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A-VRPD: Automating Drone-Based Last-Mile
Delivery Using Self-Driving Cars

Navid Mohammad Imran™, Sabyasachee Mishra™, and Myounggyu Won"~, Member, IEEE

Abstract— Drone-based last-mile delivery is an emerging tech-
nology that uses drones loaded onto a truck to deliver parcels
to customers. In this paper, we introduce a fully automated
system for drone-based last-mile delivery through incorporation
of autonomous vehicles (AVs). A novel problem called the
autonomous vehicle routing problem with drones (A-VRPD) is
defined. A-VRPD is to select AVs from a pool of available
AVs based on crowd sourcing, assign selected AVs to customer
groups, and schedule routes for selected AVs to optimize the
total operational cost. We formulate A-VRPD as a Mixed Integer
Linear Program (MILP) and propose an optimization framework
to solve the problem. A greedy algorithm is also developed to
significantly improve the running time for large-scale delivery
scenarios. Extensive simulations were conducted taking into
account real-world operational costs for different types of AVs,
traveled distances calculated considering the real-time traffic
conditions using Google Map API, and varying load capacities of
AVs. We evaluated the performance in comparison with two dif-
ferent state-of-the-art solutions: an algorithm designed to address
the traditional vehicle routing problem with drones (VRP-D),
which involves human-operated trucks working in tandem with
drones to deliver parcels, and an algorithm for the two echelon
vehicle routing problem (2E-VRP), wherein parcels are first
transported to satellite locations and subsequently delivered from
those satellites to the customers. The results indicate a substantial
increase in profits for both the delivery company and vehicle
owners compared with the state-of-the-art algorithms.

Index Terms— Drone-based last-mile delivery, vehicle routing
problem with drones, traveling salesman problem with drones.

I. INTRODUCTION

HE drone-based last-mile delivery [1] is to utilize drones

in delivering parcels. There are different methods of
utilizing drones for last-mile delivery, e.g., drone-only delivery,
drone-truck delivery as separate entities, and collaborative
drone-truck delivery. In this paper, drone-based last-mile
delivery refers specifically to the collaborative approach in
which one or more drones are loaded onto a truck, and both
the drones and the truck work together to deliver parcels
to customers. Due to their ability to fly, drones can take
a more direct route to customers and are less affected by
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Fig. 1. An illustration of major drone-based last-mile delivery problems.

ground obstacles [2]. Additionally, the speed of drones is faster
than conventional trucks, allowing for much faster access to
customers [3]. These unique characteristics of drones enable
significantly reduced operational cost and increased deliv-
ery speed for last-mile logistics, potentially revolutionizing
traditional parcel delivery systems [4]. Numerous logistics
companies such as Amazon [5], Google [6], DHL [7], and
Alibaba [8] have been increasingly adopting drone-based
delivery solutions.

A significant amount of research has been devoted to
developing collaborative parcel delivery systems that involve
both trucks and drones. Murray and Chu were the first who
formally defined the problem of combining drones with tra-
ditional trucks to deliver parcels more effectively [9]. In their
pioneering work, two different problems were introduced: the
Flying Sidekick Traveling Salesman Problem (FSTSP) and
the Parallel Drone Scheduling Traveling Salesman Problem
(PDSTSP). As shown in Fig. 1, in FSTSP, a single vehicle
works in tandem with a drone to deliver parcels (i.e., a
drone loaded on a truck, traveling together, can fly to serve a
customer on its own), and in PDSTSP, a fleet of drones and
vehicles deliver parcels separately from the depot.

There exist numerous variants of FSTSP [10]. One of the
most actively researched one is the traveling salesman problem
with drone (TSP-D) [11], [12] where a single drone and a
single truck is assumed. This problem has been addressed
in many papers [13], [14], [15], [16], [17], [18], [19].
There is another well-researched variant known as TSP-mD
[20], [21], [22]. TSP-mD is an extension of TSP-D where
a truck is loaded with m drones which are launched from
the truck to serve customers and rejoin the truck later at
a different location. Other works investigated more general
delivery scenarios with multiple drones and multiple trucks,
which is called the vehicle routing problem with drones
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(VRP-D) [23], [24], [25], [26], [27]. Our work is closely
related to VRP-D; as such, a specific focus is given to the
VRP-D problem. We present the detailed review of numerous
solutions for TSP-D, TSP-mD, and VRP-D in Section II.

In contrast to existing VRP-D solutions, we study the
next-generation drone-based last-mile delivery based on
autonomous vehicles (AVs). Due to the significant advances of
AV technologies [28], innovative mobility services leveraging
a large batch of AVs [29], [30] are expected to emerge such
as automated taxi [31] and fully automated parcel delivery
systems [32]. In light of these technological advancements
and evolving societal needs, we introduce a new variant of
VRP-D in this article, termed the Autonomous Vehicle Routing
Problem with Drones (A-VRPD). Our aim is to simultaneously
optimize the scheduling and routes of AVs in tandem with
drones to minimize overall operational costs. Through this
article, we investigate a solution for A-VRPD that enables
fully automated drone-based last-mile delivery.

A-VRPD has a number of differences compared to the
traditional VRP-D and presents several novel challenges.
First, in A-VRPD, there is no driver; in contrast, in VRP-
D, when drones are delivering, trucks are also used to per-
form delivery. This makes direct application of an existing
solution for VRP-D for solving A-VRPD difficult. Second,
the problem complexity for enabling rendezvous motion of
trucks and drones is relaxed in A-VRPD, thereby requiring a
completely new mathematical model. Third, since A-VRPD
involves participation of individual AVs based on crowd-
sourcing, the number of AVs is significantly larger than that
for traditional trucks for VRP-D. Therefore, the scalability
becomes a crucial issue for A-VRPD. Furthermore, each AV’s
unique properties such as varying load capacities, fuel levels,
fuel consumption rates, vehicle types, initial locations, and
available time frames must be taken into account in designing
a solution for A-VRPD. Fourth, another notable difference is
that traditional VRPD formulations assume a single customer
per drone trip. On the other hand, A-VRPD allows drones to
serve multiple customers at a single trip.

