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AN ASYMPTOTIC VERSION OF THE PRIME POWER CONJECTURE
FOR PERFECT DIFFERENCE SETS

SARAH PELUSE

ABSTRACT. We show that the number of positive integers n < N such that Z/(n?+n+1)Z
contains a perfect difference set is asymptotically ; Ofgv N

1. INTRODUCTION

A subset D C Z/mZ is a perfect difference set if every nonzero a € Z/mZ can be written
uniquely as the difference of two elements of D. For example, {1,2,4} C Z/7Z is a perfect
difference set. By a simple counting argument, if D C Z/mZ is a perfect difference set,
then we must have m = n* + n+ 1 and |D| = n + 1 for some integer n. In this situation,
we say that the perfect difference set D has order n. Aside from being large Sidon sets,
so that their existence and construction is of interest in additive number theory, perfect
difference sets are also important objects of study in design theory and finite geometry (see
the detailed account in [13]). Indeed, any perfect difference set D of order n gives rise to a
finite projective plane of order n by taking the set of points to be Z/(n* +n + 1)Z and the
set of lines to be translates of D.

Singer [I8] constructed perfect difference sets of every prime power order, and it is an
old conjecture that these are the only orders for which perfect difference sets exist (see, for
example, [10], [6], or [9, C10]). This conjecture is now referred to in the literature as the
“prime power conjecture”, and has been verified computationally for all n up to 2 billion by
Baumert and Gordon [2].

Conjecture 1.1 (The prime power conjecture). An integer n > 2 is the order of a perfect
difference set if and only if n is a prime power.

There are many partial results towards the prime power conjecture, though the conjecture
itself seems out of reach. Some of the more general results say that all or almost all of
the integers in certain congruence classes cannot be the order of a perfect difference set.
For example, Bruck and Ryser [3] showed that if n is the order of a projective plane and
n = 1,2 (mod 4), then n can be written as the sum of two squares, Jungnickel and Vedder [14]
showed that if n is the order of a perfect difference set and 2 | n, then n = 2, n = 4, or
8 | n, and Willbrink [21] showed that if n is the order of a perfect difference set and 3 | n,
then n = 3 or 9 | n. There are apparently no results saying that the set of orders of perfect
difference sets has density zero in the integers, however.

In this paper, we prove that the set of orders of perfect difference sets has the asymptotic
size predicted by the prime power conjecture.

Theorem 1.2. We have

#{n < N :Z/(n* +n+ 1)Z contains a perfect difference set} = (1 + o(1))
1

log N’


http://arxiv.org/abs/2003.04929v2

2 SARAH PELUSE

This gives further evidence for the truth of the prime power conjecture, and implies that
if counterexamples exist, they must be sparser than the primes. The proof of Theorem
gives the explicit expression O(exp(—C log’i gigilgoi gf‘o fgv ~)) for the o(1) term above, though
we made no serious attempt to optimize this bound.

To prove Theorem [I.2] we begin by splitting the set of n < N up into various subsets
depending on the prime factorization of n?>+n+1. To each of these sets, we apply one of two
results from the theory of perfect difference sets. Both say that if n is the order of a perfect
difference set, then certain relations between the prime factors of n and the prime factors of
n?+4n+1 must hold. Applying these results thus turns the problem of proving Theorem
into that of bounding the size of sets defined by various number-theoretic conditions.

The remainder of this paper is organized as follows. In Section (2, we state the results on
perfect difference sets used in the proof of Theorem and, in Section 3, give an outline of
the argument. We count the number of non-prime-power orders n < N of perfect difference
sets such that n? + n + 1 has at least three, exactly two, and exactly one prime factor(s) in
Sections ], Bl and [6] respectively. The arguments in Sections [5l and [6] depend on estimates
for the number of lattice points satisfying various size and congruence restrictions on certain
hyperboloids. We delay the proofs of these lattice point counting results to Sections [l and [8l
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2. NOTATION AND PRELIMINARIES

We will first set some notation. For each & € N, let log, denote the k-fold iterated
logarithm, so that, for example, log; x = logloglog x. No logarithms to any base other than
e appear in this paper, so confusion should not arise. If D C Z/mZ and t,a € Z/mZ, we
define the sets t-D and a+D tobe {td : d € D} and {a+d : d € D}, respectively. Throughout
this paper, p and ¢ will always denote prime numbers. For any Dirichlet character xy and
y > 0, let L(1,x;y) denote the Euler product Hp<y(1 —x(p)/p)~!. For any a € Z/pZ, we
will use d, to denote the function that is 1 at @ and 0 otherwise. For every prime q > 2,
set ¢* = (—1)%@ For every n, k € N, we let py(n) denote the k™ smallest prime factor of
n with the convention that pg(n) = oo if w(n) < k, so that p;(n) < --- < pr(n) whenever
w(n) > k. Letting P denote the set of prime powers, we set

S(N):={n < N :Z/(n* +n+ 1)Z contains a perfect difference set} \ P,

the set of non-prime-power orders of perfect difference sets in {1,..., N}. By Singer’s con-
struction, to prove Theorem [[Z it suffices to show that #S(N) = o).

log N
We now state the two results from the theory of perfect difference sets used in this paper.

The first is due to Mann [17].

Theorem 2.1 (Mann, [17]). Let n be the order of a perfect difference set, and assume that
n is not a perfect square. If p and q are primes such that p |n and q | n*> +n + 1, then p is
a quadratic residue modulo q.
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Note that the condition imposed by Mann’s theorem is empty when n? 4+ n + 1 is a prime

congruent to 1 modulo 4, which we expect to happen for > % of the n < N by the

Bateman—Horn conjecture. Indeed, since n*+mn+1 =1 (mod n), quadratic reciprocity tells
us that every odd prime dividing n is a square modulo n? 4+ n + 1 whenever n? +n + 1 is a
prime congruent to 1 modulo 4. The contribution of such n must be dealt with if we want to
prove Theorem [[.2] and not just a weaker big-O result. To do so, we will use the following
lemma.

Lemma 2.2. Let n be the order of a perfect difference set, and assume that ¢ :==n?> +n+1
is prime and ¢ = 1 (mod 4). If p is a prime such that p | n, then p is a quartic residue
modulo q.

To prove Lemma 2.2] we will need some basic facts from the theory of multipliers of perfect
difference sets.

Definition 2.3. Let D be a perfect difference set of order n. We say that t € (Z/(n? +n +
1)Z)* is a numerical multiplier for D ift- D = a+ D for some a € Z/(n* +n + 1)Z.

Note that the set of numerical multipliers of a perfect difference set is closed under multi-
plication. Mann showed that every perfect difference set has a translate that is fixed by all
of its numerical multipliers (this result is attributed to Mann by Hall in [10]), and Hall [10]
showed that if D is a perfect difference set of order n, then every prime dividing n is a
numerical multiplier of D.

Proof of Lemma[2.2. We may assume, without loss of generality, that D is fixed under multi-
plication by any of its numerical multipliers. Note that —1 cannot be a numerical multiplier
of D. Indeed, we must have |D| > 3, so that there exist distinct d,d’ € D such that d # —d'.
Observe, however, that d — d' = (—d') — (—d), so that no such perfect difference set D can
satisfy D = —D.

By Hall’s result, we have that p* Z —1 (mod ¢) for any ¢ > 0, so that p must have odd
multiplicative order modulo g. Since 4 | ¢ — 1, this implies that p must be a quartic residue
modulo q. 0

3. OUTLINE OF THE PROOF OF THEOREM

Given Theorem 2] and Lemma [2.2] it should not be surprising that #S(N) = o(lofgv )

Indeed, for a typical integer n, one of n or n? 4+ n + 1 will have enough prime factors that
the conditions imposed by these results should be very rarely satisfied. The difficulty with
turning this heuristic into a proof is that n* +n + 1 (and thus its prime factors) obviously
depends on n. The conditions in Theorem 2.1l and Lemma are sufficiently powerful,
however, that we can afford to use the union bound in several places, which allows us to
remove the dependence of the prime factors of n? + n + 1 on a few of the small prime
factors of n. To do this effectively, we must use different techniques depending on the prime
factorization of n? +n 4+ 1.

