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Abstract

Wrack, comprised of dead marsh grass, occurs naturally in salt marshes. Wrack can reduce biomass in underlying vegeta-
tion and affect salt marsh function. Unmanned aerial vehicles (UAV) provide a more efficient and cost-effective method
than traditional field sampling for characterizing the distribution of wrack at a fine spatial scale. We used a DJI Matrice 210
UAYV with a MicaSense Altum to collect a total of 20 images from January 2020-December 2021 in a salt marsh on Sapelo
Island, GA. Wrack was classified using principal component analysis. Classified images were then used to characterize the
size-frequency distribution, landscape position, and potential environmental drivers of wrack. We observed ~2100 wrack
patches over the course of the study, most of which were present for only a single month. Wrack was found most frequently
at the mean higher high water line (~ 1 m), although the areas with the highest frequency of wrack as a proportion of avail-
able marsh area were at a higher elevation (> 1.3 m) and closer to creeks or shorelines (~40-50 m). High tide events were
found to decrease the distance to water of wrack and increase the standard deviation of wrack elevation. This study provides

a methodology for understanding wrack dynamics at a landscape scale using frequent, high-resolution UAV data.
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Introduction

Salt marshes play a crucial role in the coastal landscape
by providing ecosystem services such as storm protection,
habitat for important fisheries, and improvements to water
quality (Gedan et al. 2009; Barbier et al. 2011). They are
highly productive ecosystems and play a vital role in carbon
sequestration (Mitsch and Gosselink 2000; Yang et al. 2020).
However, salt marshes are vulnerable to a number of natu-
rally occurring or anthropogenic disturbances such as wrack
deposition, dieback, increased nutrient loading, or human
infrastructure expansion (i.e., docks or shoreline hardening)
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(Li and Pennings 2016; Alber et al. 2008; Gilby et al. 2021;
Alexander 2008).

Wrack (dead plant material) in salt marshes often
floats and can be rafted around by wind, tides, or cur-
rents (Reidenbaugh and Banta 1980). Large tidal events
or storm surges, taller vegetation, or localized changes in
creek currents can all influence where wrack patches are
deposited (Bertness and Ellison 2016; Fischer et al. 2000).
Although wrack occurs naturally in salt marshes, they can
affect salt marsh function and can lead to reduced biomass
when deposited on vegetation (Reidenbaugh and Banta
1980; Li and Pennings 2016; Stalter et al. 2006). Longer
residence times of wrack have been shown to produce
greater declines in vegetation density (Stalter et al. 2006),
stem density (Hanley et al. 2017), and invertebrate abun-
dance (Hanley et al. 2017). In a study of a New England
salt marsh, Bertness and Ellison (2016) found that resi-
dence times of wrack corresponded to bimonthly perigean
spring tides and increased as the distance from shorelines
increased, wrack distributions changed seasonally, and
wrack frequently accumulated near the mean higher high
water line in salt marshes. The distribution of wrack in salt
marshes is also influenced by environmental factors such
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as a location’s elevation, distance to water, and proximity
to creek bends (Bertness and Ellison 2016; Fischer et al.
2000). Fischer et al. (2000) found that areas with com-
plex creek currents in salt marshes (i.e., creek bends or
drainage channels) were most susceptible to more frequent
or persistent wrack disturbances as these areas result in
slower moving water that allows floating wrack to deposit
on the vegetation.

The identification of wrack has historically been per-
formed through field observations (e.g., Fischer et al.
2000; Reidenbaugh and Banta 1980; Valiela and Rietsma
1995). Field methods and monitoring can be time-intensive
and/or expensive to implement (Blount et al. 2022). Previ-
ous studies that have tracked wrack in the field have been
limited spatially (individual plots) and/or temporally (once
or a few times a year) (e.g., Stalter et al. 2006; Valiela and
Rietsma 1995; Fischer et al. 2000). Much of the previous
work assessing wrack in salt marshes has placed greater
emphasis on understanding the impact of wrack distur-
bances on vegetation using plots distributed across differ-
ent marsh zones (e.g., Stalter et al. 2006; Hartman et al.
1983; Valiela and Rietsma 1995), with less emphasis on
evaluating spatial patterns at landscape scales, potentially
due to the difficulties (i.e., tidal limitations, inaccessibil-
ity) associated with sampling across the landscape.