Considering the unique aspects of A-VRPD, in this article,
we present a novel solution to solve A-VRPD. The solution
aims to minimize the total operational cost including the
vehicle and drone costs to provide maximum profits to both
the logistics company and individual AV owners. Considering
a large number of AVs with heterogeneous characteristics
such as the available time frame, loading capacity, and fuel
efficiency, the proposed solution simultaneously optimizes the
scheduling and routes of AVs to serve customers in collabo-
ration with drones by taking into account the real-time traffic
conditions. We formulate A-VRPD as a mixed integer linear
program (MILP) and propose an optimization framework to
effectively solve the problem. To enhance the scalability for
large-scale delivery scenarios, a greedy algorithm is also
proposed. A novel tree-based cost-computation algorithm is
designed to maximize profits based on parameters such as
the real-world operational costs for different types of AVs,
expected traveling distances and times calculated using Google
Map API, varying load capacities of AVs, and available
operation times of AVs.
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Extensive simulations are performed to evaluate the effec-
tiveness of the proposed solution. Numerous random delivery
scenarios and varying numbers of available AVs are considered
to validate the performance, in comparison with two state-of-
the-art VRP-D heuristic solutions [33], [34] and a 2E-VRP
algorithm [35]. The results demonstrate that the proposed
solution significantly reduces the running time at the cost
of relatively small performance degradation compared to the
state-of-the-art algorithms. We also demonstrate that the zero
fixed cost (wages) for A-VRPD leads to a significant amount
of profits that can be shared between the delivery company
and individual AV owners. The contributions of this article
are summarized as follows.

o To the best of our knowledge, we are the first to explore
a next-generation vehicle routing problem that integrates
AVs to entirely automate the drone-based last-mile deliv-
ery process.

« We formulate the A-VRPD as a MILP, thoroughly
accounting for its differences compared to the traditional
VRP-D, with the goal of minimizing operational costs
through the simultaneous optimization of AV scheduling
and routing.

o A novel greedy heuristic solution is proposed to solve
A-VRPD targeting large-scale delivery scenarios.

« Extensive simulations are conducted under various ran-
dom delivery scenarios to demonstrate that the proposed
solution significantly reduces the running time while
producing large profits for both the logistics company
and AV owners compared with state-of-the-art VRP-D
and 2E-VRP solutions.

In Section II, we review the related work concentrating on
drone-based last-mile delivery. The system model and nota-
tions used in this article are presented in Section III. We then
formulate the A-VRPD problem as an ILP in Section IV and
present the details of the greedy algorithm in Section V. The
simulation results are analyzed in Section VI, followed by the
conclusion of this work in Section VII.

II. RELATED WORK

While the vehicle routing problem (VRP) [44] has been
extensively researched due to its relevance across various
domains, including berth allocation [45] and machine schedul-
ing [46], this section primarily offers a comprehensive review
of diverse strategies employed in drone-based last-mile deliv-
ery, particularly highlighting the most recent solutions for
VRP-D. Murray and Chu was the first to formally define
the problem of drone-truck collaboration for parcel deliv-
ery [9]. In their pioneering work, two different problems were
introduced: the Flying Sidekick Traveling Salesman Problem
(FSTSP) where a single vehicle delivers parcels in collabora-
tion with a single drone, and the Parallel Drone Scheduling
Traveling Salesman Problem (PDSTSP) where a vehicle and
a fleet of drones deliver parcels separately from the depot.

We first review numerous variants of FSTSP. One of the
widely researched one is the traveling salesman problem
with drones (TSP-D). Various heuristics have been proposed
to solve TSP-D [13], [14], [15], [16], [17], [18], [19].
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Schermer et al. focused on the scalability of the problem and
proposed two heuristic solutions, i.e., the two-phase heuris-
tic (TPH) and single-phase heuristic (SPH) [17]. Bouman
et al. proposed a dynamic programming approach to solve
TSP-D [18]. Tang et al. created a constraint programming
approach to solve the problem [19]. Poikonen et al. developed
four branch-and-bound-based heuristics [47].

Variants of TSP-D have also been investigated. Ha et al.
addressed TSP-D focusing on the operational cost [15].
Jeong et al. took into account the power consumption of
drones and the restricted flying areas of the drones [48].
Dukkanci et al., similar to [15], aimed to minimize the opera-
tional cost considering the energy consumption of drones [49].
Wang et al. developed a multi-objective version of TSP-D to
optimize both the operational cost and the time required to
serve all customers [50]. Nonetheless, dependence on a single
drone and a truck for delivery can lead to challenges such
as limited delivery capacity and coverage as well as extended
delivery time [24], which can result in higher costs per delivery
location [25].

Wang et al. generalized TSP-D and introduced the vehicle
routing problem with drones (VRP-D) [23]. Compared to other
solutions, multiple trucks and multiple drones are considered
assuming that drones can be launched from a truck at any of
the customer locations and the base station. Poikonen et al.
improved Wang’s work by considering the limited battery
of drones, varying distance metrics, operational cost in the
objective function [24]. Sacramento et al. incorporated the
time-limit constraint in the objective function and proposed
an adaptive large neighborhood search metaheuristic [26].
Schermer et al. adopted sets of valid inequalities to improve
the performance [25]. Kitjacharoenchai et al. developed a
solution for the problem to address the limitations of the
drone-launch and delivery time [27]. Murray et al. proposed a
solution for an arbitrary number of heterogeneous drones for
a truck with specific emphasis on real-world issues [51].

Since our work is directly related to VRP-D, we give a
special emphasis on reviewing the details of latest solutions
for VRP-D (published since 2022). Table I summarizes char-
acteristics of those solutions in comparison with our work.
Kuo et al. [34] study an extension of VRP-D by taking
into account the constraint of customer time windows. More
specifically, each customer is associated with a time window
and should be visited by either a vehicle or a drone within
the time window. A variable neighborhood search heuristic is
proposed to solve the problem. Wang et al. [36] investigate
VRP-D considering road traffic conditions, which is called
the truck—drone hybrid routing problem with time-dependent
road travel time drones (TDHRP-TDRTT). An iterative local
search algorithm is developed to minimize the total distribution
cost. Gu et al. [37] focus on the limitation of VRP-D that
a drone visits only a single customer per trip. They aim to
improve the practicality of the problem by allowing drones to
visit multiple customers per trip before the drone returns to
the truck where it was launched. Huang et al. [38] develop
an ant colony optimization (ACO) algorithm to solve VRP-D
while no significant modification is made to traditional VRP-D
formulation. Nguyen et al. [39] extend the problem by adding
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two additional constraints. First, the total weight of parcels is
considered in determining whether the capacity of a vehicle
is exceeded. Second, the total working time of a vehicle
and a drone is considered to ensure that each vehicle (both
trucks and drones) do not operate longer than a pre-defined
value. Rave et al. [40] incorporate specific locations called
micro depots where drones can be launched. An adaptive
large neighborhood search algorithm is designed to solve
the extended version of VRP-D. Montafa et al. [41] note
that there does not exist an analysis of the impact of parcel
delivery using drones on sustainability and carbon emission
reduction and analyze the efficiency of drone-based delivery
for reducing carbon emissions. Sitek et al. [42] consider an
extended VRP-D, called the extended vehicle routing problem
with drones (EVRP-D) where mobile points (mobile hubs) are
deployed for drone take-offs. A genetic algorithm is designed
to optimize the cost as well as selection of mobile hubs.
Wu et al. [43] develop an improved variable neighborhood
decent algorithm to solve VRP-D in consideration of the
impact of the payload and flight time of a drone on energy
consumption.