The contribution to #S(N) coming from n such that n? + n + 1 has at least three prime
factors is the most straightforward to handle. Typically, such n are divisible by two distinct
primes p; and py satisfying 3 # p1,ps < N 000, say (the number of such n € S(N) not

satisfying this condition can be shown to be < W(log2 N)°®M) using an argument
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similar to the one about to be sketched). Thus, since n? + n + 1 must have a prime divisor
below N5 in this situation, by using the union bound and Theorem 2.1] it suffices to bound

(3.1) Yo #Sh V),

g<NE
p1<pa2<NTO0
3#p1,p2
where SI  (N) equals
/
{nSN:plpg\n, g|n*+n+1,andp |n, ¢ |n*+n+1 = (2) = (p_}) = (Jj—f) :1}.
q q q
Bounding the size of each S?  (N) is a sieve problem of dimension 5 the key being that

Z > 1. Thus by an application of an upper bound sieve, we have that 1) is bounded

above by oz )Q ——== times a quantity of the form

0 Z (an Euler product that is typically small)
N3 P1P24 7
<N
p1<p><N TO00
3#p1,p2

which we can bound by a power of log, V.
To estimate the number of n € S(N) such that n?+n+1 = q1q2 for two primes ¢; < ¢z, we
must split into subcases depending on the size of ¢;. When ¢; < Tz NP 5 for 8 > 0 sufficiently

large, an argument similar to the one above can be used. When ﬁ <q < W,

more delicate argument is required. To deal with this subcase, we split such n up based on
the smallest k = k(IN) — oo prime factors of n below logs N (the number of such n without
k prime factors below logs N is negligible), so that, by Theorem 211, only asymptotically 2%
times the number of primes ¢ in the interval | (logNN) 7 oz %)1 | can possibly divide n? +n+1.
We then take the union bound over these ¢, apply an upper bound sieve, and sum over ¢ and
the k-tuples of distinct primes below logs N. Finally, to deal with the subcase

_ N
(log N)1/2 —
g1 < N, we forget the condition n € S(N) and show, using an enveloping sieve argument,
that there are < o )3/2 many n < N such that n?> +n + 1 = qq with ¢; < ¢ and

W <q <N. One of the key inputs is an asymptotic count, with power saving error
term, for the number of integer triples (z,%, z) on the hyperboloid y? — 4x2 = —3 satisfying
1<z,2<X,k|x and ¢ | z, for a variety of k and ¢. We prove an estimate for the number
of these lattice points by adapting an argument of Hooley [12].

When n? +n + 1 is a prime, different arguments are required depending on whether
n? 4+ n+ 1 is congruent to 1 or 3 modulo 4. The number of n € S(N) such that n* +n + 1
is a prime congruent to 3 modulo 4 can be bounded easily using an upper bound sieve-it
follows from Theorem 2.1] and quadratic reciprocity that if n is not a perfect square, then
every odd prime p | n must satisfy p = 1 (mod 4). The situation when n? +n + 1 is
congruent to 1 modulo 4 is much more involved. As in the second subcase of the paragraph
above, we begin by splitting such n up based on the smallest k& prime factors py,...,py of
n, but this time apply Lemma to get that py, ..., p, must all be quartic residues modulo
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n? 4+ n 4+ 1. By one of the formulations of the quartic reciprocity law, this forces n? +n + 1
to be representable by the quadratic form z? + 4y? with y satisfying certain congruence
conditions that depend on pi,...,pr. We bound the number of such n by combining the
Selberg sieve with an asymptotic count, with power-saving error term, for the number of
integer triples (z,v,z) on the hyperboloid 422 + 16y* — 2% = 3 satisfying 1 < 2 < X and
various congruence restrictions on y and z. The proof of this lattice point counting result is
also an adaptation of the previously mentioned argument of Hooley, though the argument
ends up being significantly more complicated than the one for the other lattice point count.

4. n? 4+ n+ 1 HAS AT LEAST THREE PRIME FACTORS

In this section, we bound the number of n € S(N) such that n? +n + 1 has at least three
prime factors:

Proposition 4.1. We have

#{neS(N):Qn*+n+1) >3} < %(bg2 N)?.

log N i

We split the estimation of the number of n € S(N) such that n? +n +1 has at least three
prime factors into the estimation of the size of the following three sets:

{ne€ S(N):31tn, py(n) > N®, and Q(n* +n+1) > 3},

{ne S(N):3|n, ps(n) > N and Q(n* +n+1) > 3},
and
{n € S(N) : pips | n for some p; < po < N® with py,ps # 3 and Q(n* +n + 1) > 3},

for some 0 < a < % to be fixed shortly. Note that if n € N is not divisible by two distinct
primes p1,py < N* with py, py # 3, then either 31 n and the second smallest prime factor of
n has size at least N*, or 3 | n and n either has at most two prime factors or (since 3 must
then be either the smallest or second smallest prime factor of n) the third smallest prime
factor of n has size at least N*. Thus, to prove Proposition [4.1], it really does suffice to bound
the sizes of the above three sets. We begin by applying the union bound, Theorem 2.1 and
an upper bound sieve to deduce initial bounds for each.

Lemma 4.2. There exist absolute constants 0 < a < % and 0 < <1 such that

#{n € S(N):31n, ps(n) > N*, and Qn*+n+1) >3}

and
#{n € S(N):3|n, ps(n) > N® and Qn*+n+1) >3}
are both
1 1
< N Z L(17X4€p10;NW)EL(17X—3~4€*3P]);NW>§
(log N)? p ’

3£p<NZ
where €, =0 if n =1 (mod 4) and ¢, = 1 if n = 2,3 (mod 4), and

#{n € S(N) : pips | n for some p1 < py < N® with p1, py # 3 and Q(n* +n +1) > 3}
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18

N 5 T1)_ L1, Xim,3 N7)R

L ——= )
(log N)1 . DP1p2q
q<N3
p1<p2<N<
3#p1,p2
where myp = q*, moy = 46p1p1, ms = 46p2p2, my = 457’17’2])1])2, ms = -3 - 45731’1]91, me =
—3 - 432y, My = —3 - 45312 g, ki = %; and ko = -+ = k; = i

Proof. We will apply a standard upper bound sieve, a statement of which can be found in
Section 6.5 of [7], numerous times throughout this paper, including multiple times within
this proof.

By Theorem 2.1] (and an application of an upper bound sieve in the second inequality),
we have

#{n € S(N):3tn, pa(n) > N°, and Q(n® +n+1) >3} < Y #51,(N) + O(N?),

1
3#p<N?2

#{n € S(N):3|n, ps(n) > N% and Q(n*+n+1) >3} < Z #S9,(N)+0 (L + N%) ,

(log N)3

3£p<NZ
and that

#{n € S(N) : p1ps | n for some p; < po < N® with py,ps # 3 and Q(n? +n + 1) > 3}

1S at most
1
S #S (V) +O(N?),
qSN%
p1<p2<N¢
3#p1,p2
where

S1p(N) = {nSN:p|n, pa(n) > N® and ¢ | n*+n+1 = (g) :1}7

Sop(N) = {nSN:3p|n, ps(n) > N® andq|n®*+n+1 — <Z—9> = },
q

and S5, ., (N) equals

/
{nnglp2|na Q|n2+n+1> andp,|na q/|n2+n+]‘ = <£) - <p_}) - <p_?) :1}
q q q
The error term O(N/(log N)*/?) appearing in the second inequality comes from the contribu-
tion of n of the form n = 3/p with p > v/N, which we estimate using an upper bound sieve.
The restriction that n is only divisible by large primes and 3 sieves out one congruence class

modulo each prime on average (namely, the zero congruence class), and the restriction that

3 | n forces <%) = 1 for all primes ¢ dividing n? +n + 1, which sieves out half of a (nonzero)

congruence class modulo each prime on average (namely, the roots of 2 + z + 1 modulo
each prime where these roots exist and for which 3 is a quadratic residue). This leads to the
savings of (log N)*? over the trivial bound. Similar arguments will appear numerous times
throughout the remainder of this paper.
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Fixing o sufficiently small, to each of S1,(N), Sy,(N), and Sy, ,
bound sieve to get that there exists a fixed constant 0 < v < « such that

#SLP(N),#SZP(N) < E H (1 — 91(]9’))

/
p/<N?Y p

for all 3 # p/ < Nz, where

2 (;73):1and 5):—1
() =141 p=3and (&) =-1
0 otherwise

()

p/<NY

and such that
95 py e (V) <

P1D2q
for all ¢ < N3 and p1 < po < N* with 3 # pq, po, where
= 1 p/=3and (%1) or (%2):—1

0 otherwise )
0 otherwise

Standard Euler product manipulations then yield

H (1 91(29/)) L(laX4€Pp;NW)%L(laX—i’rﬁlél’p;NW)%
- / < 3
p (log N)z

pI<NY

WhenS%pSN% and

g3(p") H;Zl L(1, Xpmy; N)Ms
H <1_ 4 )<< (log N7

p' <N

when p; < py < N with 3 # p1,p and ¢ < N%,

2\ 2 ;73 =1 and % or % =—1
gg(p,)_{l ()= -1, 2 () =tamd () or (1) =1

7

(N) we apply an upper

O

To finish the proof of Proposition 4.1l we require a standard lemma (which will also be

used once in Section []).

