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Abstract
Wrack, comprised of dead marsh grass, occurs naturally in salt marshes. Wrack can reduce biomass in underlying vegeta-
tion and affect salt marsh function. Unmanned aerial vehicles (UAV) provide a more efficient and cost-effective method 
than traditional field sampling for characterizing the distribution of wrack at a fine spatial scale. We used a DJI Matrice 210 
UAV with a MicaSense Altum to collect a total of 20 images from January 2020–December 2021 in a salt marsh on Sapelo 
Island, GA. Wrack was classified using principal component analysis. Classified images were then used to characterize the 
size-frequency distribution, landscape position, and potential environmental drivers of wrack. We observed ~ 2100 wrack 
patches over the course of the study, most of which were present for only a single month. Wrack was found most frequently 
at the mean higher high water line (~ 1 m), although the areas with the highest frequency of wrack as a proportion of avail-
able marsh area were at a higher elevation (> 1.3 m) and closer to creeks or shorelines (~ 40–50 m). High tide events were 
found to decrease the distance to water of wrack and increase the standard deviation of wrack elevation. This study provides 
a methodology for understanding wrack dynamics at a landscape scale using frequent, high-resolution UAV data.
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Introduction

Salt marshes play a crucial role in the coastal landscape 
by providing ecosystem services such as storm protection, 
habitat for important fisheries, and improvements to water 
quality (Gedan et al. 2009; Barbier et al. 2011). They are 
highly productive ecosystems and play a vital role in carbon 
sequestration (Mitsch and Gosselink 2000; Yang et al. 2020). 
However, salt marshes are vulnerable to a number of natu-
rally occurring or anthropogenic disturbances such as wrack 
deposition, dieback, increased nutrient loading, or human 
infrastructure expansion (i.e., docks or shoreline hardening) 

(Li and Pennings 2016; Alber et al. 2008; Gilby et al. 2021; 
Alexander 2008).

Wrack (dead plant material) in salt marshes often 
floats and can be rafted around by wind, tides, or cur-
rents (Reidenbaugh and Banta 1980). Large tidal events 
or storm surges, taller vegetation, or localized changes in 
creek currents can all influence where wrack patches are 
deposited (Bertness and Ellison 2016; Fischer et al. 2000). 
Although wrack occurs naturally in salt marshes, they can 
affect salt marsh function and can lead to reduced biomass 
when deposited on vegetation (Reidenbaugh and Banta 
1980; Li and Pennings 2016; Stalter et al. 2006). Longer 
residence times of wrack have been shown to produce 
greater declines in vegetation density (Stalter et al. 2006), 
stem density (Hanley et al. 2017), and invertebrate abun-
dance (Hanley et al. 2017). In a study of a New England 
salt marsh, Bertness and Ellison (2016) found that resi-
dence times of wrack corresponded to bimonthly perigean 
spring tides and increased as the distance from shorelines 
increased, wrack distributions changed seasonally, and 
wrack frequently accumulated near the mean higher high 
water line in salt marshes. The distribution of wrack in salt 
marshes is also influenced by environmental factors such 
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as a location’s elevation, distance to water, and proximity 
to creek bends (Bertness and Ellison 2016; Fischer et al. 
2000). Fischer et al. (2000) found that areas with com-
plex creek currents in salt marshes (i.e., creek bends or 
drainage channels) were most susceptible to more frequent 
or persistent wrack disturbances as these areas result in 
slower moving water that allows floating wrack to deposit 
on the vegetation.