There are also examples of using aerial photography
to identify and analyze wrack distribution in salt marshes
(e.g., Reidenbaugh and Banta 1980; Alexander 2008).
These studies have shown that wrack accumulates near
mean higher high water and around structures (i.e., docks)
(Reidenbaugh and Banta 1980; Alexander 2008). Aerial
photography, however, can be costly to implement, lim-
iting how often or frequently imagery may be acquired
for a study site (Blount et al. 2022), leaving gaps in our
understanding of how wrack may be distributed at the
landscape scale.

Recent improvements in unmanned aerial vehicles (UAV)
and remote sensing technology have led to UAV-borne sens-
ing being used more frequently for monitoring salt marsh
ecosystems (Doughty and Cavanaugh 2019; Dronova et al.
2021). UAVs provide a method for routine monitoring and
imagery for large and inaccessible study sites (Curcio et al.
2022). UAV flight plans and designs are also flexible and
can be adjusted to study specific phenomena at various tem-
poral and spatial scales (DiGiacomo et al. 2022). Although
UAVs have previously been used to track wrack on beaches
(Pan et al. 2021), to our knowledge, they have not been used
for synoptic studies of wrack in salt marshes.

This paper presents a methodological framework to iden-
tify wrack in a salt marsh using repeating UAV-borne sens-
ing. We used these data to characterize the spatiotemporal
patterns of wrack distribution in relation to potential envi-
ronmental drivers.
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Methods

In this section, we present the framework we used to char-
acterize wrack dynamics. In Fig. 1, we provide a workflow
for this framework and outline the steps that we took in
image processing, wrack classification, and the spatiotem-
poral and statistical analyses for identifying wrack using
UAYV imagery.

Study Area

UAYV imagery for this study was collected from the Dean
Creek marsh on Sapelo Island, GA, a barrier island on the
Atlantic US coast (Fig. 2). The 18-ha site is dominated by
Spartina alterniflora and has an elevation range of 0-2 m
relative to NAVDS88. The site is located within the domain
of the Georgia Coastal Ecosystems Long Term Ecological
Research (GCE-LTER) project. The study area is also the
site of ongoing research to track wrack disturbances and
recovery in the field, and the results from this work support
those efforts.

Data Acquisition and Pre-processing

We acquired a total of 20 aerial images of the study site
from January 2020-December 2021. Eight images were
acquired over the course of 2020 and 12 (monthly) images
in 2021. We used a MicaSense Altum camera (MicaSense,
Seattle, WA, USA) mounted on a DJI Matrice 210 UAV
(DIJI, Shenzhen, China). The MicaSense Altum has five
multispectral bands (blue, green, red, red-edge, and near-
infrared) and one thermal infrared band. To minimize the
effects of marsh inundation and sunglint, we collected data
during morning low tides within 1-2 h of solar noon. Data
were collected at an altitude of 120 m (resulting in a ground
sampling distance of ~ 5 cm), with 80% front and side over-
lap, at a camera angle of 90° (nadir), and with a parallel
north and south flight pattern. Pix4Dcapture (Pix4D S.A.,
Switzerland) and DJI Ground Station Pro (DJI, Shenzhen,
China) software were both used for planning flight mis-
sions. All images were then processed using Pix4Dmapper
software as described below.

Prior to each UAV flight, we used the MicaSense Altum
camera to capture the calibrated RP04 reflectance panel
(52.5% reflectance) supplied by MicaSense. These images
were later used in Pix4Dmapper to conduct radiometric
corrections during processing. The reflectance panel was
selected for each band in the Pix4Dmapper software, and the
reflectance factor and correction type were adjusted for the
MicaSense Altum using the built-in correction factors in the
Pix4Dmapper software (selected during the pre-processing
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Fig. 1 Framework used in

this study for processing UAV
imagery, classifying wrack
patches in the imagery, and the
spatiotemporal and statistical
analyses conducted on the clas-
sified data
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steps). The MicaSense Altum Downwelling Light Sensor 2
(DLS 2) was also mounted on the UAV during flights. The
DLS 2 assisted in correcting for in-flight lighting changes
(i.e., cloud cover changes) in images by measuring ambi-
ent light conditions and GPS locations during the flight,
which were then recorded in the image metadata and used in
Pix4Dmapper software for radiometric corrections.
Twelve permanent ground control points (GCPs) were
distributed ~ 100 m apart across the study area. The

