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BOUNDS FOR SETS WITH NO POLYNOMIAL PROGRESSIONS
SARAH PELUSE

ABSTRACT. Let Py,..., P, € Z[y| be polynomials with distinct degrees, each having zero
constant term. We show that any subset A of {1,..., N} with no nontrivial progressions of
the form x,2 4+ Py(y),...,x + Py (y) has size |A| < N/(loglog N)¢F1.--Pm . Along the way,
we prove a general result controlling weighted counts of polynomial progressions by Gowers
norms.

1. INTRODUCTION

For any polynomials Py, ..., P, € Z[y|, let rp, __p, (N) denote the size of the largest subset
of [N] :=={1,..., N} containing no progressions of the form z,z+ P;(y),...,x+ Py, (y) with
y # 0. Bergelson and Leibman [2] showed that

Tpy,...Pm (N) = 0py,...Pn (N)

whenever Py, ..., P, € Z[y| all have zero constant term. This is a polynomial generalization
of Szemerédi’s theorem [21] on arithmetic progressions, which states that ry s, . (x—1)y(N) =
o(N) for every k € N. While quantitative bounds in Szemerédi’s theorem for all k¥ € N
are known due to work of Gowers [6, 8], no bounds are known in general for the polynomial
Szemerédi theorem. Thus, Gowers [7] has posed the problem of proving explicit bounds for
the quantities 7p, _p, (N).

In this paper, we prove quantitative bounds for rp,__p, (V) whenever Py,..., P, have
distinct degrees, giving the first quantitative version of the polynomial Szemerédi theorem

for this large class of progressions.

Theorem 1.1. Let Py, ..., P, € Zy] be polynomials with distinct degrees, each having zero
constant term. There exists a cp, . p, > 0 such that

Tpy...pn(N) <

Obviously, any polynomial progression involving only linear polynomials is a subprogres-
sion of some arithmetic progression, so that bounds for Szemerédi’s theorem (such as the
current best bounds of Bloom [3] for 3-term progressions, Green and Tao [10] for 4-term
progressions, and Gowers [8] for longer progressions) imply bounds in the linear case of the
polynomial Szemerédi theorem. Until recently, very few cases beyond this were known. In-
deed, quantitative versions of the polynomial Szemerédi theorem were known in only two
other situations: for two-term polynomial progressions [18, 19, 1, 20, 11, 17}, to which Fourier
analytic methods immediately apply, and for arithmetic progressions with common differ-
ence equal to a perfect power [16] (and thus all subprogressions of those progressions), to
which Gowers’s method [8] may be adapted to apply.

It was essential for the success of the density increment arguments in [6] and [8] that k-
term arithmetic progressions are preserved under translation and dilation, since the inverse

theorems for the Gowers norms (both local and global) give a density increment on an
1
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arithmetic progression whose common difference can be much larger than the length of the
progression. Similarly, k-term arithmetic progressions with common difference equal to a
perfect d'" power are preserved under translation and dilation by a perfect d** power, so that
Gowers’s local inverse theorem from [8] could be applied in [16] with suitable modification
to get a density increment on a progression with common difference equal to a perfect d*
power. However, the vast majority of polynomial progressions do not behave so nicely under
dilation (e.g., r,z+vy, r+y?*), and so to handle more progressions of length greater than two,
new strategies avoiding the use of the inverse theorems for the Gowers norms were needed.

Recently, significant progress has been made on the problem of proving a quantitative
version of the polynomial Szemerédi theorem in the finite field setting. Similar to above, let
Tpy.....pn (Fp) denote the size of the largest subset of I, containing no nontrivial progressions
of the form =,z + Pi(y),...,z + P,(y). Bourgain and Chang [4] proved that r, »(F,) <
p'*/15_ the author [13] proved that rp, p,(F,) < p*/?* whenever P, and P, are affine-linearly
independent over Q, and then Dong, Li, and Sawin [5] very shortly after and independently
showed improved bounds, getting rp, p,(F,) <p,.p, p''/*2. All three of these arguments
completely avoided the use of any inverse theorems for the Gowers norms. However, there
were serious barriers to generalizing any of the methods of [4, 13, 5] to the integer setting or
to longer progressions in the finite field setting.

Py, ..., P, € Z[y] are affine-linearly independent. Theorem 1.1 thus brings our knowledge of
the polynomial Szemerédi theorem in the integers more in line with what is known in finite
fields. The proof of Theorem 1.1 involves adapting the central idea of [14] to the integer
setting. Such an adaptation was first done by Prendiville and the author [15] for the special
case of the progression z,z + y,x + y?, showing that r,2(N) < N/(loglog N)¢ for some
absolute constant ¢ > 0. It turns out that the assumption that Pi,..., P, have distinct
degrees in Theorem 1.1 is the exact condition needed to adapt the argument of [14] to the
integers in full. We will say more about why this is the case in Section 3.

We now briefly discuss the proof of Theorem 1.1 in comparison to the arguments in [14]
and [15]. The proof of Theorem 1.1 proceeds via a density increment argument where, as
in [15], it is shown that any subset of [N] with no nontrivial polynomial progressions has
increased density on a long arithmetic progression with very small common difference. This is
done by following the strategy for proving quantitative bounds in the polynomial Szemerédi
theorem originating in [14], which is to first show that the count of polynomial progressions
in a set is controlled by some Gowers U®-norm, and then to show that, in certain situations,
one can combine this U%-control with understanding of shorter progressions to deduce U*~1-
control. We refer to this second part of the argument as a “degree-lowering” result, and it is
here that it is crucial that Py, ..., P, have distinct degrees. A key feature of the proof of the
degree-lowering result is that, while the U®-norm plays a role in the argument for arbitrarily
large s, it bypasses the use of any inverse theorems for uniformity norms of degree greater
than 2. Starting with control by any U®-norm, one can repeatedly apply the degree-lowering
result to deduce control in terms of the U?- or U'-norm, which are much easier to deal with
than higher degree uniformity norms.

In contrast to the finite field situation of [14], the main challenge in this paper is to first
prove that the count of polynomial progressions is controlled by some U®-norm. By using
repeated applications of the van der Corput inequality following Bergelson and Leibman’s [2]
PET induction scheme, we can prove control in terms of an average of a certain family of
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Gowers box norms. In [25], Tao and Ziegler use the results of their paper on concatena-
tion [24] to prove that such an average is qualitatively controlled by a global U®-norm, but
with no quantitative bounds. The results of [24] are purely qualitative, and so not suitable
for our purposes. In this paper, we prove a new quantitative concatenation result, which
we use to control (with polynomial bounds) the averages of Gowers box norms just men-
tioned by a U®-norm for some s depending only on the degrees of the polynomials involved.
In [15], this was done for the special case of the average of Gowers box norms controlling the
progression x,x + y, x + y?, which is the simplest case requiring a nontrivial concatenation
argument. In the general situation covered by Theorem 1.1, these averages of Gowers box
norms can become arbitrarily complex, necessitating a new and more general approach. The
concatenation theory developed in this paper is significantly stronger than that in [15], and
the bulk of the new ideas in this paper go into proving these concatenation results. We
must also be more careful during the PET induction step than in previous works in order
to produce an average of Gowers box norms of the particular form that our concatenation
result can be applied to. Though the proof of Theorem 1.1 only requires a U*-control result
for polynomial progressions involving polynomials with distinct degrees, a result for general
polynomial progressions can be proved with a little more work using our methods. Since it
may be of independent interest, we record this result in Theorem 6.1.

In [15], the author and Prendiville adapted the degree-lowering method of [14] to handle the
progression x, z+y, x+1? in the integer setting. The adaptation in that paper quickly breaks
down for essentially all other non-linear progressions, however. To prove a degree-lowering
result that works in the generality of Theorem 1.1, we must prove several intermediate
degree-lowering results by induction. This induction is intertwined with an induction proving
several intermediate “major arc lemmas”. These lemmas are ingredients in the proofs of
the intermediate degree-lowering results whose proofs themselves require other intermediate
“major arc lemmas” and degree-lowering results, along with the U®-control result mentioned
in the previous paragraph. Despite the additional complications of this inductive argument,
the proof of each intermediate degree-lowering result (assuming the corresponding major arc
lemma) is still based on the proof of the degree-lowering result of [15].

This paper is organized as follows. In Section 2, we set notation and recall some facts
about the Gowers uniformity and box norms. In Section 3, we give a detailed outline of the
proof of Theorem 1.1, stating the most important intermediate results needed. In Section 4,
we prove that weighted counts of the polynomial progressions we consider are controlled
by an average of a certain family of Gowers box norms. In Section 5, we prove our main
concatenation result, which we combine with the results of Section 4 to deduce control by
uniformity norms in Section 6. In Section 7, we prove several lemmas needed to carry out the
degree-lowering argument, and in Section 8 we prove our general degree-lowering result. We
repeatedly combine the degree-lowering result with the U®-control result proven in Section 6
to deduce a local U'-control result in Section 9. In Section 10, we use this local U!-control
result to carry out the density increment argument, completing the proof of Theorem 1.1.
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2. NOTATION AND PRELIMINARIES

We are interested in the regime where N — 0o, and so we will assume that N is sufficiently
large so that, for example, the quantity loglog /N is well-defined and positive. The standard
asymptotic notation O and 2, along with <,>, and =, will be used throughout the paper.
So, A=0(B), B=Q(A), A< B, and B > A all mean that |A| < C|B| for some absolute
constant C' > 0, and A < B means that A < B and B < A. When O, Q, <, >, or
= appear with a subscript, this means that the implied constant C' may depend on the
subscript. We will also use expressions of the form O(A) to denote a quantity that has size
at most an absolute constant times A, and analogously for Q(A).

For any function f 7" — C and finite subset S C Z", we denote the average of f over
S by Epesf(z) == |S| Y oves f(x), and if o+ Z™ — [0, 00) is finitely supported, we similarly
denote the average of f with respect to u by EX f(z) := > ;. f(x)u(r). We say that f is
1-bounded if ||f||z~ < 1. We normalize the ¢P-norms on the space of functions Z" — C by
setting || f[[7 := D_,czn [f(2)[P. For any L > 0, we define the weight py : Z — [0, 1] by

2. _
s (h) = #{(hy,hy) € [LL]2 chy — he h}’
so that supppr, C (=L, L), ||jpclle = 1, and ||purl|z < 1/L. Set e(z) = €*™. When
f:7Z — C is finitely supported, we define its Fourier transform f : T — C by

=) fl@)e(—¢x)

T€EZ

and the convolution of f with another finitely supported function g : Z — C by

=> fy)gla -

YEZL

With this choice of normahzatlons note that f x g = f g, f fT e(&x)d¢ for all
r€Z,and Y., , f(x) fT

For any f:Z — C and h € Z We deﬁne functions Ty, f : Z — C and A, f : Z — C by
Thf(x) = f(x+h) and Ay f(z) := f(x + h)f(z), and also define, for hy, ..., hy, the function
_____ nf + Z = Cby Ap, . nf = Ap - Ap, f. Note that Ap, Ay, f = Ap,Ap, f for any
hi, hy € Z. Thus, for any finite subset I C Z, we may unambiguously define A,),_, f to equal
S f where iy,...,4 is any enumeration of the elements of I. In the same vein, we
will use the notation Ay f when h = (hy, ..., hy) to denote the function Ay, 5, f. Finally, for
any (hy, b)) € Z* we similarly define Al wyf 2 — Chy Al h,)f( z) = f(x + hy) f(z+h)),
and also define A/(hl,h’l) 77777 (hehl) f and A(h W, f analogously to Ay, . f and Ay, f-

We can now define the Gowers box and umformlty norms.

Definition 2.1. Let d € N, Q4,...,Qq C Z be finite subsets, and f : Z — C be a function
supported on a finite subset S C Z. We define the (normalized) Gowers box norm of f with
respect to Q1,...,Qq by
2d .
||f||DdQ1 Qd(s) . ’5‘ Z ]E'h Ny EQZA(hl h/) ..... (hd,hii)f(x)'

""" €7 1= 1,...,
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When Q C Z is any finite subset, we define the Gowers U®-norm of f with respect to @) by
1£]

We will occasionally use the Gowers-Cauchy-Schwarz inequalities, which we now recall.
The following two results are standard (see Lemma B.2 of [9], for example).

Lemma 2.2. Let Xi,..., X, be finite sets, f : [[;_, Xi — C, and, for each i € [s], g; :
[T;_, Xi = C be a 1-bounded function such that the value of g;(x1,...,zs) does not depend
on x;. We have

vges) = Ifllog. 09

,,,,,

28

Eleéx f T1,...,T ng 1'17"'7 S]Exo,xleXi H C‘w‘f(xl y T 71':)5)'

Lemma 2.3. Let Qy,...,Qq C 7Z be finite subsets and, for each w € {0,1}%, f, : Z — C be
a function supported on a finite subset S C Z. We have

]‘ w !/
g 2 Bnaear [I M rh-wr - @-w)i< T Iles, o0

zez  =heod yergq1d we{0,1}4

In the above lemmas and elsewhere in the paper, C : C — C denotes the complex conju-
gation operator and 1 denotes the tuple with entries all equal to 1, whose dimensions will
be clear from context. Similarly, 0 denotes the tuple with entries all equal to 0.

Finally, we will need an inverse theorem for U?-norms of the form || - ||U2 (L) This is the

only inverse result for uniformity norms used in the proof of Theorem 1. 1

Lemma 2.4. Let L > 0. If f : Z — C is 1-bounded, supported on the interval [L], and
satisfies

Hf”U2

6’L

> 9,
then there exists a [ € T such that
Epen)f(2)e(B)] > (56")°W.

Proof. By making the change of variables x — x — h} — k), in the definition of || - ||U25 (1L

we have

Z Apyho £ (@) s (1) s (he) > 62

,h1,ho €L
By Fourier inversion, it follows that
= Z A,y f (2)e(E1hn )e(€aha)

2
m(gndg) . max
</T Sfeet xhl ho€Z,

2 0'Ly? &L
since o, = (L) * 1 5/L])/( 'L)?. Thus

> ot

Note that

5 S @l + )T+ @+ R T eGR4 b+ h)

x,h1,ho€Z
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is at least (8")26* for some &,& € T. The result now follows by applying the Gowers—
Cauchy—Schwarz inequality and U?-inverse theorem in Z/5[L]Z (see [22], for example, for
these standard results). O

3. OUTLINE OF THE PROOF OF THEOREM 1.1

To hopefully aid the reader, Figure 1 below shows the logical dependencies between the
key intermediate results stated in this section, as well as Theorem 1.1.

Theorem 3.5

|

Proposition 3.4  Proposition 3.6

N

Lemma 3.10 for ¢ =2 Theorem 3.7

— l

Lemma 3.9 for ¢ = 2 Corollary 3.8

\ : /
|

Lemma 3.10 for { =m — 1

/

Lemma 39 for/=m —1

T

Lemma 3.10 for ¢ =m

/

Lemma 3.9 for / =m

l

Lemma 3.11

l

Theorem 3.3

l

Theorem 3.2

l

Theorem 1.1

F1GURE 1. Logical dependencies between key results



BOUNDS FOR SETS WITH NO POLYNOMIAL PROGRESSIONS 7

As was mentioned in the introduction, Theorem 1.1 is proved using a density increment
argument. Let Pp,..., P, € Z[y| be polynomials with distinct degrees, each having zero
constant term. We show that if A C [N] has density a and contains no nontrivial progressions
of the form x, 2+ Py (y), ..., z+ P,,(y), then there exists an arithmetic progression a+¢q[N'] C

-----

AN (a—+q[N'
ANV, g, (oo,
Note that if A C [/N] contains no nontrivial progressions of the form z,z + Pi(y),...,z +

P,.(y), then the rescaled set A" := {n € [N'] : a4+qn € AN(a+¢q[N’])} contains no nontrivial
progressions of the form

P P,
(3.1) x, T+ l(qy),...,a:—kﬂ,
q q
and the polynomials Pi(q) (y) == @ for i = 1,...,m all have integer coefficients and zero

constant term.

To continue the density increment argument, we must prove that A’ also has increased
density on a long arithmetic progression with small common difference. To ensure that our
density increment iteration terminates, we want the size of the density increment for A’ to
depend only on the original polynomials P, ..., P,,, and not on ¢. For this reason, we make
the following useful definition.

Definition 3.1. A polynomial P = agy®+ - -+ ayy has (C, q)-coefficients if |a;| < Clag| for
alli=1,...,d =1 and ag = a,q®' with 0 < |a}}| < C.

Note that any polynomial with (C,q)-coefficients has zero constant term by definition,
and that any polynomial with zero constant term trivially has (C,1)-coefficients for some
C > 0. The usefulness of this definition comes from the fact that if P;,..., P, all have
(C, r)-coefficients, then Pl(q), ..., P all have (C, qr)-coefficients.

Now we can state our density increment result.

Theorem 3.2. Let N > 0, ¢ € N, and Py,..., P, € Zly] be polynomials with (C,q)-
coefficients such that deg Py < --- < degP,,. If A C [N] has density a = |A|/N and
contains no nontrivial progressions of the form x,x + Pi(y), ...,z + Py(y), then there exist
positive integers ¢' and N' satisfying ¢ <cdeg p,, @ PdePn) and

Ndeg Py /deg P, > N’ > Cdeg P, Ndeg Py /deg P, (a/q)odcg Pm (1)

such that
ANQ
‘N—'| > a + Qe deg p,, (%2 M)

for some arithmetic progression Q C [N] of the form Q = a + ¢'¢°[N'] with b <aegp,, 1,
provided that N > deg Py, (q/a)odeng(l)'

Note that, while the length of the progression on which A has increased density in The-
orem 3.2 may depend on ¢, the lower bound Q¢ geg p,, (a%4sPn (D) on the density increment
is unchanged when Py, ..., P, are replaced by Pl(q), ceey P, We are thus guaranteed that
our density increment argument will terminate, yielding the bound in Theorem 1.1.
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We prove Theorem 3.2 by studying, for functions fy,..., fr : Z — C supported in the
interval [N] and characters ¢y 1, ..., %, : Z — S, the following general multilinear average:

ANﬁ/.[.,Pm(fO;-' e, m) =
—Z Z Jo(@) fi(x 4+ Pi(y)) - fo(x 4+ Po(y))es1(Posa(y)) - - - V(P (y))-

x€Z ye[M
When m = ¢ and fo = --- = f,, = f, we denote AP1 Pm(fo,.. , fm) by A ..... p, (f). Note
that for any A C [IN] and M sufficiently large, the quantity A ..... p.(1a)is 1 /N M times the
number of nontrivial progressions z, x + Py(y), ...,z + Pu(y ) in A It is necessary for us to

study the more general averages AIZ\DQM p. (fo, oo, fg; Yei1, .-, ¥m) in order to run some of
the inductive arguments within the proof Theorem 1.1.