The identification of wrack has historically been per-
formed through field observations (e.g., Fischer et  al. 
2000; Reidenbaugh and Banta 1980; Valiela and Rietsma 
1995). Field methods and monitoring can be time-intensive 
and/or expensive to implement (Blount et al. 2022). Previ-
ous studies that have tracked wrack in the field have been 
limited spatially (individual plots) and/or temporally (once 
or a few times a year) (e.g., Stalter et al. 2006; Valiela and 
Rietsma 1995; Fischer et al. 2000). Much of the previous 
work assessing wrack in salt marshes has placed greater 
emphasis on understanding the impact of wrack distur-
bances on vegetation using plots distributed across differ-
ent marsh zones (e.g., Stalter et al. 2006; Hartman et al. 
1983; Valiela and Rietsma 1995), with less emphasis on 
evaluating spatial patterns at landscape scales, potentially 
due to the difficulties (i.e., tidal limitations, inaccessibil-
ity) associated with sampling across the landscape.

There are also examples of using aerial photography 
to identify and analyze wrack distribution in salt marshes 
(e.g., Reidenbaugh and Banta 1980; Alexander 2008). 
These studies have shown that wrack accumulates near 
mean higher high water and around structures (i.e., docks) 
(Reidenbaugh and Banta 1980; Alexander 2008). Aerial 
photography, however, can be costly to implement, lim-
iting how often or frequently imagery may be acquired 
for a study site (Blount et al. 2022), leaving gaps in our 
understanding of how wrack may be distributed at the 
landscape scale.

Recent improvements in unmanned aerial vehicles (UAV) 
and remote sensing technology have led to UAV-borne sens-
ing being used more frequently for monitoring salt marsh 
ecosystems (Doughty and Cavanaugh 2019; Dronova et al. 
2021). UAVs provide a method for routine monitoring and 
imagery for large and inaccessible study sites (Curcio et al. 
2022). UAV flight plans and designs are also flexible and 
can be adjusted to study specific phenomena at various tem-
poral and spatial scales (DiGiacomo et al. 2022). Although 
UAVs have previously been used to track wrack on beaches 
(Pan et al. 2021), to our knowledge, they have not been used 
for synoptic studies of wrack in salt marshes.

This paper presents a methodological framework to iden-
tify wrack in a salt marsh using repeating UAV-borne sens-
ing. We used these data to characterize the spatiotemporal 
patterns of wrack distribution in relation to potential envi-
ronmental drivers.

Methods

In this section, we present the framework we used to char-
acterize wrack dynamics. In Fig. 1, we provide a workflow 
for this framework and outline the steps that we took in 
image processing, wrack classification, and the spatiotem-
poral and statistical analyses for identifying wrack using 
UAV imagery.

Study Area

UAV imagery for this study was collected from the Dean 
Creek marsh on Sapelo Island, GA, a barrier island on the 
Atlantic US coast (Fig. 2). The 18-ha site is dominated by 
Spartina alterniflora and has an elevation range of 0–2 m 
relative to NAVD88. The site is located within the domain 
of the Georgia Coastal Ecosystems Long Term Ecological 
Research (GCE-LTER) project. The study area is also the 
site of ongoing research to track wrack disturbances and 
recovery in the field, and the results from this work support 
those efforts.

Data Acquisition and Pre‑processing

We acquired a total of 20 aerial images of the study site 
from January 2020–December 2021. Eight images were 
acquired over the course of 2020 and 12 (monthly) images 
in 2021. We used a MicaSense Altum camera (MicaSense, 
Seattle, WA, USA) mounted on a DJI Matrice 210 UAV 
(DJI, Shenzhen, China). The MicaSense Altum has five 
multispectral bands (blue, green, red, red-edge, and near-
infrared) and one thermal infrared band. To minimize the 
effects of marsh inundation and sunglint, we collected data 
during morning low tides within 1–2 h of solar noon. Data 
were collected at an altitude of 120 m (resulting in a ground 
sampling distance of ~ 5 cm), with 80% front and side over-
lap, at a camera angle of 90° (nadir), and with a parallel 
north and south flight pattern. Pix4Dcapture (Pix4D S.A., 
Switzerland) and DJI Ground Station Pro (DJI, Shenzhen, 
China) software were both used for planning flight mis-
sions. All images were then processed using Pix4Dmapper 
software as described below.

