnAa<0>fé+8ann<0>i)|g<0>|”2 / Y2 dy,
0
o,f=1

= %(3)(,114(0), (', ). (C-50)
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X\ _
Xnn) (A_a)e 2xp /1

Estimating similarly as in (C-8), we get

X
(dn) ()T"‘)

A D ) < 007 =007 (C-5D)

L2(M) L2(M)

Using (C-42) and estimating similarly as in (C-8), we obtain

AT o) < 0T DT ol 2y Il voll L2y = O). (C-52)
Using (C-41) and (C-48), we get

AL < 0 DY dr | 2o Ixnvoll 2y = O 7). (C-53)
Using (C-41) and (C-24), we have

AT B < 0 DY 2 171l 200y = O 2%) = o(1), (C-54)
as A — 0, provided that o < %
Using (C-48), (C-24), and the fact that
Ixndvoll2car) = O —DHZ),

we obtain

AL < 0 DY advoll 2 I L 2y = O ). (C-55)

Let us fix % <a< % Passing to the limit A — 0 in (C-49) and using (C-50)—(C-55), we conclude that
(9x, A0), (7', i)) =0, and therefore, d;, A(0) = 0. This shows that 3, A sy = 0. O

Finally, in order to prove Theorem 1.3 we shall need the following boundary determination result.

Proposition C.4. Let (M, g) be a conformally transversally anisotropic manifold of dimension n > 3. Let
AeCVY (M, T*M) be a 1-formand V € C11(M). If

/ (4i (A, d(u1u2u3))gu4 - (3id*(A) + V)u1u2u3u4) dVg =0 (C-56)
M

for all harmonic functions u; € C>*(M), j=1,...4,then Alygpyy =0and 3,A|3y = 0.

Proof. We also have

/M(4i(A, d(uzuzug))euy — (Bid*(A) + Vujuruzug) dV,=0. (C-57)
Subtracting (C-57) from (C-56), we get
/M(A, d(uiusuz))eus dVy — '//;[(A, d(uauzug))euy dVy = 0. (C-58)
Letting usz = us = 1, (C-58) gives
/M(A,dul)gudeg=0 (C-59)

for all harmonic functions u, u, € C>*(M), and therefore for all harmonic functions u, u, € C®(M).
The result follows by an application of Proposition C.3. O
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When proving Proposition 1.6, we shall also need the following standard density result.

Proposition C.5. Let (M, g) be a smooth compact Riemannian manifold of dimension n > 2 with smooth
boundary. The set of harmonic functions in M™ that are smooth up to the boundary is dense in the space
of C**(M)-harmonic functions, 0 < o < 1, in the C*>P(M) topology, for 0 < g < a.

Proof. The proof follows along the lines of the proof of Proposition C.1. Indeed, let u € C>*(M) be
harmonic in M™ and let f =u|ypy € C>*(dM). Let 0 < B < «, and by density, there exists fieC®(OM)
such that || f; — fllc2#@m) — 0, as j — o00; see [Hormander 1976, Theorem A.10]. The Dirichlet problem
—Agu; =0 in M™,
{M ilom = fj.
has a unique solution u; € C 2% (M), and by elliptic regularity, we have u; € C°(M). Using the fact that

C?>%(M) C C*# (M) and the following bound for the solution to the Dirichlet problem for the Laplacian,
see [Gilbarg and Trudinger 1983, Section 6.3, p. 109],

lu; —ullczeary < Clfj — fllczsomy — 0,
we get the claim. U

Appendix D: Some facts about nontangential geodesics

When proving Proposition 1.6, in order to avoid the use of stationary and nonstationary phase arguments
on the boundary of the manifold, we shall need the following result concerning nontangential geodesics
which was kindly proven for us by Gabriel Paternain.

Proposition D.1. Ler (My, go) be a smooth compact Riemannian manifold of dimension n > 2 with
smooth boundary, and let v be a unit speed nontangential geodesic on My between boundary points. Then
for each point yo = y (1) € M™, except for finitely many, there exists a small neighborhood

W C Sy, Mo ={we TyMo: |wlg =1}

of wy = y(ty) such that for every w € W, w # wy, the unit speed geodesic n on My passing through
(yo, w) is also nontangential between boundary points, and y and n do not intersect each other at the
boundary of M.

Proof. Let us first notice that the property of a geodesic being nontangential is stable under small
perturbations of the initial conditions, in view of the C°*°-dependence of the geodesic flow on the initial
conditions. Let yo = y(#p) € M(i)m. Reparametrizing the geodesic y if necessary, we may assume that
y : [=S1, S2]1 = My, 0 < 81, 82 < 00, is such that y (0) = yp and y (0) = wg. Let us consider the map

Fy, :neigh(wg, Sy,Mo) — neigh(y (S2), 0Mp), Fyy(w) = (@ (y0,w) (Y0, w)), (D-1)

where 7 (yo, w) is the exit time of the geodesic yy, ., through (yo, w), ¢; : SMog — SMy, t € R, is the
geodesic flow, given by

o (y, w) = (Vy,w(t)v )}y,w(t))’ (D-2)

and w : SMy — My, n(y, w) =y is the canonical projection.
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The exit time 7 (yg, w) depends smoothly on w, in view of the implicit function theorem and the fact
that the geodesic y is nontangential. The map Fy, is therefore smooth, and we have Fy (wo) = y (S2).