Theorem 3.2 is a consequence of the following result, whose proof takes up the bulk of this
paper.
Theorem 3.3. Let N > 0, ¢ € N, and Py,..., P, € Zly] be polynomials with (C,q)-

coefficients such that deg P, < --- < deg P,,. Set M := (N/qdc¢Pm=1)1/deg P [f 1 f
Z. — C are 1-bounded functions supported on the interval [N| and

A]]\DllM Pm(f()a R 7fm> Z J

,,,,,

then there exist positive integers q',b, and N' satisfying ¢ <c.aegp,, 0 Pt b Leep,, 1,
and
Ndes Py > N’ >0 deg P, MdegPl((;/(DOdegm(l)
such that )
5 2 Bt fi(z + d'q"y)| >cacep, 6%,
TEL
provided N > deg p,,, (q/8)csPn (D).

As was discussed in the introduction, to prove Theorem 3.3 we must show that the average

A]\Z%Pm(fg, ooy fos s, .. y) is controlled by some U®-norm of the form || - ||ys 2oy (L)

We do this by first showing that Aﬁl’fffpm (fos- s fo,Yest, .., y) is controlled by an average
of a family of Gowers box norms of a special form, and then proving the main concatenation
result of Section 5 and repeatedly applying it to averages of such Gowers box norms.

We now describe the special form of the families of Gowers box norms just mentioned.
Let ¢ and ¢ be nonzero integers with ¢ > 0. For each 7 =0,...,¢ — 1, we define a sequence
of finite sets I; = I;((k;)icz,_, ), which depend on the choice of k; € N for each i € I;_; when
J > 1, and sets of polynomials A; = A;(¢, c; (ki)ier,_,) = {pi : i € 1}, which are indexed by
I;, recursively as follows:

(1) Io = {0}, Li(ko) = {0, 1}* \ {0}, and
Li((K)ier, ) == {0, 1}{0nehrelili {0}
for j=2,...,0—1, and
(2) Aol c) :={c}, A1(€, c; ko) = {(Ecaég, .. éca ,1 ) w:w € I(ko)}, and
A (e (Biier,,) = {(( = (G = D)pia)Vier,_,rep w0 w € I}
forj=2,...,0—1.
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For example, when ¢ =3, ¢ =1, ko = 2, k1) = k1) = 1, and k(1,0) = 2, we have Iy = {0},
]1<k0) - {(07 1)7 (17 0)7 (17 1)}7

IZ(k(O,l)yk?(l,O)yk(l,l)) {O 1}{ ((0,1),1),((1,0),1),((1,0),2),((1, 1)1}\{0}
Ao(t,¢) = {1}, Ai(L, ¢; ko) = {3a(], 3a83, 3al] + 3a§y}, and

1 2 2 1 1 2
As(C ¢ (ko). By b)) = {(6aially 1. 6ai3a) 1. 6a53ag)) 5, 6(al] + agd)al) ) - w

w e {0, 11"\ {0} }.

We will show that Ay’ M p, (for- s f;¥es1, -+, p) is controlled by an average of Gowers

box norms of the form H H el , where Q;(a) = p;(a)[0’ M| for suitable 0 < ¢' < 1.

S@i@dier,
Note that it suffices to prove such ae rlesult in the case when deg P, =1 foreach i =1,...,m,
for any polynomial progression considered in Theorem 1.1 is a subprogression of such a
progression. One may also assume that ¥,y = -+ = ¢, = 1, for the general case follows
from this special case by the Cauchy—Schwarz inequality. We thus restrict to this situation
in the following proposition for ease of notation.

(IN])

Proposition 3.4. Let N M >0, g € N, and Py, ..., P, € Zy] be polynomials with (C,q)-
coefficients such that deg P; =1 fori=1,...,¢ and Py has leading coefficient c,. There exist
positive integers k; <, 1 for each i € I; and J= , £ —2 such that the following holds. If
1/C < ¢ *MY/N<C, fo,...,fo:Z — C are 1- bounded functions supported on the interval
[N,

-----

and &' < 690 then we have

Eaeall fell iz
D@ mpea,_,

where Iy_y == Iy ({k; : i € Ij_o}) and Ap—y := Ai_1({, cs; (ki)icr,_,) are defined as above and
0—2 )
A= ((—8'M,8'M) N Z)==0 e
In Section 5, we prove that the averages of Gowers box norms appearing in Proposition 3.4

are controlled by some U®-norm with s <, 1. The most important ingredient of this proof
is the following theorem, which is our main concatenation result.

Theorem 3.5. Let N, Ml,MQ > 0 with M2 S M1 and M1M2 S N/|C| and bl,...7bs c
[—CN/M,,CN/M\|NZ. If f:Z — C is a 1-bounded function supported on the interval [N]
such that

(3.2) Eaepas) | fllo (IN) 2 0,

((catb)[M1])5_,

and §' <5 89 then there exists an s’ <4 1 such that
1f]

provided that My My ¢, (06")~%=W)

Os(1)
U age gy (VD o 077

e[’ My
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Many averages of Gowers box norms appearing naturally can be controlled by global
Gowers uniformity norms through repeated applications of Theorem 3.5, so we expect that
this result could be of independent interest. Another general concatenation result appearing
later that may also be of independent interest is Lemma 5.1.

In the special case when My = M, = NY/2 ¢ =1, and by, ..., b, = 0, after an application of
Lemma 2.2, Theorem 3.5 implies that the average Eae[Nl/Q}E:UE[N]EhI,...,hse[Nl/Q]Aah1,...,ahsf(x)
of “local Gowers uniformity norms” (as defined in [23]) is controlled by some U®-norm, with
polynomial bounds. This thus gives a quantitative version of Proposition 1.26 of [24] for
arbitrary s, though with a worse dependence of s’ on s.

We take advantage of the special structure of A,_; to prove the following proposition using
repeated applications of Theorem 3.5, showing that averages of Gowers box norms of the
form appearing in Proposition 3.4 are controlled by U?®-norms.

Proposition 3.6. Let N,M >0, ¢ € N, and Py, ..., P, € Z[y] be polynomials with (C,q)-
coefficients such that deg P; =1 fori=1,...,0 and P, has leading coefficient c,. There exists
an s <, 1 such that the following holds. Let Iy_1, As_1, and A be as in Proposition 3.4. If
1/C < ¢ 'M*'/N < C, f:Z — C is a 1-bounded function supported on the interval [N],

Eacall £l e > 4,

(p(g)[5’1Vf])peAg_1 (VD)
and §' < 690 then we have

1 flls

Ocpls’ MY

() > 690

provided that N >c (CJ/M/)OZ(D

Combining Propositions 3.4 and 3.6, we thus deduce using the Cauchy-Schwarz inequality
that Agl’%Pm(fO, ooy fosesa, ... ) s controlled by an average of U®-norms.

Theorem 3.7. Let NyM > 0,1 <{¢<m, and P,..., P, € Zly] be polynomials such that
Py, ..., Py have (C, q)-coefficients, deg Py < --- < deg P,,, and P, has leading coefficient c,.
There exists an s <qegp, 1 such that the following holds. If 1/C < giePe=tppdee e /N < O,
for--y fe : Z — C are 1-bounded functions supported on the interval [N], ¥pi1,. .., 0m
Z — SY are characters,

Pl, ,Pm<f07 . ‘?ff;wg-‘rl) ce 7¢m) Z 5,

and §' K¢ deg P, §Odex Pz(l), then we have

Odeg P, (1)
(degP e [5/1\JdegP[ ([N]) >>C;d6gP£ 5 eg Py )

provided that N ¢ qeg p, (q/00")Ptes eV,

We will next use the Cauchy—Schwarz inequality to deduce from Theorem 3.7 control of
P1, 7Pm(f0, ooy Joyesn, .o, y) in terms of an average of U®-norms of dual functions.

Corollary 3.8. Let NNM >0, q € N, 1 < ¢ < m, and Py,..., P, € Zly] be polynomi-
als such that Py, ..., P, have (C,q)-coefficients, deg P, < --- < deg P,,, and P; has lead-
ing coefficient ¢,. There exists an s <aegp, 1 such that the following holds. If 1/C <
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qies el ppdes e [N < O fo, ..., fo i Z — C are 1-bounded functions supported on the inter-
val [N] and gy, .., 0n : Z — S* are characters,

Ag;M Pm(foa s 7f€;1/)£+17 cee 7¢m) Z 4]

and ¢ Kgeg Py, §Oaes Pz(l), then we have

[£7] .

([Odeg Py (CN)D >>deg P,C (SOdEE Py ,

US
(deg Py)lc,[6' Mdee Pr)

provided that N >>4eg p,.c (q/65’)0deg”e(1), where Fy is the dual function
Fy(x) = Eyepn fo(x — Po(y)) -+ feer(x 4+ Peoa(y) — Pe(y)es1(Pes1(y) - Ui (Pn(y)).-

The next step of the proof of Theorem 1.1 is to show our general degree-lowering result.

Lemma 3.9 (Degree lowering for ¢). Let N, M >0,qeN,2<{(<m, P,..., P, € Zly| be
polynomials such that Py, ..., P, have (C,q)-coefficients, deg P, < --- < deg P,,, and Py has
leading coefficient ¢, satisfying 1/C < |ce/c| < C, fo,..., fo:Z — C be 1-bounded functions
supported on the interval [N], and Vey1,...,0m : Z — S' be characters. Let Fy be as in
Corollary 3.8. If s >3, 1/C < |c|[M8P /N < C,0< ¢ <1, and

HFEHUCS[(S/MdegPZ]([CN}) >4,
then
[ Eells

—1
c[s’ mdeg Py

provided that N > qeg py.s (q/006")C Fes(L)

([CN)) >>C7degpé’s (55/>OdegPZ,S(1)7
]

Lemma 3.9 is labeled as “Degree lowering for ¢’ because it is proved by induction on /¢
using the following lemma.

Lemma 3.10 (Major arc lemma for £). Let NJM >0,qeN,2<{¢<m, P,,...,P, € Zly|
be polynomials such that Py, ..., P, have (C,q)-coefficients, deg P, < --- < deg P,,, and P;
has leading coefficient ¢; for i = 1,...,m, and ¢, ..., m : Z — S be characters with
Vi(z) = e(oyx) with a; €T fori={,...,m. Assume further that 1/C < |c|M&P /N < C.
If there exist 1-bounded functions fo, ..., fo—1 : Z — C supported on the interval [N] such
that

e 2 Flenyuifea)| = 6,
TEZL
where Fy is as in Corollary 3.8, then there exists a positive integer t K¢ deg Py, §~Odeg Pm (1)
and a ¢ <¢ (|cep|)Ptern @) such that
. §Odeg Py (1)
||tC CmOém” <<C,deng MTPW/C”

provided that N >>¢ qeg p,, (q/9)PdcsPm D).

The proof of Lemma 3.10 for each /£ is itself part of the inductive proof of Lemma 3.9. We
first prove Lemma 3.10 in the ¢ = 2 case, then show that Lemma 3.9 for £ > 2 follows from
Lemma 3.10 for ¢, and finally show that Lemma 3.10 for ¢ > 3 follows from Lemmas 3.9
and 3.10 for ¢ — 1. Taken together, this shows that Lemmas 3.9 and 3.10 hold for each /.

As promised in the introduction, we now discuss why we must assume that P, ..., P,, have
distinct degrees in Theorem 1.1, instead of just requiring them to be linearly independent
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over Q as in [14]. The proof of the degree-lowering result in [14] is made simpler by the fact
that there is only ever one “major arc” in the finite field setting (the trivial character) and
a character of IF), is either equal to the trivial character or it is not. In contrast, the notion
of major arc in the integer setting is more flexible. For the proof of Lemma 3.9, we need the
full strength of the conclusion of Lemma 3.10: that ,, is within some factor of M ~deeFm
of a rational with small denominator. But if we relax the hypotheses of Lemma 3.10 to
allow P,..., P, to be merely linearly independent, then one can only show that «,, is
major arc in a quantitatively weaker sense: that a,, is within some factor of M/ —deef
of a rational with small denominator. This is not strong enough to prove a corresponding
degree-lowering result. Of course, if Py, ..., P, are not even linearly independent, the degree
lowering phenomenon certainly does not occur even in the finite field setting.

For the final stage of the proof of Theorem 3.2, we combine Corollary 3.8 with re-
peated applications of Lemma 2.4 and Lemma 3.9 for each ¢/ < m to show that, when

P1, . Pm( fo, -+, fm) is large, averages of related multilinear averages with successive f;’s
replaced by characters are also large. This is captured in the following lemma.

Lemma 3.11. Let NM > 0, q € N, 2 < ¢ < m, P,...,P, € Zly] be polynomials
such that Pi,..., Py have (C,q)-coefficients, deg P, < --- < deg P,,, and P, has leading
coefficient ¢y, fo,..., fo: Z — C be 1-bounded functions supported on the interval [N], and
Voyty oy m 2 Z— St be characters. If 1/C < qieelemtpfdee e N < C' and

’Apl, ,Pm(fm---,fe;WH,---ﬂ/Jm)‘ >0

then

C'N'.M’
A

( u,h,w u,h,w
ph

K b O
0 goeee 0—1 ,¢g7u,w8+l,...,wm)’ >>C,deng (5 degPe(l)

E u,h=0,...,|c'| -1
0<w<(N/|c|)/C'N'

for some characters iy, : Z — S, where C' <qegp, C, ¢ = (deg Pp)lc,, M' := M/|¢|,
N i (MR (gl s,

PZ‘(C,Z-l-h)—Pi(h) - 1 ) g . 1
P.h(Z) = { < ! T

177

! Pi(dz+h)—Py(h) i=4(,....m

and

gy = ) TeovwTopn Tl foen) (€0) - Lony(v) i =
’ TC/C’N’wTPi(h)—Pe( ,ufl(c Z') 1[0/]\[/] (l‘) 1= 1, ce ’f -1 ’

provided that N > aeg p, (q/6)C%e L),

Note that if Py,..., Py € Z[y] have (C, q)-coefficients, then P}',... P!, € Z[y], as de-
fined in Lemma 3.11, have (Ogegp,(C), 'q)-coefficients for each h € [¢]. To prove The-
orem 3.3, We repeatedly apply Lemma 3.11 and van der Corput’s inequality to deduce
that if |A Pm( fo,---, fm)| = 0, then an average of multilinear averages of the form

AQl,...,Qm (go, gl,wg, ...,¥m) is large as well, where g; equals various shifts and scalings of
fi1 and deg@; = deg P, — (deg P, — 1). It is not hard to show that, usually, the phases
Yo, ..., must all be major arc, so that after passing to sufficiently short subprogres-
sions modulo an integer of the form ¢'¢ for some ¢’ <, deg Py §Oaearm (1) and b Ldegp, 1
and unraveling the definition of ¢, we are left with an average of the form appearing in
Theorem 3.3.
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4. CONTROL BY AN AVERAGE OF GOWERS BOX NORMS

As in previous work on the polynomial Szemerédi theorem, we will frequently use van der
Corput’s inequality, which we now recall. See, for example, [12].

Lemma 4.1 (van der Corput’s inequality). Let M > H >0 and g : Z — C. We have

[Eyenng(w)]” < M]\ZH > mn(h) % > 9+

heZ ye[MIN([M]—h)

As was mentioned in Section 3, we will use repeated applications of the Cauchy—Schwarz
and van der Corput inequalities to control A _p,, by an average of Gowers box norms of
the form appearing in Proposition 3.4. To do thls we follow Bergelson and Leibman’s PET
induction scheme [2]. Tao and Ziegler [23, 25] have also used PET induction to prove that
counts of polynomial progressions are controlled by averages of Gowers box norms in their
work on polynomial progressions in the primes. Our argument differs in that we care about
the precise structure of the average of Gowers box norms so that we can apply Theorem 3.5.
Thus, we will have to make more careful choices at certain points of the PET induction
argument, and also keep track of more information.

We first record, for the sake of convenience, the most common way in which the Cauchy—
Schwarz and van der Corput inequalities are combined in this section. Like Lemmas 4.4, 4.5,
and 4.6 to follow, the statement of Lemma 4.2 is long because of the amount of information
we will want to keep track of, but its proof is short.

Lemma 4.2. Let NNM > 0, [ and A C Z" be finite sets, ig € I, p : Z" — [0,00) be
supported on A with ||pl|ln < 1, Q; € Zlay, ..., anly| for each i € I, and fu, fi : Z — C be
1-bounded functions supported on the interval [N] for each a € A and i € 1. Assume that

. <
(4.1) minmax max [Qu(a. )] < O.
If

2

(4.2) Elea ZEyEM]fa )Hfi($+Qz‘(Q,y)) >,

xEZ i€l
then for all v' <¢ 7y, we have

|
Elfeay O Eveinfio(@) ] gola + Qulav)) > 7,

where
(1) I' = (I x {0,1}) \ {(i0,0)},
(2) A= Ax ((—/'M,¥M)NZ),

(3) 2 ( ) (ala <o 7an):u”Y'M<an+l);
(4) for each i = (i,e) € I', we have

Q;’(@lay> = Qi(ala ey Gpy Y + 6an—i—l) - Qio(ala cee 7anay)7
(5) and for each i’ = (i,€) € I', we have

) fi e=0
g = fi e=1"
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Proof. For each a € A, we first apply the Cauchy—-Schwarz inequality in the x variable and
use that f, is 1-bounded and supported on [N] to bound the left-hand side of (4.2) by
2
1
EZGAN Z Eyepnn H filz + Qia, y))
€L el

Applying van der Corput’s inequality with g, .(y) := [L;c; fi(z + Qi(a, y)) and H =~'M for
0 < v/ < 1 bounds the above by

| 1 -
<Ehean Do | Do mymlan)y; DL Gealy+ ani1)geav) |

2€Z | ant1€Z ye[MN([M]—an+1)

where we have used the fact that M + H = (1 4+~ )M < M.

Now, note that g,, is 1-bounded because the f;’s are 1-bounded and, for each a € A,
gz.q 18 identically zero for all z € Z outside of a set of size < C'N by the assumption (4.1)
since each f; is supported on the interval [N]. Thus, recalling that s is supported on
(=Y M,~'M) and ||ty a]|en < 1, for each any1 € (—y'M,+' M) NZ we may extend the sum
over y € [M]N([M]—an4+1) to a sum over all of [M] at the cost of an error of O(C%’). Thus,
as long as 7' < C, we have

ro 1
Eheary 2 Bvenn [[file + Qiar, - an,y + ane)) il + Qilan, - an, ) > .

TEZ il

To conclude, we make the change of variables x — = — Q;,(a, y). 0

To describe the PET induction scheme, we need the notion of a weight vector. This is
the 1-dimensional case of the weight matrix of Bergelson and Leibman [2], who also consider
more general multidimensional polynomial configurations.

Definition 4.3. Let n € N, I be a finite set, and Q; € Zlay,. .., a,l|y] for each i € I. Set
Q = (Qy)icr, and let L(Q;) denote the leading coefficient of Q; for each i € I. The weight
vector of Q is defined to be

We also define the degree of Q to be max;c; deg @Q);.