Prior to each UAV flight, we used the MicaSense Altum 
camera to capture the calibrated RP04 reflectance panel 
(52.5% reflectance) supplied by MicaSense. These images 
were later used in Pix4Dmapper to conduct radiometric 
corrections during processing. The reflectance panel was 
selected for each band in the Pix4Dmapper software, and the 
reflectance factor and correction type were adjusted for the 
MicaSense Altum using the built-in correction factors in the 
Pix4Dmapper software (selected during the pre-processing 
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steps). The MicaSense Altum Downwelling Light Sensor 2 
(DLS 2) was also mounted on the UAV during flights. The 
DLS 2 assisted in correcting for in-flight lighting changes 
(i.e., cloud cover changes) in images by measuring ambi-
ent light conditions and GPS locations during the flight, 
which were then recorded in the image metadata and used in 
Pix4Dmapper software for radiometric corrections.

Twelve permanent ground control points (GCPs) were 
distributed ~  100 m apart across the study area. The 

number of GCPs was based on the review of recommen-
dations from Pix4D. GCP locations were chosen in an 
effort to provide sufficient coverage for anticipated flight 
lines and boundaries of the study area. GCPs were geo-
referenced using a real-time kinematic global positioning 
system RTK-GPS (Trimble TSC7 controller and Trimble 
R12 GPS receiver) with a horizontal accuracy of 2.5 cm 
and vertical accuracy of 2 cm. These locations were sur-
veyed before the initial flight, and the coordinates were 

Fig. 1   Framework used in 
this study for processing UAV 
imagery, classifying wrack 
patches in the imagery, and the 
spatiotemporal and statistical 
analyses conducted on the clas-
sified data
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used as a reference for the georectification of all flights. 
Georectification was conducted in Pix4Dmapper with 
GCP target centers marked for different bands (~ 8–12 
marks for each observation date) before proceeding with 
additional processing steps. Georectification of the points 
resulted in an average root mean square error ranging 
from 1–2 pixels (5–10 cm). Following radiometric cor-
rections and georectification, data were further resam-
pled and aligned (georegistered) to the initial UAV image 
(January 2020) to ensure that pixels were of a consistent, 
uniform size (5 cm × 5 cm) and pixel boundaries were 
aligned among images.

The resulting radiometric, georectified, and pixel-
aligned images were used as inputs in a principal compo-
nent analysis (PCA) that was used to detect and identify 
wrack areas in the imagery (Dharani and Sreenivasulu 
2021; Somayajula et al. 2021). We used the PCA tool in 
ArcPy to generate a PCA for each image using the mul-
tispectral bands for that image as an input. Two out of 
five possible PCA components from each image were 
selected where wrack exhibited distinct grayscale values 
from other features in the landscape. The PCA compo-
nents we selected were not consistent throughout the study 
period and thus were selected through visual analysis of 

each component based on the histogram values of wrack 
in the component’s metadata. A threshold was set for each 
selected component to distinguish between wrack and non-
wrack (e.g., everything below 0.5 was considered wrack 
and everything above as non-wrack). Pixels that were clas-
sified as wrack in both PCA components were then clas-
sified as wrack in a binary wrack map. We used a 5 × 5 
median filter (NumPy Python 3.7.10) on the binary wrack 
raster to eliminate the salt and pepper noise. The binary 
wrack raster was then used to create polygons of wrack 
packages in each scene.

To calculate the PCA classification accuracy, we ran-
domly placed 100 points (50 wrack and 50 non-wrack 
areas) in the classified image and confirmed the classi-
fication through visual inspection of the true color UAV 
imagery. Groundtruthing points were also collected in 
September 2020, by visiting 60 GPS points in the study 
area that were randomly distributed among areas classified 
as wrack and non-wrack in the classified image. We used 
these points to confirm areas of wrack, and non-wrack 
could be confidently identified in UAV imagery. Classi-
fication accuracies were conducted for the first calendar 
year of data (8 images) to validate proof of concept for the 
PCA classifications.