While recent VRP-D solutions demonstrate remarkable per-
formance in determining optimal delivery routes for trucks
and drones, there are some limitations in their application
towards AV routing with drones. One primary limitation of
these solutions is their underlying assumption that trucks are
involved in delivery, which consequently leads to increased
costs due to the need for employing drivers. Moreover, existing
solutions face challenges in terms of scalability due to their
limitations in the number of trucks and customers that can be
accommodated. The scalability issue is expected to become
more pronounced as the solution incorporates the current
traffic conditions. Additionally, current solutions do not fully
take into account the individual properties of trucks, such
as varying load capacities, fuel levels, consumption rates,
vehicle types, and initial locations, which is crucial for the
crowd-sourcing-based approach that involves heterogeneous
AVs working in collaboration with drones.

III. PRELIMINARIES

In this section, we present basic definitions, notations and
assumptions related to AVs, customers, and drones. Fig. 2 can
be referred to throughout this section to get a better grasp of
the overall operation of the proposed approach.

A Dbasic mechanism is that an AV loaded with drones
traveling to a designated location, referred to as the “waiting
location,” where it can park and launch its drones to deliver
parcels to customers. The proposed approach is a crowd
sourcing-based delivery system where any AV owners can
participate to make profits. When participating for the first
time, an AV is directed to the nearest depot, where a readily
deployable automatic battery replacement system is installed
such as [52], [53], [54], and [55] (e.g., Fig. 3). The AV
owner is also expected to conveniently install the battery
replacement system on their vehicle’s roof-mounted carrier or
hitch-mounted cargo carrier (e.g., Fig. 3), as it operates as a
separate system powered by its own battery, eliminating the
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TABLE I
THE PUBLICATIONS RELATED TO VRP-D (PUBLISHED SINCE 2022)
References Driverl Avail | Parcel| Type | Begin | End Max Heuristic Opt. Objec- | Characteristics Opt.
time | ca- Cus- Methods tive method
pac- tomers
ity
Kuo et | yes no yes no Depot | Depot | 50 Variable Fuel cost Customer time windows MILP
al. [34] neighbor-
hood search
‘Wang et | yes no yes no Depot | Depot | 200 Iterated local | Fixed cost, | Time-dependent travel | Not
al. [36] search drone cost, | times speci-
truck-drone fied.
coordination
cost, truck
cost
Guetal. [37] | yes yes yes no Depot | Depot | 200 Iterative lo- | Fixed Deployed drones capable | MILP
cal search cost, total | of visiting multiple cus-
operation tomers
duration
Huang et | yes no yes no Depot | Depot | 200 Ant colony | Fixed «cost, | Similar to traditional | MILP
al. [38] optimization travel cost | VRP-D formulation
for  trucks
and drones
Nguyen et | yes yes yes no Depot | Depot | 400 Slack Total Available time and capac- | MILP
al. [39] induction operational ity of trucks
by sweep | cost incurred
removals by trucks
and drones
Rave et | yes yes yes no Depot | Depot | 200 Adaptive Fixed cost, | Dedicated drone stations | MILP
al. [40] large neigh- | traveling (microdepots)
borhood cost, waiting
search cost, service
cost
Montana et | yes no yes no Depot | Depot | 25 No heuristic Total Focused on reduction of | MILP
al. [41] emissions carbon emissions
generated by
both  trucks
and drones
Sitek et | yes no no no Depot | Depot | 100 Dedicated Fixed cost, | Mobile points (mobile | Constraint
al. [42] genetic operational hubs) wused for drone | satis-
algorithm cost, number | take-offs faction
of  mobile problem
points (CSP)
Wu et | yes no no no Depot | Depot | 199 Improved Delivery The drone payload and | MILP
al. [43] variable time flight time
neighbor-
hood descent
This paper no yes yes yes Any Any 500 Greedy Total Autonomous vehicles MILP
operational
cost for AVs
and drones

need for intricate connections to the AV. A logistics company
offers the minimum amount of compensation m to attract
participants and runs the proposed solution to select AVs to
use for delivery. Assume that there are N, AVs who wish to
participate denoted by a set V = {vi, va, ..., vn,}. Types of
AVs differ, i.e., sport utility vehicles (SUVs), trucks, and pas-
senger vehicles, which can be easily extended to include more
AV types. To calculate the total operational cost accurately,
we separately define the cost for using AV v when it is mobile,
denoted by cﬁ” , and when it is stationary, denoted by cf . These
mobile and stationary costs vary depending on AV types. The
load capacity of AV v denoted by g, represents the number of
parcels that can be loaded on the AV, which is also different
depending on AV types. Another important property of AV v is
the remaining fuel (or electricity for electric vehicles), which
is denoted by flf‘. We note that different types of AVs have

different fuel consumption rates. The fuel consumption rate
for AV v for the mobile and stationary modes are denoted by
va and fUS , respectively. AVs can only be utilized when they
are available. Therefore, the available time frame for AV v is
denoted by rlf‘ (usually provided by the AV owner). We also
assume that each AV has the maximum number of battery
swap operations denoted by P due to the limited number of
batteries it can load.

Next let us present notations and assumptions related to
customers. There are N; customer locations denoted by L =
{l1, 0o, ..., In,}. Parcels are delivered to these customer loca-
tions from a distribution center (also called as the depot).
These customers are organized into N, groups denoted by G =
{€1,82, ..., gn,}. The group membership of each customer is
represented by a N; x N matrix MZLC | where MlLJG = 1 means
that customer i € L belongs to group j € G. We assume
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Fig. 3. An example of an automated drone battery replacement platform [52]
and potential methods for mounting the system onto a vehicle.

that the delivery area is divided into zones as practiced by
many logistics companies [56]. A similar zoning approach
is used in creating the customer groups. More specifically,
customers are first organized into different groups based on
the company’s zoning policy. Subsequently, each group is
further divided by applying a maximum limit of battery swap
operations per group, denoted by p. If the customers in a
group cannot be serviced within p battery swap operations,
the group is divided into smaller ones, each of which can be
served within p battery swap operations. This parameter p is
used by the company to control the group size. Every group
has a designated “waiting location” where an AV is parked and
deploys its drone to deliver parcels to the customers in that
specific group. In particular, w; denotes the waiting location
for the j-th group in the sequence of groups served by AV
ieV.