Lemma 4.3. Let y > 0 and a € Z be nonzero. We have

X
Z L(1, Xap; ¥), Z L(1, Xap) <a Jog X

p<X p<X
pla pla
and 2
Z L(1, Xapip23 ¥) <a m-
p1<p2<X &
p1,p2fa

This lemma follows from a small modification of the argument given in Section 5 of [1] by
using a mean value estimate for sums of quadratic characters over primes due to Jutila [15].
(Such a modification, in fact, gives asymptotics for the sums in Lemma [£3], and also for

higher moments.)
Now we can prove Proposition [4.l
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Proof of Proposition[{.1. By Lemma 2] it suffices to bound

Z L ey NV)%L(L X—3.4°=3pp; NV)%

(4.1)

1 p

3#4p<N32
and
7 )
(42) v =i, NT)
. N3 p1p29g ’
p1<pa< N
3#p1,p2

using the notation of Lemma [£.21 By the Cauchy—Schwarz inequality, we have that (£1]) is
bounded above by

ol
N

Z L(1, xaevp; N7) Z L(le—3-4€*31’p§ NV)%

p p

1 1
3#p<N3 3#p<N3

which is < logy, N by Lemma [4.3] and partial summation. Similarly, by Holder’s inequality,

we have that (£2) is bounded above by
Z L(1, X _3.43pp; N7) ’
p

L(1,xg; N7)? L(1, Yaerp; N7
5 LN (Z (Lx >>

N

nd q p<Ne p 3£p<Ne
1 1
4 4
Z L(17X4ep1p2p1p2;N'y) Z L(17X—3'46*3P1p2p1p2;N7)
)
p1<pa<N© pipz pL<pa<N© pip2
3#p1,p2 3#p1,p2
which is < (log, N)3, also by Lemma .3 and partial summation. O

5. n?2+n+11S THE PRODUCT OF TWO PRIMES

In this section, we bound the number of n € S(N) such that n? 4+ n + 1 has exactly two
prime factors:
Proposition 5.1. We have
N

log N exp(C—}giz x)

#{n € S(N) : n® +n+1 is the product of two primes} <

for some absolute constant C > 0.

Note that n?> <n?+mn+1 < (n+1)? for all n > 1, so that n? + n + 1 is never the square
of a prime. As outlined in Section 2], we split the n € S(N) such that n?+mn+1 = q,q; with
¢1 < @2 into three sets depending on the size of ¢:

(5.1) {nES(N):n2+n+1:q1q2 with ¢; < ¢ and ¢; <

< ey )



AN ASYMPTOTIC VERSION OF THE PRIME POWER CONJECTURE 9

}

(SIS

5.2 S(N):n? 1= ith d—e < —
(5.2) {ne (N):n®+n+1=qq with ¢ < gz an (g V)7 <= (og 1)

and

(5.3) {nES(N):n2+n+1:q1qgwithq1<q2and 1<ql§N},
(log N)=
for some 8 > 1 to be fixed shortly. To prove Proposition 5.1 it suffices to bound the size of
each of the above three sets. Indeed, n? +n + 1 must have a prime factor of size at most N
whenever n < N and Q(n? +n+1) =2, since n? + n+1 < (n+1)2
We begin by bounding the size of (5.0]), using a modification of the argument presented
in Section Ml

Lemma 5.2. There exists a § > 1 such that

N
neSN):n 4+n+1= with g1 < g and q; < }<< )
# { (V) Dz with 1 < gz and @1 < o P < )

Proof. Arguing as in the proof of Lemma [.2] we first note that the left-hand side of the
desired inequality is bounded above by

Z #S{(N) + O(N*?),

9< {0z 9P

where
SZ(N):{n§N1q|n2—l—n—|—1andp|n — <§):1}

By an upper bound sieve, we have that

N H <
#Sq(N) < qlog(N/q) L lp'<(N/q)7 P
4

I —94(?,)) N5 < q< (1ogNN)/J‘
togm LLprenn (1_%) ¢< N ’

where

0 otherwise

, 9 (=2) =
aa(p) = {1 (5) =1, 1) pf’;)g
0

otherwise

and v > 0 is an absolute constant. Since
H<1_94(%9)><< (1, Xq ?j)
p/<y p (log y) 2
for all y > 0, it thus suffices to bound

1 L(L, xq; N7)? L(1, x¢; (N/g)7)2
5.4 S — )E
o4 T e D SR AT

<N3 Ni<g< N
=4V <q= (logN)B

That the first term of (5.4]) is < % was already observed in the proof of Proposi-

tion Il To remove the dependence of the number of factors in the product L(1, x4+; (N/q)")
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on ¢ in the second term, we will use that it can be well-approximated by L(1, x,~) for most
sufficiently small q.
Indeed, set § := %*. Since we have (N/q)” > (log N)* for all ¢ < B N)Bv it follows from

Prop081t10n 2.2 of [8 ] with A =4 and D = N that L(1, x4 (N/q)") < L(l Xq) for all but
at most N2 moduli N3 < ¢ < (logN Toavy7- Using the trivial bound L(1, x; (N/q) ) < log (N/q),

the contribution to the sum (5.4]) coming from these Nz moduli is < N5, which is more
than admissible. It thus remains to bound

L(lv Xt]*)%
2 oV

(log N)P
by the positivity of L(1,x,+). Setting f(t) :=
bound the sum above by

N
N . To NP )
L(1,xq")? = "(6) Y L(1, xg-)2dt
f((]ogN)B) ZN (7Xq )2 [\7% f(); (7Xq )2 )
1=Tog NP =t
which, by Lemma [4.3] is

W, we apply partial summation to

3
2

1 /(logN)B 1
< "
log N(log, N)2  Jn3 t(logt)log(N/t)
Noting that

(logNN)E ]_ 1 (logNN)E 1
i st < St < -
N3 t(logt)log(IN/t)2 log N /3 tlog(N/t)z log N(log, N)2
completes the proof of the lemma. O

Next, we bound the size of (5.2).

Lemma 5.3. We have
N

<< ——7 <
(log N)? o (log N)%} g log N exp(C2&X)’

#{ne S(N):n* +n+1=qq, with ¢, < ¢ and
logg N
for some absolute constant C > 0.

Proof. We begin by splitting n in (5.2)) up based on the smallest k = k(N) prime factors of
n. Note that the size of (5.2) is at most

Z #Tpl ----- Pk (N)

p1<--<pp<logs N
+#{n < N:p(n*+n+1)> N3 and w(n) < k}
< N g 40t 1) > N, w(n) > &, and py(n) > logy N},

wln

Wi

where

Lo pn(N) :={n € S(N) ‘n?4+n+1=qq¢ with ¢; < ¢ and <q <

Y

7]\[ e
(log N)# (log N)z
w(n) >k, and p;(n) = p; foreach i = 1,... k}.



AN ASYMPTOTIC VERSION OF THE PRIME POWER CONJECTURE 11

The quantity #{n < N : p;(n* + n+ 1) > N3 and w(n) < k} is bounded above by

k—1

Z Z #{nﬁg:pl ((nm)2+nm+1) > Ni andw(n)zl},

Jj=1 i1
m<N J
w(m)=j—1

which, by an application of an upper bound sieve, is < —2—(C'log, N)* for some absolute

(log N)2
constant C' > 0. If k£ < 31(1)g2]>lv, then the right-hand side of the above inequality is certainly
083
<

which is admissible. A similar argument shows that the quantity

N ___
(log N)3/2 )

#{n < N:pi(n®+n+1) > N5, w(n) >k, and p,(n) > logs N}

. N(C’logs N)*
18 < log N log, N

of the above inequality is <

for some absolute constant C' > 0. If k < ;?fgsgv, the right-hand side
N

Tor N {iom, M)172 which is, again, admissible. So assume, for the
4

remainder of the proof, that k = |.31(1)ogg56]\17\7J'

It remains to bound Zp1<__,<pk§0g3N#Tph.,”pk(N). We apply Theorem 1] and split
each n € Tp,  ,. (N) up based on the prime factor ¢ of n*> + n + 1 lying in the interval
[( N N 2] to get

log N)# 7 (log N)1/2
HTp.. o (N) < > #T? . (N)+O(N

N N
<q<
(g NP = 1= T1og ) 172

Piy=1, i=1,.. .k
(%)

(NI

)7

where
T¢  (N):={n €Ty ,(N):qg|n®>+n+1}.

P1;--Pk

Since Hp Aogs N P K (log, N)*°M) by an application of an upper bound sieve, we have

N 1\ logk
plv---vpk( ) qpL- - pr p1<_z£ p) logy N

DPFDi

Summing over q € [(IOgNN)B’ (10g%)1/2]

logk 1 ( 1) N
T p(N) <K L= '
H# s, (V) < 2k py--pi p];!k p) log N

PFDi

such that (%) =1 foreach i =1,...,k yields

and then summing over p; < -+ < pi < log, N yields

1-1
logk N Hp<p’? ( p) logk N
T N PFDi

E H# L pr,..on (V) <5 2k log N Z D1 Dk <5 2k log N’

p1<-<p<logg N pr<<pgslogs N

Hp<10k(1_%)
where for the last inequality we use the fact that > _ _ <log, N ”pf%pk is the density
of integers with k prime factors below logs NV, which, being a density, forces it to be at most

1. Recalling our choice of k now gives the conclusion of the lemma. O
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Finally, we bound the size of (5.3]) using an enveloping sieve argument. We will require
the following lattice point counting lemma, whose proof we defer to Section [7l

Lemma 5.4. There exist absolute constants C > 0 and 0 < 01,67 < 1 such that the following
holds. For all k, ¢ < X% with 2,31 kl, we have

X
#{(2,y,2) €Z° y* —daz=-3, 1<2,2< X, k|x, and (| 2} = C’p’(kﬁ)ﬁ +O(X17),

-1
where p' is the multiplicative function defined by p'(n) = p(n)[1,, (1 + X%@) with
p(n) := #{a (mod n) : a> = —3 (mod n)}.

