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Abstract— Topological data analysis (TDA) is an emerging
technique for biological signal processing. TDA leverages the
invariant topological features of signals in a metric space for
robust analysis of signals even in the presence of noise. In this
paper, we leverage TDA on brain connectivity networks derived
from electroencephalogram (EEG) signals to identify statistical
differences between pediatric patients with obstructive sleep
apnea (OSA) and pediatric patients without OSA. We leverage
a large corpus of data, and show that TDA enables us to see
a statistical difference between the brain dynamics of the two
groups.

Clinical relevance— This establishes the potential of topolog-
ical data analysis as a tool to identify obstructive sleep apnea
without requiring a full polysomnogram study, and provides an
initial investigation towards easier and more scalable obstruc-
tive sleep apnea diagnosis.

I. INTRODUCTION

Recent advancements in signal processing technology, in-
cluding topological data analysis (TDA), provide a powerful
method for analysis of EEG signals. TDA leverages ideas
from the mathematical field of topology, and applies these
ideas to the analysis of real-world signals[5]. Broadly, TDA
allows us to exploit the topological and geometric structures
inherent to data, and use these structures to study fundamen-
tal differences between the EEG signals of obstructive sleep
apnea (OSA) positive and OSA negative patients. In this
work, we present TDA techniques which allows identification
of OSA using only EEG signals.

The key assumption in this work is that the brain connec-
tivity network for OSA positive patients has a fundamentally
different topological structure than the brain connectivity
network for OSA negative patients.

Existing techniques for the identification of OSA in chil-
dren involve a full overnight sleep study called a polysomno-
gram (PSG). This requires the patient to either go to a sleep
lab in a medical facility or schedule an overnight sleep test
at home, both of which can take months to schedule.
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A successful application of TDA to differentiating OSA
positive and OSA negative patients directly through EEG
signals, as we present in this paper, is a strong step towards
easier and less invasive diagnosis of OSA in children, leading
to better patient outcomes.

II. BACKGROUND

A. Obstructive Sleep Apnea

Pediatric Obstructive Sleep Apnea (OSA) is difficult to
diagnose and leads to significant complications, including
poor rest and heart disease[3]. In children especially, OSA
can lead to behavioral changes and further reduction in
quality of life. Identification of OSA in patients typically
requires an overnight PSG study [11]. PSG studies include a
number of sensors, such as EEG sensors, pulse oximetry, and
respiratory rate sensors, among others. Acquisition of this
information is difficult for the patient, as they must sleep in
an unknown environment while being observed by medical
personnel, as well as sleep with multiple sensors connected to
their body. PSG studies are considered the gold standard for
OSA diagnosis, and attempts to use other clinical methods
such as questionnaires lead to poor diagnostic accuracy[11].

Snoring is relatively common in children, with about
10% incidence in children ages 1-9. Obstructive sleep apnea
occurs in 2-3% of children with habitual snoring [3]. Fur-
ther complication is caused by recent increases in pediatric
obesity. Pediatric OSA is typically caused by adenotonsillary
hypertrophy, and has been correlated with poor growth and
failure to thrive [4]. Furthermore, daytime drowsiness (som-
nolescence) is much less common in children with OSA as
compared to adults with OSA, leading to further difficulties
with the diagnosis of OSA.

B. Topological Data Analysis

TDA aims to identify quantitative information about the
structure of data, and leverage this information for down-
stream data analysis tasks [5]. Data is assumed to exist in
a metric space, allowing us to compute distances between
different observations, which are typically viewed as points
in an ambient space — i.e., forming a point cloud. From the
data, one builds a shape on the input point cloud by varying
the distance with which we consider two points as connected
(further discussed in Section III-C).