Now we explain notations and assumptions pertaining to
drones. Note that AVs do not deliver parcels, and only drones
perform delivery. The proposed solution schedules AVs to
serve a set of customer groups. An AV i € V drives to a
waiting location wj. for serving its j-th group i € G, parks
there, and launches its drone. The drone is supposed to cover
all customers in that specific group. A drone can deliver
multiple parcels at a single trip. However, for simplicity,
we assume that a drone delivers one parcel per trip. When the
battery of the drone is depleted, it is automatically swapped.
The drone operation cost denoted by c; (dependent on the
traveled distance of a drone) is defined as a factor of the
mobile cost for AV. Following the method used in [34], in our
work, we set ¢g = 1/ 1OCUM . Since the waiting location and
customer locations are all known for each group, the total
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TABLE II
THE L1ST OF NOTATIONS
Symbol Description
V = {v1,v2,...,un,} | The set of available AVs
M The operational cost of AV v € V' in
o the mobile mode (per distance)
S The operational cost of AV v € V in
“ the stationary mode (per time)
qu The load capacity of AV v € V
7'{,4 The available time for v € V
M The fuel consumption rate of AVwv € V'
v (mobile)
fs The fuel consumption rate of AV v € V'
v (stationary)
m The minimum amount of compensation
for each AV
P The maximum number of drone battery

swap operations for each AV

The set of customers

The set of customer groups

The matrix that defines the group mem-
bership of each customer

The waiting location for the j-th cus-
wt tomer group in the sequence of groups
served by AVieV

The maximum number of battery swap

L={l,l2,.,In}
G={91,92, -, 9n,}

MLG

p operations allowed per group
MVG The matrix that defines a mapping be-
tween AVs and customer groups
c The drone operational cost (per dis-
d tance)
cg The total drone operational cost
The expected delivery finish time for
TgD drones(s) to cover customer group g €
b The available budget

operational cost for drones ch can be easily pre-computed,
which allows for significant reduction of running time (up to
350X faster running time is possible in some instances, as it
will be demonstrated in Section VI-E), making it extremely
extensible for a large number of customers. Similarly, the
expected time for a drone to finish delivery for all customers
in a particular group g € G denoted by ‘L'gD can also be easily
pre-computed. Table II summarizes all notations introduced in
this section.

IV. LAST-MILE DELIVERY USING AUTONOMOUS
VEHICLES WITH DRONES

This section presents an overview of the proposed approach,
followed by descriptions of the pre-computation phase and
mathematical model.

A. Overview

Our objective is to choose a subset of participating AVs,
represented by V, from the available AVs V (V C V).
Each vehicle v € V is assigned to cater to one or more
groups in G following a designated order (indicating the AV’s
route). The aim is to minimize the overall operational cost
of delivering parcels to all customers, adhering to a given
budget constraint b. We propose a two-phase solution that
concurrently optimizes the allocation of AVs to customer
groups and the routes of chosen AVs in order to minimize the
overall operational cost. More specifically, a pre-computation
phase is introduced in Section IV-B to address the scalability

Authorized licensed use limited to: University of Memphis Libraries. Downloaded on January 01,2024 at 15:42:33 UTC from IEEE Xplore. Restrictions apply.



9604

issue for existing VRP-D solutions, especially considering
a large number of AVs and customer locations. The results
of the pre-computation phase are provided as input to our
mathematical model to perform the AV-to-group mapping and
computation of the optimal AV routes. The details of the
mathematical model are presented in Section IV-C.

B. Pre-Computation Phase

A significant challenge for VRP-D is its limited scalability,
stemming from the intricate nature of the problem space.
Many heuristic solutions for VRP-D support a limited number
of customers due to their extensive running time. Reducing
the running time is especially crucial for A-VRPD, as it
involves a greater number of AVs and requires rapid updates
to accommodate real-time traffic conditions while AVs and
drones are serving customers. For example, based on current
traffic conditions and the inclusion of newly added AVs,
a vehicle may be quickly reassigned to cater to a customer
group that differs from its original schedule.

To tackle the scalability issue, we introduce a pre-
computation phase. In particular, this phase exploits the dis-
tinct features of A-VRPD to considerably decrease running
time, i.e., AVs do not engage in parcel delivery but simply
wait as drones carry out the deliveries to customers. Therefore,
the route of an AV can be simplified into a sequence of the
waiting locations that the AV visits. Additionally, in A-VRPD,
the drone path can be pre-determined because (1) customer
groups are determined by the company’s zoning policy and the
maximum allowable battery swap operations for each group,
and (2) drones are tasked with delivering parcels exclusively
to customers within a specific group. As we will show more
details in Section VI-E, the pre-computation phase enables by
up to 350X faster running time in some instances compared
to state-of-the-art VRP-D solutions, making frequent solution
update possible to account for real-time traffic conditions.

We now present the details of the pre-computation phase.
The total operational cost consists of the cumulative distance
dI' traveled by each selected AV v and the total time 7!
required for the journey, which includes the waiting time while
the AV’s drone serves customers. The pre-computation phase
is designed to reduce the computational delay for calculating
dvT and rUT by pre-calculating distance and time segments
constituting d! and 7.

Here we present the details on how distance segments
constituting dvT are pre-computed. Let us denote the length
of a route between two locations i and j by d; ;. The
length of a route is obtained using the Google MAP API to
take into account the real-time traffic conditions. We com-
pute all distance segments between two “essential” locations:
the distance (1) between the depot and a waiting location,
(2) between two waiting locations, and (3) between the depot
and the AV’s original location. The total distance d! for AV
v that is scheduled to visit a sequence of waiting locations

{wi, ..., w,} can then be computed using the pre-computed
distance segments as follows.
n—1
dvT =dyf +dfw + Zde-,wkH +dw,.f +df,
k=1
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This implies that an AV v initially proceeds to depot f for
loading parcels and a drone, after which it visits a series
of waiting locations w1, ..., w, to cater to customers. Upon
completion of service to all customers, the AV returns to the
depot and then proceeds to its original location.

Next, we explain how the time segments constituting the
total amount time for AV (t; ;) are pre-computed. Let us
denote the travel time between two locations i and j by 7; ;.
We calculate the travel time using the Google MAP API. The
total travel time for AV (rUT ) is then calculated based on the
pre-computed time segments as the following.

n—1
T = Tug 0 Ty D Tupy F T F T+ T
k=1

Note that for a more precise representation of total time,
we consider the time needed to load parcels and drones onto
the AV, denoted by tvL. Additionally, we account for the
cumulative waiting time of an AV while its drones complete
deliveries, represented by 7,V.

C. Mathematical Model

arg min Z(cﬁ" dl 4657l
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ieV
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Fig. 4. An example solution for AV v; scheduled to cover three groups in
the order of g5, g4, and then g3.