Clearly, the weight vector of any finite set of polynomials has only finitely many nonzero
entries. One can define an ordering < on the set of weight vectors by saying that V(Q) <
V(Q') if there exists a d € N such that #{L(Q) : deg@ = d,Q € Q} < #{L(Q’) : deg Q' =
d,Q € Q}and #{L(Q) :degQ =¢,Q € Q} = #{L(Q’) : deg Q' =¢,Q’ € Q'} forall e > d.
It is easy to see that < is a well-ordering on the set of weight vectors. PET induction is
simply an induction on the weight vector of collections of polynomials using the ordering <,
with collections of linear polynomials forming the base case of the induction. This method is
based on the fact that one can use the Cauchy—Schwarz and van der Corput inequalities to
control an average over the polynomial configuration (z + Q(y))geouto} by an average over
a polynomial configuration (z + Q'(y))greouqoy with V(Q') < V(Q).

As was mentioned in Section 3, if one can control Aﬁ;M Pg( fi,-.., f¢) by an average of

,,,,,

.....

.....
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over the linear configuration (z 4+ p(a)y)pea, ,ugoy, with A,_; as in Proposition 3.4. In order
to verify that the linear configuration we get at the end of the PET induction argument has
this particular form, it will be necessary to keep track of additional details besides the weight
vector. In particular, we will keep track of the set of leading coefficients of polynomials of
highest degree d and the coefficients of their degree d — 1 terms.

We will now state three basic lemmas on controlling averages over general progressions
(x 4+ Q(v))geoufoy, which apply in different situations depending on the weight vector of Q.
These lemmas have long statements, but each proof is just an application of the Cauchy—
Schwarz and van der Corput inequalities followed by a change of variables.

Lemma 4.4. Let NNM > 0, [ and A C Z" be finite sets, ig € I, p : Z" — [0,00) be
supported on A with ||plla < 1 and [|p]7 < C‘i” Qi € Zlay, ..., a,)[y] for each i € I, and
fa, i + Z — C be 1-bounded functions supported on the interval [N] for each a € A and
iel. Set Q:=(Qi)icr and let d be the degree of Q, r =V (Q)4, C denote the set of leading
coefficients of degree d polynomials in Q, ¢;, be the leading coefficient of Q;,, and d' be the
smallest index such that V(Q)s # 0. Assume further that
(1) 1 <d <d,
(2) there exists an s € N such that, for all ¢ € C, there are s degree d polynomials Q in
Q with leading coefficient ¢, each having the form

clay, ... an)y" + cplar, ..., an)y" " + lower degree terms,
where the coefficients cg(ay, ..., a,) are all distinct,
(3) deg Q;, = d',
(4) and
< C'N.
mAX MaK A Qi(a,y)| < C
If
1
n
(43) A %E ) fol gf r+Qi(a,y)| = 7,

then for all ¥ <c.cr 72, we have

/ 1
Eiepr O Eyeinfan(e) [T oo+ Qila,) e

z€Z ier
where

(1) I' = (I x {0,1}) \ {(i0, 0)},

(2) A = A x (“A/ M, M) "),

(3) (@) = 2 8%52d p1iny (@),

(4) fori" € I', we have @} (d,y) = Qi(a, y + €ani1) — Qig(a, y),

(5) the set of leading coefficients of degree d polynomials in Q' := (Ql)wcr isC,

(6) for all ¢ € C, there are 2s degree d polynomials in Q" with leading coefficient ¢, and
for each i = (i,e) € I' with degQ; = d and Q; having leading coefficient c, the
polynomial )}, has the form

cla, ... a,)y" + [cp, (a1, ..., an) +edc(ay, . .., an)an1—la—a-1ci(as, . .. Lay)|yd Tt

+ lower degree terms,
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so that the coefficients of the degree d—1 terms of these polynomials are still distinct,
(7) we have

V(Ql) == (77/17 cee ,ndlfl,V(Q)d/ - 17V(Q)d/+1a . . '7V(Q)d707 L ')a

where ng + -+ +ng_1 < |I'| =2|I| — 1,
(8) and, for i = (i,e) € I', we have

o fZ e=0
gy = }z € — 1-

Proof. We expand the definition of E* to write the left-hand side of (4.3) as

> pla) [% > Eyepnfa@) [ fite + Qila, y))] > 7,

acA TE€Z iel

and apply the Cauchy—-Schwarz inequality in the a variable to deduce that
2

% > fa@Byepn [ | file + Qila, )| >c v,

TEZ el

]EQE A

using the assumption [|pf|7 < C'r.
We now apply Lemma 4.2 to conclude. Indeed, if ); has degree d and leading coefficient

¢, then, by the binomial theorem, Q;(ay, ..., a,,y + €a,11) equals
clar, ..., an)y’ + [cg,(ar, ..., an) + edc(ay, . . ., an)ans1]y® " + lower degree terms.

In addition, if @; has degree > d’, then Q)(;¢) (as defined in Lemma 4.2) has the same degree
and leading coefficient as @;, if @); has degree d' and leading coefficient equal to ¢;,, then
Q(i,e) has degree < d' — 1, and if @); has degree d’ and leading coefficient ¢; # ¢;,, then Q; ()
also has degree d’ and has leading coefficient ¢; — ¢;,, thus confirming conclusion (7) of the
lemma. U

Lemma 4.5. Let NNM > 0, [ and A C Z" be finite sets, ig € I, p : Z" — [0,00) be
supported on A with ||plla < 1 and [|p]|Z < C\T%I’ Qi € Zlay, ..., a,)[y] for each i € I, and
fa, fi : Z — C be 1-bounded functions supported on the interval [N] for each a € A and i € I.
Set Q := (Q;)icr, and let d be the degree of Q and r =V (Q)q. Assume further that

(1) d>1andr =1,

(2) V(Q)a =0 foralld < d,

(8) the polynomials Q) € Q each have the form

clay, ... a,)y" + cb(al, o)y T 4 lower degree terms,

where the coefficients cp(ay, ..., a,) are all distinct,

(4) and

; < C'N.
r?ealx Iéleaj( ;Iel% 1Qi(a,y)| <

If

e S By fole) [ Al + Q)| = .

TEZ el

E
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then for all ¥ <c.cr 72, we have

|
Eyerre 2 Byennfiol) [ [ 9o(e + Qi) >c 7
z€Z, ier
where
(1) I' = (I x {0,1}) \ {(i0, 0)},
(2) A=Ax((—M,~vM)NZ),
(3) 1(a) = A (a),
(4) fOT Z./ = (Za 6) € II; we have Q,z/ (Ql)y) = QZ(Q7 Y + Ean-i-l) - Qio(@? y);
(5) the set Q" = (Q.))ier consists of 2|1| —1 degree d —1 polynomials, each with distinct
leading coefficient, and the set of such coefficients is

{cg,(ar, ... an) +edc(ay, ... an)ans — C,Qio(a17 coyay) : (i,€) € T'}
(6) we have
d—2
V(Q) = (@, 0,21 - 1,0,...),
(7) and for i' = (i,e) € I', we have

o Ji e=0
g = fi e=1"

Proof. Apply the Cauchy—Schwarz inequality and Lemma 4.2 in exactly the same manner as
in the proof of Lemma 4.4. O

Lemma 4.6. Let NM > 0, I and A C Z™ be finite sets, ig € I, p : Z" — [0,00) be
supported on A with ||plle < 1 and [|p]7 < Cﬁ, Qi € Zlay, ..., a,)[y] for each i € I, and
fa, i + Z — C be 1-bounded functions supported on the interval [N] for each a € A and
iel. Set Q:=(Q:)ier and let d be the degree of Q, r =V (Q)a, C denote the set of leading
coefficients of degree d polynomials in Q, and c;, be the leading coefficient of Q;,. Assume

further that
(1) d>1andr > 1,
(2) V(Q)o =0 for all d' < d,
(8) there exists an s € N such that, for all ¢ € C, there are s degree d polynomials Q in
Q with leading coefficient ¢, each having the form
clay, ... a,)y" + c’Q(al, )yt 4 lower degree terms,

where the coefficients ci(ay, ..., an) are all distinct,

(4) and

i(a,y)] < C'N.
A e ma Qila, y)| <

If
1
EgeAN ZEyG[M]f@(x) H filx + Qi(a,y))| >,

TEZ el
then for all ¥ <c.cr 72, we have

/ 1
Eveasy > Epepnfiola) [ ov(a + Qi(a,y)) >c 7,

TEZL el
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where
(1) I' = (I x {0,1}) \ {(40,0)},
(2) A = Ax ((—/M,~'M)NZ),
(9) 1(a) = A0et) (),

(4) fori' = (i,e) € I', we have Q(d',y) = Qi(a,y + €ani1) — Qiy(a, y),
(5) the set of leading coefficients of degree d polynomials in Q' = (Qi)yer is {c — ¢, :

ceCH\{0},

(6) for each ¢ € C\ {ci,} there are 2s degree d polynomials in Q" with leading coefficient
¢ — ¢y, and for i = (i,€) € I' with deg Q); = d and Q; having leading coefficient c,
the polynomial Q' (d',y) has the form

(c—ci)lay,. .. a0yt + (o, (a1, ..., an) +ede(ay, . .., an)aniy — C/Qio (a1, ..., an)]y?"

+ lower degree terms,
so that the coefficients of the degree d—1 terms of these polynomaials are still distinct,
(7) we have
V(Q) = (my s, V(Qa — 1,0, ..,

where ny + -+ +ng_1 < |I'l = 2|I] — 1,
(8) and for i = (i,e) € I', we have

- fi €=0
9= fi e=1"

Proof. As with the previous lemma, the proof is the same as that of Lemma 4.4. O

The next two lemmas are proved by many applications of the previous three lemmas, with
the choice of 75 in many uses of these lemmas being particularly important. Recall that the set
Ay_1 was defined recursively. Correspondingly, the proof that the average AgM p,(f1s, fe)
is controlled by an average of averages over the linear progression (z + p(a)y)pea, ,u{0}
proceeds iteratively. Lemma 4.7 produces the initial situation that we will apply Lemma 4.8

to repeatedly.

Lemma 4.7. Let N, M > 0 and Py, ..., P, € Z[y] be polynomials with (C, q)-coefficients such
that deg Py =i for i = 1,...,0 and P, has leading coefficient ¢,. If 1/C < ¢*"*M*/N < C,
fo,---y foe: Z — C are 1-bounded functions supported on the interval [N,

ANY pfor oo f)] 2,

77777

and 5 K¢ 7Y, then we have

1
Bl s 2 Evepnfe(@) [ e+ Qi) e 1%,

z€Z i€l
where

(1) I ={0,1}*\ {0} for some t <, 1,
(2) A= ((—yM,vM)NZ),

1a(a,..., a
(3) u(al, Ce ,at) = WU’WM(GIS);
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(4) the collection Q := (Q;)ies consists only of polynomials of degree £ — 1, each of which
has distinct leading coefficient, and the set of such leading coefficients is

{(beyay, ..., lepay) -w :w € T}

(5) we have

N,
I?éalxr;leaj(;gax 1Qil(a,y) <ce

(6) and f! equals either f, or fy for alli € I.

In this lemma and those to follow, if Q@ = agy? + - -+ + ag € C[y] is any polynomial, then
|Q| denotes the polynomial |ag|y® + - -+ + |ag|.

Proof. The proof proceeds by applying Lemma 4.4 some number of times depending on /,
and then Lemma 4.5 once. Suppose that P, has degree /—1 coefficient ¢, and P,_; has leading
coefficient ¢o_1. Set Jy = [{], Ay = {0}, po = lgoy, Qo = {P1,..., P}, C) = {c}}, Q00 = 1,
and gjo = f; for 5 = 1,...,£. We apply Lemma 4.4 repeatedly to produce a sequence of
t—1 <, 1 finite sets Jy and Ay, measures ji, collections of polynomials Q) C Zlay, . . ., ax][y],
sets Cj, C Z[ay, . .., ax] of coefficients of the degree ¢ — 1 term of degree ¢ polynomials in Qy,
elements i € Ji, and 1-bounded functions g; for each j € J; satisfying
(1) Jep = ((Js—1 \ {J € Jk—1 : degQ; = 0}) X {0 1D\ {(iok-1,0)} for k=1,...,t —1,
A = ((— 'Mv’M)ﬂZ)kfork—l -1,

la,_q(a1,..,ax-1)

(2)
(3) ,uk(ah.. Clk) W”W’M(ak) forkzl,...,t—l,
(4) Q= (Qj)jey, for k=1,. — 1, where, for j = (j',¢€) € Ji, we have

Qj(ab e 7ak7y) = Qj’(ala e 0p—1,Y + ECLk) - Qio,k_l(ab cee 7ak—1ay)a

(5) Cp. = {c, — e(k)co_1 + leg(ar, ..., ax) - w : w € {0,1}*} for k = 1,...,t — 1, where
e(k) =1if 1 <,k <t—1 and €(k) = 0 otherwise,

(6) for j = (j',€) € Ji, we have g, equal to either g y_1 or gy r_1,

(7) iox € Ji is the index of any nonconstant (in y) polynomial of smallest degree in Qj,
for k=1,...,t —1, and ip;—1 € J;_1 is the index (¢,0),

(8) and

V(Qi—1) =(0,...,0,1,0,...),
such that

EMéAkN ZEyG[M]fak H g]k T+ Qj(al, cee, A, y)) > fyOk(l)7

TEZL JEJk
deg Q;#0

where

fak( ) .QZOk_lk 1 H g]k +Q](a1a"'7ak)y))

J€Jx
deg Q;=0
for all & = 1,...,t — 1, provided that 7/ <ce 7%, Indeed, we have that |ul% <
A L < i for each k: =1,. — 1, and to check that the condition
k1M = [A]

(4.4) max max max |Q;(a,y)| <ce N

JEJL a€A ye[M
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holds for each application of Lemma 4.4, note that

max - sup |Pi(y)| < c'C3N

=1,..., yG[ cM,cM]
for any ¢ € N by the assumptions that Pi,..., P, have (C,q)-coefficients, deg P; = i for
i=1,...,0 and ¢""1M* < ON, which implies that (4.4) holds by the recursive definition of
the );’s and the triangle inequality.

Note that Q; 1 consists only of constant polynomials (in y) and polynomials of degree ¢
(in y), we have J;_1 \ {j € Ji_1 : degQ; = 0} = {¢} x {0,1}"1, i,y is the index of the
degree ¢ polynomial in Q; ; whose degree ¢ — 1 term has coefficient ¢;, — ¢,_1, and g;¢—1
equals either f, or f; for every j € J, such that deg Q; = {. We may thus apply Lemma 4.5
with J;_4 \ {j € Ji1: deng = 0}7 A1, -1, 10,t—15 fg,tfla and fj = Gjt-1 for each
j€ Jia\{j € i1 : degQ; = 0}, again assuming that v <c, 7Y, The conclusion of
the lemma then follows after relabeling indices in [¢] x {0,1}*\ {(¢,0)} by the corresponding
elements of {0,1}"\ {0}. The bound on |Q;|(a,y) follows in the same manner as (4.4) using
the triangle inequality. 0

Lemma 4.7 may be used, for example, to control the progression z,x + y,z + y> in terms
of averages over the progression z,z + 3a1y* + 3aly, z + 3asy* + 3a3y, z + 3(ay + a2)y® +
3(a? + a3 + 2a1a3)y, where we have absorbed the constant (in y) terms into the definitions
of the f,’s for the sake of simplicity.

Lemma 4.8. Let N M > 0, I and A C ([-M,M]NZ)" be finite sets, p : Z" — [0, 00)
be supported on A with ||pllp < 1 and ||pl|7 < Cﬁ“ Qi € Zlay,...,anlly] be degree d > 2

polynomials for each i € I, C be the set of leading coefficients of polynomials in Q = (Q;)ier
with m :=|C|, and f, f; : Z — C be 1-bounded functions supported on the interval [N] for
each i € I. Assume further that

(1) I and C have the form I ={0,1}7\ {0} and
(4.5) C={((a1,... ,an))jes-w:we I}

for some finite set J and polynomials c? € Zlay, ..., a,],
(2) m = |I|, so that the leading coefficients of elements of Q are all distinct,
(8) we have

< CN,
mAX A max Qil(a,y)

(4) and f; equals either f or f for eachi € I.
If

EZ&A% ZEyG[M]f(x) H filr + Qi(a, y))| > v

TEZ i€l

and v <L e dm ’yodvm(l) then we have

aeA’N ZEyE[M]f ) [ i+ Qid,v) >cam v,

TEZL el
where
(1) I' = {0, 1 {{En=ebrell}\ 10} for some k; <qm 1 for eachi €1,
(2) A = A x ((—y/'M,~' M) N Z)Sierki,
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1 /(a (al T)z r ) .
(3) 1'(a, (az r)iel ek ]) \A\?2L7'MJ+1§IZz:£k’C T ,uny(a,k ) for some j € 1,
(4) Q := (Ql)wer consists only of polynomials of degree d—1, each of which has distinct
leading coeﬂ?czent and the set of such leading coefficients is

{(dci<a17 S >an)ai,r)i61,r€[ki] WiwE [/}a
(5) we have

N
VA R e 19 (w) <am N

(6) and f!, equals either f or f for every i’ € I'.

Proof. The proof proceeds by applying Lemma 4.5 once after repeating the following m — 1
times: apply Lemma 4.6 once, and then Lemma 4.4 as many times as necessary with careful
choices of distinguished index i( to produce a bound in terms of an average over a polynomial
progression involving only polynomials of degree d. Each repetition of this procedure reduces
the number of distinct leading coefficients of polynomials of degree d by one.

We first enumerate the elements cy,...,¢, of C by picking any ordering such that if
k <K, then ¢t(a) = ()(a))jes - w and cp(a) = (¢}(a))jes - W' with |w| < || This means
that ¢, (a) = 3¢, ¢}(a). Enumerate the elements @y, ..., @, of Q similarly, so that @; has
leading coefficient ¢;(a), and let ¢(a) denote the Coefﬁment of the degree d — 1 term of Q;
for each i = 1,...,m. Set ¢y(a) :=0.

