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A-VRPD: Automating Drone-Based Last-Mile
Delivery Using Self-Driving Cars

Navid Mohammad Imran , Sabyasachee Mishra , and Myounggyu Won , Member, IEEE

AbstractÐ Drone-based last-mile delivery is an emerging tech-
nology that uses drones loaded onto a truck to deliver parcels
to customers. In this paper, we introduce a fully automated
system for drone-based last-mile delivery through incorporation
of autonomous vehicles (AVs). A novel problem called the
autonomous vehicle routing problem with drones (A-VRPD) is
defined. A-VRPD is to select AVs from a pool of available
AVs based on crowd sourcing, assign selected AVs to customer
groups, and schedule routes for selected AVs to optimize the
total operational cost. We formulate A-VRPD as a Mixed Integer
Linear Program (MILP) and propose an optimization framework
to solve the problem. A greedy algorithm is also developed to
significantly improve the running time for large-scale delivery
scenarios. Extensive simulations were conducted taking into
account real-world operational costs for different types of AVs,
traveled distances calculated considering the real-time traffic
conditions using Google Map API, and varying load capacities of
AVs. We evaluated the performance in comparison with two dif-
ferent state-of-the-art solutions: an algorithm designed to address
the traditional vehicle routing problem with drones (VRP-D),
which involves human-operated trucks working in tandem with
drones to deliver parcels, and an algorithm for the two echelon
vehicle routing problem (2E-VRP), wherein parcels are first
transported to satellite locations and subsequently delivered from
those satellites to the customers. The results indicate a substantial
increase in profits for both the delivery company and vehicle
owners compared with the state-of-the-art algorithms.

Index TermsÐ Drone-based last-mile delivery, vehicle routing
problem with drones, traveling salesman problem with drones.

I. INTRODUCTION

T
HE drone-based last-mile delivery [1] is to utilize drones

in delivering parcels. There are different methods of

utilizing drones for last-mile delivery, e.g., drone-only delivery,

drone-truck delivery as separate entities, and collaborative

drone-truck delivery. In this paper, drone-based last-mile

delivery refers specifically to the collaborative approach in

which one or more drones are loaded onto a truck, and both

the drones and the truck work together to deliver parcels

to customers. Due to their ability to fly, drones can take

a more direct route to customers and are less affected by
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Fig. 1. An illustration of major drone-based last-mile delivery problems.

ground obstacles [2]. Additionally, the speed of drones is faster

than conventional trucks, allowing for much faster access to

customers [3]. These unique characteristics of drones enable

significantly reduced operational cost and increased deliv-

ery speed for last-mile logistics, potentially revolutionizing

traditional parcel delivery systems [4]. Numerous logistics

companies such as Amazon [5], Google [6], DHL [7], and

Alibaba [8] have been increasingly adopting drone-based

delivery solutions.

A significant amount of research has been devoted to

developing collaborative parcel delivery systems that involve

both trucks and drones. Murray and Chu were the first who

formally defined the problem of combining drones with tra-

ditional trucks to deliver parcels more effectively [9]. In their

pioneering work, two different problems were introduced: the

Flying Sidekick Traveling Salesman Problem (FSTSP) and

the Parallel Drone Scheduling Traveling Salesman Problem

(PDSTSP). As shown in Fig. 1, in FSTSP, a single vehicle

works in tandem with a drone to deliver parcels (i.e., a

drone loaded on a truck, traveling together, can fly to serve a

customer on its own), and in PDSTSP, a fleet of drones and

vehicles deliver parcels separately from the depot.

There exist numerous variants of FSTSP [10]. One of the

most actively researched one is the traveling salesman problem

with drone (TSP-D) [11], [12] where a single drone and a

single truck is assumed. This problem has been addressed

in many papers [13], [14], [15], [16], [17], [18], [19].

There is another well-researched variant known as TSP-mD

[20], [21], [22]. TSP-mD is an extension of TSP-D where

a truck is loaded with m drones which are launched from

the truck to serve customers and rejoin the truck later at

a different location. Other works investigated more general

delivery scenarios with multiple drones and multiple trucks,

which is called the vehicle routing problem with drones

1558-0016 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Memphis Libraries. Downloaded on January 01,2024 at 15:42:33 UTC from IEEE Xplore.  Restrictions apply. 



9600 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2023

(VRP-D) [23], [24], [25], [26], [27]. Our work is closely

related to VRP-D; as such, a specific focus is given to the

VRP-D problem. We present the detailed review of numerous

solutions for TSP-D, TSP-mD, and VRP-D in Section II.

In contrast to existing VRP-D solutions, we study the

next-generation drone-based last-mile delivery based on

autonomous vehicles (AVs). Due to the significant advances of

AV technologies [28], innovative mobility services leveraging

a large batch of AVs [29], [30] are expected to emerge such

as automated taxi [31] and fully automated parcel delivery

systems [32]. In light of these technological advancements

and evolving societal needs, we introduce a new variant of

VRP-D in this article, termed the Autonomous Vehicle Routing

Problem with Drones (A-VRPD). Our aim is to simultaneously

optimize the scheduling and routes of AVs in tandem with

drones to minimize overall operational costs. Through this

article, we investigate a solution for A-VRPD that enables

fully automated drone-based last-mile delivery.

A-VRPD has a number of differences compared to the

traditional VRP-D and presents several novel challenges.

First, in A-VRPD, there is no driver; in contrast, in VRP-

D, when drones are delivering, trucks are also used to per-

form delivery. This makes direct application of an existing

solution for VRP-D for solving A-VRPD difficult. Second,

the problem complexity for enabling rendezvous motion of

trucks and drones is relaxed in A-VRPD, thereby requiring a

completely new mathematical model. Third, since A-VRPD

involves participation of individual AVs based on crowd-

sourcing, the number of AVs is significantly larger than that

for traditional trucks for VRP-D. Therefore, the scalability

becomes a crucial issue for A-VRPD. Furthermore, each AV’s

unique properties such as varying load capacities, fuel levels,

fuel consumption rates, vehicle types, initial locations, and

available time frames must be taken into account in designing

a solution for A-VRPD. Fourth, another notable difference is

that traditional VRPD formulations assume a single customer

per drone trip. On the other hand, A-VRPD allows drones to

serve multiple customers at a single trip.

