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ARTICLEINFO ABSTRACT

Edited by Dr. Marie Weizs The IPCC Sperial Repart on the Ocean and Cryosphere in a Changing Climate highlights the importance of blue

carbon in tidal wetlands in combating climate change. In thiz stody, we highlight the uneertainty associated with

Eeywords: leaf area index (LAI) estimations in tidal wetlands, specifically zalt marshes, a key vegetation parameter for
Blue carbon productivity models and Earth System Models (ESM). LAL derived from satellite reflectance data, iz linked to
13:1;1% ammospheric carbon exchange and gross primary production (GPP) across vegetative ecosystems. However,
LeaF avea estimating zalt marsh LA iz challenging because canopy height and density vary across short distances, and tidal
Cark feli flooding alters the atmosphere-exposed leaf area, hereafter called emergent leaf area index (ELAT), at short time
Plemote senzing scales. Further, in tidal wetlands dominated by species such az Sparting alterniflora, canopy height and density

wvary across short distances. We prezent a novel approach for measuring spatiotemporal dynamies in tdal wetlamd
ELAI. We modeled ELAI from vertical LAI profiles and created spatial estimates acroes tidal periods. We then
linked ELAI with eddy covariance carbon (C) fluxes through footprint modeling and revealed correlations be-
tween emergent leaf area and C Auxes. Next, we demonstrated that ELAI can be readily estimated across 10-m.
spatial seales using Sentinel-2 satellite data, even during high tides (R® = 0.89; NRMSE = 10%:). Finally, we
zhowed a common product, MODIS MYD15A2H, underestimated (20%:) LAl during dry conditions but over-
estimated (7-93%) during high flooding. Dynamic ELAI could reduce uncertainties in zatellite-derived global
GPP productz when developing blue carbon budgets for ecosyztems threatened by accelerated zea lewel rize.

1. Introduction accelerates, the conservation of marsh ecosystem benefits 1z uncertain

(IPCC, 2019; Schuerch et al , 201£) and depends on both their ability to

Tidal salt marshes are coastal wetlande that constitute a large portion
of global blue carbon ecosyeteme and play an important role in the
global carbon cyele (Nellemann and Corcoran, 2009). Frequent tidal
flooding transports nutrients, flushes metabolic toxine, and deposits
gediment for marsh aceretion, which enables tidal wetlands to store
20-25% of the world s soil organic carbon stock, while covering only
4-6% of the world's land area (Yu =t al., 2012). While, at short time-
seales, tidal flooding submerges plants and reduces atmospheric carbon
(C) assimilation (Eathilankal =t al | 2008), this reduction 1= small rela-
tive to annual budgets (Forbrich and Giblin, 2015). However, the ben-
efits of tidal flooding can become deficite when flooding 1= deep or
prolonged, resulting in anoxic conditions and reduced soils that
diminizh nutrient uptake (Mendelzsohn and Meorris, 2002) causing plant
death, channel collapse, and marsh drowning (Crosby =t al, 2016;
Mariotti, 2020; Smith and Lee, 2015; Voss et al., 201 3). As sca-level rise

accrete vertically az a consequence of sediment supply and elevation
capital (Langston «t al, 2021), and the available space for landward
migration (Firwan =t al | 201 6). Tidal salt marsh canopies are expected
to be mundated more frequently with inereasing sea levels, resulting in
shifts in vegetation dynamies (Langzton t al., 2020) and atmospheric C
assimilation. Therefore, it 15 vital that we understand the nature of leaf
area in tidal salt marshes to better model C dynamics and assess marsh
vulnerability to climate change. In this study, we present a solution for
modeling canopy leaf area exposed to the atmosphere during flooding,
here known as emergent leaf area, and link it to atmospheric C assimi-
lation. Our efforte aim to better inform large-seale productivity and
Earth system models (ESM), which rely on accurate leaf area
estimations.

Canopy leaf area, the area over which chlorophyll, photosynthetic
and other leaf physiological reactions are arrayed, helps determine
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atmospheric gas exchange during photosynthesis (Nobel, 1983) and is
an important component to quantify gross primary production (GPP)
(Guo et al., 2009), ecosystem phenology (Running and Hunt, 1993), and
responses to climate change (Cleland et al., 2007). Leaf area is a key
variable in vegetation productivity and land-surface models (Cowling
and Field, 2003) and an important input for ESMs (Park and Jeong,
2021). Leaf area index (LAI), the one-sided leaf area per unit ground
area (m? m 2), is the common metric for quantifying leaf area and is
often used in GPP models (Running et al., 1999). LAI is estimated
through satellite remote sensing vegetation indices (Boresjoe Bronge,
2004; Huete et al., 2002; Xie et al., 2019).

Tidal salt marsh leaf area, and wetland leaf area in general, is
spatially and temporally dynamic, but not well studied (Asner et al.,
2003). Canopy density and height vary across the salt marsh surface due
to interactions between nutrient availability, elevation, salinity, and
tidal flooding (Chaisson et al., 2022; Mendelssohn and Morris, 2002;
Pennings et al., 2005). In tidal salt marshes, where vegetation is often
dominated by monocultures of habitat specialists such as Spartina
alterniflora, environmental gradients create distinct zones (Pennings
et al., 2005). For S. alterniflora marshes, low elevation edges adjacent to
water bodies can have frequent and moderate flooding that flushes soils,
resulting in high nutrient availability, lower salinity, higher soil oxygen,
and taller canopies ( 1 m). In higher elevation mid-marsh to interior
areas, canopy heights become shorter ( 1 m) due to physiological
stresses related to temperature, high evapotranspiration, salinity, and
redox potential (Mendelssohn and Morris, 2002). In addition to the
spatial heterogeneity of canopy structure, frequent tidal flooding
changes the amount of emergent leaf area exposed to the atmosphere
and available for C exchange at various timescales (hours to months).
Further, patterns in canopy structure can shift if flooding becomes
prolonged and stagnate, for example, when sea level rise overwhelms
vertical accretion. Deep prolonged flooding deprives plants of oxygen
and results in plant death. Thus, even small changes in elevation (0.1 m)
can result in differences in plant morphology and dynamics across both
space and time.