In this section, we present a mathematical model to solve
A-VRPD based on the distance and time segments derived
from the pre-computation phase. In this model, we aim to
minimize the total operational cost that is the sum of individual
vehicle costs for the selected AVs. This per-vehicle cost
for AV v is computed based on the total distance it has
traveled (dUT ) and the accumulated waiting time while its
drone serves customers (‘L'UW); Thus, the per-vehicle cost is
cM.al +c¢5 .7V, Note that 7V is included in the per-vehicle
cost because it reflects the AV’s energy consumption in the
idle mode to support the operation of its drone, i.e., to run
the system to communicate with the drone, check the battery
level of the drone, and run the automated battery replacement
system. Therefore, the total cost for all participating AVs is
S (M. al +¢5 - t)V). 1t should also be noted that the
fii(\)/ne cost is pre-computed in the pre-computation phase and
is added to calculate the final total cost.

We formulate our mathematical model as a MILP. The
MILP formulation is depicted above. As shown, the objective
function is to find matrix M'VC, which defines the mapping
between AVs and customer groups as well as a sequence of
groups to be covered by each AV (i.e., representing the route
of each AV), to minimize the total cost. Consider an example

solution shown in Fig. 4 for AV v; to better explain 1Y A
The solution indicates that v; is scheduled to visit three groups
in the order of g7, g4, and then g3.

Constraint (1) ensures that each group is covered by only
one AV, and all groups are covered. Constraint (2) specifies
that the total cost, which includes the mobile and stationary
expenses for AVs as well as the drone-related costs, must not
exceed the available budget b. Constraint (3) dictates that the
number of customer locations covered by an AV should be
smaller than the AV’s capacity. Since MVG = 1 when group

jeG 1s covered by AV i € V, if we multlply MVG by
> M

keL
J), we obtain the total number of customer locations of the

group covered by an AV i € V. If we repeat this computation
for all groups, we get the total number of customer locations
covered by an AV v, which should be smaller than its capacity.
Constraint (4) is used to ensure that each AV has enough
gas to serve all customer locations assigned to it. Constraint
(5) enforces that the total operation time of an AV does not
exceed the available time of the AV. This means that an AV
should return to its original location before its available time
is expired. Constraint (6) is an equality constraint that defines
the total amount of time that an AV has waited for its drones

% (i.e., the total number of customer locations of group
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to complete delivery. Constraint (7) ensures that each AV
should receive a compensation greater than or equal to the
minimum amount of compensation m. Constraint (8) ensures
that each AV can perform at most P battery swap operations
for its drone. Here, p is the maximum number of battery swap
operations defined for each group. Constraints (9) and (10) are
used to compute the k-th customer group to visit (1 < k < n;),
where n; is the total number of customer é{roups that AV v;
is scheduled to visit. More precisely, M/ k implies that
group j is the k-th group visited by AV i. Thus constraint (9)
indicates that, if M’ = k, the waiting location for the k-th
group served by AV 1 should be the one assigned to group ;.
Constraint (11) defines an equality constraint used to compute
n;. Constraints (12) and (13) compute the total cost dl.T and
the total time riT for each AV i € V, respectively. Constraint
(14) is used to derive MVC from M'VC where each element
of MV G represents whether the corresponding customer group
has been served or not, i.e., MlV JG = 1 means that group j € G
is covered by AVi e V.

V. GREEDY APPROACH

As A-VRPD is an NP-hard problem, we propose a greedy
algorithm to substantially reduce running time for large-scale
delivery scenarios. The fundamental principle of the greedy
algorithm is to iteratively select a participating AV that serves
the maximum number of customer locations at the lowest
possible cost, until all customer locations are covered or the
minimum compensation constraint is breached. The greedy
algorithm comprises two phases: tree-based computation of
the per-AV cost, and the selection of an AV associated with
the minimum cost. These two phases are iterated until a set
of AVs serving all customers is identified or the minimum
compensation constraint is violated. The specifics of these two
phases are presented below.

A. Tree-Based Computation of Per-AV Cost

The first phase of the greedy algorithm involves calculating
the per-AV cost for each vehicle by constructing a tree data
structure. To illustrate how the per-AV cost is computed,
consider the example in Fig.5, which depicts a tree built for AV
v. In this example, the tree’s root represents the distribution
center (also known as the depot). Each node in the tree’s first
level signifies a customer group that can be served by the AV
directly from the distribution center. Specifically, a customer
group is deemed serviceable by an AV if the number of
customer locations within the group is less than or equal to the
current number of parcels loaded onto the AV (assuming one
parcel delivery per customer), and the maximum number of
battery swap operations is not surpassed (i.e., p- Z MVG <P

]EG
for vehicle v;, where G C G is the set of customer groups
covered so far). The greedy algorithm permits partial coverage
of a customer group by defining a coverage ratio, with a default
of 100%. As illustrated in Fig.5, AV v has a load capacity of 6,
and customer group g; can be served by AV v as it consists
of only 2 customers.
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Fig. 5. An illustration of a tree structure constructed by the greedy algorithm
for each AV.

The procedure for constructing nodes in the first level
is replicated for subsequent levels of the tree. Specifically,
we identify customer groups that can be served by AV v
from each node in the first level. It is important to note that
the number of parcels loaded on AV v decreases as the AV
has already covered a customer group in the previous level.
Additionally, fully covered customer groups are excluded. For
instance, as demonstrated in Fig. 5, when building nodes for
the second level from node g1, the number of parcels loaded
on AV v is reduced to 4, since the AV has served the two
customers in gj. Furthermore, we ensure that g; is not used
to construct nodes in the second level, as it has already been
completely covered. The greedy algorithm persists in building
nodes in subsequent levels until all parcels loaded on the AV
have been delivered to customers.

Upon constructing the tree for AV v, we can compute
the per-AV cost for v. Specifically, each edge in the tree is
associated with the cost of covering a customer group. For
instance, as depicted in Fig. 5, the edge connecting nodes
p and gp is associated with the cost cg, to cover customer
group g1. More precisely, the cost to cover customer group j
from the current location i is defined as (d;, jcfj” + er cf )17l
where |j| represents the number of customers belonging to
customer group j (i.e., the group’s size). The greedy algorithm
prioritizes customer groups with more customers when the
traveling distance is equal, by dividing the group’s coverage
cost by its size. As a result, we can calculate the sum of
edge weights along a simple path between the root and a
terminal node. The per-AV cost corresponds to the smallest
cost of simple paths to all terminal nodes. Notably, the simple
path with the lowest cost represents the sequence of customer
groups visited by the AV.