TDA has previously been used to understand the under-
lying dynamics of the brain in work by [1], [8]. How-
ever, these papers focus on identification of attention-
deficit/hyperactivity disorder (ADHD) in the case of
Bourakna et. al. [1], and the classification of specific EEG
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signal morphology during sleep in the case of Lella et. al. [8].
Work by Lella et. al. shows the strength of TDA as an
analysis technique for single EEG signals, as this work out-
performs previous state-of-the-art classification techniques
with greater robustness to inherent noise than previous work;
however, this work is focused on the specific morphology
of EEG signals. While specific EEG morphology is useful,
in the case of OSA we require a deeper understanding
of brain dynamics in order to appropriately identify OSA-
specific features. Additionally, we require a coherent analy-
sis, involving all collected EEG channels, in order to fully
exploit EEG data for TDA analysis. Work by Bourakna et.
al. provides a strong foundation for leveraging TDA for
analysis of ADHD data, while also using TDA to understand
underlying brain network dynamics. This work performed
a coherent analysis of multiple EEG channels in order to
understand brain dynamics of ADHD patients rather than
specific morphologies of individual EEG signals, and is
therefore more robust to noise. We aim to apply these ideas
to the identification of OSA.

OSA is not currently diagnosed by EEG signals in isola-
tion, but rather in combination with other sensors collected
during PSG studies. In this work, we leverage TDA applied
to EEG signals without incorporating other sensors in order
to identify statistically significant differences between OSA
positive and OSA negative groups. This work provides a
stepping stone towards improving scalability and ease of
OSA diagnosis for both the clinician and the patient.

III. METHODS

A. Data

In this work, we leverage the Nationwide Children’s
Hospital (NCH) Sleep DataBank (SDB)[13], [7]. This dataset
includes 3,984 PSG studies from 3,673 pediatric patients.
This dataset contains a significant volume of data from a
number of sensors, including EEG, electromyogram, elec-
trooculogram, electrocardiogram, nasal and oral sensors to
measure airflow, and pulse oximetry, among others. This
large volume of data and sensors allows us to study pediatric
OSA across a wide variety of pediatric patients. The dataset
additionally contains annotations of sleep events, such as
NREM1 sleep, NREM2 sleep, NREM3 sleep, and REM
sleep, in 30 second intervals. We focus on EEG signals
collected at 256 Hz using 7-channel EEG studies, which
restricts us to 2,883 sleep studies. We identify patients as
being in the “Apnea” or “No Apnea” based on the presence
of an Apnea event string annotation in the patient’s respective
polysomnogram in the dataset. If an apnea-related string
annotation is in the patient’s polysomnogram, at any point
during the sleep study, the whole study is placed into the
“Apnea” group. If no apnea-related string annotation is
found, the study is placed into the “No Apnea” group.

B. Signal Preprocessing

First, we perform basic signal processing on our EEG
signals. We filter out 60Hz and 120Hz power noise using
a 3rd order Butterworth bandstop filter.

We then leverage techniques from Bourakna et al. to create
distance matrices from our EEG data[1]. We process data on
a per-study basis. For a single PSG study we first extract
all available EEG channels, leading to a set of time-series
signals Xi(t) for channel i ∈ V and time t ∈ {1, · · · , T}.
We break these signals into 30-second chunks to correlate
with labels of Awake, NREM1, NREM2, NREM3, and REM
sleep. We then create a smoothed periodogram from each
channel for each 30-second chunk. A smoothed periodogram
allows us to understand the frequency spectrum of our signal,
while smoothing the frequency spectrum slightly using a
small smoothing kernel to eliminate noise.

To calculate the smoothed periodogram, we use the fol-
lowing equations:

d(ωk) =
1√
T

T∑
t=1

Xi(t) exp(−i2πtωk) (1)

f̂(ωk) =
∑
ω

kh(ω − ωk)d(ωk)d(ωk)
∗ (2)

kh(ω − ωk) indicates a smoothing kernel centered around
ωk and h is a bandwidth parameter. From these smoothed
periodograms, we calculate the squared signal coherence
between EEG channels i and j:

C(Xi, Xj , ω) =
|fi,j(ω)|2

fi,i(ω)fj,j(ω)
(3)

We then leverage a decreasing function to create a distance
between coherence values for a given frequency ω:

D(Xi, Xj , ω) = 1− C(Xi, Xj , ω) (4)

The matrix D is indexed by both channel i, channel j,
and frequency ω. EEG data is clinically analyzed using the
following frequency bands: Delta band from 0.5 Hz to 4 Hz,
Theta band from 4 Hz to 8 Hz, Alpha band from 8 Hz to
12 Hz, Beta band from 12 Hz to 30 Hz, and Gamma band
from 30 Hz to 50 Hz.