Let I = [m], Ao = A, o = 1, Qo = Q, Cp = C, Cék) = {c,} for each k = 1,...,m,
and igp = 1. We will show that applying Lemma 4.6 and then Lemma 4.4 repeatedly
produces a sequence of m — 1 finite sets /; and A;, measures p; supported on A;, sets

Q; = (Qij)ier; of degree d polynomials with set of leading coefficients C;, sets C](-k) of the
coefficients of the degree d — 1 terms of polynomials in Q; with leading coefficient ¢, — ¢; for
each k = j+1,...,m, and elements i, ; € I; satisfying

(1) I; ={j+1,...,m} x {0, 1} {sn:0=ssirelksil}l for some ky j <gm 1 for each 0 < s < j
and j =1,...,m — 1, where ky; =1,
(2) Aj =A; 1 x (=M, ¥M)NZ)*it for j=1,...,m—1,

1a.(a,(as,r)o<s<ijr . .
(3) Hj (Q, (aS,T)OSSSjvTG[ks,j]) = |JA(J_7(1|(2|_),;),SMj:1€)g;S,;J])ﬂ'y/M(aj,kj,j) for J=1...,m—1,
(4) C; = {cj41 —¢jy...yem — ¢} for j = 1,...,m — 1 and, for i = (s,w) € I;, the
polynomial Q); ; € Q; has leading coefficient ¢, — ¢;,
(5) €Y = {(ch = (@) + (d(er — )@ asJocssireln,,) - w 2 w € {0, 1} {er0ssirelbailly
foreach k=j4+1,...,mand j=1,...,m—1,
(6) we have

e oy (el ) <oas

forj=1,....,m—1,
(7) and 4p; € I; equals the index such that @;,,; has leading coefficient ¢;;; — ¢; and
degree d — 1 coefficient

¢ 0(a, (asp)ozssimelk, ) = (ay — @) +d D (i1 — c)(@)as,
0<s<y
TE[]CS’]'}
for j =1,...,m — 2, and 4o m—1 € I,—1 equals the index such that Q;,,,_, m—1 has

degree d — 1 coefficient (c, — ¢,,_;)(a)
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such that

EZ]EA7 N Z EyE[M]faJ ) H fz/(l‘ + Qi(@a y)) >>C,d,j ’}/Od’j(l),

z€Z icl;

where f, ; is 1-bounded for each a € A; and f/ equals f or fforeachie I ;, provided that
v Lcdm ~9am(1)  Before showing that such a sequence of sets, measures, and elements exist,
note that if v < gm 7241, then the conclusion of the lemma follows from one application
of Lemma 4.5 when 7 = m — 1, for as s ranges over 0 < s < m — 1, the polynomials ¢,, — ¢
range over all of the ¢;’s by the assumption (4.5) and our choice of enumeration cy, ..., ¢p,.
It remains to prove that the above sequence exists. As was mentioned earlier, for each j =
1,...,m—1 this will follow from one application of Lemma 4.6 and then repeated applications
of Lemma 4.4, as in the proof of Lemma 4.7. Let us assume then that I;, A;, 1, QJ,CJ,CJk)
for k =j+1,...,m, and ig; satisfying the above conditions exist for some j =0,...,m —2.
We first apply Lemma 4.6, which we may do assuming that v <¢cam 7Oem() 4o get that

ZJ’EZJON ZE?JE M]f H fz T+ Qz,g 0( )) >0.d,j ’Yod’j(l),

TEL €150
where
(1) Lo = (Z; x {0,1}) \ {(é0;, 0)},
(2) Ajo=A; x ((—'M,~'M)NZ),
1a;4(a)
(3) wjola) = %/ﬁw’M(aj,O)v
(4) Qj7 = (Qij0)ic1;, has set of leading coefficients of degree d polynomials, C;,
5) ¢ , the set of coefficients of the degree d — 1 terms of the degree d polynomials in
7,0
Qo with leading coefficient ¢, — ¢j41, equals
{(C;c g+1 —d Z Ci+1 — Cs )as r+ (d(ck - CS)(Q)asm)OSSSj:TE[ks,j,o} "W
0<s<j
relks ;]

. w e {0, 1}{(sm)zOSssJyre[ks,j,ol}}

for all k = j+2,...,m, where k, ;0 = ks ; when s < j and k; ;0 = kj; + 1,
(6) we have

max max max a < N
i€l oaeAJOye[M]|Q”O|( y) Cidj ’

(7) and f; equals either f or f for all i € I;.

Let Q' denote the subset of Q; consisting of polynomials of degree d — 1. By our assump-
tions on Qj, the set of leading coefficients of elements of @’ is

1)
Cio:={c—cjp:ce Cj]+ F\ {0}
={(d(cj1 = c)(@asrozsireln.,) - (W — 1) w € {0, 1}HENO=s=Irelbslly {13},
Note that if @Q; € QJO, then ¢ has the form i = (j + 1,w) € I;,.

Next, we set m/ |C(]Jrl \{¢}o}| and enumerate the elements ¢}, ..., ¢} . OfC(]Jrl \{co}
by picking any ordermg such that if £ < k', then

C;',k(% (as,r)ogsgj,re[ks,j]) = (C;'—l—l - C})<Q> + (d(cj1 — CS>(Q)GSJ’)OSSSJ}TE[/CS,H "W
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and

(@, (s r)o<s<jrelhs ;1) = (Cipn — (@) + (d(cjrr — cs)(@)asyocs<irelk, ;] - W'

with |w| > |w'| (note that this inequality goes in the opposite direction of the one used for
the enumeration of elements of C). This means that ¢}, , = ¢, — ¢}.

Finally, to verify that we can indeed apply Lemma 4.4 repeatedly as in the proof of
Lemma 4.7, we note that if K is any finite set, B = ((—y'M,~+'M) N Z)* with v € N and
0<+ <1, P, € Zlby,...,b,][y|] for each k € K is a polynomial of degree at most d,

max max max | Pe|(b,y) < DN,
keK beB ye[M

and ko € K, then

max max max |P;.|(b,y) <4 DN,
(k,e)€(K x{0,1})\{(ko,0)} b€ Bx ((—'M,y'M)NZ) ye[M

where Py (b,y) := Pi(b1, ..., bu,y + €buy1) — Piy(by, . .. ,bu,y). To see this, just note that
|Pl::,e’(l_)7y) < |Pk|(b17"'7bu7y+€bu+1>+’Pkoy(blw"7buay) < ‘pk’(blaabuay+€bu+l)+DN

and
’P]f‘<b17"'7bu>y+€bu+1) < |Pk’(b177bua2M) < 2dDN

for all b € B x ((—v’M,W'M) NZ) and y € [M].

We now assume that 7/ < ¢ g, 701 and apply Lemma 4.4 repeatedly (tj <am 1 times
for each j) to produce a sequence of m' finite sets I, and A, ;, measures p; j supported
on A; -, and sets of polynomials Q; ;; and Q;J, satisfying

(1) ]JJ (Lijr—a\{i € L1 : Qijy—1 € Qjjr—1 and Q51 has leading coefficient ¢} ;, —
¢ 1}) x {0,1} for some tj g 1 for j' =1,...,m/,
(2) Ajyr=Ajy1 x (= M,yM)NZ)Y for j'=1,...,m,

SJJ])

]'A /( (aS T)O<s<]+1 relk
=1 MyM(CLjH,kSw,), where kg ; 1 =

(3) wig (@ (ass)oss<jrire, ;) = G
ksj for s < j, kj;j=kj;+1, and kJHH/ =kjs1jj-1+ Oagm(1) for j =1,....m/,

) Q ;» consists of all degree d — 1 polynomials in Q;

) the set of leading coefficients of degree d polynomials in Q; ;s is Cj41,

) Qs has set of leading coefficients C’

7) Qj j has set of coefficients of degree d — 1 terms of polynomials of degree d with

(4
(5
(6
(
leading coefficient ¢, — ¢;41 equal to Cj’j, for each k =54 2,...,m,

(8) CJ(];), is equal to

{ch—c;—c} y+(dler—cs)(an, ..., an)as,Jocs<jriref, , 1w w € {0, 1 sm)0sssitlrelk, kY

forallk=j5+2,...,mand j'=1,...,m/,
(9) and

max max max a < N
i€l 1 a€A; v ye[M] |Q”] |( y) G+l

such that

N o
a]Ez43 i N ZEZJG M]fa,]J ) H fz(l' + Qi,j,j,(gg y)) >>C,d,j+1 ,y d,j-‘—l(l)’

€L ’L'Efj’j/
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where f, ;i is 1-bounded for every a € A; ;; and f; equals either f or fforeveryi€ I g by

picking 7y corresponding to elements of Q;-J-,fl with leading coefficient equal to c;-, g cjl,l J

for each application of Lemma 4.4. We then take I;11 = I v, Ajr1 = Ajpry i1 = Mg
and Qj+]_ — Qj,m" |:|

Continuing the example from after Lemma 4.7, Lemma 4.8 may be used to control an
average over the progression x, z + 3a,y? + 3a2y, x + 3axy® + 3a3y, v + 3(a; + a2)y* + 3(a? +
a% + 2a,a7)y in terms of an average over progressions of the form

(46) (l’ + [(6(&1 + ag)bh 6a1b2, 6a1b3, 6&2()4, R 6a2b11, ) . u}]y)we{o’l}ll.

Lemmas 4.7 and 4.8 combined show that ANM P[( fo, -+, feo) is controlled by an average
of averages over the linear progression (z + p(_)y)pe Ap_1U{0}-

Lemma 4.9. Let N,M > 0 and Py,..., Py € Z[y] be polynomials with (C,q)-coefficients
such that deg P, = i for i = 1,...,0 and P, has leading coefficient c,. Let I; and A; for
j=0,...,0—1 be defined as in Section 3 with c; playing the role of c. There exist k; <, 1
for alli € I; and j = 0,...,0 — 2 such that the following holds. If 1/C < ¢*"'M*/N < C,
fos---y foe: Z — C are 1-bounded functions supported on [N],

‘A]]\Dllfw Pg(f(b'")ff)‘ Z e

and v < 7Y, then we have

Bleane OBy foe) [T A+ Lifa,) 100,

z€ZL i€lp_q
where
(1) A= ((—/ M,/ M) 0 Z) =5 St
(2) ul(a) —~
(8) L; € Z[a][y] is a linear (in gf)%ol;;zlo)mml with leading coefficient equal to p;(a) € Ap_q

foralli e I,_q,
(4) we have

’
1a(a)

14526725 ks
- +Zj:0 Zzelj (3

-1 )
)0<J<ezefj 1€k }) /’L’Y/M(az(,ki )) for some i € I, o,

L; N,
max Igea}yrgfLXI (a,y) <cy

(5) and f! equals f; or fy for alli € I,_;.
Proof. Apply Lemma 4.7 once and then Lemma 4.8 (¢ — 2) times. O

Controlling the averages of linear progressions appearing in Lemma 4.9 by Gowers box
norms is standard, and just requires |I,_;| — 1 more applications of the Cauchy—Schwarz and
van der Corput inequalities.

Lemma 4.10. Let N,M > 0, Ly,..., L,, € Zly] be linear polynomials with zero constant
term such that L; has leading coefficient c;, and fo,..., fm : Z — C be 1-bounded functions
supported on the interval [N]. Assume further that

max maX |Li|(y) < CN.

i=1,...mye[M
If
Aglf\/[, (an"'?foL) 277
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and v K¢ 7OV, then we have

Om(1)
[fmllog, o vy w7,

where Qo = cpu[Y M] and Q; = (¢ — ¢;)[Y M] fori=1,...,m — 1.

Proof. This will follow from m — 1 applications of Lemma 4.2, but applied in a slightly
different manner than in the proofs of the other lemmas in this section. When ' < v? we
have, by Lemma 4.2, that

Eho,h €[ /M] ZEyE[M]Ath c1hy fl ]IA iho,cihy, fl x+ (L - Ll)( )) > 72

by unraveling the deﬁmtlon of puya and makmg the change of variables y — y + hj. Next,
we apply Lemma 4.2 again to the quantity inside of the average Ey, p: e[, above and then
use the Cauchy—Schwarz inequality (instead of applying Lemma 4.2 to the entire quantity
in the left-hand side above, as we did before). Repeating this m — 2 more times yields the
conclusion of the lemma, since L; — L; has leading coefficient ¢; — ¢; for all 4,5 € [m)]. O

Finishing our example, we see that Lemma 4.10 can be used to control (4.6), and thus
the progression x,z + y,x + 3, in terms of an average over ai, as, b, ...,b;; of the norm
|- || o1t s , where

D(Qu)()#we{o 1311 N

Qu = ((G(Cll + a2)b17 6a1bz, 6a1bs, 6asby, - - - ,6a2b11,) 'W)WM]

for each nonzero w € {0, 1}!!.
Now we can prove Proposition 3.4.

Proof of Proposition 3.4. By Lemma 4.9, we have that

eANZEyG[MfE H f iU—l-L(a y)) >>gc50Z

TEZL i€ly_q

when ¢ <y 59N where A, I,_q, Ap_q, flfori e Iy, and L; for i € I,_; are as in the
conclusion of Lemma 4.9.

Set m := |I,_1| and enumerate the elements py,...,p, of A,_1 by picking any ordering

such that if k < &', then py = (p;(a)als Vicr, yrem) - w and pp = (pi(@)als icr, e -

(e=1)

a;, Enumerate the L;’s in the

with |w| < [w’|. This means that p, = > ,c;, , .cpPi(@)a
same manner, so that Ly has leading coefficient p;. Denote the constant term of L by pj,
for each k € [m] as well.

We now apply Lemma 4.2 once to deduce that
N,M
E  gea A ( Py (a A/ a)(ho,hl) f1( ) szp’m(g)A m(a)(ho, h’)f ( )) >cy 502(1)

ho,ht €6 M] p2(a)y,-...pm(a)y
1)
assuming that ¢ <y 59 We now apply, for each ﬁxed a € A and (hgy, h)) € [0'M]?,

N,M
Lemma 410 tO APQ(Q)ZJ P ((1) <Tp/1(Q)Alpl a)(ho h )f{(l’), .. (G)Apm a)(ho,h/)f ( )) tO get that

Eaeall Ty, ) fell o1 > 6960

@b Mpea,

(IN])

again assuming that ¢ <c 59 and recalling our choice of enumeration of elements of

A¢—1. To conclude, we note that ||T, (a)fel e (N = || fell e ) for
D@ Mpea,_, He@ Mpen,_,
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each a € A by making the change of variables  — x — p/, (a) inside of the definition of the
Gowers box norm. O

5. CONCATENATION

The main ingredient in the proof of Theorem 3.5 is the following result, whose proof will
occupy the first part of this section.

Lemma 5.1. Let N,Ml,MQ > 0 with M2 S M1 and M1M2 S N/|C|, bl,...,bs S Z, and

[+ Z — C be a 1-bounded function supported on the interval [N]. If ged(a+b;, a+b;) <5 1/v"

for all distinct i,j € [s] and |a + by| > ~"M; for all but a Os(v") proportion of a € [M],
Eaepan || flles (IN]) 27

(e(atby)[Ma))3_,

and v,y < Y% W | then there exists an s' <, 1 such that
1]
provided that My My >, (7)==,

) 0s(1)
Uy (v s 7

e[y’ My Ms]

Before beginning the proof of Lemma 5.1, we record a couple of lemmas.

Lemma 5.2. Let M > 0. For all but a O4(~y)-proportion of s-tuples (ay,...,as) € [M]*, we
have that
ged((ay, ... aq) - w,(ag,... a5) ') <y
for all distinct w,w’ € {0,1}*\ {0}, and for all but a O4(v)-proportion of pairs of s-tuples
(ai,...,asby,...,bs) € [M]**, we have that
ged((ag — by, .. a5 — bg) ~w, (a1 — by, ... a5 — bs) - w') <7y

for all distinct w, " € {0,1}°\ {0}.

-1

Proof. These statements follow easily from the union bound and the fact that ged(a,a’) <
e~! for all but a O(e)-proportion of a,a’ € [M]. Indeed, for each pair of distinct w,w’ €
{0,1}% \ {0}, the pair ((a1,...,as) - w,(a1,...,as) - ') ranges over a subset of [sM]* of
density > 1/s? as ay, .. .,as ranges over [M], and this pair hits each point in its range with
multiplicity at most M*~2. Thus, the total number of s-tuples (ai, ..., as) € [M]* for which
ged((ay, ... as) - w, (a1,...,as) - w') >~ is < ys2M*. We conclude the first statement by
taking the union bound over all < 1 pairs of distinct w,w’ € {0,1}*\ {0}. The proof of the
second statement is essentially the same. 0

As in [15], we will also need an inverse theorem for certain two-dimensional Gowers box
norms. The one we prove next holds in greater generality than the inverse theorem in [15],
at the cost of a slightly weaker conclusion.

Lemma 5.3. Let N, My, My > 0 with My < M; and MiMy; < N/m and suppose that
lc|, |d| € [Mi] with |c¢| > v Mym and ged(c,d) = m. Let f : Z — C be a 1-bounded function
supported on the interval [N]. If

1/ |2

c[vaMa],d[v2 M2

vy 27
and 0 < v3 < o <1 < 1, then there exist 1-bounded functions l,r : Z — C satisfying
#{x € [N]:l(x) # l(x + dz) for some z € [y13M,]} < %N
2
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and
#{x € [N] :r(x) # r(x + cy) for some y € [y3M]} < %N

such that

> At

1
=3 F@i@)r()

TE€EZ

Proof. By splitting Z up into progressions modulo m and arguing as in the proof of Corol-
lary 5.4 of [15], it suffices to prove the m = 1 case of the lemma. So, we assume for the
remainder of the proof that m = 1.

Since ¢ and d are relatively prime, every x € Z can be expressed uniquely as x = cy + dz

with y € Z and z € [|c[]. Thus, || f||1. () can be written as
clya Ma],d[v2 M2]

& S Byl ey )+ d(z + ) T )+ dCz 5 0)

UEZ
veE(c]

fely +u) +d(2' +0)) f(e(y' +u) + d(z +v))].
We split Z and [|c|] up into intervals of length 5 M, to write the above as

1
——3 Z Ey o 2ot wrepyants) [f (€(y + 0+ yo Mou”) 4+ d(z + 0" + 2 Mov™))
N /3 M wen

0<v” < |e|/y2 M2

fle(y +u' + o Mau”) + d(z + v + 2 Mav"))
fle(y +u' + v Mau") + d(2" + v + vy Mav™))
)
/

f(C(y/ + ul + '72M2u”> + d(Z, + U, + ’YQMQU, )],

using the fact that |c¢| > 72 M,. By the pigeonhole principle, there thus exist ¢/, 2/, u/,v" €
[y2 M) such that

1
74 < W Z Ey,ze[’mMﬂ[TC(u’+"/2M2u”)+d(v’+’72M2v”)f(cy + d'z)

u'' €7
0<v” <|c|/v2 M2

Tc(u’Jr'ngzu”)er(v’Jr'ngzv”)f(cy, + dZ)

Tc(u’—l—'\/QMQu”)+d(v’+’ng2v”)f(cy + dZ,)
Tc(u’+’ng2u”)+d(v’+'ng2v”)f(cy/ + dZ/)]

Fix such ¢/, 2/, v/, and v'. For each pair of integers u” and 0 < v” < |¢|/y2 M3, we define
1-bounded functions L, Ry @ [y2Ma] — C by setting

Lu”,v” (y) = c(u’—l—’nggu”)+d(v’+'72M2”U”)f(cy + dZ/)

and

Ru”,v”(z) = Tc(u’-‘r’yzM2u”)+d(v’+’sz2v”)f(cy, + dZ) ’ Tc(u’-‘r’yzM2u”)+d(v’+’sz2v”)f(cy, + dZ,)

We can then define ly, ro : Z — C by setting, for each x € Z with x = ¢(y + v Msy”) + d(z +
YoMs2") for y, z € [yoMs], ¥y € Z, and 0 < 2" < ¢/v92 M, an integer, lo(z) := Ly »(y) and
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ro(x) = Ryr .#(2). Then the above tells us that

(5.1) %Zf(:c—ircu’dev')lo(x)ro(x) > 42

TEZ

Next, we will show that

#{x € (-2N,2N)NZ: ly(z) # lp(x + dw) for some w € [y3Ms]} < By,
2

By our definition of [y, the left-hand side of the above is exactly the number of x €
(—2N,2N) N Z that can be written as x = c(y + v May”) + d(z + 12 Me2") with y € [y Ms],
z € [(v2 — 73)Ma,y2Ms], v € Z, and 0 < 2" < |c|/y2Ms an integer. The number
of possible choices for (y,z) is bounded by 7»y3MZ. To count the number of possible
choices for (y”,2") for each fixed pair (y, z), note that since |cy + dz| < %N and the map
Z x ([0, |e| /M) NZ) 3 (y", 2") — cy” + dz” is injective, the number of possible choices is
bounded by the number of integers 0 < 2" < |¢| /72 My and w” € [—O(N/v2Ms), O(N/v2Ms)]
such that dz” — w” is divisible by ¢. This quantity is bounded by < (|¢|/y2Mz)(N/~v2Msc),
so that the number of possible (y”,2") is < N/(72M)*. We conclude that the number of
such possible (y, z,y", ") is < %N . The same argument shows the corresponding bound
for ry.