Lemma below gives a bound for (5.3]) after forgetting the condition n € S(N) and
making a change of variables.

Lemma 5.5. Let X > 0. Then

X
(log X)?

2
(5.5) # {(pl,pg) € [X%,X] 2 4dp1ps — 3 is a perfect square} <

Corollary 5.6. We have

N N
n<N:n’4+n+1= with q; < ¢go and —— <@ < N} K ———.
i { Q192 @ < @ (log V) ¢ } (log )2

Proof. This is an immediate consequence of Lemma with X = N(log N)¥/2. Indeed, if
n%? 4+ n + 1 = pips, then, by completing the square and multiplying through by 4, we have
(2n + 1) + 3 = 4p1pe. Thus, each n for which n? + n + 1 is the product of two primes
corresponds to a pair of primes (p1, p2) for which 4p;p; — 3 is a perfect square. If n < N and

pp > W, then p; < py < N(log N)Y/2, and so Lemma [5.5] applies. O

Proof of Lemmal2.d. This is a straightforward application of the enveloping sieve, and our
argument will be closely modeled after those given in Section 2 of [20].
Set 7 := min (6], 2) and Y := X7, with & and 6] as in Lemma[5.4. Fix a smooth function

¢ : R — R supported on [—1,1] with ¢(0) = 1 and fol | (t)|2dt = 1, and set

2

)= | S (255

k|n

Note that v(p) = 1 whenever p > Y is prime. So, since v is nonnegative, the left-hand side
of (5.5]) is bounded above by

(5.6) > v(n)v(m)ln(4nm — 3),

n,m<X
2,3tnm
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where 15 denotes the indicator function of the squares. Expanding the definition of v and
applying Lemma [5.4] we get that (5.6]) equals %2 times

T O n (3)o (25)+ (25)e ()

k1,ko,81,62
log k’l log k’g log gl log fg
¢<logY>¢<logY>¢<logY ¢ logY ’

2,3tk1kal142
Note that, since ¢ is supported on [—1, 1], the above sums over ky, kz, ¢1, and f5 run over at

+0 (X1—51 Z

k1,k2,01,02

most Y4 < X% quadruples of integers. Thus, the error term is <, X -4
We now focus on the main term. As in the proof of Proposition 2.1 in [20], we apply

Fourier inversion to write
o0
= / Y(u)e "™ du
— 0

for ¢ rapidly decaying. It then follows, by the rapid decay of v, that

log k ) / ¥(u) T
= 1+iu du+ O | ——=75
¢ (bgy lu|<(log Y)1/2 klog¥ (log V)10

for any k£ > 1, so that the main term of our expression for (5.6) equals

X / / / / kul 3 u(krl)u(kz)u(flzﬁgz)fi(u[fl;ii]g[ﬁllffj) Jusduadusdus

kika,bilo [k, ko] [01, o) k)°5" Ky =Y €)%Y £,
lui|<(log Y)1/2 2,30k kol Lo [ 1y 2” 1y 2] 1 2 1 2

plus an error term that is O( o N) 5)-
By Hensel’s lemma, p’ evaluated at any integer k with 2,3 1 k equals p’ evaluated at the
squarefree part of k. Thus, the quantity inside of the brackets above can be expressed as the

Euler product

I1(1- Pp) o) P P) Po) )
AT L S T e e S E 7 N 2 SRS
/ / ’ ’ /
+ €+(z]uj)+zu + €+(z]uj)+zu + €+(z]uj)+zu + €+(z]uj)+zu - 3+€u(€z>u Fiu,
2+%3 2+%4 2+ 2 3 2+# 2+M
p logY p logY p logY p logY p logY
) B r'(p) B r'(p) N r(p)
2+ 3+iu11;kgi7;2+iu4 24+ 3+iu11;rgi7;§+iu4 p2+ 3+iu21;rgi7;§+iu4 24 44iuq +i17;g2~;iu3+iu4 .

Letting L(s) := 3 ~ (" ) denote the Dirichlet series for i - o', this Euler product equals

L1+ G L1+ SR L+ S L1 + G (o’ +0 <L4zl|u|)>

L(1+ 2+igg14;zuz)L(1 + ZHiusdiugy logY

(5.7)

logY

for some absolute constant C’ > 0.
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Note that, by the definition of p’, we have

L) =T] (1 B 1;#)(—3@) 1] (1 C L+xslp) L;ﬁ_j(]};}) ’

s—1 s
p>3 p +p p>3 p
when R(s) > 1, so that

D(s)
C(s)L(s, x-3)
for some function D(s) that is holomorphic in the region R(s) > 1/2 and nonvanishing in
a neighborhood of s = 1. Thus, L(s) = cy(s — 1) + O(|s — 1]?) for some nonzero constant
¢y, since ((s) = 1= 4+ O(1) and D(s) and L(s, x_3) are holomorphic and nonvanishing in a

L(s) =

neighborhood of s = 1. As a consequence, when |u;| < (logY)'? for each i = 1,2,3,4, the
quantity (5.7) equals

Gy (L dun) (1 + dug) (1 + iug) (1 + iug) o0 1
(logY")? (2 + duy + dug) (2 + tus + iuy) (logY)1/2 ) ]~
The main term of our expression for (5.6]) thus equals

(CCP ) C log Y //// H ID 1 i (1 il iU2)(1 * ’{Ug)(]_.—f— iU4) duydusduzduy

(2 + duy + tug) (2 + iuz + iuy)

jui|<(log Y)1/2 *

1+Iul\)(1+IU2|)(1+\U3\)(1+IU4I)
9 duydusdusd
* logY (log Y )5/ //// HW 2+ || + o) (2 + |ug| + |ua]) o rH2Ha0l

1
jusl <(log ¥)1/2 =

The error term is < since 1) is rapidly decaying, and, by extending the integral in

X
(log Y)5/2—¢
the main term to all of R* using the rapid decay of 1, the main term equals

(Cc,,)2c' / / (1+iu1)(1+iu2) 2
logY Plun)i(ue) (2 + duy + tug) durdus )

C,r 2 .
plus an error that is O(W) say. The above quantity equals @ ) <. (bgy)g, since the
double integral equals 1 (see the manipulation at the end of the proof of Proposition 2.2
of [20]). The conclusion of the lemma now follows from our choice of Y. O

Proposition 5.]is now an immediate consequence of Lemmas[5.2 and 5.3l and Corollary 5.6l

6. n* 4+ n+ 1 1S PRIME
In this section, we bound the number of n € S(N) such that n? +n + 1 is prime:

Proposition 6.1. We have

#{n € S(N) :n* +n+1 is prime} <

log N exp(C128s)

logg N

for some absolute constant C > 0.

The number of n € S(N) such that n? +n + 1 is a prime that is congruent to 3 modulo 4
is easy to bound.
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Lemma 6.2. We have

#{n € S(N) :n?+n+1 is prime and congruent to 3 (mod 4)} <« ——.
(log N)?z

Proof. By quadratic reciprocity, we have that if p | n is odd and n? +n + 1 = 3 (mod 4) is
prime, then (m) = (—1)% (%) = (—1)%. Thus, by Theorem [2.1] we have that

the number of n € S(N) such that n? +n + 1 is a prime that is congruent to 3 modulo 4 is
at most

#{n<N:Q(n2—|—n—|—1):1and27ép|n — p=1 (mod 4)} + O(N2).

The first term above is < by an upper bound sieve. O

(lo gN 3/2

It now remains to deal with n € S(N) such that n? +n + 1 is a prime that is congruent
to 1 modulo 4. As outlined in Section 2] to finish our proof of Theorem [[.2] we will combine
Lemma with the quartic reciprocity law to reduce the problem of bounding the number
of such n to that of bounding the number of certain representations of prime values of
n? +n + 1 by the quadratic form 22 + y2. This can be done using the Selberg sieve as long
as we have a sufficiently accurate count for the number of lattice points on the hyperboloid
422 + 16y* — 22 = 3 with y and z satisfying a variety of congruence restrictions and |z| <
2N + 1.

We first state the quartic reciprocity law and the required lattice point counting lemma,
whose proof we defer to Section [§

Theorem 6.3 (Quartic reciprocity). Let ¢ =1 (mod 4) and p be primes satisfying (%) =1
and let o be a root of the congruence ¢ = o (mod p). Assume that ¢ = x> + y* with 2 | y.

