
Operations Research Letters 51 (2023) 709–716

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Communication-aware scheduling of precedence-constrained tasks on

related machines

Yu Su, Shai Vardi ∗, Xiaoqi Ren, Adam Wierman

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 August 2022
Received in revised form 31 October 2023
Accepted 2 November 2023
Available online 13 November 2023

Keywords:
Scheduling on related machines
Scheduling with communication
Precedence-constrained scheduling

Scheduling precedence-constrained tasks is a classical problem that has been studied for more than fifty
years. However, little progress has been made in the setting where there are non-uniform communication
delays between tasks. In this work, we propose a new scheduler, Generalized Earliest Time First (GETF),
and provide the first provable, worst-case approximation guarantees for the goals of minimizing both the
makespan and total weighted completion time of tasks with precedence constraints on related machines
with machine-dependent communication speeds.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we study scheduling precedence-constrained tasks
onto a set of related machines with non-uniform (machine depen-
dent) communication delays between the machines in order to
minimize the makespan or the total weighted completion time.
This problem is timely due to the prominence of large-scale,
general-purpose machine learning platforms. For example, in sys-
tems such as Google’s TensorFlow [1] and Microsoft’s Azure Ma-
chine Learning (AzureML) [4], machine learning workflows are ex-
pressed via a directed acyclic graph (DAG), where jobs are made
up of tasks, represented as vertices, and precedence relationships
between the tasks, represented as edges. This abstraction allows
data scientists to quickly develop and incorporate modular compo-
nents into their machine learning pipeline (e.g., data preprocessing,
model training, and model evaluation) and then easily specify a
workflow. The graphs that specify the workflows in platforms such
as TensorFlow and AzureML can be made up of hundreds or even
thousands of tasks, and the jobs may be run on systems with thou-
sands of machines. As a result, the performance of the platforms
depends on how these precedence-constrained tasks are scheduled
across machines.

The study of scheduling jobs composed of precedence-const-
rained tasks was initiated by [9], who studied scheduling a single
job with n precedence-constrained tasks on m identical parallel
machines with the goal of minimizing the makespan: the time un-
til the last task completes. More generally, the goal of minimizing
the total weighted completion time is considered, where the total

* Corresponding author.
E-mail address: svardi@purdue.edu (S. Vardi).
https://doi.org/10.1016/j.orl.2023.11.001
0167-6377/© 2023 Elsevier B.V. All rights reserved.
weighted completion time is a weighted average of the comple-
tion time of each task in the job (these problems are denoted by
P |prec|Cmax and P |prec| ∑ j w jC j respectively in 3-field notation1).
Note that makespan is a special case of total weighted completion
time as a dummy task with weight one can be added as the fi-
nal task of the job, with all other tasks given weight zero. For
P |prec|Cmax, Graham showed that a simple list scheduling algo-
rithm can find a schedule of length within a multiplicative factor
of (2 − 1/m) of the optimal. This result is still the best guarantee
known for this setting.

Researchers have generalized this setting in several directions,
in particular: (i) to heterogeneous machines and (ii) to accommo-
date inter-task communication. The majority of progress has been
made on generalizations to heterogeneous machines. The focus has
been on related machines, where each machine i has a speed si ,
each task j has a size p(j), and the time to run task j on ma-
chine i is p(j)/si . A sequence of results in the 1980s and 1990s
culminated in a result that showed how to use list scheduling
algorithms in combination with a partitioning of machines into
groups according to their speeds in order to achieve an O (logm)-
approximation algorithm for Q |prec|Cmax [5]. This result was also
extended in the same work to total weighted completion time by
proposing a time-indexed linear programming technique, giving an
O (logm)-approximation for total weighted completion time. The
idea of using a group assignment rule to partition machines into
groups of machines with similar speeds and then to assign tasks to

1 Introduced by [8]: the first field denotes the machine environment: P for iden-
tical machines, Q for related machines; the second field denotes the job character-
istics: prec for precedence constraints, � for identical communication delays, ci, j
machine-dependent delays; the third field denotes the objective: Cmax for minimiz-
ing makespan, ∑ j w jC j for minimizing total weighted sum of completion times.

https://doi.org/10.1016/j.orl.2023.11.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2023.11.001&domain=pdf
mailto:svardi@purdue.edu
https://doi.org/10.1016/j.orl.2023.11.001

Y. Su, S. Vardi, X. Ren et al. Operations Research Letters 51 (2023) 709–716
a group has shown up frequently in the years since; it recently led
to a breakthrough when this idea was combined with a variation
of list scheduling to obtain a O (logm/ log logm)-approximation al-
gorithm for both makespan and total weighted completion time
[12].