To conclude, we make the change of variables z +— x — (cu’ 4 dv’) in (5.1) and set I(z) :=
lo(x — (cu/ + dv')) and r(x) := ro(z — (cu’ + dv’)), and note that since |cu’ + dv'| < N,
x — (cu' + dv') € (—=2N,2N) whenever z € [N]. O

The proof of Lemma 5.1 proceeds by induction on s. We first prove the s =1 and s = 2
cases as separate lemmas.

Lemma 5.4 (s = 1 case of Lemma 5.1). Let N, My, My > 0 with My < My, b € Z, and
f:7Z — C be a 1-bounded function supported on the interval [N]. If

Eae [M1] ||f||D ([N]) > v

c(a+b)[M.
and 0 <~ <1, then

HfHU2 N]) > ~OW,

v/ My Mo

provided that My My > 7_0(1).

Proof. Applying the Cauchy—Schwarz inequality to the average over a € [M;] and expanding

the definition of ”fHIjl( ey (V) have that

1
Eoepini 5 > Euwepn) f(x + cla+b)h) f(z + cla+ b)) > 7

TE€EZ

Making the change of variables x +— = — ¢(a + b)h and swapping the order of summation, we
get from the above that

—Zf ( acv ] Enwepn) f (2 4 cla +b) [0 — h])> > ~2

TEZ
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Since f is 1-bounded and supported on [N], we have by another application of the Cauchy—
Schwarz inequality and change of variables that

1
o S Bty B o preivgs (@) F@ + cla+ )W = K] = @ + [R7 = 7]) =

T€EZ

and then, by one more application of the Cauchy—Schwarz inequality and a change of vari-
ables, that

1
S B et B orcia (2T (a7 — H] — el — )i — W) 2 7
TEL
Note that |h' —hl, | —h"| > 7" M, for all but a O(y?) proportion of (h, W/, h”, h") € [My]*
and, by Lemma 5.2, we have ged(h/ — h, " — h") < 42 for all but a O(?) proportion of
(h, B, B W) € [My]*. Thus, it follows from the above that

1
N Z Ea,a/,a//,alue[Ml]]E h,h/,h//,h///e[Mz] f(x)f(x + C(CL” — a) [h/ — h] — C(CL’” _ CL/)[h/” _ h”])
TEZ |h'—h|,\h’”—h”|>79M2
ged(h —h,h/" —R'")<y—9

is > ~%. We can write this as

S @ T ewja(u) >

TEZL WE
where

:U’(w) = ]Ea,a’,a”ﬂ”'E[Mﬂ]E h,h/,h”,h/”e[Mz] 1w:(a”—a)[h’—h}—(a”’—a’)[h”’—h”}'
‘h/—h|,|h/"—h"|>’ngg
gcd(h’—h,h’”—h”)<'y_9

Note that p is supported on the interval [—2M; My, 2M; M| N Z.
By Fourier inversion, we have

i |5E X s@iftr e | de>

$€Z |w|<2M1M2

so that

(/T"A‘(f)'dﬁ)‘ max| £ Y F@TG o awelw)| | >

2€Z |w|<2My M,

Now, note that

=K o wreimy)  Vh* Un,
|h/—h|,|h///—h//‘>’)/9M2
ged(h/—h,h"" =R ) <y0

where Vh ) = Eaa E[Ml]lw alh/—h]—a'[h/""—h"] and ﬂh( ) = Vh<—UJ). Thus we have

/|/~L §)d¢ =E h,h' B W' e /|Vh |d§ E  pww e €[Ms>] E |Vh )
|~ [ h”\>79M2 (/=] |17 — R[5~ My we?
ng(h/ hh/// h <,7—9 ng(h/ hh/// h//) -9

by Parseval’s identity. Expanding the definition of v, the above equals
#{a, a/) a/l’ a/// c [M]_] : (a// _ a) [h/ _ h] — (a/// _ a/) [h//l _ h//]
B pw w wre(is) e ;
1

‘h’*h‘,|h/”7h"|>’ng2
gCd(h/_h7h///_h//)<,y79
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which is bounded above by M_lf - ME - 18;42 =~ 18 MllMQ, using the assumption M; > M.

Also note that, for each £ € T, the quantity |+ >,z Ejwj<onn i f (@) (@ + cw)e(§w)| is

bounded above by 1+ 2 ‘% Sy Bucpanan f(@) F(@ + cwe(€w)

supported on [N].

Putting our two observations together, splitting the average over [2M; M,] up into averages
over intervals of length ~'M;Ms;, and using the pigeonhole principle, we thus deduce that
there exists a w’ € [2/7/] for which

since f is 1-bounded and

ZEwG[v’M1M2]f( ) cw’ 'y’MlMQf(SL’ + Cw)e(gw) > ,YO(I)’

mGZ

assuming that M; M, > 790 Inserting extra averaging in the x variable by shifting by
elements of c[y'M; M) and applying the triangle inequality, we deduce from the above that

vy lE

z,wG[W'MlMQ]f(x + CZ>Tcw"Y'M1M2f(x +cz+ Cw)e(fw)‘ > 70(1)'

TEZL
It now follows from Lemma 2.2 that ||, v’Mlef”W N (1Y) > %M To conclude, we
make the change of variables © — = — cw'v'M; M, in the definition of the Gowers box
norm. O

The s = 2 case of Lemma 5.1 is a generalization of Lemma 5.5 of [15] (with a slightly
weaker conclusion, getting U°-control instead of U%-control), and thus its proof closely follows
the corresponding proof from [15].

Lemma 5.5 (s = 2 case of Lemma 5.1). Let N, My, My > 0 with My < My and MMy <
N/c, by,by € Z, and f : Z — C be a 1-bounded function supported on the interval [N]. If
ged(a+ by, a+by) < 1/9" and |a + by| > ~" My for all but a O(y") proportion of a € [M],

Bactrlll P02 1y at coimrann 3D 2 Vs
’)/ < (77//)0(1)7 and fy// <<70(1 then
1l i) > 77,

provided that My My > (') ~0W.

Proof. By splitting Z up into arithmetic progressions modulo ¢ and arguing as in the proof
of Corollary 5.6 of [15], it suffices to prove the result in the ¢ = 1 case. In the ¢ = 1 case, the
proof of Lemma 5.5 of [15] goes through with a small number of changes. Since that proof
is seven pages long, we will mostly just indicate the differences. These differences mainly
arise from the fact that M; and M, can have very different sizes in this lemma, while in the
corresponding lemma in [15], M; = My = N'/2.

With a view towards applying Lemma 5.3, let Uy, s, denote the set of all a € [M;] such
that |a + b1| > v"M, and ged(a + by, a + be) < 1/4”, so that |Up, 4,| = (1 — O(y"))M; by
hypothesis. The set Uy, 5, will play the same role as the set U, does in the proof in [15]. By
applying Lemma 5.3 with ¢ = a + bl, d=a+ by, and y; = v, = (7v")?, we then get that

(5'2) aEUb1 by N Z f a+b2 ra+b1 (x) > ’70(1)7

TEZ
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where

#{x € [N] : Loy, () # lays, (2 + (a4 by)2) for some z € [eMy/(v")?]} < (73)2
and

H{x € [N]: rasp, () # logs, (x + (a + b1)y) for some y € [eMy/(7")*]} < (P;/)2N

for every 0 < ¢ < (9”)% Since f is supported on [N], we may assume without loss of
generality that l,.,, and .., are supported on [N] as well.

Inserting extra averaging in the x variable in the left-hand side of (5.2) by shifting by
elements of (a + by)[y M,], taking advantage of the almost-invariance of r,4p, under shifts
from this progression, and then applying the Cauchy—Schwarz inequality once, we can assume
that (5.2) holds (with a worse implied constant in the exponent of v on the right-hand side)
with 7445, replaced by the function r/,, (x) = Eo ™ (2 + (@ + by)w)laps, (z + (a + by)w)
for each a € Uy, p,. As in [15], we then apply the Cauchy—Schwarz inequality to double the
a variable, take advantage of the almost-invariance of lqy,, lar1b,, and 7, , again to insert
extra averaging by elements of (a+bg)[y Ms], (a'+by) [y M), and (@’ +by)[y' M,], respectively,
and then use Lemma 2.2 to get that

O
Eaa "€Ub by ||ra+b1 ”[l (IN]) >y (1),

(a+b2)[v' Ma],(a’+b2) [v/ Ma],(a’ +b1)[v' Ma]
assuming that +/ < v°),

One can then continue to argue in an almost-identical manner as in [15], with the only
differences being that we use Lemma 2.2 in place of the version of the Gowers—Cauchy—
Schwarz inequality used in [15] and, instead of the measures v, ., (using the notation of
that paper) being supported on an interval of length on the order of N, they are supported
on an interval of length on the order of M;M,, to get that

o().

lEaemiﬂ“fja+b2HU (N =

' My Ms)

Taking advantage of the almost-invariance of [,.4, and applying the Cauchy—-Schwarz
inequality as in the end of the proof of Lemma 5.5 of [15], the above inequality implies that

Ehl,hl,hz,h’,hs,hgeh’Mlel []EGE[Ml]HA,(hl,h/l),(hg, ),(ha,h f||D1 [N])] > 70(1)-

(a-+b1) [/ M My

We can then apply Lemma 5.4 to the inner average to conclude. 0
Now we can finally prove Lemma 5.1 in general.

Proof of Lemma 5.1. The proof of the lemma proceeds by induction on s, with the s = 1 and
s = 2 cases handled in Lemmas 5.4 and 5.5, respectively. So suppose that the result holds for
a general s > 2, and assume that by, ..., b, 1 € Z satisfy the hypotheses of the lemma. Let f :
Z — Cbe a 1-bounded function supported on [N] such that Eqcpaz,|| f]| o+

(da+hinﬂfﬂ>iii(

For each a € [M;] and h, b’ € [M,]*~!, we define the function g, : Z — C by

)y =7

i=1

s—1
Azc(a-ﬁ-b (hs, h/ s— lf( ) f (:E—FZC(CL—sz)h,) ga,ﬁ,ﬂ/(l‘)‘
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Note that g, is 1-bounded since f is 1-bounded. Since ged(a + b, a+bsy1) < 1/+” for all
but a O4(v")-proportion of the a € [M;], we can thus apply Lemma 5.3 deduce that

(53) E a€[Mi] Z f T + Z a —+ b gah h’( )l 7ﬁ7bl(x)ra,ﬁ,b/ (x) > ’703(1)7

hi,..., hsfle[Mﬂ 7
Wbl €M) "

where, for all @ € [M;] and h, ' € [M,]*~!, we have
€
#{x € [N] :rypp(x) # ropn(x + (a+ bsy1)z) for some y € [eMy/(v")*]} <s WN
and

£
#{x € [N]  lopw (2) # Lo (z + (a + bs)2) for some = € [eMy/(y")*]} <o el
for all 0 < & < (). (For the O(v") proportion of a € [M;] not satisfying the size or greatest

common divisor hypotheses, we can just take r,;  and [, to be identically zero.)
We rearrange the left-hand side of (5.3) as

I

Z ]E’hl ----- hs—1€ M2 ZL’ + Z cla + b <]E a€[M;] ga,ﬁ@/<x)la,b,ﬁ' (x)ra,h,h' (I)>
h

er l1 ----- h;_le[MQ] o

and then apply the Cauchy—Schwarz inequality to get that

FTRY N 1
E aaG[Ml Zgahh’ ga’hk’( M ,b,@’(x)la’,ﬁ,k’(x)ra,ﬁ,ﬁ’(x)ra’,ﬁk’( T) >y (),
hi,..., hs_ 1€[M2] €7
Rkl 1 €[Ma]
’f& ----- kéfle[Ma]

using that f is 1-bounded and supported on [N]. By the pigeonhole principle, there exists
h € [M,]*~! such that

(54) E  4wepnn Z Jan ' (T)Jar p i (x)l b (D)ot e ()T a oy (T)ar g (T) > 0.
YA h;_le[Mz] 2€Z
K,k €[M2)

Fix this h.
Since the quantity inside of the averages on the left-hand side of (5 4) is < 1 for all
a,a’ € [My] and W', k' € [M5)*~!, we have that this quantity is >, 71 for a >, 7%

proportion of a,a’ € [M;] and b/, k' € [My]*~!. For such a,d’, 1/, k', we have that

70 <, — ZEzl ..... tsely M2) (Ga b Gor i ) (@ + (@ + by, 0@ + by, a4 by, 0" + byyr) - £)
:cEZ

lapp (T 4 (0" + b, 0+ bsyr, a4 bsyr) - (b, U3, £4))
Ly (x + (a4 bs, a4 by1,a + byir) - (U1, 03, 04))
Tann (T4 (a4 bs,a' +bg,a’ +bi1) - (41,2, 44))
Tor i (T 4 (@ 4 b, 0/ 4 bg, a4 bey1) - (€1, Lo, £3)),
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by almost-invariance of {, j, y/(2), lor pp' (), T pp (€), and 74 () under shifts by elements
of their corresponding progressions, and then, using Lemma 2.2, we thus deduce that

1 D — Os(1
E, .. HLa€ly Moy ZA/(a+bs)(€1,4’1),(a’+bs)(€2,fg),(a+bs+1)(es,eg),(a'+bs+1)(e4,e;)(ga,h,@’ga',@,y)(ﬂf) > W,
el17 78/ E[A//MQ} =y

assuming that 7/ <, 7%,
Expanding the definition of g, »’ and g, and using that the A" operator distributes
over products of functions, it follows that the quantity

E aaepn) Z T Ve neeol@+ (cla+b)i=ihl) - w)-

el _y€l0t2] IV 2€Z we{0,1}*~!
K,k €[M2] w#0
L1,...,La €[y M2]

5,1»76216[’7/1‘/[2]

i n @+ (cld +bi)i21K]) - w)]
is >, 7% where
fa,a’,@,ﬁ,ﬁ/,w(x) = ,(a—f—bs)(51,f’l),(a’—f—bs)(Ez,fé),(a+bs+1)(€3 o), (a’ +bs+1)(e4,z')f(xJF(C(aerz‘)hi)f;l'(l—w))

and

fé,a/,@,g,g,w(x) = A,(a—i-bs)(el,K’l),(a’—i—bs)(Eg,ﬁ’z),(a+bs+1)(€3 o), (a’ +bs+1)(€47€/)f(x+(c(a’+bi)hi)f;11-(l—w)).

Taking the averages over hi, ... h. | € [My] and ki, ... k. | € [Ms] inside, we can rewrite
the average above as

1 Z
E a,a’E[M1] i I:fa’a/’b!!/’wO (:U + C(CL —'I— bl)h&)f(;,a/7h,£,€/,wO (.’L‘ + C(a/ + bl)k{)
hi k1 €[Ma] zEZ T
£1,...,04€ ]y M3]
g’lvvgile[’ylMQ]

Da,a’,h’l hotl (z )D;,a’,k’l L0 (z)],

where wy = (1,0,...,0) and Dy p; pee () and D, , *, e () equal

Ehé, Shl_ €[M2] H (Tc(a—l—bl)h’l fa,a’,ﬁ,ﬁ,ﬁ’,lw : fa,a’,ﬁ,ﬁ,ﬁ’,(]w)(x + (C(a + bl)h;)f;Ql : w)
we{0,1}572
w#0
and
Eryodi el ] (Tetwsoom fownr o foanee 00)(@ + (@ +b)k)IZ; - w),
wE{O,l}S*Q
w#0
respectively.

Note that, by Lemma 2.2, if g : Z — C is any function supported on the interval [N]
1 .
such that |N EIGZ f(x)Da’aCh/l’ﬁ,g’g/( )‘ > (5 then ||fHE|S( 2+b (Mgl )[MQ]([N]) Z 4. In this

situation, we say that D, . is structured for the norm s—2 .
¥ aa’shy it I |Dc<a+b2)[MQJ ,,,,, clatbe_1)irg) (VD)

Using that

Similarly, D’ o 18 structured for the norm || - |

DGQ

a0’ ky bt e(al+b2) (M, -.rc(a’ +bg_ 1) (M) (N
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D / 1s structured for || - || ~s-2
@,y b6 | HDc(a+b2>[M2J ..... clatba_1)[Ma)(

and ¢, (' € [y M]*, we thus deduce that

iy for every a,a’” € [M], by € [Ms],

1
705(1) <<S E a,a'E[Ml] N Z {A/(C(a*l’bz)(h;/,h;//))f; fa7al7h7£7w0 ('/I; + C(a + bl)h;_>
Rk, €[My)]

TEL
01, L€y M)
050y €[y My]
hy 5. b1 €[Ms]
h’z”,...,h;”_le[MQ}
/ / 7
Aoyt ey Faat bt (€ €(d + b1)ky)

i
!/ /
A(c(aeri)(h;’,h;”))f;;Da,a’,k’l,ﬁ,ﬁ,ﬁ’ ()]

We now analyze, for each a,a’ € [M], ky € [M,], and (,{' € [y M,)?*, the function

/ 12 .
(C(a'i‘bi)(hfil,h;//))fgzl Dwa/,k/l 7ﬁ,£,£/ (x), Wthh equals

171w
(5:5) B e iy I fowsnnrwr g (@ + (@ + )55 k) - w),
Ww'ef0,1}572  ww'e{0,1}°2
w0

where fi 1 b 1 047 o (x) equals

(Tetw o0kt fow et faarner 0,)(@ + (ela+bi)hi))iz; - W' + (cla + b)h")iz; - (1—w)).

It is not hard to show that any function of the form (5.5) can be approximated by an average

of structured functions for the norm || - ||5s-2 (v))- More specifically, any
c(a’+bg) [y Ma],....c(a’+bs_1) [y Ma]

function of the form

D(x) =B ocpm L1 fowr(@+ (el@ +b) k) - w)

W'e{0,1} ww'e{0,1}*
w#0

can be approximated by

£0) = BBttty [L Pt (el +00k0) ),
w'e{0,1}? w,w'e{0,1}
w#0

where f/ . (2) = fow(z + (c(d + V)kY') - w), assuming that 7/ < v and all of the
Jow's are 1-bounded and supported on an interval of length < N.