Then . (0 +9)
(0,5

(See Theorem 5.5 of [16].) As it will be relevant in the proof of Lemma below, note
that in the situation of Theorem [6.3] we must have ("(C’;y)) = ("("_y)).

p

Lemma 6.4. There exist absolute constants C' > 0 and 0 < 0y, 65 < 1 such that the following
holds. Let py,...,pr < logs N and qi,...,qn < logs N be disjoint collections of primes.
For all odd squarefree £ < X% with py---peqr---qm | £ and for all congruence classes
a (mod py---px) and b (mod 8¢) satisfying

(1) <1+2a> = <1p2“) for eachi=1,... k,

(2) b=1 (mod 2p;) for eachi=1,. ..,k:,

(3) b=1 (mod 2q;) for each j =1,...,m, and
(4) b* = =3 (mod r), where r := £

we have

H{(x,y,2) €Z3 4x* +16y* — 2> =3, |2| < X, y=a (mod p;---pi), and z = b (mod 8¢)}

P1Prq1qm’

m

k
:(Z’2"f1_[11)1(cz,pZ H 2(qj ng X +O(X1_52),

i1 paley DR QT
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where
51 (a (mod p)) 1 — x12(p)
1(a (mod p

wi(a,p) = (14 x12(p)) # 1_% ;
p2
9 —1 1 — x12(p)
'UJQ(p) — <1+ X12(p) ) 1;7 ’

p 11— P2

and

_ 1 — xe@)
w3<p>:=<1+x_1<p>>(1+2X12(p) 1)( b )

2p 1—1%

Now we can bound the number of n € S(N) such that n®> + n + 1 is a prime that is
congruent to 1 modulo 4.

Lemma 6.5. We have

#{n € S(N) :n®>+n+1 is prime and congruent to 1 (mod 4)} <

log N exp(C’iZiz M)

for some absolute constant C' > 0.

Proof. The proof begins in the same manner as the proof of Lemma[5.3l We split n up based
on the smallest & = k(N) prime factors of n to get that the size of the set in question is at
most

S # (V)

p1<--<pp<logg N
+#{n < N :n*+n+1is prime and w(n) < k}
+#{n < N :n?+n+1is prime, w(n) >k, and py(n) > logs N},

where

.....

logs N
3logg N

respectively. So it remains to bound

By the argument in the proof of Lemma 1.2 by setting k = | | we get that the sizes of

the two sets above are < W and <

the sum of the #71),, , (N)’s.
By Lemma 22 we have that T}, ., (N) C T

- N
log N(log, N)1/27

pi .
dpi(n)=p;and | ————) =1fori=1,...,k;.
and p;(n) = p; an <n2+n+1)4 or i }
Applying Theorem 6.3 with ¢ = n® +n + 1 for n € T},

<72 pi ) _ (—1)E <72 pi ) _ () <1+Qy)
n“+n+1/, n“+n+1/, i

when ¢ = 2% + 4y2. So, splitting n € T, (N) up based on whether n = 0,7 (mod 8) or

n = 3,4 (mod 8), we see that (%)4 = 1 if and only if n* + n + 1 can be written in the

form 2% + 4y? with y = a (mod p;) for some a (mod p;) such that both 1+ 2a and 1 — 2a

(N) and o = 1 gives

kY.
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are quadratic residues (if (—1)"2 tgn = 1) or nonresidues (if (—=1)"z e —1) modulo
p;. We will show that
(6.1) #T! (N) < leogkﬁw (ai, p;) H 1—1 al
' Pr PR oL p/) (pr---pi)*log N’
P#Pi
where
T;I,,,,vpk;a,j(zv) ={n<N: n?+n+1 prime,n = j (mod 8), pi(n) =p; fori=1,... k,

and n® +n+ 1 = 2% + 4y* with y = a; (mod p;) fori =1,...,k}

for such a = (ay,...,a;) and 7 =0,3,4,7.
For each n € N, set

ma(n) = #{(x,y) € Z* :n* + n+ 1 = 2% + 4y with y = a; (mod p;) fori = 1,... k},

so that
#T121,---,pk;a7j(N) < Z ma(n).

n<N
n2+4n+1 prime
n=j (mod 8)
pi(n)=pi for i=1,...k

For each r € N and congruence class b (mod r), also set

M, (r) = > ma(n).

n<N
n=b (mod r)
n=j (mod 8)
pi(n)=pi for i=1,...k

Note that, if n? + n + 1 = 22 + 4y?, then, by completing the square we have that 422 +

16y? — (2n + 1)? = 3 . So, by applying Lemma [6.4] when r < N? is odd, squarefree, and
satisfies (py -« pr, T ) =1 and b (mod r) satisfies b* = —3 (mod ), we have that

i(r) = kkwa- - _w(p) w 7]\7 102
Maolr) = €2 H (e 24) H (1 )g 3(p)(P1"'Pk)2r +O(N )

j=1 P<py,

P#Pj
for each choice of a = (ay,...,a;) where 1 + 2a; and 1 — 2qa; are both quadratic residues or
nonresidues (depending on j and p;) modulo p; for i = 1,..., k. Because of the power-saving

error term above, we can apply the Selberg sieve to deduce (using that ws(p) = 1+ O(p~?)
and ws(p) = 1+ x_1(p) + O(p~")) the desired bound [G.) for each #1)) .. (N).

Now, we sum over all admissible choices of a. There are at most 2 f( ) possible choices

of a; (mod pi) for each p; > 2 (by considering either the number of points on the conic
2% 4+ y? = 2 modulo p; or the number of points on the conic 2% 4+ y? = —2 modulo p;, since,
for example, any a for which 1+ 2a = y? and 1 — 2a = 22 in Z/pZ gives rise to a solution to
22 + y?> = 2 modulo p). We thus have

U)l(a,pi) 1 1

a (mod p;) Py Py
(15)=(132) -0

Py
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so, by the Chinese remainder theorem, we get that

logk 1 1 N
T N) < (1 - —) )
# pl,...,pk( ) 2k P11 Die pgk p logN

DPFDi

and are in exactly the same situation as in the end of the proof of Lemma Summing
over p; < --- < pr < logs N as in that argument yields the desired bound for the number of
n € S(N) such that n? +n + 1 is a prime that is congruent to 1 modulo 4. O

Proposition now follows from Lemmas and [6.5] and Theorem follows from
Propositions 1] 511 and

7. THE FIRST LATTICE POINT COUNT

In this section, we prove Lemma [5.4] the first of our two lattice point counting results. We
do this by adapting an argument of Hooley [12], incorporating a bound of Duke, Friedlander,
and Iwaniec [4] in place of Hooley’s bound for weighted averages of sums of additive characters
over roots of quadratic congruences. For the convenience of the reader, we record Duke,
Friedlander, and Iwaniec’s result specialized to the case we will use.

Proposition 7.1 (Duke, Friedlander, and Iwaniec, Proposition 4 of [4]). Let f : R — R be
a function supported on [X,2X]| satisfying

fOM] <t

for each1=20,...,4. Then, for all h < X, we have

D=

L T(dh)(d )

X%] Xz2log2X.

S Y e(nh) <@
dn

v2=-3 (mod n)
o<v<n

Now we can prove Lemma [5.4]

Proof of Lemma[5.4. We begin by writing the size of the set in Lemma [5.4 as

DD TN S SR T (;;4;3)

z,2<X y <X y2=-3 (mod 44z)
klz, £z k|x

Splitting y up based on its congruence class modulo 4/x, the above equals

> oYY ()

z<X 12=-3 (mod 4¢z) y=v (mod 4lx)
klz 0<v<dlz
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Note that % < X if and only if |y| < V42X — 3. Letting ¢(u) := [u] —u + 1 denote
the sawtooth function, it thus follows that

Z 1[%] <y2+3) =2 -#{y € [V4zX — 3| :y =v (mod 4z)}

4z
y=v (mod 4¢x)

_ o VirX —3—v | v
n 4z 4z
_ 9 \/43;’X—3+w VdrX —3—v _y —v
N 4z 4z 4z '
Thus, since /42X — 3 =2vzX + O (ﬁ), our desired count equals
X3 dxX —3—v —v
7.1 2 — O(log X
mex 3 e () o ()] owen
<X p?=-3 (mod 4fx)
klz 0<1/<4£w
We first deal with the main term of (Z.1)):
X2 p(4
<X x?
k\x

Note that we can write kagx pﬁfﬁ — 93 ZK%X 1/2 So, set L(s) == 3., (mod 450 pa)

B ‘-
for R(s) > 1. It is shown in Subsection 12.1 of [5] (the restriction there that D > 0 is
unnecessary for the relevant computation) that