We average across frequency all matrices which occur
within a frequency band in order to obtain a single 7 × 7
matrix for that frequency band. Therefore, for a single 30-
second EEG signal from 7 channels, we obtain 5 separate
distance matrices, one for each frequency band. We treat
distance matrices separately for each frequency band and
sleep state. These distance matrices serve as the input for
our TDA methods.

C. Topological Data Analysis Methods

In order to identify if the brain connectivity networks
are fundamentally topologically different for OSA positive
and OSA negative patients, we must understand how to
differentiate topological spaces. We first begin with the
definition of a simplicial complex.

Definition III.1 (Simplicial Complex [6]). A simplicial
complex is a collection K of nonempty finite sets σ ∈ K,
called simplices, such that σ ∈ K and ∅ ̸= τ ⊆ σ always
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imply that τ ∈ K. If σ ∈ K has n + 1 elements (i.e.,
σ = {x0, . . . , xn}) then we call it an n-simplex.

Intuitively, a 0-simplex {x0} represents a vertex, a 1-
simplex {x0, x1} an edge between x0 and x1, a 2-simplex
{x0, x1, x2} encodes a triangle spanned by these vertices,
and so on in higher dimensions. Homology, which we define
next, is a descriptor of the topology of simplicial complexes.
It measures properties such as the number of connected
components, the existence of holes, voids, and their higher
dimensional analogs. Indeed, fix a field F (e.g., the rationals
or the integers modulo a prime) and let Cn(K) denote the
F-vector space generated by the n-simplices of K. That is,

each γ ∈ Cn(K) can be written uniquely as γ =
J∑

j=0

ajσj

for scalars aj ∈ F and n-simplices σj ∈ K. Define the
boundary of an n-simplex σ = {x0, . . . , xn} ∈ K as

∂n(σ) =
n∑

i=0

(−1)i (σ ∖ {xi}) ∈ Cn−1(K). Since the n-

simplices of K form a basis for Cn(K), then we obtain
linear transformations ∂n : Cn(K) −→ Cn−1(K) which, as
one can check, satisfy ∂n ◦ ∂n+1 = 0 for every n ∈ N.

Definition III.2 (Simplicial Homology Group [5]). The nth
homology group of a simplicial complex K is the quotient
vector space

Hn(K) = Ker(∂n)/Img(∂n+1)

The homology of K can be interpreted as follows: the di-
mension of H0(K) is exactly the number of connected com-
ponents of K, dim(H1(K)) counts the essentially distinct
closed loops in K bounding an empty region, dim(H2(K))
counts cavities, and similarly for dim(Hn(K)), n ≥ 1.

In this work, we attempt to understand the topological fea-
tures of each homology group (e.g., connected components,
holes, cavities, etc.) for the brain connectivity network of
OSA positive and OSA negative patients. Further treatment
of topological concepts can be found in [6].

In order to calculate homological features on sets of
discrete data points, we apply persistent homology to the
distance matrices described in Section III-B. Indeed, once
we have obtained a distance matrix for a 30-second signal,
we build a simplicial complex, in particular a Rips Complex,
and furthermore the Rips filtration using the Python package
Ripser.py[12].

Let S be our point cloud, with pairwise distances described
by our previous distance matrix D. The Rips complex R of S
and distance r is given by the simplicial complex consisting
of all subsets of S with diameter at most r, i.e.

R(S, r) = {σ ⊂ S|diam(σ) ≤ r}

Note that R is inherently tied to a given r value. We
construct a filtration, called a Rips filtration, which is the set
of Rips complexes created by varying the free parameter r.
We start with a small r (r = 0), and increase r continuously
to obtain a set of subcomplexes of our simplicial complex[6]:

∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km

We leverage Ripser.py to compute our Rips filtration.
As we vary r from Ki−1 to Ki, our topological features
change, and we gain or lose topological features[9]. We
quantify the r at which a particular topological feature in
a particular homology group appears and the r at which the
same topological feature disappears as a (birth, death) pair,
which exists in R2. We can plot these points on a graph to
create a persistence diagram, as exemplified in Figure 1.