Fig. 2   Dean Creek marsh location on Sapelo Island, GA (a). Example of a UAV true color image from April 2021 with the study area polygon, 
which is dominated by Spartina alterniflora, outlined in yellow (b). Detail of a wrack package (c)
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Wrack Dynamics and Environmental Drivers

In this section, we outline the process we used to investigate 
the spatial patterns of wrack patches and how their abundance 
and temporal distribution varied. We then related this to envi-
ronmental drivers to see how they influenced these patterns.

Wrack was analyzed at the polygon level to understand 
patterns in the area and amount of wrack patches over the 
course of the study. The area of each polygon was calcu-
lated using the calculate geometry function in ArcPro 2.8.0. 
We only considered polygons greater than 1 m2 as this pro-
vides a conservative size estimate for wrack patches that are 
clearly detectable using UAV imagery and are large enough 
to affect the marsh. The area and number of wrack polygons 
were recorded for each image and then used to evaluate the 
size-frequency distributions of wrack over the study period.

We analyzed wrack characteristics, focusing specifically 
on wrack patch elevation, distance to water, patch area, 
number of patches, and total patch area for each image. We 
acquired 1 m elevation data from the National Elevation 
Dataset (NED) 3 (1/9 arc-second approximately 3 m; verti-
cal accuracy of 2–3 m). We found that NED elevation values 
were within 0.2 m of RTK-GPS elevations that were col-
lected for GCPs at our study site. NED data were resampled 
to match the spatial resolution of the UAV imagery (5 cm), 
and each wrack patch was assigned a NED value based on 
the average elevation of pixels within the polygon. To get a 
distance-to-water value for each patch, we digitized shore-
lines and creeks using the UAV imagery as a reference. We 
used the center point of each patch to calculate the Euclidean 
distance between a patch and the nearest creek or shoreline 
using the Near tool in ArcPro 2.8.0. We calculated the mean, 
median, standard deviation, kurtosis, and skewness of wrack 
patches’ elevation, distance to water, and patch area of all 
wrack patches for each image.

We evaluated wrack characteristics in relation to three 
environmental drivers: tide height, wind speed, and wind 
direction. Tide height was calculated as the maximum tide 
height during the 30 days prior to each UAV image date 
based on the verified NOAA tidal station data product (Ft. 
Pulaski, Station 8670870; https://​tides​andcu​rrents.​noaa.​
gov). Wind speed and wind direction were acquired from 
the Marsh Landing weather station, which is located near the 
study site (Marsh Landing weather station: https://​gce-​lter.​
marsci.​uga.​edu/​public/​resea​rch/​mon/​marsh_​landi​ng.​htm). 
These data were averaged for the 30 days prior to the UAV 
image dates. We calculated the correlation coefficients and 
p-values for the environmental variables (tide height, wind 
speed, and wind direction) and the wrack characteristics 
(Table S1). We selected environmental variables that were 
found to be significantly correlated with wrack characteris-
tics and used linear regression to analyze the relationship.

Landscape‑Based Analyses

In the previous section, we focused on the variation in 
wrack characteristics spatially and temporally. This section 
focuses on how wrack affects the broader landscape in the 
context of the study area. In addition, we investigate how 
environmental drivers further influence the distribution of 
wrack across the landscape.

We quantified the frequency that each location in the 
marsh experienced wrack to provide an understanding of 
the spatial distribution of wrack at the landscape scale. We 
used pixels rather than wrack polygons for this analysis 
because the polygons often change shape or move from 
image to image. All classified wrack rasters were added 
together using the Sum Raster tool in ArcPro 2.8.0. The 
pixel value in this raster represented the wrack accumula-
tion frequency for that pixel over the study period. This 
allowed us to evaluate the cumulative distribution of wrack 
over the course of the study and to determine how many 
months each pixel was exposed to wrack.