The transient nature of tidal waters on the marsh surface also poses
challenges for remote sensing studies aimed at productivity modeling, a
common method to estimate blue carbon storage regionally and globally
(Feagin et al., 2020; Najjar et al., 2018). Tidal flooding alters the
reflectance characteristics of submerged and partially submerged
vegetation (Cho et al., 2008; Kearney et al., 2009; Mishra and Ghosh,
2015), resulting in noisy time-series data (Narron et al., 2022; O Connell
et al., 2017). This causes uncertainty in productivity estimates (Feagin
et al., 2020; Tao et al., 2018) and aboveground biomass modeling
(Kearney et al., 2009). Studies often flag and remove tidally impacted
data (Dechant et al., 2022; Sun et al., 2021; Tao et al., 2018), find
nonsignificant impacts (Feagin et al., 2020), or do not account for
flooding in their analyses (Ge et al., 2016; Kang et al., 2018; Wu et al.,
2015; Yan et al., 2008, 2010). Moderate resolution LAI products, such as
NASA s MODIS LAI 8-day product (MYD15A2H) (Myneni et al., 2015),
are not parameterized for wetlands but are frequently used in carbon
studies assuming dry substrate conditions during satellite overpass
(Kang et al., 2018; Wu et al., 2015, p. 201; Yan et al., 2010). The
resulting uncertainties in LAI estimations, therefore, have the potential
to propagate through productivity models and ESMs (Park and Jeong,
2021).

Dynamic emergent leaf area, i.e., highly variable leaf area caused by
frequent tidal flooding, poses challenges to modeling C fluxes. Through
the Eddy Covariance (EC) method, which measures surface-atmosphere
CO, fluxes, past studies have observed the suppression of C assimilation
during tidal flooding (Forbrich and Giblin, 2015; Kathilankal et al.,
2008; Moffett et al., 2010; Nahrawi et al., 2020). However, the reported
reductions varied depending on species and hydrology, and this varia-
tion can impact broader assessments of coastal wetland productivity
(Feagin et al., 2020; Tao et al., 2018) and blue carbon estimates (Chapin
et al., 2006; Nellemann and Corcoran, 2009; Troxler et al., 2013). So far,
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the link between emergent leaf area and atmospheric C fluxes has not
been made and understanding it could provide insight into ecosystem
carbon budgets, particularly related to impacts surface waters have on C
fluxes (Cai et al., 1999).

In this study, we used in situ LAI measurements collected in a
S. alterniflora tidal salt marsh within the Georgia Coastal Ecosystems
Long Term Ecological Research (GCE-LTER) site located on Sapelo Is-
land, Georgia, USA. We used canopy LAI vertical profiles to model
emergent LAI (ELAI), capturing tidal flooding across the marsh surface,
and linked it through EC flux tower footprint predictions (FFP) (Kljun
et al., 2015), representing the C flux source areas, to measured net
ecosystem exchange (NEE). We then scaled ELAI estimations to 10-m
Sentinel-2 surface reflectance data (5-day returns) to show that emer-
gent leaf area could be modeled from satellite data at the needed spatial
and temporal scale using reflectance only. Finally, we compared ELAI
estimations to the commonly used MODIS 500-m 8-day LAI product
(MYD15A2H) to highlight uncertainties in LAI products for tidal wet-
lands. To our knowledge, this is the first time emergent LAI has been
measured and estimated for salt marshes, which may have significant
implications for future regional blue carbon studies that rely on satellite
datasets.

2. Materials and methods
2.1. Study area

We conducted our study in the Georgia Coastal Ecosystems Long
Term Ecological Research (GCE-LTER) site located on Sapelo Island,
Georgia, USA (Fig. 1). Tidal salt marshes there were dominated by
S. alterniflora and experienced semi-diurnal flooding with average tidal
ranges of approximately 1.2 m. S. alterniflora canopy heights typically
ranged from 0.5 to 1.0 m (Hladik et al., 2013) with minimum and
maximum canopy heights of 0.3 and 1.6 m, respectively. Most of the
marsh canopies were considered mid-marsh and interior areas with
canopies 0.6 m in height (Fig. 1c). Salinity levels in the adjacent tidal
river averaged 25.68 ppt (sd  4.57). Mean marsh platform elevations
around the sampling locations were 0.71 (sd  0.2) m NAVD 88. Further
information on study location and climate characteristics can be found
in Hawman et al. (2021).

2.2. In situ vegetation sampling

Our first objective was to measure in situ leaf area within our study
site, its variation across marsh zones (edge, mid-marsh, and interior),
and its vertical profile through the canopy height to determine the
amount of ELAI under varying water levels. We measured leaf area index
monthly for 5 months (June October 2021) via a ceptometer (AccuPAR
LP-80, Decagon Devices, Inc., Pullman, WA, USA) at 18 permanent 1-m?
vegetation plots located approximately 650 m north of the GCE-LTER
flux tower (Fig. 1c). Plots represented three S. alterniflora canopy
types across an elevation gradient (short plants in the marsh interior: n

6, medium height plants in the mid-marsh: n 6, and taller plants at
the marsh edges: n  6). We measured LAI at intervals of 10 cm (interior
and mid-marsh) and 20 cm (marsh edges) through the canopy height at
each plot (Ramsey et al., 2004).

Stem heights and stem densities were measured once a month for
each vegetation plot (Pennings, 2022). Stem heights for all stems within
a quadrat (interior & mid-marsh: 0.25 0.25 m; marsh edges: 0.5 0.5
m) were measured to the nearest 1 cm and stems were counted. Quadrat
size was increased at the marsh edge where stems are not as dense to
sample representative areas. We then approximated stem densities to a
meter squared area by dividing the number of stems measured within
the quadrat by the quadrat area.
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Fig. 1. a) Sapelo Island, Georgia on the b) eastern United States Atlantic Coast. ¢) Map showing the locations of the GCE-LTER flux tower and the vegetation plots.
Colored areas show the Sparting alterniflora marsh zones (Hladik et al, 2013). Background images are a) Landszat 8 and ) Sentinel-2.