While the persistence diagram allows us to visualize the
topological features of a particular sample, it does not extend
to separable Banach spaces, and therefore does not lend
itself to analysis through the lens of random variables[2].
However, we can transform our persistence diagram into a
persistence landscape, which is a function and does exist in a
separable Banach space. We construct persistence landscapes
by drawing an isosceles triangle centered on the points of our
persistence diagrams. When intersections occur the highest
function is defined as the persistence landscape.

D. Permutation Testing

While we now have usable TDA features in the form of
persistence landscapes, we need to identify a test which can
indicate whether our TDA features from OSA positive pedi-
atric patients is different than our TDA features from OSA
negative patients. To this end, we leverage a permutation test,
as described in [10]. In this methodology, our null hypothesis
is that there is no impact of OSA on the brain connectivity
network. To perform the test, we implement the following
algorithm:

1) Calculate the average OSA positive persistence land-
scapes {λ(1)

1 , · · · , λ(1)
n1 } and the average OSA negative

persistence landscapes {λ(2)
1 , · · · , λ(2)

n2 }.
2) Calculate the difference between the average OSA

positive persistence landscape and the average OSA
negative persistence landscape, and find the most sig-
nificant value of this difference landscape F̂T .

3) Permute the labels of our two groups such that we
have n1 randomly chosen positively labeled persistence
landscapes and the remaining n2 landscapes are nega-
tively labeled.

4) Calculate the difference between the permuted positive
group and the permuted negative group, and find the
most significant value of this difference landscapes F̂p.

5) If F̂p ≥ F̂T , count a significant permutation.
6) Repeat steps 3 and 4 B times. For this analysis we

repeat these steps B = 1000 times.
7) Compute the p-value as the number of significant

permutations S divided by the total number of per-
mutations B.

We specifically perform this permutation test on the 0th
homology group (H0) persistence landscapes generated as
described in Section III-C.
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IV. RESULTS

We show example persistence diagrams and persistence
landscapes for an OSA positive patient in Figure 1 and
Figure 2.

Fig. 1. Example Persistence Diagram for Delta Band of an OSA
Positive Patient

Fig. 2. Example Degree 0 Persistence Landscape for Delta Band
of an OSA Positive Patient

We present p-values for our TDA permutation tests dis-
cussed in Section III-D in Table I. We consider p-values
with p < 0.05 to be significant. We separate our distance
matrices into signals which occur during NREM1 sleep,
NREM2 sleep, NREM3 sleep, and REM sleep.

TABLE I
p-VALUES FOR SLEEP STATES USING TDA

EEG Band NREM1 NREM2 NREM3 REM
Delta Band 0.000 0.001 0.000 0.040
Theta Band 0.000 0.000 0.000 0.000
Alpha Band 0.000 0.000 0.000 0.000
Beta Band 0.000 0.000 0.000 0.000

Gamma Band 0.000 0.000 0.000 0.000

V. DISCUSSION

Our results indicate that TDA can identify statistically sig-
nificant differences between OSA positive and OSA negative
cohorts. Statistical significance is achieved in all bands for

all phases of sleep. These results are a strong indication
that EEG signals alone can be used to help diagnose OSA
in pediatric patients, allowing for less invasive diagnosis of
OSA.

VI. CONCLUSIONS

In this work, we show that the brain dependence networks
of OSA positive pediatric patients show a statistically signif-
icant difference than the brain dependence networks of OSA
negative pediatric patients when analyzed using topological
data analysis. Our work lays the foundation for using TDA
for cohort-level OSA classification, and takes the first step
towards being able to make an OSA diagnosis with a single
EEG. Future work is needed to achieve clinical utility and to
determine how the brain dynamics TDA identifies relate to
respiration measures more typically used for OSA diagnosis.
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