To better understand how wrack pixels were distrib-
uted across the study site, each pixel was also assigned an 
elevation and distance-to-water value based on the NED 
data and distance measurements described in the “Wrack 
Dynamics and Environmental Drivers” section. We binned 
the data into elevation and distance intervals and then 
evaluated the presence of wrack in both absolute terms 
(the number of wrack pixels present in each bin) and as a 
relative proportion (the number of wrack pixels in a given 
bin divided by the total number of marsh pixels in that 
bin). We repeated the analyses on pixels that had wrack 
in more than one image to see if the distribution of the 
absolute and relative amounts of wrack changed.

Results

Wrack Identification

Wrack was readily apparent in the imagery and tended to 
be distributed linearly, parallel to the shoreline of Doboy 
Sound (Fig. 2). The overall accuracies of the PCA clas-
sifications of wrack ranged from 85 to 95%. PCA com-
ponent 2 (eigenvalues ranged from 0.0002–822,345) 
was the most useful for identifying wrack and was most 
often used followed by components 4 (eigenvalues ranged 
from 0.00003–173,438) and 1 (eigenvalues ranged from 
94,403,915–123,618,216). The green, red-edge, and near-
infrared bands had the highest factor loadings from wrack 
pixels indicating their high importance in classifying 
wrack packets.

https://tidesandcurrents.noaa.gov
https://tidesandcurrents.noaa.gov
https://gce-lter.marsci.uga.edu/public/research/mon/marsh_landing.htm
https://gce-lter.marsci.uga.edu/public/research/mon/marsh_landing.htm
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Wrack Dynamics and Environmental Drivers

We observed ~ 2100 wrack patches over the course of the 
study. However, both the number and area of wrack patches 
varied considerably from image to image. The total num-
ber of wrack patches ranged from 15 to 214 (Fig. 3a), and 
the cumulative area of patches ranged from 140 to 1081 
m2 (Fig. 3b). Both the greatest number of wrack patches 
and highest total wrack area were observed in November 
2021. There were also smaller peaks in the total wrack area 
observed in August 2020 and 2021. The lowest number of 
patches was observed in October 2020, and the lowest cumu-
lative area of patches was observed in January 2020.

The number of wrack patches showed a consistent log-
normal distribution throughout the study period (Fig. 4a), 
with the greatest number of wrack patches in the smallest 

size class (1–5 m2). In contrast, the area of wrack patches 
had a bimodal distribution pattern (Fig. 4b), with the largest 
peak in the smallest size class (1–5 m2) and a smaller peak 
for patches with a size between 25 and 100 m. The largest 
wrack patch we observed, in July 2020, was 278 m2.

We tried all possible variations, and out of the three envi-
ronmental variables we tested, maximum tide height from 
the 30 days prior to UAV observations was the only one 
that was significantly correlated with wrack characteristics. 
Maximum tide height was significantly correlated with both 
the median distance to water of the wrack patches (R2 = 
0.57, p-value < 0.001) (Fig. 5a) and the standard deviation 
of wrack elevation (R2 = 0.32, p-value = 0.009) (Fig. 5b). 
Tide height, wind speed, and wind direction were not sig-
nificantly correlated with other statistical measurements of 
wrack patch characteristics that we tested (Table S1).

Fig. 3   Total number (a) and 
area (b) of wrack patches 
observed within the study area 
between January 2020 and 
December 2021. Each point 
represents a UAV image with 
gaps in the series indicating 
times when the UAV was not 
operational. The highest number 
and area of wrack patches were 
both observed in November 
2021 following a high tide event
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Landscape‑Based Analyses and Environmental Drivers

We used the pixel data to identify the frequency with which 
wrack affected each part of the marsh. Although wrack was 
present in all images, wrack pixels covered only 2% of the 
study area over the entire course of the study (Fig. 6). Fifty-
eight percent of the wrack-affected pixels had wrack for only 
a single observation, and 90% of the pixels had wrack for 
less than four observations (Table 1). The highest number 
of repeated observations of wrack was in 11 images (out of 
20), which occurred in 500 pixels.