2.2. Canopy LAI profile modeling

To estimate ELAI for each marsh zone at a given water level and
non-linear regression to fit models that deseribe the cumulative LAL with
canopy height. We ortented our profiles beginning at the top of canopy
and progressing downward. We did zo to approximate the amount of LAT
above a given height within canopy, mimicking the emersent leaf area
during tidal flooding. We tested log-based sigmoeidal fimetions, such as
the Weibull ecumulative distribution funetion (Weibull, 1951), as their
shape closely approximates the LAl canopy profiles and has been used
successfully in forest canopy modeling (Tezke and Thistle, 2004; Yang
et al,, 1993).

Log-based sigmoidal functions have 4 parameters desernibing the
upper limit (e}, lower limat (d), slope (b), and inflection point () of the
curves. The Weibull Type-1 function has an asymmetric inflection point
parameter (e, allowing the function to accommodate an asymmetrie
curve (Chrstensen and Myvholm, 1984)

LAI = c+ (d — c)exp( — exp(b{log(h.) — log(e) } } ) ()

where b, 15 the height within the canopy and b, ¢, d, and e are ftted
parameters representing the slope, upper limit, lower limit, and mad-
point. In the 3-parameter form of the Weibull Type-1 function, we set
the upper limit (¢) to 0 sines LAl 1= 0 above the canopy.

We also tested hnear regression models (hnear, quadratic, and
cubic). Regression analyeis of log-based sigmeidal functions was con-
ducted using the dre package (Ritz =t al | 2015) mn R version 3.6.3 (R
Core Team, 2020). Model selection was based on Akaike's Information
Criterion [AIC) and residual standard error. Regression model perfor-
mance metrics are available in Table 52

Finally, to deseribe the distribution of LAl we measured the percent
Thiz provided a profile deseribing where most of the leaf area is

2.4 Emergent leaf area (BELAI) spatial predictions

Our objective was to model ELAI across the mareh using LAl vertical
profiles (Section 2.3) and maps of marsh vegetation, elevation, and
measured water height. These spatial predictions would then be used to
correlate estimated ELAI with measured NEE from the flux tower (Sec-
tion 2.6) and satellite reflectanee data (Secbion 2.7). This mapping ex-
ercise needed to account for changes in elevation and associated water
lewele relative to the soil surface and the marsh zone canopy type at each
point. Therefore, we firet mapped our profiles to the marsh landscape by
assigming each canopy profile (Eq. 1; Table 53) to ite respective marsh
zm:u:usi:lganlzxini:inghabitatmapwithaapai:ialr:lml.uiiuu:luflm2
(Fig. 1e) (Hladik et al_, 201 2). Areas of the maresh covered by exposed
mud or permanent water were not assigned a profile and were given an
ELAI value of 0. Classes used were mud, permanent water, marsh inte-
rior, mid-marsh, and marsh edges (Fiz. 1e).

We measured water level using two pressure transducers (C5456,
Campbell Scientific Ine., Logan, UT, USA) located near the flux tower.
One pressure transduecer was located on the marsh platform at an
elevation of 0.88 m NAVDEE approximately 48 m northeast of the tower,
and a second in a tidal ereck at an elevation of —0.20 m NAVDSS 50 m
southwest of the tower. Water level elevations were referenced to the
vertical datum NAVDES in unite of meters. The pressure transducer on
the marsh platform did not capture the full tidal range on the marsh due
to its challow installation within the well. However, the marsh platform
did provide a more accurate measurement of marsh surface tidal
flooding compared to the sensor in the ereek (O'Connell =t al | 201 7).
Therefore, we combined the two measurements to capture the full tidal
range and provide a better esimation of marsh floeding (Fig. 51). When
the marsh pressure transducer measurement was <0.84 m, we replaced
the values with those from the creek pressure transduecer.
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The next step was to estimate tidal flooding across the marsh surface
at any given time for any location within our study area. To do so, we
used surface elevations from a digital elevation model (DEM) derived
from light detection and ranging (LIDAR) with a 1-m? horizontal reso-
lution and a vertical accuracy of 0.1 m NAVD88 (Hladik and Alber,
2012) and water level from the pressure transducers. We used a bathtub-
type modeling approach to estimate the water level relative to the soil
surface based on the DEM and the measured timeseries of water level.
For example, a DEM elevation of 0.75 m NAVD88 and a water level
elevation of 1 m NAVD88 would give a relative water depth of 0.25 m
above the soil surface. This provided a continuous estimate of surface
flooding across the marsh. Finally, we used the estimated water level
above the soil surface as h, in Eq. 1 and used the profile model param-
eters (Table S3) matching the 1-m? area marsh zone (Fig. 1c¢) to predict
ELAI for each location. The results were spatial maps of ELAI for each
30-min measure of water level.