(5 L5, Xs) p(4K0) ys®)\ ™
M) =" <4M>sy,%<” P ) /

so that L(s) is holomorphic for R(s) > 1/2 aside from a simple pole at s = 1, where it has

residue .
6 p(4kl) X-3(p)\

plkt b
By partial summation, we have
a0x
>4 ey e
w<AlX w2 MX) m<4£X a<t
akl|z akl|z Akl

while, by a standard contour integration, we also have that

> plz) = %L(lax_g)pi4k’2£) 11 <1 N X—;(p))_ F 1 O(E)

e i
So,
Z plz) _ M)X% +O(X1Te)
—x x3 21{:62

4ké\
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for some absolute constant C' > 0. Thus, the main term in (7.I]) equals C %X +O(X1te).
Now we can deal with the error term of (Z.1I):

T (T s ()

z<X 1p2=-3 (mod 4¢x) <X 1p2=-3 (mod 4¢x)
k|z O<v<dlz klz 0<1/<4Zx

Arguing as in Section 5 of [12], we use the Fourier expansion of ¢ to write
M.
1 sin(2mhu) , 1
Pu)y=—» ——=+0 (mln (1,7))
i ; h M||ul]

for some 1 < M < Xz to be chosen later, so that the two sums appearing in the error term

M VizX —3—
D I S DO R (e
— min | 1,
T h 4 X—3—v
h=12<X 12=-3 (mod 4¢z) z<X 1p?=-3 (mod 44z) MH 4z ||
|z O<v<dlz kla 0<v<4lz
and
M
1 sin(2mh = 1
Ny oy TEELIY Y (s
™ M| 7|
h=12<X 12=-3 (mod 44z) z<X p2=-3 (mod 44z)
|z O<v<dle k|z 0<v<dlz

To estimate the main term of the first sum, we use the sine addition law to write it as

1 i/[: Z Z Sln(Qﬂ'hW) cos(2mhz-) — COS(Qﬂ'hW) sin(2mh7-)
- :

h 12<X 12=-3 (mod 4¢x)

klz 0<v<dlz
Using that »_,2—_3 (mod 4¢z) COS (2rh=) == 3 (mod 4¢z) € (h=) and sin(—t) = —sin(t),
O<v<dle O<v<dle

the expression above equals

(7.2) — Z Z sin (27rh 4%2( 3) Z e (hﬁ) :

= :(:<X v?=-3 (mod 4fz)
klx O<v<4lx

To estimate the error term of the first sum, we use the Fourier expansion of the function

U — min (1, m) given in Section 5 of [12] combined with the cosine addition law to write

the sum inside of the big-O as

(7.3) %CO(M) Z (40z) + Z Ch(M Z cos <2ﬂh%) Z e (h@) ,

<X <X v2=-3 (mod 44x)
k|z kX 0<v<dlz

where C,(M) < “5M for all h > 0 and Cy,(M) < 4 for all h > 1.
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The main term of the expression for the second sum in the error term of (Z.I) vanishes,
and the quantity inside of the error term can, similarly to above, be written as

(7.4) %co(zm S+ aony Y e(hy).

<X <X 1p2=-3 (mod 4fx)
k|z k| X 0<v<dlz
Now we bound (.2)), (Z3), and (Z4), starting with the portions of the sums that can
be bounded trivially. Take M = X'/190_ The contribution to (Z2) coming from z <
X900 4 (2 X99/100+2 - The contribution to (Z3)) and (T4) coming from h > §X is
<. MX¢/§ <, X'/1000+¢ /5 and the contribution to the second sum in (Z3) and (7.4)
coming from < X99/100 is <. MX99/100+E <. X991/1000+8.
To bound the remainder of (Z.2), (3]), and (T4]), we will apply Proposition [[T] on dyadic
intervals. Fix a smooth function ¢ : R — [0, 1] supported on [4, 8] with ¢(t) = 1 for z € [5, 7]
that decreases to 0 on [4,5] and [7,8]. For any Y > 0, define

Dr(t) = X244/,

so that ¢y : R — [0, X ~12/200] is supported on [Y, 2Y], is identically X ~12/200 on [5Y/4, 7Y /4],
and, by the chain rule, satisfies

. 4\" . ,
gbg;)(t) < X ~12/200 (?> t%a,}é] ¢(z)(t/) < X 12/200y i
for all t € [Y,2Y] and @ = 0,...,4. Now, we apply Proposition [[.I] on each of the inter-
vals [V}, 2Y;] with Y; = 4/7(5/7)'X for each i for which Y; > X9/1%0/2 and f(t) equal to
sin(2rh(5 — 3)Y2/t) ¢y, (t), cos(2mh(EE — 3)/2/t)dy, (t), and ¢y, (t). The third choice of f
obviously satisfies the derivatives condition in Proposition [Tl and the other two do as well
as long as h < XY19  This gives a bound of <, ¢5X?3/4+12/200+¢ for the contribution of
x> X99/100 ¢, (IED and a bound of <. (kﬁ)E(XlngM +X3/4+12/200+E) <. (k£)€X999/1000+8
for the contribution of A < X190 and z > X%/190/2 to (T3)) and (Z4). Combining these
bounds with the trivial contributions from the previous paragraph (choosing § = X ~99/100),
we conclude that the error term of (71)) is < (k)X %99/1000+¢ " completing the proof of the
lemma. 0

8. THE SECOND LATTICE POINT COUNT

We will prove Lemma following the same strategy as the proof of Lemma [5.4 with
two key differences. The first stems from the fact that these two lemmas concern different
hyperboloids, and so a change of variables is needed before the hyperboloid in Lemma
can be analyzed in a similar manner to the hyperboloid in Lemma [£.4] which introduces
additional complications. The second is that there is not, currently in the literature, any
analogue of Proposition [T.I] that can be applied to the situation of Lemma[6.4. We will prove
such a result from scratch in Lemma [8.2] adapting an argument of Hooley from Section 6
of [12]. One of the ingredients of this proof is the following classical lemma, which connects
roots of quadratic congruences to representations by quadratic forms.

Lemma 8.1. (1) Let n € N. There is a bijective correspondence between solutions

v € Z/nZ to the congruence v* = 3 (mod n) and equivalence classes of primitive
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representations of n by the quadratic form x* — 3y?
{v (mod n): v* =3 (mod n)} + {(r,s) € Z* :n=1r>—3s*} | ~,

where (r,s) ~ (r',s') if r' = ar +bs and ' = cr +ds for some (¢7) € Aut,2_3,2(Z),
given by
v=rp—23s0 < n=r?—3s,
where ro — sp = 1. In this situation, we have
v Sy 3s

n r o r(r?—3s?) (
where 3, denotes the multiplicative inverse of s modulo r. In each equivalence class
of ~, there is ezactly one representation n = r? — 3s% with r,s > 0 and s < 5

(2) Let n,m € N with ged(n,m) = 1. Suppose that n = a* — 3b* and m = r? — 3s* are
primitive representations of n and m, respectively, and that (ar+3bs)o — (as—+br)p =
1. Then v := (ar + 3bs)p — 3(as + br)o satisfies

v b, 3b

R o a@—am) |
Proof. The proof of the first statement can be found in [19, Art. 86 and Art. 100], but
we include an argument here as well. Since every binary quadratic form of discriminant
12 is equivalent to x? — 3y?, for every 0 < v < n satisfying > = 3 (mod n), there exists
(7 £) € SLy(Z) such that g(rz + py, sz + oy) = 2% — 3y?, where g(x,y) is the form

mod 1),

—~

mod 1).

g(z,y) = na* + 2usy +

(Further, the set of such (% %) is a coset of Aut,2_3,2(Z) in SLy(Z).) In this situation, we
must have n = 7?2 — 3s® and v = rp — so. That there is exactly one such matrix (% 2)
satisfying r,s > 0 and s < 5 follows from the fact that 2 + /3 is a fundamental unit of
(9@( v3)» and the expression for 2 follows from a straightforward manipulation.

The second statement follows immediately from the fact that, whenever ¢ = t? — 3u? for
ged(t,u) =1 and to’ — up’ = to” —up” = 1, we have that tp’ — 3uc’ = tp” — 3uc” (mod ¢).
Indeed, note that the condition (ar +3bs)o — (as+br)p = 1 implies that a(ro —sp) —b(rp —
3s0) = 1 and the definition of v can be rewritten as v = a(rp — 3so) — 3b(ro — sp). O

We now argue along the lines of Section 6 of [12] to prove the following lemma.

Lemma 8.2. There exists an absolute constant 0 < v < 1 such that the following holds.
For every |h|,|h| < X7, k,{ < X7 relatively prime with o := rad(¢), 0 < d < k with
ged(d, k) =1, and 0 < w < €y with ged(w, €y) = 1, we have that

k 5
E E e(nls)e(WL) < x@
€0u 60
u<X v2=3 (mod fou)

u=d (mod k) 0<v<flou
u=lw (mod £of)

VuX —u)+3 vk 7 5
) + ) il ) <« x3
e ( h o e hﬁou elh 7 < ,

u<X v2=3 (mod fou)
u=d (mod k) 0<v<lou
u=lw (mod £pl)

and
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where k denotes the multiplicative inverse of k modulo {yu.