B. Selection of AV

Given the per-AV costs of all AVs, the next step of the
greedy algorithm is to select an AV with the minimum per-
AV cost. Algorithm 1 summarizes how an AV is selected in a
greedy fashion. Lines 3-7 indicate the process of building the
tree and computing the per-AV cost for each AV. Line 9 shows
that the greedy algorithm finds an AV with the minimum per-
AV cost. Once such an AV with the minimum per-AV cost
is found, the number of participating AVs n, is incremented
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by one (Line 10), and the customer groups covered by the
AV are excluded (Line 12). Also, the total cost ¢ is updated
by adding the per-AV cost of the selected AV (Line 13). The
above-mentioned process is repeated until all customer groups
are covered or the minimum compensation constraint (i.e., [b—
crl/2 > m - ny) is violated. (Line 2).

Algorithm 1 The Greedy Algorithm

1l <0

2 while |G| > 0 and [b —cf]/2 > m - n, do
3 for each AV v € V do

4 T, < BuildTree(v)

5 ¢y < ComputePerAVCost(T,, v)

6 /I Cy 1is a set of per-AV costs

7 Cy < Cy Ucy

8 /l Find v' € V with the minimum cost using Cy

9 v < FindAVMinCost(Cy)
10 ny =ny + 1

11 /I G is a set of customer groups covered by AV v’
12 G <~ G\Gy
B | f < +ey

14 Cy <0

There are noteworthy aspects of the greedy algorithm worth
mentioning. The algorithm permits the same AV to be selected
multiple times. We observe that the greedy algorithm tends to
choose the same vehicle when there are insufficient available
AVs. One important consideration is that when the same AV is
selected, we ensure that the additional cost for the AV to return
to the facility center to reload parcels is incorporated into the
per-AV cost. Additionally, the greedy algorithm accounts for
the traveling costs of moving from an AV’s original location
to the distribution center, as well as the cost of traveling from
the final customer group back to the original location. This
ensures a more accurate calculation of the per-AV cost.

VI. COMPUTATIONAL RESULTS

In this section, we evaluate the performance of the proposed
approach. The MATLAB optimization toolbox [57] is used to
implement the optimization framework for A-VRPD and the
proposed greedy algorithm. In particular, the mixed-integer
linear programming (MILP) solver is used. For performance
comparison, we implement two state-of-the-art VRP-D algo-
rithms denoted by SoAl [33] and SoA2 [34], respectively.
Specifically, SoA1 allows a drone to return to a vehicle, which
is different from the one where it was launched, to swap its
battery and/or to pick up parcels. We implement their adap-
tive multi-start simulated annealing (AMS-SA) metaheuristic
algorithm. SoA2 extends a traditional VRP-D formulation by
considering the customer time window. We implement their
variable neighborhood search (VNS) heuristic algorithm while
relaxing the time window constraint to ensure fairness in
performance comparison.

We are also aware of a closely-related problem called the
Two Echelon Vehicle Routing Problem (2E-VRP). In 2E-
VRP, the logistics network consists of two echelons. More
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Fig. 6. An area in the city of Memphis where the simulation study is
performed. The Google Map API is used to calculate the trajectories of
vehicles to serve the customer locations.

specifically, parcels are delivered from the depot to the satel-
lites in the first echelon. And then, the parcels are delivered
from the satellites to customers in the second echelon. The
objective of 2E-VRP is to optimize the total transportation
cost. Although A-VRPD has some common aspects compared
to 2E-VRP, there are notable differences between the two:
(1) In A-VRPD, AVs are selected based on heterogeneous
characteristics of each AV such as varying capacities, initial
locations, fuel level, available time. Such a vehicle selection
mechanism does not exist in 2E-VRP; (2) In A-VRPD, a drone
is used to serve customers, and therefore, the routing path in
the second echelon for VRP-D can be significantly simplified.
On the other hand, in 2E-VRP, the 2nd-level trucks are used
to serve customers; (3) In 2E-VRP, the start and end locations
for trucks are fixed. The lIst-level trucks start and end at
the depot. The 2nd-level trucks start and end at a satellite.
On the other hand, in A-VRPD, each AV has individual start
and end locations; (4) More importantly, in A-VRPD, vehicles
do not deliver since they are autonomous vehicles. Therefore,
A-VRPD does not incur the fixed cost, i.e., wages for drivers,
thereby creating extra profits that can be shared with AV
owners. 2E-VRP does not have such a mechanism. With
those key differences in mind, we implement a state-of-the-art
heuristic algorithm for 2E-VRP [35]. In particular, we exclude
the pickup demands for fair performance comparison. The
proposed optimization framework, greedy algorithm, and the
state-of-the-art heuristic algorithms are executed on a PC
equipped with Intel Core i7-9750H and 16GB RAM.

Different delivery scenarios are used in this simulation
study. More specifically, 10 random delivery scenarios are
created. In each scenario, 500 customer locations are ran-
domly selected. These customer locations are organized into
80 groups based on a grid zoning method and the minimum
number of battery swap operations (i.e., p = 2). It is noted that
a different zoning method can be easily adopted such as [56].
Fig. 6 shows a sample delivery scenario with a depot, customer
locations, and customer groups. Additionally, we consider
different AV types including sedans (type 1), SUVs (type 2),
and pickup trucks (type 3). We assume that AVs are uniformly
distributed in the area. The default number of available AVs
is set to 50.

Since the objective of the proposed approach is to minimize
the total operational cost, the key metric for this simulation
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TABLE III
THE DEFAULT INPUT PARAMETERS USED FOR SIMULATION

Parameters | Values (type 1, type 2, type 3)

b $1,200

cM $0.1, $0.12, $0.15

e $0.00013, $0.00033, $0.00071
- 13 gal, 15 gal, 23 gal

Qv 7,9, 14

m $5

p 2

P 20

cd 0.1 x cM

study is the amount of profits generated for both the delivery
company and AV owners. Specifically, profits for AV owners
are produced based on the 50:50 profit model that allows
the delivery company and participating AV owners to equally
share profits. Note, however, that any profit model can be
easily adopted. In addition to measuring the cost, another main
metric that we use in this simulation study is the running time.
We measure these two metrics by varying delivery scenar-
ios and the number of available AVs. Table III summarizes
the default parameters used in this simulations study. More
precisely, the fuel costs for different types of vehicles are
determined based on real-world fuel consumption data [58].
The total budget b is determined based on a real-world salary
for truck drivers [59]. More specifically, considering the fact
that a truck driver makes approximately $24 per hour and
covers about 100 customers a day [60], [61], the per-customer
cost for the delivery company is roughly $2.4; Since there are
500 customers to serve, the budget b is set to $1,200.