2.5. Flux and environmental measurements

To analyze the correlation between carbon fluxes and estimations of
emergent leaf area, we measured atmospheric CO5 fluxes from an Eddy
Covariance (EC) flux tower (31.444 , 81.283 ) at a height of 5 m above
the soil surface located 250 m east of the Duplin River (Fig. 1¢) using an
enclosed-path CO2/H20 gas analyzer (LI-7200, LI-COR Biosciences,
Lincoln, NE, USA) and a 3D sonic anemometer (CSAT3, Campbell Sci-
entific Inc., Logan, UT, USA). EC 10 Hz data were processed in EddyPro
7 (LI-COR Biosciences, Lincoln, NE, USA) to 30-min CO; fluxes repre-
senting net ecosystem exchange (NEE). During processing, we con-
ducted double rotation and linear detrending (Wilczak et al., 2001),
Webb-Pearman-Leuning correction (Webb et al., 1980), quality control
checks (Mauder and Foken, 2006), spectral analysis (Vickers and Mahrt,
1997), high and low frequency spectral corrections (Moncrieff et al.,
1997, 2005), and friction velocity filtering and spike removal (Papale
et al., 2006). We used data from June October 2020. We conducted our
analyses on data that were not gap-filled to reduce any uncertainty
related to gap-filling model predictions. Finally, we divided NEE into
daytime and nighttime measurements by filtering data according to the
modeled solar elevation angle (nighttime 20 ; daytime 30 ) using
the R package maptools (Bivand and Lewin-Koh, 2022). Further, for
daytime measurements, we filtered data to include those with photo-
synthetically active radiation (PAR) 500 mol CO2 m 2g 1 using a
quantum sensor (LI-190R, LI-COR Biosciences, Lincoln, NE, USA). We
did this to reduce NEE variability caused by shoulder periods around
morning and evening times and large changes in radiation intensity from
cloud cover. Additional environmental variables were collected at the
tower including air temperature and relative humidity (HMP45C,
Campbell Scientific Inc., Logan, UT, USA) and soil temperature (TCAV-L,
Campbell Scientific Inc., Logan, UT, USA). We used air temperature and
relative humidity to calculate vapor pressure deficit (VPD) following
Bolton (1980).

2.6. Footprint analysis

We used EC based footprint analysis to generate spatial predictions of
flux source areas every 30 min to match the NEE measurements (Kljun
et al.,, 2015). We used these spatial predictions to link measured NEE
from the flux tower with marsh surface characteristics including emer-
gent leaf area during tidal flooding. Flux footprint predictions (FFP), the
spatial predictions of flux source areas, were generated in R version
3.6.3 (R Core Team, 2020) (Kljun et al., 2015). For FFP generation, input
variables needed were sensor height, wind speed, wind direction, fric-
tion velocity (u*), Obukhov length, and the standard deviation of the
lateral velocity fluctuations. These were obtained from EddyPro 7 pro-
cessed fluxes all at the timescale of 30 min. An additional variable,
boundary layer height (BLH), was retrieved from the Modern-Era
Retrospective analysis for Research and Applications version 2
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(MERRA-2) hourly time-averaged 2-dimensional data single-level
dataset (MERRA-2 tavgl_2d_slv_.Nx) (Global Modeling and Assimila-
tion Office (GMAO), 2015). A single pixel covering our study site, with a
spatial resolution of 0.5 x0.625 , was chosen. The hourly data from this
pixel, spanning our study period, was extracted, and an hourly time
series of BLH was produced. We linearly interpolated the hourly time
series into 30-min intervals to match our flux data resulting in each FFP
having a corresponding BLH measurement. We generated FFPs (n
2559; day 1823; night 736) with 90% source areas and their foot-
print function values (FFV), the estimated contribution of each 1 m? area
within the FFP to the NEE measurement (Fig. S2). FFPs were filtered to
those with lengths between 75 and 600 m and a circularity 0.3. Lastly,
we excluded any measurements where FFPs intersected with the nearby
Duplin River. These filtering criteria were used to remove generated
FFPs with implausible shapes and to restrict the analysis to a defined
area. We also generated a yearly climatology (Fig. S3) to select satellite
pixels for comparing LAI to satellite reflectance.

To explore the relationship between spatial estimations of ELAI
(Section 2.4) and NEE, we overlayed the FFP corresponding to each 30-
min NEE measurement on to our spatially explicit ELAI maps that
represent flooding conditions during the same 30-min period. However,
within each FFP, areas closer to the flux tower had higher influence on
measured NEE and this proportion of influence was represented by the
FFV (Kljun et al., 2015). The sum of the FFVs within an FFP equals the
source area contribution (90%). An example of an FFP with its FFVs is
provided in Fig. S2. We therefore summarized the ELAI within each FFP
by calculating the weighted sum of ELAI using the FFVs as weights,
which was then normalized by the area of the FFP to derive emergent
leaf area index per unit FFP (ELAlggp). The ELAlIppp can be summarized
as follows, for each j FFP with an area of Aj:

_ (2)

where i is each unit area within the FFP with an ELAI value x; and a
corresponding FFV weight w;.

We estimated the amount of tidal flooding within each FFP by
measuring the weighted mean of water level relative to the soil surface
using the FFV as weights. This allowed us to determine when the marsh
was flooded within each FFP. In summary, for each FFP which repre-
sented the source area for each 30-min NEE measurement, we modeled
the amount of ELAI within the FFP area (ELAlppp) using our marsh zone
specific profiles, DEM, and pressure transducer water level.

2.7. Satellite remote sensing reflectance

Our last objective was to relate satellite surface reflectance with our
modeled ELAI. We acquired Sentinel-2 Level-2A surface reflectance
from Google Earth Engine (Gorelick et al., 2017) for the study period
(June October 2020). We retained ten scenes for use (Table S4) after
filtering for clouds via the Copernicus Cloud Probability band. We
selected pixels from within the yearly climatology (Fig. S3) (n  2097).
For each pixel and scene, we calculated vegetation indices listed in
Table S5.

To compare Sentinel-2 vegetation indices with our modeled ELAI, we
scaled ELAI estimations from the original 1-m to the 10-m resolution to
match Sentinel pixels. To do this, we overlayed the Sentinel pixel grid
(Fig. S2) on the habitat map and used the number of pixels per habitat
class that fell in each Sentinel pixel as weights. We then calculated the
weighted mean of ELAI within each pixel based on our modeling
approach found in Section 2.6 but substituting the proportion of habitat
class and its calculated ELAI within each Sentinel pixel in place of the
FFV. We measured the mean elevation within each pixel to derive per-
pixel elevation values. We then classified each Sentinel-2 pixel based
on its LA,y (3 classes) and the water level height as predicted by our
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bathtub model (5 classes in 0.1-m intervals). We then grouped similarly
classified pixels and measured their mean LAl ,x, ELAI, and vegetation
index values.