Proof. Since ged({od, k) = 1, there exist integers w and v such that wk — vfod = 1. Then
k = vfertod 4 (mod lou) whenever u = d (mod k), so we may rewrite the above two sums
as

(8.1) 3 3 . (h” (”% a w)> e (h%)

u<X v2=3 (mod fou
u=d (mod k) 0<v<Lou
u=fw (mod £ol)

and

2X — )z v (vl +w i
(8.2) Z e (ih#) Z )e <h ( gou )) e (h %)

u<X v2=3 (mod fou
u=d (mod k) o<v<tou
u={fw (mod £ol)

plus a quantity that is O(1).

Using Lemma B.I] with n = {y¢ and m = 7, which are coprime, and using the 1-1 cor-
respondence between solutions v?> = 3 (mod nm) and pairs of solutions v? = 3 (mod n)
and 2 = 3 (mod m), we can write (8] and (82) as the sum over < X?’ pairs of inte-

gers a, b satisfying (ol = a®> — 30%, b < %, ged(a,b) = 1, and 0 < a,b < X7 of the phase

. (h’ (_% _ amfi—bgzﬂ))) times the quantities

(8.3)
as + O araps 23820 —d
Z Z Yy (ar+3bs, as+br)e <_has+# (Ugo (r ]‘z ) X w))
b1,b2 (Enod Lok) 7,2_382§Zi)(7 ar -+ obs
b2—3b2=0d (mod k) 0<s<t
b2—3b2=w (mod £o) r=b1 (mod fok)
s=bz (mod flok)
ged(ar+3bs,as+br)=1
and
(8.4)
b ar S 2 3 2 {—d
> > s (ar+3bs, as+br)e G;ﬂ”# (Mo (r Z ) +w)) |
b1,b2 (mod fok) T2_3S2SZX7 ar + abs
b%—Bb%EZd (mod k) 0<SS%O

b}—3b3=w (mod ) ;=p, (mod lok)
s=ba (mod flok)
ged(ar+-3bs,as+br)=1

respectively, where

(0, 1) = e <—h (m) (092 - 3;;; —bod w))

:l:(2X_92;§)u2)% B < 3,U ) (U92_3M2_€0d+w)
ki3 (62 — 32t \OO% =347 ki |

_ For each possible value of ¢ := ar+3bs and each pair (b1, by) (mod (ok) satistying b7 —3b5 =
¢d (mod k) and b? — 3b3 = w (mod ), we will bound the inner sums over the values of

and

o(f, 1) =€ (h
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as + br in (83) and (84):
— 2 2 _
(8.5) Z b (e as + bre <_has t br. (Uc 3(as ;br) lod N w))
@D
and
— 2 2 _
(5.6) S nleras + bre <_has t br. (Uc 3(as ;br) lod N w))
@2

respectively, where (87 denotes the conditions
(12— 352 < éf—é
0<s<3

ar + 3bs = ¢

r = by (mod {yk)
s = by (mod (yk)

L ged(c,as +br) =1

Set
M := max(as + br) and m := min(as + br),
(8 ((8)

and note that M < c and ¢?—M? > 2X 90, Using partial summation, we can bound (8.5)
by

g (M) [l (e, M+ 1) [+ D ge®)l[en(e,t) = vale t + 1)

m<t<M
and (8.6) by
|9 (M) [l (e, M+ 1) [+ D lge(®)l[¢a(e,t) = et + 1),
m<t<M
where
- as+br. [ & —3(as+br)? — loyd
ge(t) :== Z e (—h . (v ? +w) ).

as+br<t

Note that 1], [1)2] < 1, and

o®)

[Ya(et) = (et + 1)) <

and
3+0()  xO()
|¢2(Ca t) _wQ(Cat+1))| < 02 +

c
when t < M.

To deduce a bound for g.(t), we start by writing ¢ = {pkny + ¢; and as + br = lokny + o
in the definition of g.(t) with ¢; := aby + 3bby and g := aby + bby, so that

wty= Y e <—h(€0/m2 + ), - (v [h(n2 = 3n2) + 26s(crny — 3eang)] + u/)>

Lokno+co=as+br<t



AN ASYMPTOTIC VERSION OF THE PRIME POWER CONJECTURE 25

2—3c3—tod .
for w' = w4 vA—2—% where e.(2) := e(z/c). The above can be rewritten as

Z e (—h : (—3€ovn2 + (bokng + ¢2) (=3lyvcang + C3(”l))>) )

Lokno+co=as+br<t

where c3(ny) = w' + lyveing, since byvn (bokny + 2¢1) = lyvnicy (mod lokng + ¢q).
With a view towards using the Pdlya—Vinogradov method to bound g.(t), we will first
consider complete sums of the form

s(€) == Z €. (—h : (—3€ovt + (Cokt + c3)(—3bgueat + 03(n1))> - ft)

t (mod c¢)
(C,Zokt—l—cz):l

for all £ (mod ¢). Also define, for all prime powers p||c, the sum s, () to be

Z Epe —h- —3£0Ut + (gokt + Cg) H F (_3£0U02t + 03(n1)) — gt

t (mod p®) pe#q® |l
ged(p,lokt+ca)=1

By the Chinese remainder theorem, we have

s(€) = [ s (©).
pe|le
As a consequence,

|S(§)| < XO(’Y) H |SPE(€>C3(n1))|>

p°lle
plhkt

so that, to bound |s(€)], it suffices to bound each of the spe(&, ¢5(n1))’s when p { hkl.
If p t k¢, then {yk is invertible modulo p° for any e > 0, and so we can write

sp@esm))l = | D e (ke (=3tovt + Tkt + ) Q(=3tvest + cs(n))) — &t)

t (mod p®)
ged(p,lokt+ce)=1

= > e ((3htov — )Tkt — hQ (3Fv3 + cs(m)) 7)
t (mod p©)
ged(p,t)=1

for @ = Q, = Hpe;ﬁqefucg # 0 (mod p). Using that c3(ny) = w' + lyveing, w' = w +
c%—3c%—£od
2

Thus,

, and wk — vlod = 1, a short manipulation gives 3kvcz + c3(n;) = k (mod p°).

spe(€esm)) = | D epe ((Bhlov — O)lokt — (hQE)E) |,
t (mod p©)
(p,t)=1

so that s, (&, c3(ny)) is a complete Kloosterman sum. We therefore have that

[pe (€, es(na))] < (e + 1)p2,
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since ged(p, h) = 1. (See Theorem 2 of [11], for example, for a statement of a general bound
for Kloosterman sums. The above is the Weil bound for e = 1, and is due to Salié for e > 1.)
We conclude that

[s(6)] < XODr(c)ez.
To use the Pélya—Vinogradov method, we will also require bounds for the Fourier coeffi-
cients of the subset of integers

X

T, := {nQEZ: lokng + co = as + br <, 0<7‘2—352§£€ 0<s g ar + 3bs = ¢,
0

r = by (mod k), s = by (mod lok), and ged(c, as + br) = 1}

defined by the conditions as 4+ br < ¢t and (8.7)), modulo ¢. For any £ (mod ¢), by a tedious
but straightforward change of variables and an application of the triangle inequality, we have

-~ gof&’r’/
T.(6)| =
7.) > o
r'el
ged(3be,ac— (a2 —3b2)r")=1

for some interval I = I,y cpy.bo.1.00.06 Of length less than ¢. Thus, we have |ﬁ(0)| < ¢ and, for
€ # 0, we have [T.(¢)] < X002~
Noting that ged({ol, c) = 1, we conclude using Parseval’s identity that

1 .
get) == Y s(OT.E) < X0t
£ (mod ¢)
Combining this with our bounds involving (¢, t) and s (c,t) above, we deduce from our
application of partial summation that the sums (83]) and (@) are < X9MWeate and <
XOW) (c2te 4 X2¢737), respectively. Summing over all < X200 possibilities for ¢, which

all satisfy ¢ < X%JFO(V), we get that (81) and (RG] are both <« X itetom), Taking ~
sufficiently small completes the proof of the lemma. O

Now we can finally prove Lemma [6.4

Proof of Lemma[6.4]. The proof of Lemma follows the same general outline of the proof
of Lemma /5.4l However, we are concerned with a different hyperboloid, so we note it suffices
to prove that

(8.8) #{(w,y,2) € Z° : 4x* +16y* — 2> = 3, |2| < X, y = a (mod 2¢), and z = b (mod 8¢)}

equals
x12(p)
X
k+m
2 H A
ple
times
k m 61 (a (mod gj 1494 (a (mod p))
H(1—|— ( ) 61(a (mod p;)) H 1‘|’X12 q; ) 1( ( ) H(I_I_X—l(p)) % '
L1 X12\Pi L 9 :i:l(a (mod g;)) | 92d0(a (mod p)) )
i= Jj= plr



AN ASYMPTOTIC VERSION OF THE PRIME POWER CONJECTURE 27

plus a quantity that is O(X17%), for every a (mod 2¢) that satisfies <2‘fl—j1> (%) # —1
m GHL of the possible values

j=1"12

for each j = 1,...,m, for then we can just sum over all 2r ]
of a modulo 2rq; - - - .