number of GCPs was based on the review of recommen-
dations from Pix4D. GCP locations were chosen in an
effort to provide sufficient coverage for anticipated flight
lines and boundaries of the study area. GCPs were geo-
referenced using a real-time kinematic global positioning
system RTK-GPS (Trimble TSC7 controller and Trimble
R12 GPS receiver) with a horizontal accuracy of 2.5 cm
and vertical accuracy of 2 cm. These locations were sur-
veyed before the initial flight, and the coordinates were
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Fig.2 Dean Creek marsh location on Sapelo Island, GA (a). Example of a UAV true color image from April 2021 with the study area polygon,
which is dominated by Spartina alterniflora, outlined in yellow (b). Detail of a wrack package (c)

used as a reference for the georectification of all flights.
Georectification was conducted in Pix4Dmapper with
GCP target centers marked for different bands (~ 8-12
marks for each observation date) before proceeding with
additional processing steps. Georectification of the points
resulted in an average root mean square error ranging
from 1-2 pixels (5-10 cm). Following radiometric cor-
rections and georectification, data were further resam-
pled and aligned (georegistered) to the initial UAV image
(January 2020) to ensure that pixels were of a consistent,
uniform size (5 cm X 5 cm) and pixel boundaries were
aligned among images.

The resulting radiometric, georectified, and pixel-
aligned images were used as inputs in a principal compo-
nent analysis (PCA) that was used to detect and identify
wrack areas in the imagery (Dharani and Sreenivasulu
2021; Somayajula et al. 2021). We used the PCA tool in
ArcPy to generate a PCA for each image using the mul-
tispectral bands for that image as an input. Two out of
five possible PCA components from each image were
selected where wrack exhibited distinct grayscale values
from other features in the landscape. The PCA compo-
nents we selected were not consistent throughout the study
period and thus were selected through visual analysis of
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each component based on the histogram values of wrack
in the component’s metadata. A threshold was set for each
selected component to distinguish between wrack and non-
wrack (e.g., everything below 0.5 was considered wrack
and everything above as non-wrack). Pixels that were clas-
sified as wrack in both PCA components were then clas-
sified as wrack in a binary wrack map. We used a 5 X 5
median filter (NumPy Python 3.7.10) on the binary wrack
raster to eliminate the salt and pepper noise. The binary
wrack raster was then used to create polygons of wrack
packages in each scene.

To calculate the PCA classification accuracy, we ran-
domly placed 100 points (50 wrack and 50 non-wrack
areas) in the classified image and confirmed the classi-
fication through visual inspection of the true color UAV
imagery. Groundtruthing points were also collected in
September 2020, by visiting 60 GPS points in the study
area that were randomly distributed among areas classified
as wrack and non-wrack in the classified image. We used
these points to confirm areas of wrack, and non-wrack
could be confidently identified in UAV imagery. Classi-
fication accuracies were conducted for the first calendar
year of data (8 images) to validate proof of concept for the
PCA classifications.



Estuaries and Coasts

Wrack Dynamics and Environmental Drivers

In this section, we outline the process we used to investigate
the spatial patterns of wrack patches and how their abundance
and temporal distribution varied. We then related this to envi-
ronmental drivers to see how they influenced these patterns.

Wrack was analyzed at the polygon level to understand
patterns in the area and amount of wrack patches over the
course of the study. The area of each polygon was calcu-
lated using the calculate geometry function in ArcPro 2.8.0.
We only considered polygons greater than 1 m? as this pro-
vides a conservative size estimate for wrack patches that are
clearly detectable using UAV imagery and are large enough
to affect the marsh. The area and number of wrack polygons
were recorded for each image and then used to evaluate the
size-frequency distributions of wrack over the study period.