We used linear regression to estimate both ELAI and LAl for each
vegetation index listed in Table S5. This allowed us to compare whether
vegetation indices could predict reduced leaf area due to tidal flooding.
To select the best linear models, we split the data into training (75%)
and testing (25%) datasets, where we relied on a stratified sampling of
Sentinel-2 scene dates to derive the split. Within the training data, for
each index, we performed 3-fold cross-validation and selected the best
performing model based on root mean square error (RMSE) from the
three folds. We then tested each of the selected vegetation index models
on the testing data to determine which index was the best predictor of
ELAI and LAly,x. We measured model performance by regressing pre-
dicted values on observed values and using the coefficient of determi-
nation (R?), normalized RMSE (NRMSE) (Eq. 2), and the slope and
intercept coefficients as goodness-of-fit metrics. NRMSE was calculated
as follows:

3

where Xpq and Xpi, are the maximum and minimum of the observed
values, representing the range. For training linear models, we used the
Tidymodels suite of packages (Kuhn and Wickham, 2020) in R version
3.6.3 (R Core Team, 2020).

Finally, we compared our spatial ELAI estimations to MODIS 8-day
LAI products (MYD15A2H). We retrieved MYD15A2H and the 8-day
reflectance product (MYD09A1) from Google Earth Engine (Gorelick
etal., 2017). We used MYD90A1 to determine the overpass date window
of the 8-day products as this information is not available in the
MYD15A2H product (Myneni et al., 2015). We did so to match our ELAI
estimations with MODIS 8-day overpass times. To scale our ELAI to
MODIS pixels, we followed the same procedure as with Sentinel-2. De-
tails of MODIS pixel spatial and temporal coverage over our study site
and pixels used in analysis can be found in Fig. S9 and Table S6.

Throughout, we report means and standard errors ( SE) except
where otherwise indicated, and tested differences between groups using
Kruskal-Wallis tests and pairwise comparisons using Wilcoxon rank sum
tests in R version 3.6.3 (R Core Team, 2020).

3. Results & discussion
3.1. Leaf area index and vertical profiles

Our in situ LAI measurements at permanent vegetation plots varied
significantly at fine spatial scales. Maximum canopy LAI (LAlyay), the
total LAI of the canopy under non-flooded conditions, varied across an
elevation gradient from tall and sparse canopies with high LAI (height:
1.23 0.16 m; density: 77 22 stems m 2; LAl .y 3.19  1.01) found
at low elevation marsh edges, to shorter and denser canopies with lower
LAI (height: 0.47 0.10 m; density: 316 108 stems m 2; LAlLpax: 1.28

0.04) in the higher elevation marsh interior (Table 1). Mid-marsh
canopies had the lowest LAI but intermediate canopy heights and den-
sities (height: 0.68 0.12 m; density: 174 60 stems m 2; LAIpx: 1.03

Table 1

Means and standard deviations for maximum Leaf area index (LAl.y), stem
density, and canopy height S. alterniflora zones from vegetation plots for data
collected from June through October 2020.

Canopy Leaf Area Index (m? Stem Density (# stems Canopy Height
m ?) m ?) (m)
edge 3.19 1.01 77 22 1.23 0.16
mid-
marsh 1.03  0.39 174 60 0.68 0.12
interior 1.28 0.40 316 108 0.47 0.10
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0.39).

Our field measurements of canopy characteristics across the marsh
elevation gradient demonstrated large differences across short distances
(Fig. 3a). For areas of the marsh just meters apart, canopy height, stem
density, and LAI varied up to 89%, 102%, and 122%, respectively
(Table 1). Our results mimic the negative relationship between canopy
height and stem density in tidal marshes that follows the self-thinning
law related to resource competition (Chaisson et al., 2022; Gorham,
1979; Liu and Pennings, 2019). We also found LAI is not linearly related
to canopy height, and structural changes in canopies are associated with
both stem height and density (Fig. S5). The canopy architecture of marsh
grass species, such as S. alterniflora, tends to have erectophile stems
(Kearney et al., 2009). This is evident in the marsh interior, where stems
are short and vertical with high density. However, in lower elevation
marsh edges, plant canopy architecture becomes more planophile,
increasing LAL Our findings suggest significant canopy heterogeneity
across elevation gradients that will impact LAI estimations, particularly
when scaling through remote sensing methods. This will further be
impacted by tidal flooding, where emergent leaf area will be dependent
on elevation and canopy architecture.

We also found variability in the vertical profiles of LAI (Fig. 2), which
influence emergent LAI during tidal flooding. We measured LAI at in-
tervals from the soil surface to the canopy top in tall marsh edge can-
opies (0.2 m intervals) and short mid-marsh and interior marsh canopies
(0.1 m intervals). For mid-marsh and interior canopies, a larger pro-
portion of the total LAI was positioned lower in the canopy ( 30% of the
total canopy height). Taller marsh-edge canopies had the majority of
total LAI distributed mid-height within the canopy profile (30 60% of
total canopy height) (Fig. 2a).

We modeled these LAI measurements as a function of canopy height
to determine the vertical cumulative distribution of LAI This allowed us
to predict ELAI during flooding events (Figs. 2b &2c). We found that the
Weibull Type-1 3-parameter cumulative distribution function, widely
used in forest canopy modeling (Teske and Thistle, 2004; Yang et al.,
1993), was the best fit for marsh canopy LAI (Tables S2 and S3). Again,
for plants just meters apart (marsh edge vs. interior), LAI profiles
showed differences in the overall shape (Fig. 2a) and cumulative dis-
tribution of LAI (Fig. 2b) within the canopies (Fig. 3a). Shorter canopies
in the marsh interior had the majority of LAI positioned lower in the
canopy compared to the taller plants in the mid-marsh and marsh edge,
which had a more spread-out distribution (Fig. 2a).