There has been little progress toward the goal of incorporat-
ing communication delays. Researchers of [10] studied minimizing
weighted completion time on identical machines with machine-
dependent communication speeds.2 They showed that algorithms
for communication-free problems (ones without inter-task com-
munication delays) cannot be adapted in a straightforward manner
to this setting. Specifically, if one uses Graham’s list scheduling
algorithm on the communication-free version of a problem and
adds the communication delays incurred by the schedule, the over-
head can be (asymptotically) the sum of all of the communica-
tion delays. They showed that a greedy algorithm called Earliest
Time First (ETF) produces schedules with a makespan bounded by
(2 − 1/m)O P T (C F) + �, where O P T (C F) is the optimal schedule
length for the communication-free problem and � is the amount
of communication delays caused by the longest chain generated
by the ETF algorithm (which is in turn upper bound by the maxi-
mal communication time required by any chain in the precedence
graph). In other words, the overhead from the communication-free
problem can be reduced from the sum of all communication delays
to the cost of a single chain in the precedence-constraint DAG.

The analysis of [10] has proven difficult to generalize to the re-
lated machines setting and there has been no progress on schedul-
ing with machine-dependent communication delays outside the
context of identical machines. Recently, there has been a surge of
progress on scheduling with machine-independent delays [6,7,13].
However, extensions of those results to machine-dependent com-
munication delays have proven difficult and the state-of-the-art
result in the case of machine-dependent communication delays is
still due to [10].

Contributions. In this paper we propose a new scheduler
for scheduling precedence-constrained tasks on related machine
with machine-dependent communication speeds to minimize
the makespan. We show that the scheduler, Generalized Earli-
est Time First (GETF), computes a schedule S whose makespan
is at most O (logm/ log logm)O P T (C F) + �, where O P T (C F) is
the optimal schedule length for the communication-free prob-
lem and � is the maximal communication delay that can be
induced by a single chain in the precedence graph. We then
generalize our result to the objective of minimizing the to-
tal weighted completion time and show that GETF produces a
schedule S whose total weighted completion time is at most
O (logm/ log logm) O P T (C F) + ∑

j ω j�
S
j , where O P T (C F) is the

optimal total weighted completion time, ω j is the weight of task
v j in the objective, and �S

j is the maximal communication delay
caused by a single chain that terminates with job j. The makespan
result matches state-of-the-art bounds for the special case when
there are no communication delays ([12]). In addition, our proof
technique yields a short and cleaner proof for the result of [10] for
identical machines. In fact, we slightly improve upon the bound
of [10], as the additive component of our bound is with respect
to the average communication delay for each task in the chain,
instead of the worst case delay. In the case of total weighted com-
pletion time, no previous result exists for the case of identical
machines with machine-dependent communication times, but the

2 We distinguish between communication speeds and communication delays: a
communication delay is the time between the completion of a job on one machine
and the start of another task on another machine, while communication speed is
how fast one unit of data can be transferred between two machines.
710
result matches the bound of [12] for Q |prec| ∑ j ω jC j – the case
with related machines and no communication delays.

The key technical advance that enables our new result is a new
Separation Principle, which allows us to separate the communica-
tion delay analysis from the analysis of the communication-free
problem in the case of related machines. To prove the Separation
Principle, we show that we can choose a chain in the DAG in such
a way that the makespan is at most the sum of the solution to
the communication-free problem and the communication delays
on that particular chain.

We show that we can apply the Separation Principle to both
makespan minimization and total weighted completion time by
adapting the group assignment rules of [12]. In addition, we use
the same proof technique to give a novel (and shorter) proof of
the approximation ratio for ETF in the case of identical machines.

Related literature.
The best positive result for P |prec| ∑ j w jC j is currently a

(2 + 2 ln 2 + ε)-approximation by [12] via a time-indexed linear
programming relaxation technique. The work of [14] proved that
it is NP-hard to achieve an approximation factor less than 2, given
the assumption of a new variant of the Unique Game Conjecture
introduced by [3]. The negative results for P |prec|Cmax carry over
to P |prec| ∑ j ω jC j as makespan is a special case of total weighted
completion time. For related machines, authors of [5] proposed
a Speed-based List Scheduling algorithm that obtains an approx-
imation of O (logm) for Q |prec|Cmax , and a time-indexed linear
programming technique that gives a O (logm) approximation for
Q |prec| ∑ j ω jC j . Recently, an improvement to O (logm/ log logm)

for both objectives was proven in [12].
When there are positive communication delays, much less

is known. No approximation ratio is known for P |prec, ci, j|Cmax

(scheduling precedence-constrained tasks with machine-dependent
communication delays), and this was noted by [2] as one of the 10
most important open questions in scheduling theory. The only al-
gorithm with a guaranteed worst-case performance bound in this
setting is ETF [10]. We note that the setting of [10] is a generaliza-
tion of P |prec, ci, j|Cmax , as it concerns machine-dependent speeds,
and each edge (v j, v j′) in the precedence graph is parameterized
by a weight p j, j′ which denotes the amount of data that needs
to be transferred between the machine that executed v j and the
one that will execute v j′ . Given that p j, j′ units of data are passed
from machine i to machine i′ , and the communication speed be-
tween these two machines is si,i′ , the communication delay is
p j, j′
si,i′

. P |prec, ci, j|Cmax is recovered by setting p j, j′ = 1 for all tasks
v j, v j′ .