A. Cost Analysis

A notable advantage of A-VRPD is that it does not involve
the fixed cost in terms of wages for drivers since AVs do not
deliver parcels. On the other hand, VRP-D solutions produce
more effective routes for both vehicles and drones since
vehicles deliver parcels in tandem with drones. Therefore, per-
formance degradation for A-VRPD in terms of effectiveness of
vehicle route is inevitable. In this section, we evaluate the per-
formance degradation compared with state-of-the-art VRP-D
and 2E-VRP algorithms. More specifically, we measure the
total cost based on the total traveled distance (i.e., excluding
the fixed cost) for our solution, SoAl, SoA2, and 2E-VRP
under 10 random delivery scenarios.

Results are depicted in Fig. 7. As shown, the total cost
for A-VRPD is higher than that for VRP-D algorithms. The
reason is that the VRP-D algorithms produce more efficient
routes for trucks and drones because trucks and drones can
visit any customer location. In contrast, in A-VRPD, AVs are
only allowed to visit the waiting locations of customer groups.
In addition, our solution for A-VRPD includes the stationary
cost which is induced while the AV is waiting for its drone to
deliver (See Fig. 8 demonstrating that the stationary cost takes
21.1% of the total cost on average). On average, the total cost
for A-VRPD (Greedy) is higher than that for SoA1 and SoA2
by 12.5% and 22.1%, respectively.
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Fig. 8. The stationary cost for A-VRPD.

An interesting observation is the performance gap between
the VRP-D algorithms and the 2E-VRP algorithm. Specifi-
cally, the total cost for the 2E-VRP algorithm is higher than
that for SoAl and SoA2 by 8.1% and 17.5%, respectively.
A possible reason is that the 2E-VRP algorithm produces
routes separately for the level-1 vehicles and level-2 vehicles,
resulting in suboptimal routing paths compared to the VRP-D
algorithms. Another reason is that the VRP-D algorithms use
drones that have a smaller operational cost than trucks.

We then compare the total cost for our solution with the
2E-VRP algorithm. We observe that our solution generates a
higher cost than that for the 2E-VRP algorithm despite the
fact that out solution uses drones with a lower operational
cost to serve customers, while, in the 2E-VRP algorithm, the
2nd-level trucks deliver parcels to customers. The reason for
the degraded cost for A-VRPD is that AVs have a smaller
load capacity depending on vehicle types; as such, they have
to return to the depot to reload especially when there are not
enough available AVs. Another reason is because the A-VRP
solution requires AVs to move from their original locations
to the depot, and then back to their original locations once
delivery is completed, thereby increasing the cost.

Although our solution produces less efficient routes for
vehicles and drones, it should be noted that the results in Fig. 7
do not account for the fixed cost (wages) which comprises a
huge portion of the total operational cost. In the next section,
we analyze the extra profits generated from the fact that the
A-VRP algorithm does not incur the fixed cost.
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Fig. 9. The profits generated for the delivery company in 10 random delivery
scenarios.

B. Profit Analysis

In this section, we analyze profits generated by the proposed
optimal and greedy algorithms and compare with SoA1, S0A2,
and 2E-VRP algorithms. The profit here is defined as the
budget b subtracted by the total cost to serve all customers.
In this experiment, the total cost for SoA1, SoA2, and 2E-VRP
includes the fixed cost while our A-VRPD algorithms do not
incur the fixed cost.

The profits for the delivery company under varying delivery
scenarios are depicted in Fig. 9. The average profits for
the greedy and optimal algorithms are $412.96 and $397.14,
respectively. The optimal algorithm achieves 3.9% higher
profits on average compared with the greedy algorithm. Such a
small difference in earned profits between the two algorithms
demonstrates the effectiveness of the greedy algorithm, espe-
cially considering the significantly faster running time of the
greedy algorithm. More detailed experimental results on the
running time are presented in Section VI-E.

We also measure the profits produced by SoAl, SoA2, and
2E-VRP algorithms and compare with that for our greedy
algorithm. The results indicate that, on average, the greedy
algorithm achieves higher profits by 111.7%, 93%, and 154.3%
compared with that for SoA1, SoA2, and 2E-VRP algorithms,
respectively. Overall, despite the performance degradation for
A-VRPD in terms of the effectiveness of routes for vehicles
and drones (as presented in Section VI-A), the proposed
algorithms allow for significantly higher profits compared with
state-of-the-art algorithms.

The profits for company accrued with the proposed
approach can be used to provide compensations to AV owners.
A logistics company can use these profits to attract more AVs
to participate, potentially leading to higher profits. Fig. 10
depicts the results that the average profit for each AV owner
is $8.26 and $7.94 per day when the optimal and greedy
algorithms are used, respectively. A daily profit of $8.26 for
AV owners translates into a monthly profit of about $247. It is
worth to note that this is a net profit excluding all other costs
for AV owners such as the fuel/mileage cost. Additionally,
this profit is generated without involving the human labor
of the AV owner at all! Another interesting aspect is that
depending on the number of available AVs, this monthly profit
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The profits generated for AV owners under 10 different delivery
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Fig. 11. The profits for the delivery company with varying numbers of
available AVs under 10 different delivery scenarios.

can increase up to $1,229 per month under our scenarios. In the
next section, we present an in-depth analysis of the effect of
the number of AVs.

C. Number of Available AVs

The profits for the delivery company and AV owners depend
on the number of available AVs. We evaluate the effect of the
number of available AVs on the profits for the company and
AV owners. The number of available AVs is varied from 10 to
100 with an interval of 10 to measure the profits.

Fig 11 depicts the profits for the delivery company. It is
observed that the profits for company increase as the number
of available AVs increases regardless of the algorithms. The
reason for the lower profit with a smaller number of available
AVs is because of the additional cost for AVs to return to the
distribution center for reloading parcels. In contrast, such an
additional cost can be saved when there is sufficiently large
number of AVs available, thereby increasing the profits.

We then evaluate the effect of the number of available AVs
on the profits for AV owners. Fig. 12 depicts the results.
In contrast to the profits for the delivery company which
increase as the number of AVs increases, the profits for
AV owners become higher with a smaller number of AVs.
These results demonstrate that serving more customers is
more profitable for AVs despite the additional cost incurred
for them to return to the distribution center for reloading
parcels. Although AV owners receive higher profits when
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there the number of available AVs is smaller, a small number
of AVs leads to increased delivery finish time. More details
on simulation results in terms of the delivery finish time
are presented in the following section. We also observe that
the decreasing trend of profits flattens out as the number of
available AVs increases. The reason for this observation is that
AVs are recruited only within the available budget b; As such,
not all AVs may be used even though they are available.