We binned wrack pixels by elevation and distance to 
water to analyze the occurrence of wrack across the marsh 
landscape. Pixels with wrack were most frequently observed 
in areas near mean higher high water (~ 1 m elevation) and 
within 50–75 m from the nearest creekbank or shoreline 

(Fig. 7a). Sixty percent of the pixels in the study area have 
an elevation of ~ 1 m, and these areas also had the highest 
total number of pixels with wrack. We normalized the distri-
bution of wrack pixels (number of pixels with wrack divided 
by the proportion of pixels in individual bins) to identify 
areas of higher wrack frequency relative to the number of 
marsh pixels in the study area. High elevation areas (> 1.3 
m) and areas between 10 and 40 m from water were dis-
proportionally affected by wrack (~ 80% of pixels in these 
areas had wrack). In contrast, where wrack occurred most 
frequently (1–1.1 m in elevation and 50–60 m from water), 
only 30% of the possible pixels in that bin were affected 
(Fig. 7b). When we confined our analysis to pixels where 
wrack was present for more than one image, the bins with 
the highest amount of wrack were the same in both absolute 
and relative distribution (Fig. 7c, d).

Fig. 4   Size-frequency distribu-
tion of the number of wrack 
patches (a) and wrack patch 
area (b) observed in the study 
area over the entire study 
period between January 2020 
and December 2021 (20 UAV 
images). Patches were grouped 
in bins according to their area 
(the range of each bin is indi-
cated in meters)



	 Estuaries and Coasts

1 3

Discussion

The methodology presented in this paper provides a frame-
work for identifying the spatial and temporal patterns of 
wrack using multispectral UAV data. Although aerial pho-
tography (e.g., Reidenbaugh and Banta 1980; Alexander 
2008) has been used previously to evaluate wrack distribu-
tion, these studies were limited to 1–3 images per year and 
had coarse spatial resolutions. Our study improves on this 
with consistent UAV imagery collection and further dem-
onstrates how this emerging technology may be useful for 
wetland researchers to establish high spatial resolution data, 
with consistent frequency at the landscape scale. We col-
lected 20 images over the course of 2 years, which allowed 
us to characterize wrack patches and evaluate how wrack 
distribution patterns change both spatially and temporally.

Wrack Identification

The PCA classification method resulted in a high accuracy 
(between 85 and 95% overall accuracy) classification of 
wrack. Although other classification methods are readily 
available, the PCA classification could be conducted with 
limited ground data and did not require extensive training 
of the very large UAV files (several GBs). An additional 
motivation of this study was to identify wrack patches for 
sampling by a field crew, and PCA allowed us to quickly 
identify wrack patches that could be targeted for field sam-
pling immediately following the UAV flight.

PCA components 2, 4, and 1 were used most frequently 
for classifying wrack, and the factor loadings for these bands 
indicated that the green, red-edge, and near-infrared bands 
provided the most information for these components. The 

Fig. 5   Relationship between 
the maximum tide height of 
the previous 30 days (x-axis) 
and a median distance to water 
of wrack patches (y-axis) and 
b standard deviation of eleva-
tion of wrack patches (y-axis) 
observed within each UAV 
image used in the study. Solid 
lines show the linear fit, and 
gray shaded areas represent the 
95% confidence interval (equa-
tions as shown)
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importance of these bands for classifying wrack can be 
explained by how they interact spectrally with wrack and 
other features in the study site.