We analyzed wrack characteristics, focusing specifically
on wrack patch elevation, distance to water, patch area,
number of patches, and total patch area for each image. We
acquired 1 m elevation data from the National Elevation
Dataset (NED) 3 (1/9 arc-second approximately 3 m; verti-
cal accuracy of 2-3 m). We found that NED elevation values
were within 0.2 m of RTK-GPS elevations that were col-
lected for GCPs at our study site. NED data were resampled
to match the spatial resolution of the UAV imagery (5 cm),
and each wrack patch was assigned a NED value based on
the average elevation of pixels within the polygon. To get a
distance-to-water value for each patch, we digitized shore-
lines and creeks using the UAV imagery as a reference. We
used the center point of each patch to calculate the Euclidean
distance between a patch and the nearest creek or shoreline
using the Near tool in ArcPro 2.8.0. We calculated the mean,
median, standard deviation, kurtosis, and skewness of wrack
patches’ elevation, distance to water, and patch area of all
wrack patches for each image.

We evaluated wrack characteristics in relation to three
environmental drivers: tide height, wind speed, and wind
direction. Tide height was calculated as the maximum tide
height during the 30 days prior to each UAV image date
based on the verified NOAA tidal station data product (Ft.
Pulaski, Station 8670870; https://tidesandcurrents.noaa.
gov). Wind speed and wind direction were acquired from
the Marsh Landing weather station, which is located near the
study site (Marsh Landing weather station: https://gce-lter.
marsci.uga.edu/public/research/mon/marsh_landing.htm).
These data were averaged for the 30 days prior to the UAV
image dates. We calculated the correlation coefficients and
p-values for the environmental variables (tide height, wind
speed, and wind direction) and the wrack characteristics
(Table S1). We selected environmental variables that were
found to be significantly correlated with wrack characteris-
tics and used linear regression to analyze the relationship.

Landscape-Based Analyses

In the previous section, we focused on the variation in
wrack characteristics spatially and temporally. This section
focuses on how wrack affects the broader landscape in the
context of the study area. In addition, we investigate how
environmental drivers further influence the distribution of
wrack across the landscape.

We quantified the frequency that each location in the
marsh experienced wrack to provide an understanding of
the spatial distribution of wrack at the landscape scale. We
used pixels rather than wrack polygons for this analysis
because the polygons often change shape or move from
image to image. All classified wrack rasters were added
together using the Sum Raster tool in ArcPro 2.8.0. The
pixel value in this raster represented the wrack accumula-
tion frequency for that pixel over the study period. This
allowed us to evaluate the cumulative distribution of wrack
over the course of the study and to determine how many
months each pixel was exposed to wrack.

To better understand how wrack pixels were distrib-
uted across the study site, each pixel was also assigned an
elevation and distance-to-water value based on the NED
data and distance measurements described in the “Wrack
Dynamics and Environmental Drivers” section. We binned
the data into elevation and distance intervals and then
evaluated the presence of wrack in both absolute terms
(the number of wrack pixels present in each bin) and as a
relative proportion (the number of wrack pixels in a given
bin divided by the total number of marsh pixels in that
bin). We repeated the analyses on pixels that had wrack
in more than one image to see if the distribution of the
absolute and relative amounts of wrack changed.

Results
Wrack Identification

Wrack was readily apparent in the imagery and tended to
be distributed linearly, parallel to the shoreline of Doboy
Sound (Fig. 2). The overall accuracies of the PCA clas-
sifications of wrack ranged from 85 to 95%. PCA com-
ponent 2 (eigenvalues ranged from 0.0002-822,345)
was the most useful for identifying wrack and was most
often used followed by components 4 (eigenvalues ranged
from 0.00003-173,438) and 1 (eigenvalues ranged from
94,403,915-123,618,216). The green, red-edge, and near-
infrared bands had the highest factor loadings from wrack
pixels indicating their high importance in classifying
wrack packets.
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Wrack Dynamics and Environmental Drivers

We observed ~ 2100 wrack patches over the course of the
study. However, both the number and area of wrack patches
varied considerably from image to image. The total num-
ber of wrack patches ranged from 15 to 214 (Fig. 3a), and
the cumulative area of patches ranged from 140 to 1081
m? (Fig. 3b). Both the greatest number of wrack patches
and highest total wrack area were observed in November
2021. There were also smaller peaks in the total wrack area
observed in August 2020 and 2021. The lowest number of
patches was observed in October 2020, and the lowest cumu-
lative area of patches was observed in January 2020.