Considering the unique aspects of A-VRPD, in this article,

we present a novel solution to solve A-VRPD. The solution

aims to minimize the total operational cost including the

vehicle and drone costs to provide maximum profits to both

the logistics company and individual AV owners. Considering

a large number of AVs with heterogeneous characteristics

such as the available time frame, loading capacity, and fuel

efficiency, the proposed solution simultaneously optimizes the

scheduling and routes of AVs to serve customers in collabo-

ration with drones by taking into account the real-time traffic

conditions. We formulate A-VRPD as a mixed integer linear

program (MILP) and propose an optimization framework to

effectively solve the problem. To enhance the scalability for

large-scale delivery scenarios, a greedy algorithm is also

proposed. A novel tree-based cost-computation algorithm is

designed to maximize profits based on parameters such as

the real-world operational costs for different types of AVs,

expected traveling distances and times calculated using Google

Map API, varying load capacities of AVs, and available

operation times of AVs.

Extensive simulations are performed to evaluate the effec-

tiveness of the proposed solution. Numerous random delivery

scenarios and varying numbers of available AVs are considered

to validate the performance, in comparison with two state-of-

the-art VRP-D heuristic solutions [33], [34] and a 2E-VRP

algorithm [35]. The results demonstrate that the proposed

solution significantly reduces the running time at the cost

of relatively small performance degradation compared to the

state-of-the-art algorithms. We also demonstrate that the zero

fixed cost (wages) for A-VRPD leads to a significant amount

of profits that can be shared between the delivery company

and individual AV owners. The contributions of this article

are summarized as follows.

• To the best of our knowledge, we are the first to explore

a next-generation vehicle routing problem that integrates

AVs to entirely automate the drone-based last-mile deliv-

ery process.

• We formulate the A-VRPD as a MILP, thoroughly

accounting for its differences compared to the traditional

VRP-D, with the goal of minimizing operational costs

through the simultaneous optimization of AV scheduling

and routing.

• A novel greedy heuristic solution is proposed to solve

A-VRPD targeting large-scale delivery scenarios.

• Extensive simulations are conducted under various ran-

dom delivery scenarios to demonstrate that the proposed

solution significantly reduces the running time while

producing large profits for both the logistics company

and AV owners compared with state-of-the-art VRP-D

and 2E-VRP solutions.

In Section II, we review the related work concentrating on

drone-based last-mile delivery. The system model and nota-

tions used in this article are presented in Section III. We then

formulate the A-VRPD problem as an ILP in Section IV and

present the details of the greedy algorithm in Section V. The

simulation results are analyzed in Section VI, followed by the

conclusion of this work in Section VII.

II. RELATED WORK

While the vehicle routing problem (VRP) [44] has been

extensively researched due to its relevance across various

domains, including berth allocation [45] and machine schedul-

ing [46], this section primarily offers a comprehensive review

of diverse strategies employed in drone-based last-mile deliv-

ery, particularly highlighting the most recent solutions for

VRP-D. Murray and Chu was the first to formally define

the problem of drone-truck collaboration for parcel deliv-

ery [9]. In their pioneering work, two different problems were

introduced: the Flying Sidekick Traveling Salesman Problem

(FSTSP) where a single vehicle delivers parcels in collabora-

tion with a single drone, and the Parallel Drone Scheduling

Traveling Salesman Problem (PDSTSP) where a vehicle and

a fleet of drones deliver parcels separately from the depot.

We first review numerous variants of FSTSP. One of the

widely researched one is the traveling salesman problem

with drones (TSP-D). Various heuristics have been proposed

to solve TSP-D [13], [14], [15], [16], [17], [18], [19].
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Schermer et al. focused on the scalability of the problem and

proposed two heuristic solutions, i.e., the two-phase heuris-

tic (TPH) and single-phase heuristic (SPH) [17]. Bouman

et al. proposed a dynamic programming approach to solve

TSP-D [18]. Tang et al. created a constraint programming

approach to solve the problem [19]. Poikonen et al. developed

four branch-and-bound-based heuristics [47].

Variants of TSP-D have also been investigated. Ha et al.

addressed TSP-D focusing on the operational cost [15].

Jeong et al. took into account the power consumption of

drones and the restricted flying areas of the drones [48].

Dukkanci et al., similar to [15], aimed to minimize the opera-

tional cost considering the energy consumption of drones [49].

Wang et al. developed a multi-objective version of TSP-D to

optimize both the operational cost and the time required to

serve all customers [50]. Nonetheless, dependence on a single

drone and a truck for delivery can lead to challenges such

as limited delivery capacity and coverage as well as extended

delivery time [24], which can result in higher costs per delivery

location [25].

Wang et al. generalized TSP-D and introduced the vehicle

routing problem with drones (VRP-D) [23]. Compared to other

solutions, multiple trucks and multiple drones are considered

assuming that drones can be launched from a truck at any of

the customer locations and the base station. Poikonen et al.

improved Wang’s work by considering the limited battery

of drones, varying distance metrics, operational cost in the

objective function [24]. Sacramento et al. incorporated the

time-limit constraint in the objective function and proposed

an adaptive large neighborhood search metaheuristic [26].

Schermer et al. adopted sets of valid inequalities to improve

the performance [25]. Kitjacharoenchai et al. developed a

solution for the problem to address the limitations of the

drone-launch and delivery time [27]. Murray et al. proposed a

solution for an arbitrary number of heterogeneous drones for

a truck with specific emphasis on real-world issues [51].

Since our work is directly related to VRP-D, we give a

special emphasis on reviewing the details of latest solutions

for VRP-D (published since 2022). Table I summarizes char-

acteristics of those solutions in comparison with our work.

Kuo et al. [34] study an extension of VRP-D by taking

into account the constraint of customer time windows. More

specifically, each customer is associated with a time window

and should be visited by either a vehicle or a drone within

the time window. A variable neighborhood search heuristic is

proposed to solve the problem. Wang et al. [36] investigate

VRP-D considering road traffic conditions, which is called

the truck±drone hybrid routing problem with time-dependent

road travel time drones (TDHRP-TDRTT). An iterative local

search algorithm is developed to minimize the total distribution

cost. Gu et al. [37] focus on the limitation of VRP-D that

a drone visits only a single customer per trip. They aim to

improve the practicality of the problem by allowing drones to

visit multiple customers per trip before the drone returns to

the truck where it was launched. Huang et al. [38] develop

an ant colony optimization (ACO) algorithm to solve VRP-D

while no significant modification is made to traditional VRP-D

formulation. Nguyen et al. [39] extend the problem by adding

two additional constraints. First, the total weight of parcels is

considered in determining whether the capacity of a vehicle

is exceeded. Second, the total working time of a vehicle

and a drone is considered to ensure that each vehicle (both

trucks and drones) do not operate longer than a pre-defined

value. Rave et al. [40] incorporate specific locations called

micro depots where drones can be launched. An adaptive

large neighborhood search algorithm is designed to solve

the extended version of VRP-D. Montaña et al. [41] note

that there does not exist an analysis of the impact of parcel

delivery using drones on sustainability and carbon emission

reduction and analyze the efficiency of drone-based delivery

for reducing carbon emissions. Sitek et al. [42] consider an

extended VRP-D, called the extended vehicle routing problem

with drones (EVRP-D) where mobile points (mobile hubs) are

deployed for drone take-offs. A genetic algorithm is designed

to optimize the cost as well as selection of mobile hubs.