Wrack patches generally had higher reflectance values 
in the visible spectrum (465–722 nm). We saw this in a 
visual inspection of RGB images and when analyzing the 
individual remote sensing bands (where wrack appeared 
as brighter shades of gray). Green wavelengths (550–570 
nm) were reflected by both wrack and vegetation. Red-edge 
(712–722 nm) wavelengths were also reflected by wrack, 
whereas vegetation absorbed light in these wavelengths. 
Wrack reflected lower amounts of NIR (820–860 nm), and 
healthy vegetation in the study area reflected high amounts 
of NIR light. Mudflats, which behaved similarly to wrack 
in the visible spectrum, had lower NIR reflectance val-
ues than wrack (Huete 2004; Munyati 2004). Other bands 
may not have been as important in the PCA due to mixed 
reflectance signals from vegetation growing through wrack 
patches, sparse wrack patches where the signal from wrack 

and surrounding vegetation may have been mixed, or pixels 
on the edges of wrack patches which would include a signal 
from wrack and healthy vegetation.

Wrack Dynamics and Environmental Drivers

Most of the wrack patches that we observed were smaller 
in area, with the majority of the wrack patches between 
1 and 5 m2. Patches between 1 and 5 m2 also had the 
largest overall contribution to the total amount of wrack 
observed over the study period. However, there were still 
several wrack patches that were over 25 m2. These results 
are similar to findings from Valiela and Rietsma (1995) 
where the majority of the wrack patches that were identi-
fied were between 1 and 100 m2. We did not specifically 
analyze wrack duration; however, visible inspection of 
our wrack frequency analyses showed that larger patches 
of wrack tended to stay in place for longer than 4 months. 
Large wrack mats have been shown to be more likely 

Fig. 6   Grayscale image with 
pixels highlighted based on the 
number of times wrack was 
observed in UAV images over 
the course of the study. Shades 
range from dark purple (1 UAV 
image with wrack) to yellow (11 
UAV images with wrack). The 
inset shows an example of the 
variation in wrack frequency 
that can be present within a 
small area

Table 1   Total number of pixels that were classified as wrack in all 
images separated by the number of UAV images where that pixel had 
wrack. The corresponding area of wrack that was classified as wrack 

is shown in the bottom row. These observations cover the entire study 
period between January 2020 and December 2021. No pixel had 
wrack in more than 11 of the 20 UAV images
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to damage vegetation (Valiela and Rietsma 1995), and 
future work should analyze how wrack size may influ-
ence wrack duration.

In our study, wrack abundance had peaks in August of 
both years and November 2021. The peaks in the wrack area 
that we observed in August of 2020 and 2021 were both fol-
lowed by similar declines in the wrack area in September 
and October. The peak we observed in November 2021 was 
associated with a high tide event that occurred 8 days prior to 
the UAV flight. This peak may also be seasonal as we might 
expect more wrack following plant senescence in the fall. 
However, Bertness and Ellison (2016) noted a peak in wrack 
in summer in Rhode Island, whereas Valiela and Rietsma 
(1995) noted a peak in spring in MA, suggesting that factors 
beyond the season, such as variation in tidal cycles and wind 
events, are also likely important.

We found that tide height was negatively related to the 
distance of wrack patches from the water and positively 
related to the standard deviation of wrack elevation. This 
is surprising, as the increased energy and inundation of the 

higher tides serve to lift the wrack and keep it suspended for 
longer than occurs during lower tides. During the ebb tide, 
however, we speculate that the wrack gets caught by the high 
vegetation that borders the creek. It may also be that some 
of the material is deposited higher at the upland edge of the 
marsh by the flood tide, which is beyond the scope of this 
study as we were focused on the portion of the marsh that is 
dominated by Spartina. In both instances, the higher tides 
may lead to wrack being deposited along the entire eleva-
tion gradient during the ebb tide, thus increasing the overall 
distance of wrack patches from the water and the standard 
deviation of wrack elevation. These findings are consist-
ent with those of previous studies that have shown that tide 
height affects wrack movement and that wrack abundance is 
highest at lower elevations (Reidenbaugh and Banta 1980; 
Bertness and Ellison 2016).