Let us now compute the differential of Fy, at wo acting on a vector n € Ty, S, Mo. To that end, consider
acurve w : (—a, a) = S,,Mo such that w(0) = wo and w(0) = n, and by the chain rule, we get

T (@ (yo,w(s)) (Yo, w(s)))

s=0

Fyy( ())—d
:Oyows —a

F; (wo)n = d
yo VY0 n= ds S
07 a(pf(m,wo)

@1 (o, wo) — (Yo, wo)-n+
t=1(y0,wo) dw dw

d
=dn(‘p‘[(yo,wo) ()70, wO)) <_

7 (Yo, wo)n)- (D-3)

To proceed, we recall some facts about the geometry of the tangent bundle following [Paternain 1999].
First, letting
V(y, w)=ker(dn(y, w)) C T(y,u)SMo

be the vertical fiber of T SMj at (y, w), see [Paternain 1999, Section 1.3.1], we have the splitting
Ty SMo = H(y,w) & V(y, w),

where H (y, w) is the horizontal fiber of T 'SMj at (y, w); see [Paternain 1999, Section 1.3, p. 13]. Both
V(y, w) and H(y, w) can be identified with S, My, and for & € T(, ,,)SMy, we write § = (€", £Y), where
gh gv e Sy My are the corresponding horizontal and vertical parts of &. Let X : SMy — T SM, be the
geodesic vector field given by

d
X (g (y, w)) = E%(y, w). (D-4)

It follows from [Paternain 1999, Section 1.3, p. 13] that we have
X(y, w) = (w,0). (D-5)
Now in view of the above splitting, we have (0, n) € V (yg, wyp), and therefore, we get

a(pf()«),wo)
ow

Using the fact that t(yg, wg) = S», (D-2), and (D-4)—(D-6), we obtain from (D-3) that

(Yo, wo)N = d @z (yy,wp) (Yo, wo) (0, n). (D-6)

d
Fj (wo)n = dm (v (S2), ¥ (S2)) (X()/(Sz), )?(Sz))ﬁ(yo, wo) - N 4 d Pz (y,w) (Yo, wo) (0, 77))

a
= )?(Sz)ﬁ(yo, wo) - 1 +dr(y(S2), ¥ ($2))(d@s, (Yo, wo)(0, n)). (D-7)

Now by [Paternain 1999, Lemma 1.40], see also [Ilmavirta 2020, Theorem 11.2], for the differential of
the geodesic flow we get that

des, (Y0, w0) (0, 1) = (J0.)(S2), 0.0 (52)), (D-8)
where J(q,) is the Jacobi field along the geodesic 7 — 7 (¢, (yo, wo)) = y (¢) with the initial conditions

Jom(©) =0, Jon=n. (D-9)
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Using [IImavirta 2020, Exercise 5.9], (D-9), and the fact that n € T,,,S,, Mo, we have

(y(82), 0. (S2)) = (¥(0), J0. (0)) + S2(3(0), J(0.(0)) = Sa{wo, 1) =0, (D-10)

showing that the Jacobi field J(g ;) is normal to y. It follows from (D-7) and (D-8) that

. 0T
Fj (wo)n = )/(Sz)a—(yo, wo) - N+ J0,7)(S52). (D-11)
w

Using (D-11) and the orthogonally (D-10), we see that if Fy/o(wo) has a nontrivial kernel, then there
exists  # 0 such Jo ;) (S2) = 0, and therefore, the points yy and y () are conjugate points along y;
see [IImavirta 2020, Definition 7.3]. Thus, F} (wo) is bijective as long as yo is not a conjugate point
to y(S,) along y.

By the inverse function theorem, Fy, is a local diffeomorphism if yo is not a conjugate point to y (S2)
along y.

Hence, if yg is not a conjugate point to ¥ (S;) and y (—S) along y, there exists a small neighborhood
W C Sy,Mp of wg such that for every w € W, w # wy, the unit speed geodesic n : [—T1, To] — Mo,
0 < Ty, T, < o0, such that n(0) = yo and 7(0) = w is also nontangential between boundary points, and y
and 7 do not intersect each other at the boundary of M. Using the fact that  can only self-intersect
at yp finitely many times, see [Kenig and Salo 2013, Lemma 7.2], by choosing W sufficiently small so
that the corresponding finitely many tangent vectors of y and their negatives do not belong to W, we
achieve that the geodesics 1 and y are distinct and are not reverses of each other.