Wu et al. [43] develop an improved variable neighborhood

decent algorithm to solve VRP-D in consideration of the

impact of the payload and flight time of a drone on energy

consumption.

While recent VRP-D solutions demonstrate remarkable per-

formance in determining optimal delivery routes for trucks

and drones, there are some limitations in their application

towards AV routing with drones. One primary limitation of

these solutions is their underlying assumption that trucks are

involved in delivery, which consequently leads to increased

costs due to the need for employing drivers. Moreover, existing

solutions face challenges in terms of scalability due to their

limitations in the number of trucks and customers that can be

accommodated. The scalability issue is expected to become

more pronounced as the solution incorporates the current

traffic conditions. Additionally, current solutions do not fully

take into account the individual properties of trucks, such

as varying load capacities, fuel levels, consumption rates,

vehicle types, and initial locations, which is crucial for the

crowd-sourcing-based approach that involves heterogeneous

AVs working in collaboration with drones.

III. PRELIMINARIES

In this section, we present basic definitions, notations and

assumptions related to AVs, customers, and drones. Fig. 2 can

be referred to throughout this section to get a better grasp of

the overall operation of the proposed approach.

A basic mechanism is that an AV loaded with drones

traveling to a designated location, referred to as the ªwaiting

location,º where it can park and launch its drones to deliver

parcels to customers. The proposed approach is a crowd

sourcing-based delivery system where any AV owners can

participate to make profits. When participating for the first

time, an AV is directed to the nearest depot, where a readily

deployable automatic battery replacement system is installed

such as [52], [53], [54], and [55] (e.g., Fig. 3). The AV

owner is also expected to conveniently install the battery

replacement system on their vehicle’s roof-mounted carrier or

hitch-mounted cargo carrier (e.g., Fig. 3), as it operates as a

separate system powered by its own battery, eliminating the
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TABLE I

THE PUBLICATIONS RELATED TO VRP-D (PUBLISHED SINCE 2022)

need for intricate connections to the AV. A logistics company

offers the minimum amount of compensation m to attract

participants and runs the proposed solution to select AVs to

use for delivery. Assume that there are Nv AVs who wish to

participate denoted by a set V = {v1, v2, . . . , vNv }. Types of

AVs differ, i.e., sport utility vehicles (SUVs), trucks, and pas-

senger vehicles, which can be easily extended to include more

AV types. To calculate the total operational cost accurately,

we separately define the cost for using AV v when it is mobile,

denoted by cM
v , and when it is stationary, denoted by cS

v . These

mobile and stationary costs vary depending on AV types. The

load capacity of AV v denoted by qv represents the number of

parcels that can be loaded on the AV, which is also different

depending on AV types. Another important property of AV v is

the remaining fuel (or electricity for electric vehicles), which

is denoted by f A
v . We note that different types of AVs have

different fuel consumption rates. The fuel consumption rate

for AV v for the mobile and stationary modes are denoted by

f M
v and f S

v , respectively. AVs can only be utilized when they

are available. Therefore, the available time frame for AV v is

denoted by τ A
v (usually provided by the AV owner). We also

assume that each AV has the maximum number of battery

swap operations denoted by P due to the limited number of

batteries it can load.

Next let us present notations and assumptions related to

customers. There are Nl customer locations denoted by L =

{l1, l2, . . . , lNl
}. Parcels are delivered to these customer loca-

tions from a distribution center (also called as the depot).

These customers are organized into Ng groups denoted by G =

{g1, g2, . . . , gNg }. The group membership of each customer is

represented by a Nl×Ng matrix MLG , where MLG
i, j = 1 means

that customer i ∈ L belongs to group j ∈ G. We assume
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Fig. 2. An example operation of the proposed solution for A-VRPD.

Fig. 3. An example of an automated drone battery replacement platform [52]
and potential methods for mounting the system onto a vehicle.

that the delivery area is divided into zones as practiced by

many logistics companies [56]. A similar zoning approach

is used in creating the customer groups. More specifically,

customers are first organized into different groups based on

the company’s zoning policy. Subsequently, each group is

further divided by applying a maximum limit of battery swap

operations per group, denoted by p. If the customers in a

group cannot be serviced within p battery swap operations,

the group is divided into smaller ones, each of which can be

served within p battery swap operations. This parameter p is

used by the company to control the group size. Every group

has a designated ªwaiting locationº where an AV is parked and

deploys its drone to deliver parcels to the customers in that

specific group. In particular, wi
j denotes the waiting location

for the j-th group in the sequence of groups served by AV

i ∈ V .

Now we explain notations and assumptions pertaining to

drones. Note that AVs do not deliver parcels, and only drones

perform delivery. The proposed solution schedules AVs to

serve a set of customer groups. An AV i ∈ V drives to a

waiting location wi
j for serving its j-th group i ∈ G, parks

there, and launches its drone. The drone is supposed to cover

all customers in that specific group. A drone can deliver

multiple parcels at a single trip. However, for simplicity,

we assume that a drone delivers one parcel per trip. When the

battery of the drone is depleted, it is automatically swapped.

The drone operation cost denoted by cd (dependent on the

traveled distance of a drone) is defined as a factor of the

mobile cost for AV. Following the method used in [34], in our

work, we set cd = 1/10cM
v . Since the waiting location and

customer locations are all known for each group, the total

TABLE II

THE LIST OF NOTATIONS

operational cost for drones cT
d can be easily pre-computed,

which allows for significant reduction of running time (up to

350X faster running time is possible in some instances, as it

will be demonstrated in Section VI-E), making it extremely

extensible for a large number of customers. Similarly, the

expected time for a drone to finish delivery for all customers

in a particular group g ∈ G denoted by τ D
g can also be easily

pre-computed. Table II summarizes all notations introduced in

this section.