Previous studies have speculated that wind (through field 
observations; Reidenbaugh and Banta 1980) may influence 
wrack deposition in salt marshes. Although we found that 
wind speed and wind direction were negatively correlated 

Fig. 7   Absolute (a, c) and relative (b, d) number of pixels with wrack 
observed in the study area grouped into bins of elevation and distance 
to water. In a and c, shading represents the total number of pixels 
with wrack that were observed in each bin. In b and d, shading rep-
resents the number of pixels with wrack as a percentage of the total 
number of available pixels within a given bin. a and b tally pixels 
that had wrack in at least one image, whereas c and d only include 

pixels that had wrack in more than one image. In all figures, gray 
areas are bin combinations within the study area where wrack was 
never observed, and blank areas are bin combinations that were not 
represented in the study area. These data are based on all 20 of the 
UAV images taken within the study area between January 2020 and 
December 2021
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with wrack patches’ distance to water, these relationships 
were not significant (Table S1). This may be partially attrib-
uted to the fact that we characterized wrack over intervals 
of a month or more, as opposed to daily, and then compared 
that to median and mean wind speeds and directions for the 
prior 30 days before the UAV flight. The effects of wind 
speed and direction may be lost when averaged over the 
course of an entire month.

Landscape‑Based Analysis and Environmental Drivers

Our observations of wrack pixels show that only a small por-
tion (< 1%) of the study area may have wrack at any given 
time, most areas only have wrack for a single image, and 
only a small portion (~ 2%) of the study area was impacted 
by wrack throughout the course of the study. Moreover, most 
of the wrack we observed stayed for 3 months or less. Valiela 
and Rietsma (1995) found most wrack patches to stay for 
either a single month or for 3–4 months with most patches 
(70%) resulting in no damage to vegetation. Previous studies 
of wrack disturbance have shown that measurable declines in 
vegetation and biomass start to occur after two consecutive 
months (Bertness and Ellison 2016; Reidenbaugh and Banta 
1980; Stalter et al. 2006). This may suggest that most of the 
wrack observed in our study may not result in a disturbance 
as 90% of the wrack pixels did not have wrack for longer 
than 3 months, with the majority only present at a location 
for a single month. However, there were still 10% of the 
wrack pixels that were covered for more than 3 months, and 
we would expect a greater impact on vegetation and biomass 
in these locations.

We observed the highest frequency of wrack at elevations 
between 0.9 and 1.1 m and 50 m from water. This elevation 
roughly corresponded with the mean higher high water for 
our study site. The highest relative proportion of wrack was 
seen in areas of high elevation (> 1.3 m) and near creeks 
or shorelines (50–75 m) suggesting that these areas may be 
particularly vulnerable to wrack disturbances. Wrack that 
accumulated in these areas did not appear to be associated 
with any particular tidal event. However, in our observa-
tions, wrack did tend to stay in these areas for more than a 
single month. Our findings match previous studies that have 
seen the highest accumulation of wrack at the mean higher 
high water line in salt marshes (Bertness and Ellison 2016; 
Valiela and Rietsma 1995). Although the distance where 
wrack accumulated most frequently varied (5–75 m from 
shorelines in this study vs. 8–10 m in Bertness and Ellison 
2016), this distance was associated with mean higher high 
water at both sites.

Our analyses of wrack dynamics indicate that most wrack 
patches are short-lived (1 month) and accumulate most fre-
quently at high tidal lines or near creeks. High tide events 
also influence wrack deposition, decreasing the distance of 

wrack patches to water and increasing the overall elevation 
range of wrack patches. Wrack patches occurred most fre-
quently at mean higher high water and were often distributed 
at tidal lines parallel to the Doboy Sound. However, we saw 
the greatest proportion of wrack at higher elevations that 
were near water. These results provide a baseline for under-
standing wrack effects on marshes and identifying areas that 
may be most vulnerable to wrack disturbances.
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