The number of wrack patches showed a consistent log-
normal distribution throughout the study period (Fig. 4a),
with the greatest number of wrack patches in the smallest

size class (1-5 m?). In contrast, the area of wrack patches
had a bimodal distribution pattern (Fig. 4b), with the largest
peak in the smallest size class (1-5 m?) and a smaller peak
for patches with a size between 25 and 100 m. The largest
wrack patch we observed, in July 2020, was 278 m2.

We tried all possible variations, and out of the three envi-
ronmental variables we tested, maximum tide height from
the 30 days prior to UAV observations was the only one
that was significantly correlated with wrack characteristics.
Maximum tide height was significantly correlated with both
the median distance to water of the wrack patches (R*> =
0.57, p-value < 0.001) (Fig. 5a) and the standard deviation
of wrack elevation (R? = 0.32, p-value = 0.009) (Fig. 5b).
Tide height, wind speed, and wind direction were not sig-
nificantly correlated with other statistical measurements of
wrack patch characteristics that we tested (Table S1).

Fig.3 Total number (a) and Qs
area (b) of wrack patches 2501 a QI
observed within the study area
between January 2020 and
December 2021. Each point 200
represents a UAV image with
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Landscape-Based Analyses and Environmental Drivers

We used the pixel data to identify the frequency with which
wrack affected each part of the marsh. Although wrack was
present in all images, wrack pixels covered only 2% of the
study area over the entire course of the study (Fig. 6). Fifty-
eight percent of the wrack-affected pixels had wrack for only
a single observation, and 90% of the pixels had wrack for
less than four observations (Table 1). The highest number
of repeated observations of wrack was in 11 images (out of
20), which occurred in 500 pixels.

We binned wrack pixels by elevation and distance to
water to analyze the occurrence of wrack across the marsh
landscape. Pixels with wrack were most frequently observed
in areas near mean higher high water (~ 1 m elevation) and
within 50-75 m from the nearest creekbank or shoreline

Area of Wrack Patch (m?)

(Fig. 7a). Sixty percent of the pixels in the study area have
an elevation of ~ 1 m, and these areas also had the highest
total number of pixels with wrack. We normalized the distri-
bution of wrack pixels (number of pixels with wrack divided
by the proportion of pixels in individual bins) to identify
areas of higher wrack frequency relative to the number of
marsh pixels in the study area. High elevation areas (> 1.3
m) and areas between 10 and 40 m from water were dis-
proportionally affected by wrack (~ 80% of pixels in these
areas had wrack). In contrast, where wrack occurred most
frequently (1-1.1 m in elevation and 50—60 m from water),
only 30% of the possible pixels in that bin were affected
(Fig. 7b). When we confined our analysis to pixels where
wrack was present for more than one image, the bins with
the highest amount of wrack were the same in both absolute
and relative distribution (Fig. 7c, d).
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Fig.5 Relationship between
the maximum tide height of
the previous 30 days (x-axis)
and a median distance to water
of wrack patches (y-axis) and
b standard deviation of eleva-
tion of wrack patches (y-axis)
observed within each UAV
image used in the study. Solid
lines show the linear fit, and
gray shaded areas represent the
95% confidence interval (equa-
tions as shown)
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Discussion

The methodology presented in this paper provides a frame-
work for identifying the spatial and temporal patterns of
wrack using multispectral UAV data. Although aerial pho-
tography (e.g., Reidenbaugh and Banta 1980; Alexander
2008) has been used previously to evaluate wrack distribu-
tion, these studies were limited to 1-3 images per year and
had coarse spatial resolutions. Our study improves on this
with consistent UAV imagery collection and further dem-
onstrates how this emerging technology may be useful for
wetland researchers to establish high spatial resolution data,
with consistent frequency at the landscape scale. We col-
lected 20 images over the course of 2 years, which allowed
us to characterize wrack patches and evaluate how wrack
distribution patterns change both spatially and temporally.

@ Springer
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Wrack Identification

The PCA classification method resulted in a high accuracy
(between 85 and 95% overall accuracy) classification of
wrack. Although other classification methods are readily
available, the PCA classification could be conducted with
limited ground data and did not require extensive training
of the very large UAV files (several GBs). An additional
motivation of this study was to identify wrack patches for
sampling by a field crew, and PCA allowed us to quickly
identify wrack patches that could be targeted for field sam-
pling immediately following the UAV flight.