IV. LAST-MILE DELIVERY USING AUTONOMOUS

VEHICLES WITH DRONES

This section presents an overview of the proposed approach,

followed by descriptions of the pre-computation phase and

mathematical model.

A. Overview

Our objective is to choose a subset of participating AVs,

represented by V , from the available AVs V (V ⊆ V ).

Each vehicle v ∈ V is assigned to cater to one or more

groups in G following a designated order (indicating the AV’s

route). The aim is to minimize the overall operational cost

of delivering parcels to all customers, adhering to a given

budget constraint b. We propose a two-phase solution that

concurrently optimizes the allocation of AVs to customer

groups and the routes of chosen AVs in order to minimize the

overall operational cost. More specifically, a pre-computation

phase is introduced in Section IV-B to address the scalability
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issue for existing VRP-D solutions, especially considering

a large number of AVs and customer locations. The results

of the pre-computation phase are provided as input to our

mathematical model to perform the AV-to-group mapping and

computation of the optimal AV routes. The details of the

mathematical model are presented in Section IV-C.

B. Pre-Computation Phase

A significant challenge for VRP-D is its limited scalability,

stemming from the intricate nature of the problem space.

Many heuristic solutions for VRP-D support a limited number

of customers due to their extensive running time. Reducing

the running time is especially crucial for A-VRPD, as it

involves a greater number of AVs and requires rapid updates

to accommodate real-time traffic conditions while AVs and

drones are serving customers. For example, based on current

traffic conditions and the inclusion of newly added AVs,

a vehicle may be quickly reassigned to cater to a customer

group that differs from its original schedule.

To tackle the scalability issue, we introduce a pre-

computation phase. In particular, this phase exploits the dis-

tinct features of A-VRPD to considerably decrease running

time, i.e., AVs do not engage in parcel delivery but simply

wait as drones carry out the deliveries to customers. Therefore,

the route of an AV can be simplified into a sequence of the

waiting locations that the AV visits. Additionally, in A-VRPD,

the drone path can be pre-determined because (1) customer

groups are determined by the company’s zoning policy and the

maximum allowable battery swap operations for each group,

and (2) drones are tasked with delivering parcels exclusively

to customers within a specific group. As we will show more

details in Section VI-E, the pre-computation phase enables by

up to 350X faster running time in some instances compared

to state-of-the-art VRP-D solutions, making frequent solution

update possible to account for real-time traffic conditions.

We now present the details of the pre-computation phase.

The total operational cost consists of the cumulative distance

dT
v traveled by each selected AV v and the total time τ T

v

required for the journey, which includes the waiting time while

the AV’s drone serves customers. The pre-computation phase

is designed to reduce the computational delay for calculating

dT
v and τ T

v by pre-calculating distance and time segments

constituting dT
v and τ T

v .

Here we present the details on how distance segments

constituting dT
v are pre-computed. Let us denote the length

of a route between two locations i and j by di, j . The

length of a route is obtained using the Google MAP API to

take into account the real-time traffic conditions. We com-

pute all distance segments between two ªessentialº locations:

the distance (1) between the depot and a waiting location,

(2) between two waiting locations, and (3) between the depot

and the AV’s original location. The total distance dT
v for AV

v that is scheduled to visit a sequence of waiting locations

{w1, . . . , wn} can then be computed using the pre-computed

distance segments as follows.

dT
v = dv, f + d f,w1 +

n−1∑

k=1

dwk ,wk+1 + dwn , f + d f,v,

This implies that an AV v initially proceeds to depot f for

loading parcels and a drone, after which it visits a series

of waiting locations w1, . . . , wn to cater to customers. Upon

completion of service to all customers, the AV returns to the

depot and then proceeds to its original location.

Next, we explain how the time segments constituting the

total amount time for AV (τi, j ) are pre-computed. Let us

denote the travel time between two locations i and j by τi, j .

We calculate the travel time using the Google MAP API. The

total travel time for AV (τ T
v ) is then calculated based on the

pre-computed time segments as the following.

τ T
v = τv, f + τ L

v + τ f,w1 +

n−1∑

k=1

τwk ,wk+1 + τwn , f + τ f,v + τ W
v .

Note that for a more precise representation of total time,

we consider the time needed to load parcels and drones onto

the AV, denoted by τ L
v . Additionally, we account for the

cumulative waiting time of an AV while its drones complete

deliveries, represented by τ W
v .

C. Mathematical Model

arg min
M′V G

∑

v∈V

(cM
v · d

T
v + cS

v · τ
W
v )

s.t.
∑

i∈V

MV G
i, j = 1, ∀ j ∈ G (1)

∑

i∈V

(cM
i · d

T
i + cS

i · τ
W
i )+ cT

d ≤ b (2)

∑

j∈G

(MV G
i, j ·

∑

k∈L

MLG
j,k ) ≤ qi , ∀i ∈ V (3)

( f M
v · d

T
i + f S

v · τ
W
i ) ≤ f A

v , ∀i ∈ V (4)

τ T
i ≤ τ A

i , ∀i ∈ V (5)

τ W
i =

∑

j∈G

MV G
i j · τ

D
j , ∀i ∈ V (6)

[b −
∑

i∈V

(cM
i · d

T
i + cS

i · τ
W
i )]/2 > m · |V | (7)

p ·
∑

j∈G

MV G
i, j ≤ P, ∀i ∈ V (8)

wi
k = j, M′

V G
i, j = k, ∀i ∈ V, ∀ j ∈ G (9)

1 ≤ k ≤ ni , ∀i ∈ V (10)

ni =
∑

j∈G

MV G
i j , ∀i ∈ V (11)

dT
i = di, f + d f,wi

1
+

ni−1∑

k=1

dwk ,w
i
k+1

+ dwi
ni

, f + d f,i , ∀i ∈ V (12)

τ T
i = τi, f + τ L

i + τ f,wi
1
+

ni−1∑

k=1

τwk ,w
i
k+1

+ τwi
ni

, f + τ f,i + τ W
i , ∀i ∈ V (13)

MV G
i, j = 1, M′

V G
i, j > 0, ∀i ∈ V, ∀ j ∈ G (14)
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Fig. 4. An example solution for AV vi scheduled to cover three groups in
the order of g2, g4, and then g3.