Indeed, to see that £ approximates D, we make the change of variables k¥ +— k& 4 k?
for each w’ € {0,1}t and i = 1,...,t and average over k¥, ... kY € [y My] to get that D(x)
equals

Liagy (B¢ + K9 o
Bgerns 3 [ PEEEEL T foo fela+ b KD ).

2
k‘l"/,...,k,ﬁ"/EZ w'e{0,1}? w,w'e{0,1}¢
/ + i=1,...,t w#0
w'e{0,1}

Note that, for every = € Z, one can replace each 1, (k%" + k9) above with 1(s,(k%"), at the
cost of an error of size O(7'), for the functions 1jp(+) and 1y, (- + &Y) are equal outside of
a set of size O(y'Ms). Hence, £(x) = D(z) + O(7') for all x € Z. Note too that £(z) and
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D(x) are supported on intervals of size < N, so that they are in fact both equal to 0 outside

of a set of size < N. As a consequence, we have that ||D — &||n <; 7' N.
In the particular situation we care about, the above argument implies that there exists a

finite set W for which
(a-+bi) (R h)))52 ) fow nat wo (T + cla+bi)hy)

|

1 /
E lJ;,a'/G[Mﬂ N Z A(c
h17k1€[M2] TEZL
l1,..., @46["/’M2]
£17 7££LE[’Y,M2]

x + C(a/ + bl)ki)’D(ll,a/,k‘ll7h7h//,ﬁ”,7£,£l,w(x)

weW
/ /
A(c(a—f—bi)(h;’,h;”))f;; f a,a’ h,LL wo (

C(a/+b571)[w’Mz]([ D

is structured for ||-||5s—2
c(a’+bg) [y Ms],...,

/
a,a kbR R L0 w

is >, 7% where each D
As a consequence, we get that
Iy |a / (x + cla+ b))

(clatbi) (R B33 (elar+bi) (K Ky ))i=a  asa sl oo \T 7 LA 70 D1

E a,a’ €[M]

Wy K[ Ma) ez
51,..‘,[46[’)/M2]
2. 0l Ma]
RY ...,k €[M>)
hY' ... ! e[Ma)
ke ky_y €Y M2]
R s KL € M)
( k7l,/7k:,//))15;21 féva/7b7£7£13w0 (:L‘ + C(al + bl)ki):|

A(C(aeri)(hi’:h;”))f;gl (e(a’+b:)(

is >, 7M. Making the change of variables x — = — c(a’ + b;)k}, and arguing as in the

proof of Lemma 5.4, it follows that

E a,a’ €[M] % Z

k1KY ko, kL €[y My Ma] €7
£1,...,L4 €[y M2]
8’1,...,2216[7’M2]
Bk €[Ms)
hg/,‘..,hg/_IG[Mg}
k/2/7"'»k;l_1€[7/M2]
Ky, kU €y Ma)

/
(clatbs) (RY B2 (clal +b;) (kY k1)) 525 ekt k) ) e(ka, k) f a,a’ hL0 wo (x)}

=

|

Recalling the definition of f, 4 406w,

is >, vOM) provided that M; My >, (y9/)%W
making the change of variables © — x — (¢(a + b;)h;) - (0,1,...,1) in the above, using the

pigeonhole principle to restrict the h/’s and h”’s to lie in intervals of length v'M,, applying
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Lemma 2.3, and making a change of variables in x now yields

0,(1) 1 ,
VU GE e 7 QD Aletatbi) () (el 00 )y el ) et f ()
1,k k2, ky €[y M1 Ma] €7
hl/ h// h;’e[’Y/MQ}
hllll7 7h/”€[')/ MQ}
K kel M)
k/1//7 7k://l6[’y,M2}

— /
=E o' €[My] [EaE[M1}HA(c(a’—&-bi)(k;’,k;”)) el k) ) elha i) ] [
K1,k k2,ky €[y My Mo)
kY,....k{ €[y Mo]
klll/7 7k///€['}’/M2]

Dletaropiannz_, (VD)

We conclude by applying the induction hypothesis twice. 0

For the sake of convenience, we record next how to combine Lemmas 5.1 and 5.2 for use
in the proof of Theorem 3.5.

Lemma 5.6. Let N, My, My > 0 with My < My and MiMs < N/c and f : Z — C be a
1-bounded function supported on the interval [N]. If

Eny,...heeppn || fll gzs—1 >y
h’lj...:h’ E{MH letw-n) 2D e 0,170 )

and 7' <5 ¥2*W) | then there exists an s’ <, 1 such that

Os(1)
E hy,....hs—1€[Mi] ||A c(0:,0h)) fHDQS -1 (IN]) > )
hY,...,hl, 1€[M1} ((c(h=h")-)[M2]) oy e 10,1351
byl /€y My M|
e&,...,f;,E[V/MlMQ]

provided that MMy >, (yy)~9=().
Proof. Using Holder’s inequality and expanding the definition of the Gowers box norm gives

1
Ep, .. hoevn) Ekwk e Al ethi’ ) Flz) =420,

For all but a O4(y%W) proportlon of hi,...,hs_1,h},... b, we have |h hl, + (hy —
hy,... hs1—h. ) w| > %MWM for every w € {0, 1}*7! for all but a O, (y%=W)- proportlon
of hg € [M;] and, by Lemma 5.2, we have

ged(hy — B4 (= W By = B y) by = B (= B By = B) o) < O

for every pair of distinct w,w’ € {0,1}*7! for all but a O4(y?*)-proportion of h, € [M;].
For such hy,...,hs_1,h),... b, € [M;y] we apply Lemma 5.1 with h playing the role of
a, b, = —hl + (b4 — h’l,...,hs_l — h,_,) - w for each w € {0,1}*7!, and the function
, . L
A (o) (o //0))Q;éw”e{0,1}8—1f playing the role of f. This yields
E E AI , 2’ >, 0s(1)
l;i;?f,e{/ﬁof}[%] Zi’ﬁ’ i[ 184t koK oguneqonys—1 W0z, vy 2T
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for some s’ <, 1 by the positivity of Gowers box norms. Expanding the definition of the
U* -norm shows that the left-hand side above equals

/ /
Ekw”(}? //OE[Mz]E hi,.. ,h/s 1€[Mi] E A c(€s,01))2 A h)-w
0#w”e{0,1}°~1 Ry, b1 €[M] er
l1,.. ,8 /G[’Y M1M2]
e/lv"'ve‘;/e[’y/Mle]

(),

krro k. gV 0,1y

and then using that the operators A’ , and A’ commute

(c(tirti))i=y c(h—h")w )(kW”O’klw”o))Q;éw“e{o,l}s‘l
gives the conclusion of the lemma. O

Now we can prove Theorem 3.5.

Proof of Theorem 3.5. For each pair of s-tuples h, b’ € [M;]*, we associate linear polynomials
Ly € Zla) with Ly ,(a) == c¢(h-w+ 1 - (1 — w))a and 1-bounded functions f, .,
7 — C with fy . = T(blhl, beha)w(bih]baht)-(1-w) f fOr each w € {0,1}°. Enumerate the
polynomials Li,..., Lys in {Lp, : w € {0,1}°} and corresponding functions fi,..., fas
in {fupww @ w € {0,1}5} by picking any ordering such that Lss = Ly, so that the
assumption (3.2) implies that

Os(CN),M: s
[Ml}ALl,(...,L;s 2<]'7f17“‘7f25> Z 50 (1)
1]

Then, since |c(h - w + h'(1 — w))a] <s N for all a € [My] and h,h' € [M;], we can apply
Lemma 4.10 to deduce that

2—1

Eh1, h E[M1]||f|||j25 1 ([ D >>C,S 6OS(1)

((e(r=h) @) [y Ma]) e

provided ¢ <¢ g 69 The conclusion of the lemma now follows by s applications of
Lemma 5.6. U

The following lemma shows how Theorem 3.5 can be used to control averages of Gowers
box norms of the type appearing in Proposition 3.4 in terms of averages of Gowers box norms
in which some of the differencing directions p(a) are replaced by directions p’(a) of smaller
degree depending on fewer entries of a. We will then prove Proposition 3.6 by applying this
lemma many times.

Lemma 5.7. Let N, My, My > 0 with My < My and MiMs < N/|c|, I and A C Z™ be finite
sets, p; € Zlay, ..., ay,) for each i € I, and f, : Z — C for each a € A be 1-bounded functions
supported on the interval [N]. Let k; € N for each i € I, sett := ) . ki, define finite sets
A= ((=My, My) N Z), I' = {0, 1}{Gmaclrelkdy \ £0) and A’ C Z[ay, ..., an)[ai, 17 €
I,r € [k]] by

A= {(pilar, ..., an)0)icrrer) - w:w e I'},

and set pl,(ay, ..., an, (Gir)icrremr]) = Pi(a1, .., an)0ir)icirek,) - w for each w € I'. Further
assume that

. MM, <CN.
(5.6) max max |p;(a)| M, M < C

Let k., € N for each w € I'. If
EacaBoen | fall 2oerne > 5

W @) 1D e g1 oy L)
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and ~' Lty (k) e O M) then for every (ig, o) € I x [ki], we have

O, s(kw) e/

EacaBucllfull s, v,

(Pig (@)l My M), e 472(9w (@D M) e 5o g il )

N 2t (ko)per Y

where
(1) B := ((—My, My) NZ)",
(2) J = {07 ]_}{(i7r):ielyre[ki]}\{(i07ro)} \ {Q} fO’[" some t/ <<t,(k7w)
(3) and, for w € J, we have q, = p, and k., := k,,, where

;. Jwan (41) # (io,70)
ir) " 0 (i,T) _ (io,ro) )

L,

wel’

provided that My Ma >cy (k). (,y,y/)*ot,(kw)wel/(l)‘
For example, Lemma 5.7 allows us to control the average
EalEAE‘ao 1hlao2|<Mo HfaHI]i 1a0,1[M1],a1a9,2[M1], (a1a0,1+a1a0,2)[M1]([N])

in terms of an average of the form

EaleAEh, t/E[’yM1M2}E\a02|<M2||A (£1,04),.. ,al(Zt/Z fa“[]
Oy enll €[y My M)

(IN])

ajaq 2[Mq]
for some t' < 1.

Proof. Since || fal| Ewer ke ) <1lforalla€ Aandd € A, it follows that for at

(Pw(a a’)[l\/fll)wgll 7 €lkw]

least a >> v proportion of a € A and (s, )icr ek, (i,r)£Gor0) € ((—Ma, My) NZ)'~" we have

Elaio,r0‘<M2 ||f@||DZw€I’ ke [N]) >> ’7
(p{"(g’g/)[Ml])WGI’,r’E[kw]

Expanding the definition of the Gowers box norm, we have that

Ot (ky ,(1)
(57) E|a10 T0|<M2 Z b i, r’e[Ml]A(P (a.a')(h,, ’vh;,r/))wen,r/e[kw]fg(‘r) > Heduer )

z€Z wel’ r/e[kw]

which is of the form that Theorem 3.5 can be applied to. Indeed, the left-hand side of (5.7)
can be written as

/
]Em Wl m/ W ,E[Ml] |CL7,0 r0|<M2N Z hWT// h w! 1€ MﬂA((pio(Q)ai0770+bﬂaw)(hw,r”’h;7r//))w61’,w(i ro)=b ek ga m( )
UJ’EI’,WEZ.O TO)_ TEL wel’ w(zo ro) 1 070
ek ] " €lky]
where

bg,w = (pl (Q)ai,r)iel,re[ki} *W — Dig (Q)aio,ro

Ja,m = A

(((Pi(&)ai,r)iel,re[ki]'w’)(mw/,w7m;/,T/))w/g/,w;()mzo,we[kw/] g

The conclusion of the lemma now follows from Theorem 3.5. O
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We can now finally prove Proposition 3.6. As mentioned above, this will be done by
applying Lemma 5.7 many times. To illustrate how Lemma 5.7 will be applied, we will

show how to control an average of norms of the form || - || jir) by a global U*®-norm
pi(a)

for some s < 1, where Iy and (p;)icr, = A2(3,1;(1,2,1)) are as in the example between
Theorem 3.3 and Proposition 3.4.
Assuming that f : Z — C is 1-bounded and supported on the interval [N] and that

E y 1 fllos vy =7

ap,1,20,2,0 <N3 1
O LA02A0.1 ((6(ag,10(1,0),1:90,2%(0,1),1:90,2%(0,1),2(40,1740,2)4(1,1),1) IN 3D, rg 114\ {0}

/(D

‘1(0,1),1:a(0,1),27a(1,1),1§N3

we apply Lemma 5.7 with (ig,79) = ((1,0),1) to deduce that

o)
61,...7551§7’N% ||A6a0 1(€1,01),...,6a0, 1(€517£/ f||D7 % (IN]) > Yy
Ol <y/N3 ((6(20,20(0,1),1:%0,29(0,1),2:(0,1720,2)%(1,1), 1))V 3Dy 10,133\ 1)

1
a0,1,00,2,8(0,1),1 <N 3

1
a(,1),2,8(1,1),1 <INV 3

for some s; < 1 when +/ < v°)). For each fixed /1, ..., 0,0}, ... , U, , we apply Lemma 5.7
with (ig,70) = ((0,1),2) to get that

/ Oo(1
E 417._.’g31§,\//N% HA 6&0,1(f1,€’1),...,6a0,1(551,Z;l), fHDS ([N]) > 7 ( )

1
6 ) + W)[N3
f'p--wf;lSW'N% 6ao,2(m1,m),....6a0,2(msy,ms,) ((6(ag,24(0,1,1:(a0,1+a0,2)a(1,1),1) N 3D, c 15 1321 {03
2
mi,...,Msy <Y N3
/ / ! 2
ml,..‘,mszgfy N3
1
a0,1,a80,2<N'3

1
a(0,1),1,8(1,1),1 <INV 3

for some s, < 1 when 7/ < 7?1 and argue similarly with (i, 70) = ((0,1),1) and (ig, ) =
((1,1), 1) to deduce that

1 / o)
Z 01yl sl <y'N3% A 6a0,1(01,7),--,.6a0,1(Ls1 L5 ), fz) >~

6a0,2(m1,m),....6a0,2(msy M, )
N 6ao,2(u1,u1),--.,6a0,2 (Us3,ufy),
u1,...,us3,u/1,..‘,u’33 <4'N3 6(ao,1+a0,2)(v1,0]),...,6(ao,14ao, 2)(vs4,v;4)

mi,.. 7m827m17"'7ms2§’y Ng

2
’ ’ IN G
Ulv---,vs4vvly---7vs4§'7 N3

1
a0,1,00,2<N 3

for some s3, 5, < 1 and 7' < 791, We write the above as

o(1)
a0,1,0,2<N'3 1 e st 2 (wpy >
((6(ap,1,20,2)" “’)['YIN?’])w€{011}2\{g}77‘/€[kw]
with kg 0) = s1, k(1) = s2 + s3, and k(1) = s4, and apply Lemma 5.7 twice more with

(i0,70) = (0,2) and then (i, 79) = (0, 1) to deduce that HfHU
and some s < 1.

N)) > ,YO(I) for '}// < ,.)/O(l)

//N]

Proof of Proposition 3.6. By applying Lemma 5.7
for each i € I;_5 and r < k;, we get that

Op(1
(58) EQEAHJC”DZieIZ_Q t (V] >cu 0 ol )a

ic1,, ki times, once with (ig, 70) = (i,7)

P (@' M2Dier, o el
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where 1 <'t; <, 1 for each ¢ € I,_,, assuming that ¢’ <¢ §9:M  More generally, whenever
j=1,...,¢0—1, from

]EQGAHf” Ziery_;t >y

(pi(a) [5’Mj]>ielg—j i Eltg]

one can deduce

O¢(1)
EQ€A||f||DZieIZ_(j+1) ti (D) >ce Y )

(pi(ﬂ)[5'M(j+1)])iele_(j+1)J'E[ti]

where 1 <t; <, 1 for each i € Iy_(;11), by applying Lemma 5.7 once with (io, o) = (¢,7) for
each ¢ € I;_(j11) and r < k;. Starting from (5.8) and repeating this implication £ — 2 more
times gives the conclusion of the proposition. 0

6. CONTROL BY UNIFORMITY NORMS

In this section, we combine the results of Sections 4 and 5 to control the general average
Agyypm(fo, ooy Joyest, .o, y) in terms of U-norms of f, and Fy. We will also state and
prove Theorem 6.1, the control result for general polynomial progressions mentioned in the
introduction.

Theorem 3.7 follows almost immediately from the results already proven.

Proof of Theorem 3.7. Set ¢ := (deg P,)!c,. By making the change of variables x — x 4 ¢z
in the definition of A Pm and averaging over z € [0’ M%) we have that

Eyennes1(Pesa(y)) - 'wm(Pm(y))N Z (E.cpmefolz + 2) -+ folx + ¢z + Pu(y)))| = 6.
TEZL

By one application of the Cauchy—Schwarz inequality in the x and y variables, we thus get

’Ezz€5’Me ANMPZ(A/ (2,2") fO?"WA::’(z,z’)fe) >>C,deng 627

so it follows from Propositions 3.4 and 3.6 that

]Ezz g[g/MZ]_ Z]Eh h/ [6IMZ]A /(hq, h/), c (hé,h /)(AC’(ZZ )f>(x) >>C,deng 50degP[(l)

T EZ = 17 S
for some s <, 1, which gives the conclusion of the theorem. O
We now deduce control for A p. (fo,- s fe;Yes1, .-, Ym) in terms of U*-norms of dual

functions by using the Cauchy— Schwarz inequality once and then applying Theorem 3.7.

Proof of Corollary 3.8. Note that ANM b, for s frters, o Ym) = % > fe(x)Fi(z), so
that an application of the Cauchy— Schwarz inequality gives

A}];if\d’Pm(fOJ o 7f€—17F€;¢€+17 ‘e 7wm) Z 62'

Corollary 3.8 now follows from Theorem 3.7 with F} (which is a 1-bounded function supported
on an interval of the form [Ogee p,(CN)]) playing the role of f;. O
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6.1. Control for general polynomial progressions. In this subsection, we prove the
following result, whose proof largely follows the proofs of Propositions 3.4 and 3.6.

Theorem 6.1. Let N,M > 0, Py,..., P, € Z[y| be polynomials such that deg P} < --- <
deg P, and each P; has leading coefficient c;. There exists an s <Kdeg p,....deg P, 1 Such that
the following holds. If m' := #{i € [m — 1] : deg P, = deg P,,}, 1/C < |e;| M Pm [N < C
for each m —m’ < i < m, all of the coefficients of Py, ..., P, have absolute value bounded
by Cleml, fo,-- -, fm : Z — C are 1-bounded functions supported on the interval [N],

IAP1,---7Pm(f07 cee 7fm)| > 57

and 5/ <<C,degP1,...,deng 5OdegP1 ,,,,, deng(l)’ then we have

If ¢pp(m/—1),---,Cm are uniformly bounded, or, more generally, are of the form cjq for
bounded ¢}, then it follows easily from Theorem 6.1 that Ap, _ p, (fo,..., fm) is controlled
by a U®-norm of f,,. To prove Theorem 6.1, all we need beyond the results of Sections 4
and 5 is a more general version of Lemma 4.7, which we now prove.