To estimate (8.8)), we make the change of variables u — z—4y and v — z+4y to write (8]
as 4 times the quantity

#{(z,u,v) € Z° : 4a*—uv = 3, u € [X], v € [2X —u], u = b—4a (mod 8(), v = b+4a (mod 8/)},

which, setting ¢y := ged(¢,b — 4a) and k := % and using hypotheses (1), (2), (3), and (4) of
the statement of the lemma and our choice of a (mod 2¢), we can write as the sum of

- 1 1+ x-1(p)
k+m
(89) 2 H 0, 1(a (mod gj)) ' H 260(a (mod p))

=122 plr

quantities of the form

> Y Y Y ()

usX 412=3 (mod fou) x=v’ (mod fou)
u=b—4a (mod 8¢) O<v<lou z=c (mod k)

for

V' =v+8v(b+ 4a)P, (mod lyu),
where P, = p¢ (mod p®*1) for each p®||u with p | £ and P, = 0 (mod p°) for each p°||u with
p1 8¢, and some ¢ (mod k). As in the proof of Lemma [5.4] the sum above equals

(8.10)
> >

u<X 412=3 (mod fou) [
u=b—4a (mod 8¢) 0<v<lou

(2X —u)2 V2uX —u?+ 3 — —
160uz 9 160u v 164u

plus a quantity that is O(log X), where
v = V' - kgguk + ¢ - lo(b — 4a), Lou.

(Here ky,, denotes the multiplicative inverse of k modulo fyu and, similarly, ¢o(b — 4a),
denotes the multiplicative inverse of £o(b — 4a) modulo k.)
We first deal with the main term of (8.I0), which, by Hensel’s lemma, equals

Y

1 P (bou)(2X — u)2
w2 :

u<X u?

u=b—4a (mod 8¢)
where p”(n) := #{v (mod n) : 4> = 3 (mod n)}. The treatment of this quantity is similar
to the treatment of the main term of (1)), except that we will need to derive expressions

ourselves for the Dirichlet series x(€o)¢§Ly(s), where
p'(n)x(n)
LX(S) = Z ns )
2ln

for each Dirichlet character y modulo k. We do this by computing the local factors of these
Dirichlet series.
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For p = 3, we have the local factor 1 + XB8) and for all p > 3 with p 1 ¢, we have the local

33 )
factor

() (25,

For p | k, the local factor is just 1, and for p | £y, we have the local factor
(1 . x<p>)‘1 (1 + x()X(??)
ps p2s

It then follows from a small amount of manipulation that

L(s) = (1 ~ X(3)) Sty X6) I (1 N (XXli)(p))_l L{s. ) Lis. i)

3s 638 i D L(2s, x?)
so that
)Ly (5) = (1 - X?ff’)) p~<go>><(€§°> 1 (1 . <x><;><p>) L(sg()QLS(Z;;xlz).

pllo

Thus, x(€o)¢5L,(s) is holomorphic for R(s) > £ except, when ¥ is the trivial character, for

2
a pole of residue
-1 x12(p)
P (4o) X12(p) 1-+0
C’ 14 —r
EO H P H 1+ 1
pllo plk p
at s = 1, where C’ > 0 is an absolute constant. As in the proof of Lemma 5.4, a standard
contour integration tells us that

S (t)x () < ()"

<t
Lo|z

when y is nontrivial, and

3" 0 (lox)x(x) = C’p”lff()) I1 (1 = X”(p)) g[ (1 = i)_l H (1 + %)_1 t+O((tt)7)

2
<t ple p p
Lo|z

when Y is trivial. Now, using the orthogonality of Dirichlet characters, we have that

3 p”(ﬁox):ﬁ SN0 S 0 () (a)

<t x (mod k) <t
x=b—4a (mod 8¢) Lolx
P (to) X12(p) L\ 't 3
= 1-— 1—-=) —40(
W (-2 (1-5) 7 +owmd.
pl¢ p|8¢
from which it follows from partial summation that the main term of (8I0) equals
1 _ x12(p) X 5
"yt [T 4+ g + OUEX))
pl¢ v’
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Noting that p; | £y if and only if @ = ; (mod p;) and g; | ¢ if and only if a = 1 (mod g;),

we get the promised main term in the statement of Lemma [6.4] by multiplying by (89]) and
summing over the possible choices of a modulo 2rgq; - - - ¢,.
We must now bound the error term of (8.I0):

u(2X —u) + 3 — g —Uj
2 2 )‘b(\/ 16£u+ >_ 2 2 w(meu)‘

u<X 4v?=3 (mod fLou u<X 412=3 (mod fLou)
u=b—4a (mod 8¢) 0<v<flou u=b—4a (mod 8¢) 0<v<flou
Let r1...7q = {3 be the prime factorization of ;. To deal with the dependence of Pu on u,
we will split these sums over u 4 up based on the d-tuple (ey, ..., eq) for which r{*---ri*||u
and the congruence class of ——7 modulo {o. Indeed, for each ﬁxed d-tuple e = (61, cey€q)
Ty

and congruence class w modulo lo, there exists a constant P, , such that that P, =u- P, ,
whenever r{* - ri|lu and —* T = W (mod £y) (just take P, = wy,beu where wy, denotes

the multiplicative inverse of w modulo lo and be = H#iﬁ (mod r{") for each i = 1,...,d).
So, with v as in Lemma B.2] we write the first sum above as

Z Z Z b (\/“(2X I@ZLJF 3 - Vk) +O(X1—25;+e)7
)

e1, eq>1 u<X 4°=3 (mod fou
b d<X462 u=b—4a (mod k) 0<v<lou
1 €d e1 eq
(Z/ZOZ)X u=rt- ~r 4w (mod Loryt-r, 4)

. . ! o e .
(since any u with r{'---r3|lu for some r{*---r5 > X% must be divisible by one of at

most (log X*%2)¢ many integers of size at least X*%, where d < logfg < 26, lloog))((, so that

(log X*%2)4 <« X?%) and, similarly, the second sum above as

3 3 > () row

€1,..,eq>1 us<X 4v2=3 (mod fou)
;31 . Ed<X452 u=b—4a (mod k) 0<v<lou

1. .¢d ed
(Z/foZ)X u=nc

~r4w (mod Loryt- 1)

Just like in the proof of Lemma [5.4] we will insert the Fourier expansion for the sawtooth
function to deal with each of the above inner sums over u. For every 1 < M < X %, we get
that the first inner sum over u above can be written as the sum of

N ritten s
I (MM> B,

(et h 2k

where F;(h) equals

u<X =3 (mod fou
u=b—4a (mod k) 0<v<Lou

—.61 €d €1 €d
u=ryter fw (mod Loryter,®)

and

c-lo(b—4a)
n (QWth> Ey(h),

S
9]
=.

M
h=1

3|

, Vu2X —u)+3 Vkogu V24K, (b + 4a)PL,
2
Z sin < mh 160u 4 2_32 )e h tou + 7

)
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where Ey(h) equals

u<X (mod £ou
u=b—4a (mod k) O<v<tlou

1 2w (mod Zorfl---rzd)

_ e
U=Ty "'Td

plus an error term that is at most an absolute constant times
o X _4 o X _4
S Cu(M) cos (%h%) Ea(h) = 3 Cu(M)sin (%h%) Ei(h)
h=1 h=1
+ Co(M) >, p'(u)

u<X
u=b—4a (mod k)
uErfl---rzdw (mod Zorfl---rzd)

and, similarly, the second inner sum over u above can be written as

v -
1 1 . c-ly(b—4a),
- hE:1 5 Sin <2ﬂhT Es(h),

where Fs3(h) equals

k 24k, (b + 4a) P!
Z Z el h Vk&)u + v 14 ( a) e,w
) EQU EO

u<X 4v2=3 (mod fou
u=b—4a (mod k) 0<v<flou

—.€1 €d €1 €d
u=ryteer,fw (mod Loryteer,®)

plus an error term that is at most an absolute constant times

Z Ch(M) cos <27Th%) Es(h) + Co(M) Z P (u).

u<X
u=b—4a (mod k)

—°1 d

u=r) ---7‘; dy

w (mod Lorit -]

To conclude, we apply Lemma B2 to bound each of E;(h), Ey(h), and Es(h) by X ¢ when
hX©OW2) < X7. Combining this with the trivial bound |E;(h)| < X'*¢ for i = 1,2,3 when
hXO®) > X7 and taking M = X= and &) sufficiently small, we get that the above five
quantities are < Xote, « Xote, <« Xl_%“—I—X%*%“, < X%JFE, and < Xl_%Jra—l—X%Jr%JrE,
respectively. This completes the proof of the lemma. O
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