D. Delivery Finish Time

We evaluate the effect of the number of available AVs on
the delivery finish time. Fig. 13 depicts the results, which
demonstrate that the delivery finish time substantially increases
as the number of AVs decreases. More specifically, the delivery
finish time for 10 available AVs is increased by 360% on
average, when the optimal algorithm is used, compared with
that for 100 AVs. Similarly, the delivery time for 10 available
AVs increases by 365% higher on average when the greedy
algorithm is used, compared with that for 100 available AVs.
The reason for the higher delivery finish time is attributed to
the additional delay for AVs to return to the distribution center
to reload parcels.

E. Running Time

One of the key benefits of the proposed solution is that
it is designed to significantly reduce the running time by
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TABLE IV
RUNNING TIME IN SECONDS
100 customers 500 customers
Methods
Scn 1 Scn 2 Scn 3 Scn 4 Scen 5 Scn 1 Scn 2 Scn 3 Scn 4 Scn 5
OPT 16.3 14.8 19.38 17.16 13.4 252.52 235.46 271.15 243.65 237.64
Greedy | 0.96 0.88 1.05 1.03 0.79 6.21 5.34 6.87 5.67 4.86
SoAl 81.55 84.24 86.73 83.47 87.12 739.77 722.02 761.69 742.28 717.43
SoA2 356.25 | 369.64 | 406.72 | 383.18 | 361.43 | 1649.44 | 1566.23 | 1762.24 | 1704.51 1643.57
2E-VRP | 71.35 79.2 84.67 81.66 75.45 547.56 521.23 612.96 598.45 577.04
simplifying the routes of AVs leveraging the fact that AVs ASO 0 Optimal  EEN Greedy [ SoA NN SoA? [N 2EVRP
do not deliver parcels, and also by pre-computing the drone 9) a . i
routes through organization of customer locations into groups. 360 M 1
In this section, we evaluate the running time of our approach z
compared with the SoAl, SoA2, and 2E-VRP algorithms in S
5 different random delivery scenarios by varying the number %40
of customers. 9
Results are presented in Table IV. We observe that the £ 20
running time of both the optimal and greedy algorithms is :‘é”
substantially smaller compared with that for VRP-D heuristic 09_
algorithms. Specifically, it is notable to observe that the run- 0
ning time for our optimal algorithm is 3X and 13X faster than 1 2 3 4 o 6 { 8
that for S0A1 and SoA2, respectively. The running time for our Scenarios
greedy algorithm is 107X and 342X faster compared with that  Fig. 14.  The profits for the delivery company under 8 different delivery
for SoAl and SoA2, respectively. The results demonstrate the ~ Scenarios of the benchmark dataset.
impact of the simple routes of AVs since they do not deliver 8
parcels and the effect of the proposed pre-computation phase o e LG
on significantly reducing the running time. In comparison with D75 N M (] —
the 2E-VRP algorithm, the optimal and greedy algorithms E’ ] ]

improve the running time by 2X and 89X, respectively. The
reason for the improved running time can be attributed to
the fact that the 2E VRP algorithm consumes much more
time to simultaneously optimize the path for both the 1st and
2nd-level, and the customer-to-satellite mapping.

F. Benchmark Dataset

For more effective performance evaluation, in this section,
a benchmark dataset adopted from a state-of-the-art solution
for VRP-D [33] is used for profit analysis for our solutions,
SoAl, SoA2, and 2E-VRP algorithms. The dataset is the
modified version of the instances created by [62]. Among
the instances consisting of 6 categories i.e., Cl, C2, RI,
R2, RCI and RC2, we adopt the RC2 instances for our
experiments since this scenario has the most resemblance
with our own dataset. In the RC2 instances, the customer
coordinates are randomly produced and clustered in a grid
region of [100, 100]?. The maximum waiting time for drones
T is set at 10 min. Since there are only 100 customer locations,
we used the budget of $240 (i.e., 2.4*100) and the number of
vehicles was set to 10.

Figs. 14 and 15 display the profits for the delivery company
and AV owners, respectively. Interestingly, the results are very
similar to what we obtained from the experiments performed
with our own dataset. More specifically, the profits for the
company obtained with the optimal algorithm are slightly
higher than that for the greedy algorithm, and the greedy algo-
rithm achieves much higher profits for the delivery company

A O

-

Profits for AV Own
N w
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Scenarios

o
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Fig. 15. The profits for participating AV owners under 8 different delivery
scenarios of the benchmark dataset.

compared with that for SoA1, SoA2, and 2E-VRP algorithms
mainly because our algorithms do not incur the fixed cost. The
profits for the company obtained with the greedy algorithm are
higher by 89%, 75%, and 126% compared with that for the
SoAl, SoA2, and 2E-VRP algorithms, respectively. Regarding
the profits for AV owners, it is observed that the average profits
for each AV owner are $6.5 and $6.2 when the greedy and
optimal algorithms are used, respectively.

VII. CONCLUSION

In this article, we have presented an Autonomous Vehicle
Routing Problem with Drones (A-VRPD) that integrates AVs
into a traditional vehicle routing problem to fully automate
drone-based last-mile delivery. A Mixed Integer Linear Pro-
gramming (MILP) based mathematical model is developed to
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simultaneously optimize the scheduling and routes of AVs,
serving customers in a way that minimizes the total operational
cost. The proposed two-phase approach significantly reduces
the running time, addressing the scalability issue stemming
from the large number of AVs and enabling frequent solution
update to account for real-time traffic conditions. We have also
presented a greedy algorithm to solve A-VRPD, especially
for large-scale delivery scenarios with a large number of
customers. Extensive simulations were performed in various
delivery scenarios with varying fuel costs and salaries for
truck drivers. The results demonstrate that the proposed solu-
tion produces a significant amount of profits both for the
delivery company and AV owners at a much faster running
speed in comparison with state-of-the-art VRP-D and 2E-VRP
algorithms.

The expected social impact of the proposed solution is
significant as personal delivery is emerging as a new paradigm
especially in recent years when many countries are suffering
from driver shortage. There are numerous companies that
have or are planning to adopt a new solution to utilize
personal vehicles to deliver parcels based on a crowd-sourcing
approach. Amazon introduced the Amazon Flex system that
allows anyone to easily participate in parcel delivery with only
minimum requirements. UPS also adopted the personal vehicle
driver system, and FedEx is exploiting part-time drivers to
perform delivery using their personal vehicles. Not to mention
the major logistics companies, various local companies are
currently running their delivery business relying on personal
vehicles. Given the growing demand for personal delivery and
significant advances in autonomous vehicles, we expect that
the proposed work will contribute to opening the new door for
research on fully automated crowd sourcing and drone-based
last-mile delivery systems to help our society prepare for the
future.
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