Lemma 6.2. Let N, M >0 and Py, ..., P, € Z[y| be polynomials such that deg P, < --- <
deg P,, and each P; has leading coefficient ¢;. If m' := #{i € [m — 1] : deg P, = deg P,,,},
1/C < |ei|M38Pm [N < C for each m —m' < i < m, all of the coefficients of P, ..., Py,
have absolute value bounded by C|cy|, fo,- -, fm : Z — C are 1-bounded functions supported
on the interval [N],

’APL.--,Pm(fO? ceey fm)‘ > Y,

TEZL i€l
where
o [ ={0,1}\ {0} for some t aegp,... degPn 1,
o A= (=M, M) Z),
la(ay,...,a
L ,u(ab cee 7at) = WMV/M(C%):
e the collection Q := (Q;)ies consists only of polynomials of degree deg P,, — 1, each of
which has distinct leading coefficient, and the set of such leading coefficients is
{((deg P,,)dyay, . .., (deg Py)day) - w = w € I},
where each d; equals ¢, or ¢, — ¢ for some m —m’ < j <m,
e we have

max max ma A(a N
ieIX @e} ye[]\f[(} ’Qz‘(_, 3/) <K C,deg Py,....deg P, 1V

e and f! equals either f,, or f,, for alli € I.
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Proof. Arguing as in the proof of Lemma 4.7, we apply Lemma 4.4 ty <qeg p....deg P, ./,
times to deduce that

1
EgéAoN ZEyG[M]ng(x) H gj,g(a: + Qj(al, . ,atl,y)) >>t0 fyoto(l)’

x€Z Jj€Jo
deg Q;#0
1 ai,...,a
where Jy C [m]x{0,1}f, Ag = ((—y' M, ¥ M)NZ)", pi(as, ..., a) = Wﬂw’M(ato)a

Qo = (Qo) e, consists only of polynomials of degree deg P, and constant (in y) polynomials,
the leading coefficients of degree deg P, polynomials in Qg are ¢,,_, ..., Cn, there are 2%
polynomials of degree deg P, in Qg with leading coefficient equal to ¢; for each m —m’ <
i < m with set of degree deg P, — 1 coefficients equal to {(c;a1, ..., caz,) - w:w € {0,1}°},
fa,0 is 1-bounded for each a € Ay, and g, equals either f; or f_j/ if (); has leading coefficient

cjr, provided that 7 <ciaeg py,....deg P,/ Qe Prv des Prem' -1 by arguing exactly as in the

proof of Lemma 4.7, except using the assumption that the coefficients of Py, ..., P, are all
bounded in absolute value by C'|c,,| in place of the (C, ¢)-coefficients hypothesis.

The conclusion of the lemma now follows by arguing almost exactly as in the proof of
Lemma 4.8, with the only differences being that we start with more polynomials of degree
deg P, with each leading coefficient and we already have an ordering c¢p—@m/—1), .., Cm of
these coefficients (and do not care whether they have any particular structure), by applying
Lemma 4.5 after repeating the following m’ — 1 times: apply Lemma 4.6 once, and then
Lemma 4.4 as many times as necessary until we can apply one of Lemmas 4.5 or 4.6. U

The proof of Theorem 6.1 is exactly the same as the proof of Theorem 3.7, except that
one uses Lemma 6.2 in place of Lemma 4.7 and does not need to do the initial application
of the Cauchy—Schwarz inequality done in the proof of Theorem 3.7.

Proof of Theorem 6.1. Following the proof of Proposition 3.4, we apply Lemma 6.2 once,
Lemma 4.8 (deg P,, — 2) times, Lemma 4.10 once, and then, following the proof of Proposi-
tion 3.6, Lemma 5.7 <geg P....deg P, 1 times. O

7. LEMMAS FOR DEGREE-LOWERING

In this section, we collect and prove various lemmas needed for the proofs of Lemmas 3.9
and 3.10. The first two lemmas are standard results on Weyl sums that can be found, for
example, in [22] as Lemmas 1.1.16 and 1.1.14, respectively.

Lemma 7.1. Let N >0 and P € Rly] be a polynomial with P(y) = any™ + - -+ + ag. If

> e(P(y))| = 4N,

ne[N]
then there exists ¢ € N satisfying ¢ < v~ ) such that
,Y—Om(l)

lgai]| < T

foreachi=1,...,m.

Lemma 7.2. Let N,e,v > 0 withe < 1, v>> ¢, and N > v~ 1. If |nB| < € for at least
a y-proportion of n € [—N, N| N Z, then there erists a positive integer q < v~ such that
lgBll < eq/vN.
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We also record, for the sake of convenience, the following result, which can be found in [15]
as Lemma 6.5.

Lemma 7.3. Let a € T. If a,b € N are such that
’oz - 9‘ <
b
then, for any D > 1, there exists an integer k with |k| < D and a 0 € [—1, 1] such that

a 7
2yl
5 D

Before stating and proving the remaining lemmas in this section, we need one more piece
of notation. For s € N and H C Z*, let O,(H) denote the set of 3s-tuples

Y
= 0—.
o + D

ED D ER R RS kB e 73
such that (&, ... k" k™ k&) € H for allw € {0,1}°. Note that this is not the
same definition of [J;(H) that appeared in [15], where (s(H) instead consisted of 2s-tuples.

The following lemma will play a similar role in the proof of the degree-lowering result in
this paper as Lemma 6.3 of [15] played in that paper, and its proof follows the same general
strategy, with differences mainly arising from dealing with more general dual functions and
from the use of different definitions of the U®-norm.

Lemma 7.4. Let L,M > 0, 2 < ¢ < m, H C [YL]* with |H| > vL*, fo,...,fr1 :
Z — C be 1-bounded functions supported on the interval [L], and Vi1, ..., %m : Z — St be
characters. Let Fy be defined as in Corollary 3.8. If

2

(7.1) Ennyen >y

1 , /
= Ay, Fil@)e(@(h, 1))

TEZL

for some ¢ : H — T, then

2
> (yy)2 W,

23 Gealw)elw k)

T€Z

Ereo, )

where

Grp() = EyE[M}A/(k@) k<3>)f:1fo(x — Pu(y)) - A/(k

i

(2) 1)y Jee1(x 4+ Py (y) — Po(y))

and
bk = 3 (DGR, kD R ),

we{0,1}s
For example, when s = 2, the function ¥ (k) equals
o(ky ks Ry k) — ok ks kYR — ok ks kY R ok kY kYR,
Proof of Lemma 7.4. Define, for each y € [M], the function
Foy(x) = folx = Pu(y)) - - fra(z + Pea(y) = Pey) e (Pesa(y)) - - Pm(Pn(y)),
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so that Fy(x) = EycaFry(x). We can thus write the left-hand side of (7.1) as

1
Eyoopor e Bumren s D (@bl —2) [] [Frpole+h v+ 1-w)

we{0,1}° z,2€7Z we{0,1}#

Fryo(z+h-w+ - (1-w))]
Applying the Cauchy—Schwarz inequality to double the h) variable gives the bound

1H(ﬁa h/)lH(ha h{[,a hl27 ey h;)
I 25+1 '

(77,)0(1) S ]EyMO:ywle[M}

wE{OJ}S Eaﬁle['Y/L]Zs

hely'L]

1 !
{ﬁ Z H Ah'{—thfvywo(x'Fh'w"'ﬁ (1-w))

r,2€Z we{0,1}°
w1=0

Apypy Foyo, (2 +h-w+ b (1-w))

e((d(h, h') = ¢(h, b, by, . .. b)) (@ — 2)) |,

by using the fact that H C [y/L]** and |H| > vL**. Note that nothing inside of the above
average depends on the variables 4,0, y,1 for any w € {0,1}* with w; = 1, so we can restrict
the first average to Y0, Y1 € [M] with w; = 0.

We apply the Cauchy—Schwarz inequality s total times in this manner, doubling the A/
variable for each 7 = 1,...,s, to get that

1
EyomeivBren,on s D Ao ,o), Fry (2)e((k)(z = 2)) > (v7)W,

T,2€E7L

Fg x) A
1 7y0( ) (kz(2)1k§3))f=1

S
=

using the trivial upper bound |0, (H)| < (v'L)**. Finally, note that the left-hand side of the
above inequality equals
2

Egen,(m) % > Goplw)e(v(k)z)
T€EZ

by recalling the definition of F}, and using the fact that the A’ operator distributes over the
product of functions (the characters in Fy, cancel since s > 1). O

The final lemma of this section is a generalization of Lemma 6.4 of [15], and its proof is
essentially the same as the argument in [15].

Lemma 7.5. Let L > 0 and, for each i = 1,...,s, let ¢; : Z*>*> — T be a function not

depending on the (s + 1) variable. If 0 <~ <1, f:Z — C is 1-bounded and supported on
the interval [L], and

1 s
(72) Eﬁvﬁle[’}’/L]s Z Z A/(hi,h; 3:1f<£ll'>€ (Z (bz(ha h/)l‘>
i=1

TEZ

2

>,

then || f| >, 70,

2 "
Ut (L)
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Proof. Expanding the square, the left-hand side of (7.2) can be written as

1 - S
L2 Z ELEG[’Y'L]SA/(hi,h;)f:lf(x)A,(hi,h; lef(z)e <Z ¢i(h, 1)z — Z]) ,
i=1

T,2€E7Z
so that applying Lemma 2.2 for each fixed x,z € Z and h € [y'L]® gives
1 -
ﬁ Z E@,,QHE['Y/L]SA,(hfb-,h;/)lef(x)A/(h;,hgl)lef(Z) Z ,yos(l).
T,2€EL

By inserting extra averaging in the z variable and using the pigeonhole principle to fix z
(which we may do since f is supported on [L] and v < 1), it follows that

1
7 D B wretyn Dy e T @) Buctyn Aug gy, (@ +w) >, 0

TEZL

for some z € Z. To conclude, we apply the Cauchy—Schwarz inequality to double the w
variable, again using that f is supported on [L] and " < 1. O

8. DEGREE-LOWERING

We begin by handling the base case of the inductive proof of Lemmas 3.9 and 3.10.

Lemma 8.1. Let N,M > 0, Py,..., P, € Zly] be polynomials such that P, and P, have
(C, q)-coefficients, deg P, < --- < deg P,,, and P; has leading coefficient ¢; fori=1,...,m,
and s, ..., Y+ Z — St be characters such that V;(x) = e(c;z) with o; € T fori=2,...,m.
Assume further that |c;| M2 /N < C. If there exist 1-bounded functions fo, fi : Z — C
supported on the interval [N] such that

(8.1) Ni/c > Byca)iu(ex)| > 7,

T€Z

where Fy is as in Corollary 3.8, then there exists a positive integer t K¢ deg Py, Ay~ Odeg P (1)
such that
_Odeng(l)

deg Pm
[t emamll Sodes P R

provided that N >>¢ qeg p,, (q/7) s Pm ™.

Note that the hypothesis ¢; M4 1 /N < C above actually follows from the slightly stronger
condition 1/C < |¢|M%e"2 /N < C in Lemma 3.10 and the assumptions that P, has (C, q)-
coefficients, deg P > deg i, and N ¢ e p,, (¢/7)°W. So, this lemma does indeed cover
the ¢ = 2 case of Lemma 3.10.

Proof. Inserting the definition of Fy, the inequality (8.1) reads

NL/C > Eyenngolcx — Pa(y))gr(cx + Pi(y) — Poy))a(ca)s(Pa(y)) -~ Yun(Pu())| = 7-

TEZ
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We split the sum over y € [M] up into progressions modulo ¢ by writing y = cz + h for
h=0,...,|c] — 1 and use the pigeonhole principle to fix an h such that

1
‘N/c ZEZG[M/\cHgO(Cx — Py(cz + h))gi(cx + Pi(cz + h) — Py(cz + h))
TEL

baler)in(Pa(cz 1 ) - on(Prlez + h>>\ >,

provided that N > v~°M. Note that M € Zly] has (Ogeg p, (C), cq)-coefficients

M to get that

since |h| < |c|. We make the change of variables x — z +

S e gh(@)gh (@ + Pl (Palez + h)) - - (P (CZ+h))‘>>%

TEZ

b

where gi(z) = T_pm(got2)(cr), g5 () = Tryn)-pymgi(cx), and Pj(z) = ARG,
which also has (Ogeg p, (C), cq)-coefficients. By the assumption |c;|M€™ /N < C, we can
apply Lemma 4.2 d := deg P, times and then the Cauchy-Schwarz inequality once to deduce
from the above that

0q(1)

whenever 7/ <¢ 4 721, where

Q(a,z) = Zai Z (=) P(c(z+a-w)—h)
1=2 we{0,1}4
Thus,
(8.2) E-ctyiene(Q(a 2))| >cq 70V
for a > 4 72 proportion of integers |ail, .. ., |aq| < ' M/|c|.
Note that the leading term of Q(a, z) equals %c‘iegﬂnal e QgCm Oy 238 Pm—d - By

Lemma 7.1, there thus exists a tg < deg p,, 7~ %P = (1) such that for each d-tuple of integers
a=(ay,...,aq) with |a;| < ~'M/c for which (8.2) holds, we have

[toc®ePmay - - - agemon, || Kog v~ e /(M) c)dee Fm=d,

Fixing 7' <¢4 7~94(1) the conclusion of the lemma follows by applying Lemma 7.2 d times,

once for each a; appearing in the product ci€ma, - - azcm,omm. O

Next, we show that Lemma 3.9 in the general ¢ > 2 case follows from Lemma 3.10 in the
¢ case. The overall strategy of the following proof is the same as the proof of Proposition 6.6
n [15], though several small changes need to be made due to the greater generality of
Lemma 3.9 and the use of different definitions of the U®-norm in the two papers. We now
briefly sketch the structure of the argument. The proof starts by writing the U®-norm
of the dual function F, as an average of U?-norms of differenced versions of F, (that is,

A’(h_ h,)S_QFL; in the following proof and Ay, . ,Fy in [15]). By the inverse theorem for the
1) =1

U?-norm, it follows that, on average, the differenced versions of I} have large correlation
with some character = +— e(¢(h, h')z) depending on (h,h'). One then uses Lemma 3.10 and
the pigeonhole principle (along with Lemma 7.3) to show that the function ¢(h,h’) must
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be very close to a function of the form Zf;f ¢i(h,h') appearing in Lemma 7.5 for many
differencing parameters (h, h'). The conclusion of the lemma then follows from Lemma 7.5.

Proof of Lemma 3.9 for { assuming Lemma 3.10 for . Note that, by splitting Z up into pro-

gressions modulo |c|, we have
1FlIZs

e[

5 ([CN u=0,...,[c| =15 .. hs_oc[8 Mdee Py B hyS—2\Lut'l U? CN/c)*
5/ arles l]([ ) h/i ..... hz—zELV A{deglé} ek 1)171 [5/]\/IdegP£]([ )

Thus, since M <~ N/c, Lemma 2.4 tells us that

2
1
]Eu:() ..... ‘C‘*lEfu ..... he_o€[6’ Mdes Py - Z A/C(hi,h’-)f:2 (TuFf)(Cx)e(C¢u(ﬁ7 ﬁ/)x) >0 (55/)0(1)
Ry, b, €[8' Mdee Pe) /C weZ i)i=1
for some ¢, : [6'MIe]25=2) 5 T for each u = 0,...,|c| — 1. By the pigeonhole princi-

ple, there exists an H C [/ MI87)25=2) with |H| >¢ (66)°M (6’ MIeFe)2(=2) and U C
{0,...,|c| — 1} with U] >¢ (60")°W]c| such that

2

1
>>C (56/>O(1)

N_/c Z A/c(hi7h;)f;12 (TuFy)(cx)e(cu(h, I)z)

TEZ

for every (h,h') € H and u € U.
Next, we apply Lemma 7.4 with L = N/|c|, which, since M8 >4 N/|c|, yields
2

Exen._»(m) >c (66)%0),

NL/C > Guilex)e(cu(k)x)

TEZ

where, as in Lemma 7.4, we have

Ge(x) := Eye[M]A;(k(2)7k<3))g:12Tufo($ — Pu(y)) - A’C(k(2>’k(3))5,12Tufe_1(x + Pa(y) — Puly))

and
Vu(k) = Z (—1)"‘"%(%1), kD, k§w1+2)7 o )y,

wef{0,1}5—2
By the pigeonhole principle again, for each u € U there exists a set of 3(s — 2)-tuples
H! c O, _o(H) with |H!| > (66")0W(§' Mdee F2)3(5=2) guch that

2
1
N_/C Z GZ,E(Cx)e(Cwu(E)$) >>C’,s (56/)08(1)
TEL
for every k € H). By applying Lemma 3.10 for ¢ with m = ¢, for each k € H), there thus
exist ¢, ¢ ]ccdodeg 7 and ¢, L deg Pps ((55’)_03de8 P(1) guch that
(55/>7Odeng,s(l)
Mdeg PZ/C;

By applying Lemma 7.3 with D <¢ geg p, 5 (66")~Oaes s it follows that for each k € H,
there exist integers a,(k) <cdegp,.s (06')7%%PesW and |my, (k)| Kcdegp,s (007) teeresd)
and |0, (k)| < 1 such that

[tuc,cotbu(E)|| Kodeg Povs

au(k) my (k) 0. (k)
C€¢u<k) - tu + (55/)_OdegP[,s(1)Mdeng + (65/)_OdegPé,s(1)Mdeng‘

u
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By the pigeonhole principle yet again, for each u € U there exists a subset H!! C H, of
size |H!| >>¢aeg pys (00")9%Pes W H! | for which there are a, <cegp,.s (06') %t Pes) and
M| Kdeg pps (067) %P such that for any k € H”, we have

CZ¢U<E) B tucgl t (55/)_OdegPe,s(1)Mdeng - (56/>—Odegpe’s(l)MdegP['
Set
qu’l(ﬁ) = (_1)8 Z (_1)|w|¢u(k,§l)’ e k’gl), ]{?§W1+2), o ,k§w5+2))
0#we{0,1}572
w1=0
Ay, + my,
tuChce  (68")OaesprsM ey \fdeg P
and, for i =2,...,s — 2, set

(bu,z(E) — (_1)3 Z (_1>M¢u(k§1)a e kgl), k§W1+2), o 7k.§UJs+2))'
0#we{0,1}°2
wyp=+-=w;_1=1
w;=0

Note that ¢, ,; does not depend on on k:z-(?’) and

Ou(k)
— 2_; Pui(k) + (55,)_Odeg rre () g, ) fdes Pr
For any k € H,, we thus have

C¢u _Cz¢uz

1

<c (55/)_Odcg Pé,s(l)Mdeg P’

because ¢ <¢ ¢
By the pigeonhole principle again, for each u € U there exist ki, ..., h;, . o € [6" M des e
such that the fiber

H" = {(h1, . by By W) € H = (b1, B") € H")
has size > deg P, s (5(5’)0‘1%”478(1)(5’Mdegp‘»’)2( ?). Fixing such (RPN 4

N/ ZA’ e TuFy(ex) ( Z%hh’ 1) >

by the assumption N/|c| <¢ M. By positivity, for each u € U we can extend the
average over H!” to an average over all of [§'M3°¢F%]2(=2) ysing our lower bound on |H!| to
get that

it follows that

u,s—29
2

Ewwryer >0 deg s (007) e Pes()]

2

Eh B €[67 Mrdes Prls—2

N/CZA/h“h"s T, Fy(cx) ( Z@“ (h, b, ") )

T€EZ

1S > deg Py.s (007)FdeE P o+ Applying Lemma 7.5 for each v € U and using positivity again,

we deduce that
EuzO,...,c—1||TuF€(c') e

s—1
U aes p,, (ON/e])

>>C,deg Py,s (5(5’)Odeg Pz,s(l) ,




BOUNDS FOR SETS WITH NO POLYNOMIAL PROGRESSIONS 49

from which we conclude the lemma by expanding the definition of the Gowers box norm. [

Now we show that Lemma 3.10 in the general £ > 3 case follows from Lemmas 3.9 and 3.10
in the ¢ — 1 case.