In this section, we present a mathematical model to solve

A-VRPD based on the distance and time segments derived

from the pre-computation phase. In this model, we aim to

minimize the total operational cost that is the sum of individual

vehicle costs for the selected AVs. This per-vehicle cost

for AV v is computed based on the total distance it has

traveled (dT
v ) and the accumulated waiting time while its

drone serves customers (τ W
v ); Thus, the per-vehicle cost is

cM
v · d

T
v + cS

v · τ
W
v . Note that τ W

v is included in the per-vehicle

cost because it reflects the AV’s energy consumption in the

idle mode to support the operation of its drone, i.e., to run

the system to communicate with the drone, check the battery

level of the drone, and run the automated battery replacement

system. Therefore, the total cost for all participating AVs is∑
v∈V

(cM
v · dT

v + cS
v · τ

W
v ). It should also be noted that the

drone cost is pre-computed in the pre-computation phase and

is added to calculate the final total cost.

We formulate our mathematical model as a MILP. The

MILP formulation is depicted above. As shown, the objective

function is to find matrix M′
V G

, which defines the mapping

between AVs and customer groups as well as a sequence of

groups to be covered by each AV (i.e., representing the route

of each AV), to minimize the total cost. Consider an example

solution shown in Fig. 4 for AV vi to better explain M′
V G

.

The solution indicates that vi is scheduled to visit three groups

in the order of g2, g4, and then g3.

Constraint (1) ensures that each group is covered by only

one AV, and all groups are covered. Constraint (2) specifies

that the total cost, which includes the mobile and stationary

expenses for AVs as well as the drone-related costs, must not

exceed the available budget b. Constraint (3) dictates that the

number of customer locations covered by an AV should be

smaller than the AV’s capacity. Since MV G
i, j = 1 when group

j ∈ G is covered by AV i ∈ V , if we multiply MV G
i, j by∑

k∈L

MLG
j,k (i.e., the total number of customer locations of group

j), we obtain the total number of customer locations of the

group covered by an AV i ∈ V . If we repeat this computation

for all groups, we get the total number of customer locations

covered by an AV v, which should be smaller than its capacity.

Constraint (4) is used to ensure that each AV has enough

gas to serve all customer locations assigned to it. Constraint

(5) enforces that the total operation time of an AV does not

exceed the available time of the AV. This means that an AV

should return to its original location before its available time

is expired. Constraint (6) is an equality constraint that defines

the total amount of time that an AV has waited for its drones

to complete delivery. Constraint (7) ensures that each AV

should receive a compensation greater than or equal to the

minimum amount of compensation m. Constraint (8) ensures

that each AV can perform at most P battery swap operations

for its drone. Here, p is the maximum number of battery swap

operations defined for each group. Constraints (9) and (10) are

used to compute the k-th customer group to visit (1 ≤ k ≤ ni ),

where ni is the total number of customer groups that AV vi

is scheduled to visit. More precisely, M′
V G
i, j = k implies that

group j is the k-th group visited by AV i . Thus, constraint (9)

indicates that, if M′
V G
i, j = k, the waiting location for the k-th

group served by AV i should be the one assigned to group j .

Constraint (11) defines an equality constraint used to compute

ni . Constraints (12) and (13) compute the total cost dT
i and

the total time τ T
i for each AV i ∈ V , respectively. Constraint

(14) is used to derive MV G from M′
V G

where each element

of MV G represents whether the corresponding customer group

has been served or not, i.e., MV G
i, j = 1 means that group j ∈ G

is covered by AV i ∈ V .

V. GREEDY APPROACH

As A-VRPD is an NP-hard problem, we propose a greedy

algorithm to substantially reduce running time for large-scale

delivery scenarios. The fundamental principle of the greedy

algorithm is to iteratively select a participating AV that serves

the maximum number of customer locations at the lowest

possible cost, until all customer locations are covered or the

minimum compensation constraint is breached. The greedy

algorithm comprises two phases: tree-based computation of

the per-AV cost, and the selection of an AV associated with

the minimum cost. These two phases are iterated until a set

of AVs serving all customers is identified or the minimum

compensation constraint is violated. The specifics of these two

phases are presented below.

A. Tree-Based Computation of Per-AV Cost

The first phase of the greedy algorithm involves calculating

the per-AV cost for each vehicle by constructing a tree data

structure. To illustrate how the per-AV cost is computed,

consider the example in Fig.5, which depicts a tree built for AV

v. In this example, the tree’s root represents the distribution

center (also known as the depot). Each node in the tree’s first

level signifies a customer group that can be served by the AV

directly from the distribution center. Specifically, a customer

group is deemed serviceable by an AV if the number of

customer locations within the group is less than or equal to the

current number of parcels loaded onto the AV (assuming one

parcel delivery per customer), and the maximum number of

battery swap operations is not surpassed (i.e., p·
∑
j∈Ĝ

MV G
i, j ≤ P

for vehicle vi , where Ĝ ⊆ G is the set of customer groups

covered so far). The greedy algorithm permits partial coverage

of a customer group by defining a coverage ratio, with a default

of 100%. As illustrated in Fig.5, AV v has a load capacity of 6,

and customer group g1 can be served by AV v as it consists

of only 2 customers.
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Fig. 5. An illustration of a tree structure constructed by the greedy algorithm
for each AV.

The procedure for constructing nodes in the first level

is replicated for subsequent levels of the tree. Specifically,

we identify customer groups that can be served by AV v

from each node in the first level. It is important to note that

the number of parcels loaded on AV v decreases as the AV

has already covered a customer group in the previous level.

Additionally, fully covered customer groups are excluded. For

instance, as demonstrated in Fig. 5, when building nodes for

the second level from node g1, the number of parcels loaded

on AV v is reduced to 4, since the AV has served the two

customers in g1. Furthermore, we ensure that g1 is not used

to construct nodes in the second level, as it has already been

completely covered. The greedy algorithm persists in building

nodes in subsequent levels until all parcels loaded on the AV

have been delivered to customers.

Upon constructing the tree for AV v, we can compute

the per-AV cost for v. Specifically, each edge in the tree is

associated with the cost of covering a customer group. For

instance, as depicted in Fig. 5, the edge connecting nodes

p and g1 is associated with the cost cg1 to cover customer

group g1. More precisely, the cost to cover customer group j

from the current location i is defined as (di, j c
M
v + τ D

j cS
v )/| j |,

where | j | represents the number of customers belonging to

customer group j (i.e., the group’s size). The greedy algorithm

prioritizes customer groups with more customers when the

traveling distance is equal, by dividing the group’s coverage

cost by its size. As a result, we can calculate the sum of

edge weights along a simple path between the root and a

terminal node. The per-AV cost corresponds to the smallest

cost of simple paths to all terminal nodes. Notably, the simple

path with the lowest cost represents the sequence of customer

groups visited by the AV.