PCA components 2, 4, and 1 were used most frequently
for classifying wrack, and the factor loadings for these bands
indicated that the green, red-edge, and near-infrared bands
provided the most information for these components. The
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Fig.6 Grayscale image with
pixels highlighted based on the
number of times wrack was
observed in UAV images over
the course of the study. Shades
range from dark purple (1 UAV
image with wrack) to yellow (11
UAYV images with wrack). The
inset shows an example of the
variation in wrack frequency
that can be present within a
small area

11 ST ;f,.

importance of these bands for classifying wrack can be
explained by how they interact spectrally with wrack and
other features in the study site.

Wrack patches generally had higher reflectance values
in the visible spectrum (465-722 nm). We saw this in a
visual inspection of RGB images and when analyzing the
individual remote sensing bands (where wrack appeared
as brighter shades of gray). Green wavelengths (550-570
nm) were reflected by both wrack and vegetation. Red-edge
(712-722 nm) wavelengths were also reflected by wrack,
whereas vegetation absorbed light in these wavelengths.
Wrack reflected lower amounts of NIR (820-860 nm), and
healthy vegetation in the study area reflected high amounts
of NIR light. Mudflats, which behaved similarly to wrack
in the visible spectrum, had lower NIR reflectance val-
ues than wrack (Huete 2004; Munyati 2004). Other bands
may not have been as important in the PCA due to mixed
reflectance signals from vegetation growing through wrack
patches, sparse wrack patches where the signal from wrack

Table 1 Total number of pixels that were classified as wrack in all
images separated by the number of UAV images where that pixel had
wrack. The corresponding area of wrack that was classified as wrack

and surrounding vegetation may have been mixed, or pixels
on the edges of wrack patches which would include a signal
from wrack and healthy vegetation.

Wrack Dynamics and Environmental Drivers

Most of the wrack patches that we observed were smaller
in area, with the majority of the wrack patches between
1 and 5 m?. Patches between 1 and 5 m? also had the
largest overall contribution to the total amount of wrack
observed over the study period. However, there were still
several wrack patches that were over 25 m?. These results
are similar to findings from Valiela and Rietsma (1995)
where the majority of the wrack patches that were identi-
fied were between 1 and 100 m2. We did not specifically
analyze wrack duration; however, visible inspection of
our wrack frequency analyses showed that larger patches
of wrack tended to stay in place for longer than 4 months.
Large wrack mats have been shown to be more likely

is shown in the bottom row. These observations cover the entire study
period between January 2020 and December 2021. No pixel had
wrack in more than 11 of the 20 UAV images

# of Images 1 2 3 4 S 6 7 8 9 10 11
# of Pixels | 1190000 | 513100 | 151700 | 93000 44500 20000 6100 1800 1800 700 500
Area (m?) 2975 1283 379 233 111 50 15 5 5 2 1
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Fig.7 Absolute (a, ¢) and relative (b, d) number of pixels with wrack
observed in the study area grouped into bins of elevation and distance
to water. In a and ¢, shading represents the total number of pixels
with wrack that were observed in each bin. In b and d, shading rep-
resents the number of pixels with wrack as a percentage of the total
number of available pixels within a given bin. a and b tally pixels
that had wrack in at least one image, whereas ¢ and d only include

to damage vegetation (Valiela and Rietsma 1995), and
future work should analyze how wrack size may influ-
ence wrack duration.

In our study, wrack abundance had peaks in August of
both years and November 2021. The peaks in the wrack area
that we observed in August of 2020 and 2021 were both fol-
lowed by similar declines in the wrack area in September
and October. The peak we observed in November 2021 was
associated with a high tide event that occurred 8 days prior to
the UAV flight. This peak may also be seasonal as we might
expect more wrack following plant senescence in the fall.
However, Bertness and Ellison (2016) noted a peak in wrack
in summer in Rhode Island, whereas Valiela and Rietsma
(1995) noted a peak in spring in MA, suggesting that factors
beyond the season, such as variation in tidal cycles and wind
events, are also likely important.