Proof of Lemma 8.10 for ¢ assuming Lemmas 3.9 and 3.10 for £ — 1. As in the proof of the
base case, we insert the definition of Fy and split the sum over y € [M] up into progressions
modulo |¢| by writing y = cz 4+ h for h =0,...,|c| — 1, and use the pigeonhole principle to
fix an h such that

1 ZEze[M/\c\]fo(C$ — Py(cz+h)) - foi(cx + Piy(cz + h) — Py(cz + h))

N/C TEL
Ue(cx)o1(Prya(cz + h)) - - (P (cz + h))| > 9,
and then make the change of variables x — x + % to deduce that
(8.3) AR S flrs ooy )| > 6,
where
i) o=  Tori ot ten) i =
Tpmy—pynyfilcxr) i=1,....m

and

Pi(cz+h)fPi(h) - o

Pl) = R z 1,....¢ 1‘
Pi(cz+h)—PFi(h) i=4L,...,m

Note, as it will be relevant later, that the leading coefficient ¢; of P! equals c®8¥~1¢; when

i=1,...,—1and equals c*®&Fic; when i = ¢, ..., m, and the polynomials P}, ..., P, , € Z|[Z]
all have (Odeg p,_,(C), gc)-coeflicients.

Set M' := M/|c| and N’ := (M')de&Pi-1(g|c|)de =171 With a view towards applying
Corollary 3.8, we rewrite the left-hand side of (8.3) as

Eocw<nv/iey /o' N Eaepn Tornm fo(2) Tornme fi(x + Pi(2)) -+ Ternmw fo—a (7 + Py (2))
2€[C'N']

be(Py(2) -+ (P, (2))

for C" < aeg p, , 1 and use the fact that max.c;n |P/(2)| <caegp, , N' foreachi=1,...,(—
1 (which is a consequence of each P/ having (Ogeg p,_, (C), cq)-coefficients) and the plgeonhole
principle to deduce, for suitable C’, that

ACN%(O,... [17¢€7"‘7/l/}m) Z(s

where f!" := Tornn f] - 1jcrn7) for some integer 0 < w < (N/|c|)/C'N'.
Now, since (q|c|)d& =171 (M")dePe-r = N" and P|,..., P, , € Z[z] have (Ogeg p,_,(C), qc)-
coefficients, we may apply Corollary 3.8 to get that

1 llos

(deg Py_ 1)'(:[ L [87(M7)

5Odeg Pyp_q (1)

ace py_y ([OC dex pp_y (DN']) >C,deg Py
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for any ¢’ €cdegp, , (50“16%"3@*1(1), where s <4egp, , 1 and
Fy_y(@) = Beep fo (2 — Py (2)) - fila(x + Pyg(2) — Py (2))0e(P(2)) - - o (P,(2)).
Fixing 0’ Xc qeg P, , §0des P @—1(1), it thus follows from repeated applications of Lemma 3.9 in

the ¢ — 1 case that

Odeg P, (1)
HF’ H 2 > O des Pe—1
(—11U O P, 1)N’ C,deg P,
(degPefl)!ﬂzfl[é’(M’)degPé_ll([ ©deg [_1( VD B

Set ¢ := (deg P;—1)!¢,_,. By applying Lemma 2.4 in the same manner as in the previous
proof and using the pigeonhole principle, we deduce that there exists a u € [/] such that

1
N’/

ZTuFé_l(c’:L‘)w_l(c’x) > Cdeg By, 600e e D)

TEZ

for some character ¢,_; : Z — S’. We now apply Lemma 3.10 for £ — 1 to deduce that there
exists a ¢’ K¢ | cpenm| Qs rn V) Lo |ecy, | D) and t K¢ geg p,, 0~ Cdes ) such that
570deg Pm(l)

/1 _deg P,
[t ctes T M/C)deng/C//’

Cm O || K deg P (

since the leading coefficient of P/ is cd&¥mc,,. This gives the conclusion of the lemma. [

Since we have shown that Lemma 3.10 holds in the ¢ = 2 case, Lemma 3.10 in the ¢ case
implies Lemma 3.9 in the ¢ case, and Lemmas 3.9 and 3.10 in the ¢ — 1 case together imply
Lemma 3.10 in the ¢ case, it now follows by induction that Lemmas 3.9 and 3.10 hold in
general.

9. LOCAL U'-CONTROL

As was mentioned in Section 3, Theorem 3.3 will be proved using a combination of Corol-
lary 3.8, Lemma 3.9, and Lemma 2.4. For the sake of convenience, before proving Theo-
rem 3.3 we first prove Lemma 3.11, which gives the result of applying Corollary 3.8 once,
Lemma 3.9 as many times as necessary, and then Lemma 2.4 once.

Proof of Lemma 3.11. We first apply Corollary 3.8, which tells us that

||FE||US[

Odc P, (1)
18! prdes PZ]([Odeg PZ(CN)]) >>C,deg P, QY deg Py

for some s < gegp, 1 Whenever ¢ ¢ geg p, §%aes (1) and N > deg P, (q/66")Pes () Fixing
0" X¢deg P, §%as () and then applying Lemma 3.9 repeatedly (which we can do because
(deg P)!/C < |d|M9ee Pt /N < (deg P;)!C?) thus yields
Odeg P, (1)

||Fé||Uf/[élMdegPZ]([OdegPZ(CN)]) > Cdeg p, 0 08T
We now expand the definition of the Gowers box norm and split the sum over Z up into
progressions modulo |¢/| as in the proof of Lemmas 3.9 and 3.10 to write the above as
5Odeng(1)’

/
]Eu:O,...,‘c/|_1 ||T—uF€<C ) ||U[25/]Mdcg PZ]([Ong P, (CN/I)]) >>C,deg Py
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so that, by Lemma 2.4 and the inequality (deg P)!/C < |d|M%eF: /N < (deg P,)!C? again,
we have that

Eu-o,...le1-1 ZT WFo(2)ru ()| >0ace P, §0aes P, (1)

TEZ

N/’

for some characters ¢, : Z — S*. Expanding the definition of F}, the above inequality says
that

Eu=o,...l’-1 > EyepnToufoldr — Poy)) - Tufror(dz + Pia(y) — Puly))

TEZL

N/ /
Vo)1 (Piy1(y)) - Y (Pr(y))

18 >0 deg Py §Odea P (1),
Next, as in the proofs of Lemmas 8.1 and 3.10, we split the average over y € [M] above

up into congruence classes modulo || by setting y = ¢/z+h for h =0, ...,|c| — 1 and make

Pg(clz+h)—Pg(

the change of variables x — x + y ") to get, assuming N >cdegpy (q)6)00sre D),

that

N/||,M Ode
Eu,h 0,..., |C| 1 AP£|C|Ph( ) fg 17w£ua1/}€+1,-'-7¢m) >>C,deng 5 nge(1)7

where
Foh(g) = T pmT-u(fotbeu)(dz) =0
‘ Tp,(h)—py ()T fi(c'x) i=1,...,0-1

To conclude, we argue as in the proof of Lemma 3.10, using the fact that max,ey |P(2)] <

C'N'/2 for all |h| < |¢| and i = 1 £ — 1 whenever N > gegp, (q/8)%%=7 (V) to split the

sum over r € 7Z in AN/‘C 'Iﬁi (fos- f V0w, Vo1, - - -, Ym) Up into intervals of length C' N’

and then applying the trlangle mequahty to get

C'N'M'" / pu,h,w uhw Ode 1
E u,h=0,...,|c'| - A ph( yoet - 7’w€u;wé+17---7wm> >>C,deng ) ngZ( )

|
0<w<(N/|c'|)/C'N’

O

Now we can prove Theorem 3.3.
Proof of Theorem 3.3. We apply Lemma 3.11 m — 1 times to get that
(9.1)

h h h
E i hi=0,....|ci|~1 AgiNQ’fQ( SR LR B BB | s g p,, 000 Pm (1),
ngi<(C’H1Ni+1/|ci\)/CiN 1ommtm
1=2,....,m

where Cppi1 = 1, Nyt = N, ¢ = Gq" for & Xcaeg p,, 1 and by aegp,, 1, M; := M/ [T leil,
Ci <cdegp,, 1, and N; := Midegpi’l(q|ci )i for each @ = 2,...,m, Oﬁ’ﬁ’m is 1-

bounded and %% (z) equals Licyny) () times

T [ h; [ h; Cy CpX
S o (cig1em)[wiciCs Ni—ui+[Py ™7 (hy) =P ™ ZJrl(hi)]]fl( 2 m)

for each u,h € T[",{0,....,]¢;| — 1} and w € [[2,([0, (Cix1Nit1/|ci])/CiN;) N Z), where
Phmhisi denotes the polynomial ((Pm)hm=1) . )r+1 using the notation from Lemma 3.11,
each Pf is a polynomial of degree deg P; whose coefficients have magnitude < ¢ geg p,, 74 P (1)
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and whose leading coefficient is independent of h, and Plﬁ has leading coefficient of the form
C'(gea -+ - cm) 281 for some €7 < 1 and satisfies maxye(us) | PE(Y)| <o deg p Na-

For each character ¢“™* let f“"“ € T be such that *"“(z) = e(f*"“x). Next, we
argue as in the proof of Lemma 8.1 and apply Lemma 4.2 d := deg P, times and the Cauchy—
Schwarz inequality once to get that

u,h,w 2 Ode 1
E w3, hi=0,...,[c;| -1 ]E|a1|7...,|ad\<5’M2 ’EZ/E[MQ}G(Q777<Q7 y))l > Cdeg P 0 o i (1)
Uéwi<(cl+1Nz+1/|Cz|)/Cl i
i=2,....m

whenever §' < ¢ deg p,, 094 Pm() where

Q**(a,y) : Zﬁuhw Y COMPHy +a-w)

we{0,1}4

As in the proof of Lemma 8.1, we have that |Eyenr,)e(Q%2(a, y))| > aeg p,, 0% 7m ) for
& 3> deg P, 004 Pm (D) proportion of tuples u, h, and w and integers |ay], . . ., |a4| < &' M.
Now set d' := deg P, — deg P, and write

Qb (a, y) = B (a)y” + - + B (a)y + By (a),

so that by Lemma 7.1 there exists a t <¢ deg P, §~Oaez P (1) guch that for a >>C deg P §Odes P (1)
proportion of a,u, h, and w, we have |[tB*™**(a)|| < degp,, 0 C%srm M /Mi for i =1,...,d.
By expanding each B;"* ’*(_) in terms of aq, . .., ag, it then follows from repeated applications
of Lemma 7.2 and the triangle inequality that, if ¢’ <¢ geg p,, 69 P (1) ig fixed suitably small,
there must exist ¢ <cdegp, 0 C%sPn) and b; <gegp, 1 such that [|[#/¢" ﬁig’ﬁ’ﬂﬂ L deg P
5~ Oacepm (1) /NJIE i for all 4 =2, .. m

Thus, by splitting y € [M,] up into progressions of length M} <c aeg p,, (8/q)eePn M,
modulo t'¢® for some s Kgeg p,, 1, it follows from (9.1) that

ZEzeM’ th(x)fly (x—{—P( (2 — M, uhw)_ku,b,w))

E u,hi=0,...,]ci|—1 C N
Uﬁwi<(0z+1éVz+1/|Cz|)/CiN 24%2
/Li
kuy,pw€ [M2/Ml]
k! w,h,w [t/q ]

IS >0 deg p,, 0742 Pn(1) - Applying Lemma 4.2 d more times, we get from the above that

1 u,h,w u,h,w !
E o hi=0,.. -1 Elay,...jaql<sarg f10 () f12 4 (a+C'd (' q*)  (qez -+ - em)ar -+ - aq)
0<une (Cl+1Nz+1|/||cl 3/c.n, CaNa Z laxl,....|aql<d"” My J1

iS > deg b, 09048 Pm (D) whenever 0" <o deg p,, 09%Pn (). Note that this can be written as

1 u w Uu,n,w
E  wp=o.jal-l  F ML) 1B (a4 Cdl (") (gez - - em)y) G (Y).
ngi<(Ci¢+:1év,,i.tln4|cil)/cﬂvi 20 T My

where G(y) := Eja,|.... . Jag<6" 25 Ly=a;-a,- Inserting the fol @({)e(fg)d{ for G(y) above, bound-
ing the contribution of minor arcs using Lemma 7.1, pigeonholing in the major arcs, and
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fixing 0" <cdegp,, 09%sPm ) sufficiantly small, we get that there exists a ¢/ < (§§")~ %)
and 0 < a < t” relatively prime to ¢” such that

u W u,n, W ay
E Ui =0, lc ZE (6" M3)4 : () fi . (x+ C'd!(t'q) (qea - - cm)y)e ( )
OSwi<(Cz+lévL+1|/|lcl|)/c N C2N 2) n

iS 3> deg p,, 094 Pn (D) We now split the sum over y < (§'Mj)? into arithmetic progressions
modulo ¢’ of length MY := [ (6" M})?/¢"| and apply Lemma 4.2 once more and use that fi
is 1-bounded to deduce that

1 h,
B un=0..e Eeepy f1 (x4 C'dl (' q°) 1 (qez -+ - €m) 2)| > deg by 00057 (.
ngi<(cl+lNz+1|/||Cl| )/CiN; OQN Z [M7] eg
1=2,....,m

Set Q(z) := C"d!(t'q®)"(qcy - - ¢m)z for ease of notation throughout the remainder of the
argument.

To complete the proof of the theorem, it remains to unravel the definition of flg’ﬁ’w. First,
we apply the pigeonhole principle to fix an h € [[",{0,. .., |e;| — 1} such that

EzE[M”]f L2+ Q(2))| >cdeg by, 000 Pm ).

E u;=0,...,|c;|—1 E.tE[CzNQ]
0<w; <(Cit1Niy1/lcil)/CiN;

1=2,...,m
For some 7, K¢ deg P, qQdes Pm(l), the left-hand side of the above can thus be written as
E i%[(blN?l]q EZG[MQ}TTEFEZZQ(QH---Cm)[wz'ciNi*Ui}fl(c? R Q(Z)))| :
0§w1<(Cl’l+_17N;+1z/\cl|)/CZNZ
Since, as x, w;, and w; for each i = 2,...,m range over [CoNs|, {0,...,|¢;| — 1}, and
0, (Cix1 N1/ |ei|) /CiNy) N Z, respectively, the quantity

C e+ Z Civ1 " Cm)[wic; Ci Ny — ]

ranges over < N distinct integers lylng within the interval [1, N + O,,(|c2 -+ - €| Crn N ),
and N, K¢ deg P, gN'=¢ for some 0 < ¢ < 1 satisfying > deg P, 1, we have that

1
N Z E.cppy fi(z + 2 cn@Q(2) + 10) | Sdeg oy 670 m D),
T€EZL

provided N ¢ egp,, (q/9)%sPn™). We conclude by making the change of variables x +
x — 1, and noting that any progression of the form = — a[L] with a > 0 can be written as
r—a(L+1)+all] O

10. DENSITY INCREMENT

In this section, we prove Theorem 3.2, which we then use to finally prove Theorem 1.1.

Proof of Theorem 3.2. Set fa := 14 — aly) and M := (N/qiePn=1)1/dePn_ Note that
ANIM , (14) = 0 since A contains only trivial progressions. By the multilinearity of A M P
and the identity 14 = fa + aljy), we have that ANM P, (14) also equals

Ag{%’pm(lA,fA71A7u 1A)+OéAP1 Pm(lAv [N] fA,lA,...,lA)+"'-|—Oém+1ANMP (I[N]).

m
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Since Ag{,ﬂ.{,Pm(l[N]) > deg P, 1, We must have that

’AgM (14, fas1a, ..., 1A>‘ > deg P, 0T
for some ¢ =1, ..., m. Theorem 3.3 then tells us that there exists a ¢’ <¢ e P,, ez P (1)

b <degp, 1, and an N’ satisfying M > N’ >>¢ qeg p,, M (v/q)%% Pm() guch that

1
2 [Byervifale + d'a"y)| >caer,, a%srn ),
T€EZ

provided that N > geg p,,, (q/cr)Pdes P (L),
Note that f4 has mean zero, so +~ >, Eyepnyfa(z + ¢'¢°y) = 0, which we can add to
both sides of the above to get that

1
N Z max (0, Eye[N/]fA(x + q'qby)) > deg P, Odes P (1),
TEL

The total contribution to the above coming from z € Z such that = + ¢'¢°[N'] ¢ [N] is
& ¢ qOsrm V) N-1HL/deg P g6 that as long as N >caegp,, (q/a)%esPnM) | there exists an
a € [N] such that a + ¢'¢°[N’] C [N] and

Eyeivila(a+¢'a%y) > a+ Qcaeg p,, (a0 ),

which means that we have the desired density increment. 0

Proof of Theorem 1.1. Suppose that A C [N] has density « and contains no nontrivial pro-
gressions of the form =,z + Py(y), ...,z + Py,(y). Set Ag=A, Ny =N, oy = o, and ¢o = 1.
By applying Theorem 3.2 repeatedly, we get a sequence of A;’s, N;’s, o;’s, and ¢;’s such that

(1) A; C [N)] with o = |Ai|/N; and a; > a1 + Qpy._p,, (a7 Wy,

(2) Ni>py, e (i1 /(@0 - Gio)) 0P DN 18 P

( ) qi <<P1, Pm (QO “qi— 1/@7, I)OPI """ Pm(1)7 and

(4) A; contains no nontrivial progressions of the form

T, + l,:>1(qo--~qi)(y>7 . PTS;10~--Q¢)<y)’

provided that N;_1 >p, p, (qo---qi_1/a)OFrPnd)
Since no set can have density greater than 1, the bound N; >>p, _p. (qo- - qi/a)OPrPm(L)
must fail to hold for some i <p, _ p, a=9P1Pn (D) Thus,

.« .. N 1 .
% QZ>OP1 ,,,,, P (1) —Op,....Pm (o

N, <p,...p, ( o <p,,...P, O

for some 0 < 07 <p, .. p, 1 by the upper bound on the ¢’s. On the other hand, we

,,,,, Pm(1)7 we get
—Opy,...,Py (D)
that N <p,, . p, a~OPr..pn (@ ), from which the conclusion of the theorem

follows. O
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