The normalized profiles provided a direct comparison of leaf area
cumulative distribution relative to canopy height and LAl (Fig. 2c).
For example, at water level height of 50% of the canopy height, taller
marsh edge plants (1 m) had 27% of the canopy LAI emergent, while
shorter plants in the interior marsh areas had from 13% (mid-marsh) to
7% (interior) emergent. These data show that leaf area profile shapes are
dependent on canopy height, and the relative water height will impact
emergent leaf area differently across the marsh gradient. In other
studies, differences in light attenuation through canopies and canopy
LAI profiles have shown differences across marsh grass species (Kearney
et al.,, 2009; Ramsey et al., 2004). Our findings suggest there is within-
species variation in vertical LAI distributions that are dependent on
canopy height, which varies across environmental gradients. This is
important to consider since tidal salt and brackish marshes tend to be
monocultures and illustrates the heterogeneity of canopy leaf area
across a single species, as we show here, as well as across different marsh
grass species.

3.2. Net ecosystem exchange (NEE) and emergent leaf area

The spatial extent of S. alterniflora LAl,x across the marsh and
within our flux tower footprint was highly variable (Fig. 3b) and dem-
onstrates the heterogeneity within these monoculture ecosystems. The
majority of marsh canopy sampled by the flux tower consisted of mid-
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maresh and interior plants which have lower LAl (range: 0.93 to 1.16).
During tidal looding, ELAI was variable and dependent on elevation and
canopy architecture (Fiz. 2b) and was unevenly reduced across the
marsh (Figz. 4a-4¢). For example, for a tide elevation measurement of
1.3 m NAVDES, the amount of ELAl could range from <0.3 in the

interior to >1 along the marsh edges (Fiz. 4b) and the proportion of
submerged LAl was dependent on canopy type and elevation (Fiz. 2a).
This obeerved heterogeneity in canopy flooding, therefore, will impact
eddy covariance flux tower source areas, FFPz, and their measured at-
mospheric carbon fluxes, NEE.
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Flux tower-measured 30-min NEE, where negative values indicate C
uptake by the marsh, showed a significant relationship (daytime: R? =
0.19, p < 0.001; nighttime: B* = 0.16, p < 0.001) with ELAlgpp only
during tidal floeding periods (Fig. 4d). The correlation between NEE and
ELAlppp was higher than that between NEE and a spatial estimation of
FFP (daytime: R® = 0.07, p < 0.001; nighttime: R? = 0.10, p < 0.001)
(Fiz. 4e) and to the measured water level at the flux tower az a point
nmunmntl:dayﬁm.c:llz=U.lE,p{ﬂ.Dﬂl;nighttim.c:B?:U.ll,p{
0.001). From dry conditions (ELAlgpp > 1) through a reduction of
ELAlppp to 0.6 (a 40% reduction in ELAT}, daytime mean NEE remained
n:arl}rmxtant,rangingﬁm—ﬁ.ﬂtu—?.ﬁdpmn]mgmzs 1
(Fiz. 4d; Table 2). However, once canopy ELAlpp reached below 0.6,
mean daytime NEE dropped by 25% (—4.91 + 0.25 pmol COa m 25~ 1).
Further, when ELAlpppy decreased to <03, mean NEE waz —0.93 + 0.25
jpmaol COg m g 1,ad:utan|: of 87% compared to non-flooded condi-
tions (Table 2). Mighttime NEE, representing ecosystem respiration (Re),
had a lower correlabion with ELAlppp compared to daybime measure-
ments (Fiz. 4d). However, Re in most ecosyetems 1z predominately
controlled by temperature (Lloyd and Taylor, 1994). Dunng our study
period and after ngorous filtering (eee Sections 2.5 & 2.6), tidal flooding
condittons where canopy ELAlppp was below 0.6 (where significant de-
clines in NEE were measured) oceurred 16% of the time. Howewer,
mareh flooding frequency and magnitude change seasonally with more
frequent marsh flooding ocourring from August through November
(Marron et al,, 2023).

Our comparison of NEE correlations to ELAlppp and water lewel
suggest that spatially modeling marsh flooding and the associated
reduction In emergent leaf area 15 an improvement over water level
measurements at a single point (Fiz. 4d & 4¢). That iz because tidal

Table 2
Descriptive statistics for daytime and nighttime EC fux tower net ecosystem
exchange (MEE; pmol CO; m~= 5~ ') grouped by classes of emergent leaf area
index per flux footprint prediction (ELAlrrp). The column titled Signiftcance from
= 1 (no flooding) are p-values from pairwize Wilcoxon rank sum tests indicating
each flooded group’s difference from conditions with no flooding.

Period ELAlpy

+ from
standard =1 (oo
erTor Hooding)
—0.93 +
daytime <03 025 —6.28 1.74 <0001

—4.91 +

0306 025 —-14.29 063 <0001
—6.53 +

0608 025 —16.40 033 0o.09
—7.64 4

=08 033 —16.51 125 004

=1 (oo —6.97 +

Hooding) 011 —-17.99 1.58 -
1244

nighttime <03 o1z 003 32 <0001

1744

0306 o1 023 6.57 <0001
295+

0608 o01s o0l 614 <0001
259+

=08 o016 035 7.59 017

=1 (oo 3124
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flooding in marshes is spatially variable and often regulated by local
elevation, wind speed, and wind directions. Similarly, tidal marsh NEE is
often controlled by several environmental drivers including incident
PAR, air and soil temperature, vapor pressure deficit (VPD), and tidal
water level (Hawman et al., 2021; Knox et al., 2018). Therefore, a single
parameter cannot accurately predict tidal marsh NEE and the com-
pounding effects of frequent and variable tidal flooding can have vary-
ing impacts on NEE and associated drivers (Forbrich and Giblin, 2015;
Kathilankal et al., 2008; Knox et al., 2018; Moffett et al., 2010) which
makes modeling challenging (Wood, 2022). At our site, ELAlgpp esti-
mations showed comparable relationships to NEE as other drivers such
as PAR under tidal flooding conditions (Fig. S6) and a better correlation
than water level measured at single point at the flux tower or a spatial
prediction of water level over the marsh surface within FFPs (Figs. 4d &
4e). This suggests improvements in modeling NEE could be made for salt
marshes by focusing on canopy dynamics related to changes in flux
footprints and changes in leaf area from tidal flooding within those
footprints. Although our results indicate some improvements at the flux
tower scale (Figs. 4d & 4e), sources of uncertainty include linking
spatially heterogeneous canopying flooding within footprints to single
NEE measurements.