B. Selection of AV

Given the per-AV costs of all AVs, the next step of the

greedy algorithm is to select an AV with the minimum per-

AV cost. Algorithm 1 summarizes how an AV is selected in a

greedy fashion. Lines 3-7 indicate the process of building the

tree and computing the per-AV cost for each AV. Line 9 shows

that the greedy algorithm finds an AV with the minimum per-

AV cost. Once such an AV with the minimum per-AV cost

is found, the number of participating AVs nv is incremented

by one (Line 10), and the customer groups covered by the

AV are excluded (Line 12). Also, the total cost c f is updated

by adding the per-AV cost of the selected AV (Line 13). The

above-mentioned process is repeated until all customer groups

are covered or the minimum compensation constraint (i.e., [b−

c f ]/2 > m · nv) is violated. (Line 2).

Algorithm 1 The Greedy Algorithm

1 c f ← 0

2 while |G| > 0 and [b − c f ]/2 > m · nv do

3 for each AV v ∈ V do

4 Tv ← BuildTree(v)

5 cv ← ComputePerAVCost(Tv, v)

6 // CV is a set of per-AV costs

7 CV ← CV ∪ cv

8 // Find v′ ∈ V with the minimum cost using CV

9 v′← FindAVMinCost(CV )

10 nv = nv + 1

11 // Gv′ is a set of customer groups covered by AV v′

12 G ← G \ Gv′

13 c f ← c f + cv′

14 CV ← ∅

There are noteworthy aspects of the greedy algorithm worth

mentioning. The algorithm permits the same AV to be selected

multiple times. We observe that the greedy algorithm tends to

choose the same vehicle when there are insufficient available

AVs. One important consideration is that when the same AV is

selected, we ensure that the additional cost for the AV to return

to the facility center to reload parcels is incorporated into the

per-AV cost. Additionally, the greedy algorithm accounts for

the traveling costs of moving from an AV’s original location

to the distribution center, as well as the cost of traveling from

the final customer group back to the original location. This

ensures a more accurate calculation of the per-AV cost.

VI. COMPUTATIONAL RESULTS

In this section, we evaluate the performance of the proposed

approach. The MATLAB optimization toolbox [57] is used to

implement the optimization framework for A-VRPD and the

proposed greedy algorithm. In particular, the mixed-integer

linear programming (MILP) solver is used. For performance

comparison, we implement two state-of-the-art VRP-D algo-

rithms denoted by SoA1 [33] and SoA2 [34], respectively.

Specifically, SoA1 allows a drone to return to a vehicle, which

is different from the one where it was launched, to swap its

battery and/or to pick up parcels. We implement their adap-

tive multi-start simulated annealing (AMS-SA) metaheuristic

algorithm. SoA2 extends a traditional VRP-D formulation by

considering the customer time window. We implement their

variable neighborhood search (VNS) heuristic algorithm while

relaxing the time window constraint to ensure fairness in

performance comparison.

We are also aware of a closely-related problem called the

Two Echelon Vehicle Routing Problem (2E-VRP). In 2E-

VRP, the logistics network consists of two echelons. More
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Fig. 6. An area in the city of Memphis where the simulation study is
performed. The Google Map API is used to calculate the trajectories of
vehicles to serve the customer locations.

specifically, parcels are delivered from the depot to the satel-

lites in the first echelon. And then, the parcels are delivered

from the satellites to customers in the second echelon. The

objective of 2E-VRP is to optimize the total transportation

cost. Although A-VRPD has some common aspects compared

to 2E-VRP, there are notable differences between the two:

(1) In A-VRPD, AVs are selected based on heterogeneous

characteristics of each AV such as varying capacities, initial

locations, fuel level, available time. Such a vehicle selection

mechanism does not exist in 2E-VRP; (2) In A-VRPD, a drone

is used to serve customers, and therefore, the routing path in

the second echelon for VRP-D can be significantly simplified.

On the other hand, in 2E-VRP, the 2nd-level trucks are used

to serve customers; (3) In 2E-VRP, the start and end locations

for trucks are fixed. The 1st-level trucks start and end at

the depot. The 2nd-level trucks start and end at a satellite.

On the other hand, in A-VRPD, each AV has individual start

and end locations; (4) More importantly, in A-VRPD, vehicles

do not deliver since they are autonomous vehicles. Therefore,

A-VRPD does not incur the fixed cost, i.e., wages for drivers,

thereby creating extra profits that can be shared with AV

owners. 2E-VRP does not have such a mechanism. With

those key differences in mind, we implement a state-of-the-art

heuristic algorithm for 2E-VRP [35]. In particular, we exclude

the pickup demands for fair performance comparison. The

proposed optimization framework, greedy algorithm, and the

state-of-the-art heuristic algorithms are executed on a PC

equipped with Intel Core i7-9750H and 16GB RAM.

Different delivery scenarios are used in this simulation

study. More specifically, 10 random delivery scenarios are

created. In each scenario, 500 customer locations are ran-

domly selected. These customer locations are organized into

80 groups based on a grid zoning method and the minimum

number of battery swap operations (i.e., p = 2). It is noted that

a different zoning method can be easily adopted such as [56].

Fig. 6 shows a sample delivery scenario with a depot, customer

locations, and customer groups. Additionally, we consider

different AV types including sedans (type 1), SUVs (type 2),

and pickup trucks (type 3). We assume that AVs are uniformly

distributed in the area. The default number of available AVs

is set to 50.

Since the objective of the proposed approach is to minimize

the total operational cost, the key metric for this simulation

TABLE III

THE DEFAULT INPUT PARAMETERS USED FOR SIMULATION

study is the amount of profits generated for both the delivery

company and AV owners. Specifically, profits for AV owners

are produced based on the 50:50 profit model that allows

the delivery company and participating AV owners to equally

share profits. Note, however, that any profit model can be

easily adopted. In addition to measuring the cost, another main

metric that we use in this simulation study is the running time.

We measure these two metrics by varying delivery scenar-

ios and the number of available AVs. Table III summarizes

the default parameters used in this simulations study. More

precisely, the fuel costs for different types of vehicles are

determined based on real-world fuel consumption data [58].