To conclude the proof, we recall from [do Carmo 1992, p. 248] that

{p e y([=S1, 82]) : p is conjugate to y(—=S1) or y(S2)}
is discrete, and since M is compact, it is finite. This completes the proof of the claim. (|

When proving Proposition 1.6 in the simplified setting, we shall need some basic facts about non-
tangential geodesics. These facts are known, see [Dos Santos Ferreira et al. 2020, Section 3], and are
presented here for completeness and the convenience of the reader.

Proposition D.2. Let (My, go) be a smooth compact Riemannian manifold of dimension n > 2 with
smooth boundary.

(1) Let y be a unit speed non-self-intersecting nontangential geodesic on My, and let yy =y (tp) € M(i)m.
Then there exists a small neighborhood W of wo = y (to) in Sy,Mo such that for every w € W, the unit
speed geodesic yy, ., passing through (yo, w) is nontangential between boundary points and does not
have self-intersections.

(ii) Let y and n be unit speed non-self-intersecting nontangential geodesics on My with the only point
of intersection yy = y (ty) = n(sg) € M(i)m. Then there exists a small neighborhood W of wy = y (ty) in
SyoMo such that for every w € W, the unit speed geodesic yy, ., passing through (yo, w) is nontangential
between boundary points, does not have self-intersections, and intersects n at the point yq only.



INVERSE PROBLEMS FOR NONLINEAR MAGNETIC SCHRODINGER EQUATIONS 1865

Proof. Here we follow [Dos Santos Ferreira et al. 2020, Section 3]. Let us prove (i). Reparametrizing the
geodesic y if necessary, we may assume that y : [—S7, S2] — My, 0 < 81, S» < 00, is such that ¢ (0) = yg
and y (0) = wy. First the property of a geodesic being nontangential is stable under small perturbations of
the initial conditions, in view of C°°-dependence of the geodesic flow on the initial conditions. Assume
the contrary: there is a sequence wy — wq in Sy, Mg as k — oo such that there are times 7 < s when the
corresponding geodesic Yy, v, : [—S1(k), S2(k)] — Mo with yy; 4, (0) = yo, Vyo,u, (0) = wy self-intersects:

Ak *= Vyo,wy (t) = Vyo.wi (S%)- (D-12)
Note that the sequences —S; (k) and S»(k) approach —S; and S, respectively, as k — co. Therefore,
the sequences #; and s; are bounded, and passing to subsequences, we may assume that #, — #y and
sy — so. Letting k — oo in (D-12), we get y (o) = Y (so). Since y does not have self-intersections we
obtain ty = s¢.

As all geodesics yy, ., are nontangential, it follows from (D-12) that a; € M(i)m. As My is compact, it
has a positive injectivity radius Inj(Mp) > 0. Here we have extended My to a closed manifold to speak
about the injectivity radius and the boundary will not cause any problems as a; € M(i)m. Now (D-12)
implies that

sk = tx + 2 Inj(Mo),

and therefore, so — fp > 2 Inj(Mp) > 0, which is a contradiction. Hence, (1) follows.

To prove (ii), first reparametrizing the geodesics y and 7 if necessary, we may assume that the map
y : [=S1, $2]1 = My, 0 < S;, S < 00, is such that y(0) = yp and y(0) = wy, and n : [T, T>] — My,
0 < Ty, T; < 00, is such that n(0) = yo. By (i), there exists a small neighborhood W of wy in S,,M,
such that for every w € W, the unit speed geodesic yy, ., such that yy ,,(0) = yo and y, ,,(0) = w is
nontangential between boundary points and does not have self-intersections. We shall show that the
neighborhood W' can be made smaller so that every y,, ,, intersects » at the point yo only. Let us assume
the opposite: there is a sequence wy — wq in Sy My as kK — oo such that there are times 7 #0, sp #0
when the corresponding geodesic yy, ., intersects n:

Yyouur (1) = (k). (D-13)
Note that here we used that yy, ., and 1 do not have self-intersections. We also have
Vyo.ur (0) = 1(0) = yo. (D-14)

Passing to subsequences, we have that #, — #¢ and sy — so. Thus, it follows from (D-13) that y (t9) =1 (so),
and therefore, as y and n do not self-intersect and yy is the only point of their intersection, we get fo =59 =0.
In view of (D-13) we have
Vo, wi () = U(Sk) - 77(0) =Y € Mim,
and thus, for k sufficiently large, vy, w, (tx) = n(sk) € M(i)m. This together with (D-14) gives
[te| > Inj(Mp) >0 and |s¢| > Inj(Mp) >0

for k sufficiently large, otherwise the geodesics yy, », and n would intersect at a geodesic ball centered
at yg, which is a contradiction. Thus, (ii) follows. O
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