NEE reductions under tidal inundation are often attributed to com-
binations of plant metabolism inhibition and temperature changes
(Moffett et al., 2010); reduced light interception in flood waters
(Kathilankal et al., 2008; Nahrawi et al., 2020); physical submergence
(Kathilankal et al., 2008; Moffett et al., 2010; Nahrawi et al., 2020); and
soil flooding (Pezeshki, 1997). We expected NEE reductions to be more
sensitive to canopy submergence than was observed. A possible expla-
nation could be within canopy vertical gradients of stomatal conduc-
tance driven by temperature, vapor pressure, and saturation deficit
(Jarvis and McNaughton, 1986). Higher rates of stomatal conductance
at the tops of canopies could explain the insensitivity of NEE. To test this
hypothesis, we need leaf level measurements of stomatal conductance at
varying heights within marsh canopies.

Our findings on tidal marsh NEE sensitivity to tidal flooding were
similar to previous studies (Forbrich and Giblin, 2015; Kathilankal et al.,
2008; Moffett et al., 2010; Nahrawi et al., 2020). However, these studies
only looked at water level height relative to canopy height and did not
account for emergent leaf area changes. Forbrich and Giblin (2015) and
Kathilankal et al. (2008) measured decreases in NEE when water level
heights reached 0.05 m and 0.25 m, respectively. The higher sensitivity
to flooding observed by Forbrich and Giblin (2015) was attributed to the
low canopy height of S. patens and its prostrate habit. Nahrawi et al.
(2020) reported that NEE sensitivity to flooding varied through time at
our site based on ratios of water height to canopy height. Additionally,
Kathilankal et al. (2008) and Moffett et al. (2010) reported abrupt
changes in NEE when water heights reached ~40% of the plant stem
heights for S. alterniflora and S. foliosa, respectively.

Varying LAI profiles and cumulative distributions across canopy
height (this study) and across species (Kearney et al., 2009; Ramsey
et al., 2004) could explain the range of sensitivities to flooding seen in
the literature. Our normalized LAI profiles illustrated the dependence of
ELAI on flooding height and position within the marsh elevation
gradient (Figs. 2¢ & 3b). Thus, with canopies flooded to 50% of their
total height, short dense stems in the marsh interior had only 7% of their
total LAI emergent, while tall plants at the creek edge had 27%. Further,
we would expect this variability to increase as canopy phenology and
species differences are considered, which should increase the need to
account for LAI variation in downstream modeling. For example, NEE
models will need to account for the significant change in marsh surface
characteristics that cause spatial variation in flooding heights (Fig. 4a-
3c) and concomitant variation in emergent LAI in flux tower FFPs, as
these flooding patterns within a particular flux source area impact
measured fluxes (Fig. 4d). Linking more precise estimations of canopy
flooding in salt marshes may improve our understanding of the carbon
assimilation responses to long and short-term disturbances. Salt marsh
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surface characteristics are subject to rapid changes from vertical marsh
accretion or subsidence (Schuerch et al., 2018), wrack and debris
deposition (Reidenbaugh and Banta, 1980), erosion on the marsh sur-
face by tides, lateral marsh erosion from wave action (Kirwan et al.,
2016), as well as creek migration (Crotty et al., 2020; Hughes et al.,
2009). These surface changes occur at a variety of time scales, ranging
from daily tidal flooding to annual cycles, and they all may alter the
flooding and drainage patterns. Further spatiotemporal differences in
emergent vegetation should be more directly related to NEE than
flooding per se. We, therefore, conclude that estimations of emergent
LAI would improve predictions of NEE when implemented in production
models and would be sensitive to flux source areas.

3.3. Satellite products and emergent leaf area

Our last objective was to determine the feasibility of estimating ELAI
using satellite reflectance only. Doing so would improve the scalability
of emergent leaf area outside a flux tower footprint with known vege-
tation distribution, water level, and elevation. This would allow ELAI to
be applied to new locations and be based on current conditions without
relying on existing vegetation maps and DEMs (i.e., canopy density
distribution).

LAl is often predicted from satellite data (Boresjoe Bronge, 2004) and
we show here that we can further predict the more dynamic ELAI in tidal
marshes. Based on Sentinel-2 10-m resolution data with a 5-day revisit
period, we captured a range of tidal flooding events around our flux
tower (Table S4), allowing us to model ELAI from surface reflectance.
We regressed vegetation indices (Table S5 and Fig. S7) on our spatial
predictions of ELAI around the flux tower (Fig. S2) and found the near-
infrared reflectance of vegetation (NIRy) index (Badgley et al., 2017)
was the best predictor of ELAI (R? 0.89;NRMSE 9.9%; slope 0.87;
intercept  0.21) (Fig. 5a and Table S5). In general, vegetation indices
that use near-infrared (NIR) bands were better predictors than those
based only on visible bands (Table S5). This is in part because tidal
flooding changes the observed canopy architecture and density, which
NIR is sensitive to (Kearney et al., 2009). Previous studies have indicated
this as a challenge to mapping tidal marsh biomass (Ghosh et al., 2016;
Kearney et al., 2009). However, we show here that this sensitivity to
canopy submergence can be successfully used to predict ELAIL As a
comparison, we tested predicting LAly.x, without accounting for
flooding, using vegetation indices and found poor results (Fig. S8 and
Table S5).