The total budget b is determined based on a real-world salary

for truck drivers [59]. More specifically, considering the fact

that a truck driver makes approximately $24 per hour and

covers about 100 customers a day [60], [61], the per-customer

cost for the delivery company is roughly $2.4; Since there are

500 customers to serve, the budget b is set to $1,200.

A. Cost Analysis

A notable advantage of A-VRPD is that it does not involve

the fixed cost in terms of wages for drivers since AVs do not

deliver parcels. On the other hand, VRP-D solutions produce

more effective routes for both vehicles and drones since

vehicles deliver parcels in tandem with drones. Therefore, per-

formance degradation for A-VRPD in terms of effectiveness of

vehicle route is inevitable. In this section, we evaluate the per-

formance degradation compared with state-of-the-art VRP-D

and 2E-VRP algorithms. More specifically, we measure the

total cost based on the total traveled distance (i.e., excluding

the fixed cost) for our solution, SoA1, SoA2, and 2E-VRP

under 10 random delivery scenarios.

Results are depicted in Fig. 7. As shown, the total cost

for A-VRPD is higher than that for VRP-D algorithms. The

reason is that the VRP-D algorithms produce more efficient

routes for trucks and drones because trucks and drones can

visit any customer location. In contrast, in A-VRPD, AVs are

only allowed to visit the waiting locations of customer groups.

In addition, our solution for A-VRPD includes the stationary

cost which is induced while the AV is waiting for its drone to

deliver (See Fig. 8 demonstrating that the stationary cost takes

21.1% of the total cost on average). On average, the total cost

for A-VRPD (Greedy) is higher than that for SoA1 and SoA2

by 12.5% and 22.1%, respectively.
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Fig. 7. The total operational cost for vehicles and drones excluding the fixed
cost (wages).

Fig. 8. The stationary cost for A-VRPD.

An interesting observation is the performance gap between

the VRP-D algorithms and the 2E-VRP algorithm. Specifi-

cally, the total cost for the 2E-VRP algorithm is higher than

that for SoA1 and SoA2 by 8.1% and 17.5%, respectively.

A possible reason is that the 2E-VRP algorithm produces

routes separately for the level-1 vehicles and level-2 vehicles,

resulting in suboptimal routing paths compared to the VRP-D

algorithms. Another reason is that the VRP-D algorithms use

drones that have a smaller operational cost than trucks.

We then compare the total cost for our solution with the

2E-VRP algorithm. We observe that our solution generates a

higher cost than that for the 2E-VRP algorithm despite the

fact that out solution uses drones with a lower operational

cost to serve customers, while, in the 2E-VRP algorithm, the

2nd-level trucks deliver parcels to customers. The reason for

the degraded cost for A-VRPD is that AVs have a smaller

load capacity depending on vehicle types; as such, they have

to return to the depot to reload especially when there are not

enough available AVs. Another reason is because the A-VRP

solution requires AVs to move from their original locations

to the depot, and then back to their original locations once

delivery is completed, thereby increasing the cost.

Although our solution produces less efficient routes for

vehicles and drones, it should be noted that the results in Fig. 7

do not account for the fixed cost (wages) which comprises a

huge portion of the total operational cost. In the next section,

we analyze the extra profits generated from the fact that the

A-VRP algorithm does not incur the fixed cost.

Fig. 9. The profits generated for the delivery company in 10 random delivery
scenarios.

B. Profit Analysis

In this section, we analyze profits generated by the proposed

optimal and greedy algorithms and compare with SoA1, SoA2,

and 2E-VRP algorithms. The profit here is defined as the

budget b subtracted by the total cost to serve all customers.

In this experiment, the total cost for SoA1, SoA2, and 2E-VRP

includes the fixed cost while our A-VRPD algorithms do not

incur the fixed cost.

The profits for the delivery company under varying delivery

scenarios are depicted in Fig. 9. The average profits for

the greedy and optimal algorithms are $412.96 and $397.14,

respectively. The optimal algorithm achieves 3.9% higher

profits on average compared with the greedy algorithm. Such a

small difference in earned profits between the two algorithms

demonstrates the effectiveness of the greedy algorithm, espe-

cially considering the significantly faster running time of the

greedy algorithm. More detailed experimental results on the

running time are presented in Section VI-E.

We also measure the profits produced by SoA1, SoA2, and

2E-VRP algorithms and compare with that for our greedy

algorithm. The results indicate that, on average, the greedy

algorithm achieves higher profits by 111.7%, 93%, and 154.3%

compared with that for SoA1, SoA2, and 2E-VRP algorithms,

respectively. Overall, despite the performance degradation for

A-VRPD in terms of the effectiveness of routes for vehicles

and drones (as presented in Section VI-A), the proposed

algorithms allow for significantly higher profits compared with

state-of-the-art algorithms.

The profits for company accrued with the proposed

approach can be used to provide compensations to AV owners.

A logistics company can use these profits to attract more AVs

to participate, potentially leading to higher profits. Fig. 10

depicts the results that the average profit for each AV owner

is $8.26 and $7.94 per day when the optimal and greedy

algorithms are used, respectively. A daily profit of $8.26 for

AV owners translates into a monthly profit of about $247. It is

worth to note that this is a net profit excluding all other costs

for AV owners such as the fuel/mileage cost. Additionally,

this profit is generated without involving the human labor

of the AV owner at all! Another interesting aspect is that

depending on the number of available AVs, this monthly profit
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Fig. 10. The profits generated for AV owners under 10 different delivery
scenarios.

Fig. 11. The profits for the delivery company with varying numbers of
available AVs under 10 different delivery scenarios.

can increase up to $1,229 per month under our scenarios. In the

next section, we present an in-depth analysis of the effect of

the number of AVs.

C. Number of Available AVs

The profits for the delivery company and AV owners depend

on the number of available AVs. We evaluate the effect of the

number of available AVs on the profits for the company and

AV owners. The number of available AVs is varied from 10 to

100 with an interval of 10 to measure the profits.

Fig 11 depicts the profits for the delivery company. It is

observed that the profits for company increase as the number

of available AVs increases regardless of the algorithms. The

reason for the lower profit with a smaller number of available

AVs is because of the additional cost for AVs to return to the

distribution center for reloading parcels. In contrast, such an

additional cost can be saved when there is sufficiently large

number of AVs available, thereby increasing the profits.

We then evaluate the effect of the number of available AVs

on the profits for AV owners. Fig. 12 depicts the results.