We found that tide height was negatively related to the
distance of wrack patches from the water and positively
related to the standard deviation of wrack elevation. This
is surprising, as the increased energy and inundation of the
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pixels that had wrack in more than one image. In all figures, gray
areas are bin combinations within the study area where wrack was
never observed, and blank areas are bin combinations that were not
represented in the study area. These data are based on all 20 of the
UAV images taken within the study area between January 2020 and
December 2021

higher tides serve to lift the wrack and keep it suspended for
longer than occurs during lower tides. During the ebb tide,
however, we speculate that the wrack gets caught by the high
vegetation that borders the creek. It may also be that some
of the material is deposited higher at the upland edge of the
marsh by the flood tide, which is beyond the scope of this
study as we were focused on the portion of the marsh that is
dominated by Spartina. In both instances, the higher tides
may lead to wrack being deposited along the entire eleva-
tion gradient during the ebb tide, thus increasing the overall
distance of wrack patches from the water and the standard
deviation of wrack elevation. These findings are consist-
ent with those of previous studies that have shown that tide
height affects wrack movement and that wrack abundance is
highest at lower elevations (Reidenbaugh and Banta 1980;
Bertness and Ellison 2016).

Previous studies have speculated that wind (through field
observations; Reidenbaugh and Banta 1980) may influence
wrack deposition in salt marshes. Although we found that
wind speed and wind direction were negatively correlated
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with wrack patches’ distance to water, these relationships
were not significant (Table S1). This may be partially attrib-
uted to the fact that we characterized wrack over intervals
of a month or more, as opposed to daily, and then compared
that to median and mean wind speeds and directions for the
prior 30 days before the UAV flight. The effects of wind
speed and direction may be lost when averaged over the
course of an entire month.

Landscape-Based Analysis and Environmental Drivers

Our observations of wrack pixels show that only a small por-
tion (< 1%) of the study area may have wrack at any given
time, most areas only have wrack for a single image, and
only a small portion (~ 2%) of the study area was impacted
by wrack throughout the course of the study. Moreover, most
of the wrack we observed stayed for 3 months or less. Valiela
and Rietsma (1995) found most wrack patches to stay for
either a single month or for 3—4 months with most patches
(70%) resulting in no damage to vegetation. Previous studies
of wrack disturbance have shown that measurable declines in
vegetation and biomass start to occur after two consecutive
months (Bertness and Ellison 2016; Reidenbaugh and Banta
1980; Stalter et al. 2006). This may suggest that most of the
wrack observed in our study may not result in a disturbance
as 90% of the wrack pixels did not have wrack for longer
than 3 months, with the majority only present at a location
for a single month. However, there were still 10% of the
wrack pixels that were covered for more than 3 months, and
we would expect a greater impact on vegetation and biomass
in these locations.

We observed the highest frequency of wrack at elevations
between 0.9 and 1.1 m and 50 m from water. This elevation
roughly corresponded with the mean higher high water for
our study site. The highest relative proportion of wrack was
seen in areas of high elevation (> 1.3 m) and near creeks
or shorelines (50-75 m) suggesting that these areas may be
particularly vulnerable to wrack disturbances. Wrack that
accumulated in these areas did not appear to be associated
with any particular tidal event. However, in our observa-
tions, wrack did tend to stay in these areas for more than a
single month. Our findings match previous studies that have
seen the highest accumulation of wrack at the mean higher
high water line in salt marshes (Bertness and Ellison 2016;
Valiela and Rietsma 1995). Although the distance where
wrack accumulated most frequently varied (5-75 m from
shorelines in this study vs. 8—10 m in Bertness and Ellison
2016), this distance was associated with mean higher high
water at both sites.

Our analyses of wrack dynamics indicate that most wrack
patches are short-lived (1 month) and accumulate most fre-
quently at high tidal lines or near creeks. High tide events
also influence wrack deposition, decreasing the distance of

wrack patches to water and increasing the overall elevation
range of wrack patches. Wrack patches occurred most fre-
quently at mean higher high water and were often distributed
at tidal lines parallel to the Doboy Sound. However, we saw
the greatest proportion of wrack at higher elevations that
were near water. These results provide a baseline for under-
standing wrack effects on marshes and identifying areas that
may be most vulnerable to wrack disturbances.
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