The ability to predict ELAI from satellite data has strong implications
for research related to regional productivity modeling and carbon
assimilation. Often, moderate resolution productivity estimates measure
8-day summations of assimilated carbon (Ge et al., 2016; Kang et al.,
2018; Tao et al., 2018; Wu et al., 2015). However, because the timing
and amplitude of tides varies through time, their impact on total
assimilated carbon for an 8-day period will also vary. Our EC measures
of NEE show a dependence on tidal submergence (Fig. 4d). When
considering the two-hour window centered on Sentinel-2 overpasses
(16:00 UTC 0) for a dry (August 26, 2020) and flooded day
(September 5, 2020), the dry mean NEE was significantly higher in
magnitude ( 9.63 1.24 mol CO; m 25 1 than the flooded ( 4.32

0.16 mol CO; m 25 1 (Fig. 5¢ & 4d). Therefore, linking ELAI with
carbon assimilation rates may improve our ability to model tidal marsh
productivity at larger spatial scales and account for variation due to tidal
activity.

ESMs and productivity models frequently rely on coarser resolution
satellite data such as MODIS (Hu et al., 2022). To determine whether the
standard MODIS LAI product MYD15A2H (an 8-day composite at the
500-m pixel scale) was a good measure of ELAI, we scaled ELAI spatial
estimations to MODIS pixel areas and compared them to MYD15A2H.
We found that MYD15A2H overestimated LAI (7 93%) when median
water levels above the soil surface were 0.15cm within pixel areas
(Fig. 5b). During drier conditions ( 0.15 m), MYD15A2H
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underestimated LAI by ~20%. We found that NIRy calculated from
MODIS reflectance data had a better relationship (R® = 0.25; p < 0.001)
with ELAI compared to MYD15A2H (R = 0.07; p < 0.03) (Fig. 510). The
poorer correlation with the MYD15A2H product could be attrbuted to
the radiative transfer models used (Enyazikhin et al | 1998}, which lack
wetland specific look-up-table parameters (Mynen: =t al | 2015), and do
not consider tidal flooding. These results present unecertainty in mod-
erate resolution studies that rely on LAl esimations for productivity
provements at these moderate scales, but future work should focus on
determining the impacts heterogencous canopy flooding has on scaling

Our resulte show that surface reflectance from satellite data can be
used to quantify emergent leaf area during tidal flooding. At our study
gite, the vegetation index NIRy correlated well with our marsh canopy
type (epecies and density). However, we expect the relationship between

ELAI and vegetation indices to vary across sites and canopy composition
(e.g., species). Future research should include the feasibility of esti-
mating emergent leaf area in other tidal wetland types. Additionally,
asseszing the impact of incorporating ELAI in production models 1=z
needed.

4. Conclusion

Tidal marshes are ecosystems where canopy leaf area vanes over 3-
ability, frequent tidal flooding introduces a temporal component that
alters emergent leaves at chort imescales, .z, hourly. We show that by
modeling the vertical distribution of LAl within tidal salt marsh can-
mlcs.Wchmdminmmvﬂdrdaﬁmxhipb:tWﬂmNEEandELM(BF:
0.19) compared to NEE and surface flooding estimations alone. This
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improvement indicated that NEE under tidal flooding was driven more
by emergent leaf area and not the magnitude or presence of tidal
flooding, per se. Rather, NEE responded to flooding only if changes in
ELAI occurred. This would be dependent on the canopy height and
density and location within the tidal frame. Further, we showed that
ELAI could be estimated through remote sensing data. This will create a
better understanding of functions that depend on leaf area, such as
carbon exchange. Our estimates are an improvement over the existing
moderate resolution LAI product (MYD15A2H), which showed signifi-
cant uncertainty in LAI estimations that could be negatively impacting
productivity modeling for assessing blue carbon stocks and ESMs for
modeling the movement of carbon.

Long-term and broad-scale monitoring of blue carbon within coastal
salt and brackish marshes require precise information regarding bio-
physical characteristics such as LAI and productivity metrics such as
NEE and GPP. The MODIS GPP product (MOD17) is a powerful tool for
estimating broad-scale blue carbon budgets but does not apply to
wetland vegetation because of the lack of wetland-specific look-up-table
(LUT) values (Myneni et al., 2015; Running et al., 2004; Running and
Zhao, 2015). Therefore, there is a need to utilize lessons learned from
existing flux tower-based marsh NEE and GPP models and use them to
develop satellite-based methods to study the broad-scale, long-term
trajectories of coastal marsh plant GPP or carbon storage capacity. Our
proposed method will help to accurately estimate one of the biophysical
parameters, LAL, which is fundamental for NEE and GPP models. The
variable nature of LAI in tidal wetlands needs to be built-in to future
satellite-based modeling efforts to address one significant source of
uncertainty, which is the variability induced in the datasets due to the
fluctuation in tidal flooding during satellite overpasses. We encourage
researchers in other tidal wetland ecosystems to consider the impact
ELAI has on their ecosystem models.

This study has several broader implications, including increasing our
predictive capacity to model CO2 exchange after natural and anthro-
pogenic disasters, understanding carbon sources and sinks within
coastal marshes, and use by coastal managers to assess restoration suc-
cess and trajectories for critical coastal ecosystems. The ability to esti-
mate emergent leaf area may have applications outside of productivity
modeling. As rates of sea-level rise increase along with coastal flooding
(Vitousek et al., 2017), tidal marshes must keep pace through vertical
accretion and landward migration (Kirwan et al., 2016; Schuerch et al.,
2018). Time-series of emergent leaf area and the frequency and intensity
of daily tidal inundation could provide insight into tidal marsh responses
to sea-level rise, and structural shifts in marsh canopies may provide an
early warning of changing environmental gradients. Further, impacts on
marsh geomorphology, such as creek migration caused by local distur-
bances including grazing and burrowing (Crotty et al., 2020; Wu et al.,
2021) or anthropogenic eutrophication (Deegan et al., 2012) could be
investigated through improved canopy modeling. Future research
should focus on relating emergent leaf area with other ecosystem
functions and processes across species and environmental gradients to
improve our understanding of marsh canopy carbon dynamics, marsh
resiliency, and habitat structure for dependent species.
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