In contrast to the profits for the delivery company which

increase as the number of AVs increases, the profits for

AV owners become higher with a smaller number of AVs.

These results demonstrate that serving more customers is

more profitable for AVs despite the additional cost incurred

for them to return to the distribution center for reloading

parcels. Although AV owners receive higher profits when

Fig. 12. The profits for participating AV owners with varying numbers of
AVs under 10 different delivery scenarios.

Fig. 13. The delivery finish time measured with varying numbers of AVs.

there the number of available AVs is smaller, a small number

of AVs leads to increased delivery finish time. More details

on simulation results in terms of the delivery finish time

are presented in the following section. We also observe that

the decreasing trend of profits flattens out as the number of

available AVs increases. The reason for this observation is that

AVs are recruited only within the available budget b; As such,

not all AVs may be used even though they are available.

D. Delivery Finish Time

We evaluate the effect of the number of available AVs on

the delivery finish time. Fig. 13 depicts the results, which

demonstrate that the delivery finish time substantially increases

as the number of AVs decreases. More specifically, the delivery

finish time for 10 available AVs is increased by 360% on

average, when the optimal algorithm is used, compared with

that for 100 AVs. Similarly, the delivery time for 10 available

AVs increases by 365% higher on average when the greedy

algorithm is used, compared with that for 100 available AVs.

The reason for the higher delivery finish time is attributed to

the additional delay for AVs to return to the distribution center

to reload parcels.

E. Running Time

One of the key benefits of the proposed solution is that

it is designed to significantly reduce the running time by
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TABLE IV

RUNNING TIME IN SECONDS

simplifying the routes of AVs leveraging the fact that AVs

do not deliver parcels, and also by pre-computing the drone

routes through organization of customer locations into groups.

In this section, we evaluate the running time of our approach

compared with the SoA1, SoA2, and 2E-VRP algorithms in

5 different random delivery scenarios by varying the number

of customers.

Results are presented in Table IV. We observe that the

running time of both the optimal and greedy algorithms is

substantially smaller compared with that for VRP-D heuristic

algorithms. Specifically, it is notable to observe that the run-

ning time for our optimal algorithm is 3X and 13X faster than

that for SoA1 and SoA2, respectively. The running time for our

greedy algorithm is 107X and 342X faster compared with that

for SoA1 and SoA2, respectively. The results demonstrate the

impact of the simple routes of AVs since they do not deliver

parcels and the effect of the proposed pre-computation phase

on significantly reducing the running time. In comparison with

the 2E-VRP algorithm, the optimal and greedy algorithms

improve the running time by 2X and 89X, respectively. The

reason for the improved running time can be attributed to

the fact that the 2E VRP algorithm consumes much more

time to simultaneously optimize the path for both the 1st and

2nd-level, and the customer-to-satellite mapping.

F. Benchmark Dataset

For more effective performance evaluation, in this section,

a benchmark dataset adopted from a state-of-the-art solution

for VRP-D [33] is used for profit analysis for our solutions,

SoA1, SoA2, and 2E-VRP algorithms. The dataset is the

modified version of the instances created by [62]. Among

the instances consisting of 6 categories i.e., C1, C2, R1,

R2, RC1 and RC2, we adopt the RC2 instances for our

experiments since this scenario has the most resemblance

with our own dataset. In the RC2 instances, the customer

coordinates are randomly produced and clustered in a grid

region of [100, 100]2. The maximum waiting time for drones

T is set at 10 min. Since there are only 100 customer locations,

we used the budget of $240 (i.e., 2.4*100) and the number of

vehicles was set to 10.

Figs. 14 and 15 display the profits for the delivery company

and AV owners, respectively. Interestingly, the results are very

similar to what we obtained from the experiments performed

with our own dataset. More specifically, the profits for the

company obtained with the optimal algorithm are slightly

higher than that for the greedy algorithm, and the greedy algo-

rithm achieves much higher profits for the delivery company

Fig. 14. The profits for the delivery company under 8 different delivery
scenarios of the benchmark dataset.

Fig. 15. The profits for participating AV owners under 8 different delivery
scenarios of the benchmark dataset.

compared with that for SoA1, SoA2, and 2E-VRP algorithms

mainly because our algorithms do not incur the fixed cost. The

profits for the company obtained with the greedy algorithm are

higher by 89%, 75%, and 126% compared with that for the

SoA1, SoA2, and 2E-VRP algorithms, respectively. Regarding

the profits for AV owners, it is observed that the average profits

for each AV owner are $6.5 and $6.2 when the greedy and

optimal algorithms are used, respectively.

VII. CONCLUSION

In this article, we have presented an Autonomous Vehicle

Routing Problem with Drones (A-VRPD) that integrates AVs

into a traditional vehicle routing problem to fully automate

drone-based last-mile delivery. A Mixed Integer Linear Pro-

gramming (MILP) based mathematical model is developed to
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simultaneously optimize the scheduling and routes of AVs,

serving customers in a way that minimizes the total operational

cost. The proposed two-phase approach significantly reduces

the running time, addressing the scalability issue stemming

from the large number of AVs and enabling frequent solution

update to account for real-time traffic conditions. We have also

presented a greedy algorithm to solve A-VRPD, especially

for large-scale delivery scenarios with a large number of

customers. Extensive simulations were performed in various

delivery scenarios with varying fuel costs and salaries for

truck drivers. The results demonstrate that the proposed solu-

tion produces a significant amount of profits both for the

delivery company and AV owners at a much faster running

speed in comparison with state-of-the-art VRP-D and 2E-VRP

algorithms.

The expected social impact of the proposed solution is

significant as personal delivery is emerging as a new paradigm

especially in recent years when many countries are suffering

from driver shortage. There are numerous companies that

have or are planning to adopt a new solution to utilize

personal vehicles to deliver parcels based on a crowd-sourcing

approach. Amazon introduced the Amazon Flex system that

allows anyone to easily participate in parcel delivery with only

minimum requirements. UPS also adopted the personal vehicle

driver system, and FedEx is exploiting part-time drivers to

perform delivery using their personal vehicles. Not to mention

the major logistics companies, various local companies are

currently running their delivery business relying on personal

vehicles. Given the growing demand for personal delivery and

significant advances in autonomous vehicles, we expect that

the proposed work will contribute to opening the new door for

research on fully automated crowd sourcing and drone-based

last-mile delivery systems to help our society prepare for the

future.
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