Recently, there have been several breakthroughs for settings
with constant communication delays. A O (log c · logm)-approx-
imation algorithm was proposed in [6] in the case of identical
machines for P |prec, c|Cmax , where there is a fixed communica-
tion delay of c between each pair of machines (but no delay
for two tasks scheduled on the same machine). This is the first
result that is not linear in the communication delays in the ap-
proximation ratio for settings with communication delays. For re-
lated machines (Q |prec, c|Cmax), researchers of [13] proposed a
O (logm log c/ log log c)(O P T + c)-approximation algorithm, where
O P T is the optimal makespan for the problem when duplication
is allowed. This translates to an O (log5 n/ log logn)-approximation
to the makespan. Further, they were able to bound the duplication
advantage to compute a no-duplication schedule. The work of [7]
improved this result to a O (log 3n)-approximation in the case of
minimizing the makespan, and gave a O (log 4n)-approximation for
minimizing total weighted completion time. However, their results
do not apply to machine-dependent communication delays.

Y. Su, S. Vardi, X. Ren et al. Operations Research Letters 51 (2023) 709–716
2. Problem formulation

We consider the task of scheduling a job made up of a set V =
[n] tasks on a heterogeneous system composed of a set M = [m]
of machines with different processing and communication speeds.
The precedence constraints on the tasks form a directed acyclic
graph (DAG) G = (V , E), in which each node j represents a task
and an edge (j, j′) represents a precedence constraint. We inter-
changeably use node or task, as convenient. Precedence constraints
are denoted by a partial order ≺, where j ≺ j′ means that task j′
can only be scheduled after task j completes. The processing de-
mand of task j is represented by p(j), and the amount of data that
needs to be transmitted between task j and task j′ is represented
by d(j, j′).

The system is heterogeneous with respect to both processing
and communication speeds. For processing speed, we consider the
classical related machines model: machine i has speed s(i), and it
takes p(j)/s(i) uninterrupted time units for task j to complete on
machine i. Without loss of generality, we assume that the speed
of the fastest machine is m. For communication speeds, we use
a similar notion: machines i and i′ have communication speed
s(i, i′) (possibly s(i, i) �= 0). We denote the time at which task j
starts executing by t(j), and the machine to which task j is as-
signed by h(j). If j ≺ j′ , h(j) = i and h(j′) = i′ , the communication
delay between task j and j′ is d(j, j′)/s(i, i′). We note this is es-
sentially identical to the model of [10] (they parameterize pairs
of machines by 1/s(i, i′) as opposed to s(i, i′)). For simplicity, we
consider a setting where the machines are fully connected to each
other, so any machine can communicate with any other machine.
This is without loss of generality as one can simply set the com-
munication speed between any two disconnected machines to 0.
We also assume that the preference constraint DAG is connected.
This is also without loss of generality since we can connect all of
the tasks in G to a dummy task n + 1, such that p(n + 1) = 0 and
d(j,n + 1) = 0 for all j. Hence, our results trivially apply to the
case of multiple jobs. Additionally, we assume that each machine
can process at most one task at a time and the machines are as-
sumed to be non-preemptive, i.e., once a task starts on a machine,
the scheduler must wait for the task to complete before assign-
ing any new task to this machine. This is a natural assumption in
many settings, as interrupting a task and transferring it to another
machine can cause significant processing overhead and communi-
cation delays due to data locality, e.g., [11].

We focus on two objective functions: minimizing the makespan,
denoted Cmax , the time it takes for the final task to com-
plete, and minimizing the total weighted completion time of the
job, denoted

∑
j ω jC j , where C j is the completion time of

task j and ω j is the weight of task j. We denote our prob-
lem settings by Q |prec, c∗

i, j|Cmax and Q |prec, c∗
i, j |

∑
j ω jC j re-

spectively. For any scheduling problem � in Q |prec, c∗
i, j |Cmax

or Q |prec, c∗
i, j|

∑
j ω jC j , its communication-free version, denoted

�(C F) , is identical to �, except that there are no communication
delays in �(C F) . For any such �, the optimal solution for �(C F) is
denoted by O P T (C F) .

A chain in the DAG is a sequence of immediate predecessor-
successor pairs, whose first node has no predecessor. A terminal
chain is a chain whose last node is a leaf node with no successors.
Note that, because the DAG is connected, there must exist at least
one terminal chain.

3. Generalized Earliest Time First (GETF) scheduling

In this section, we introduce an algorithm, Generalized Earliest
Time First (GETF), and describe the group-assignment rules that
we will use to provide worst-case guarantees for the goals of mini-
mizing our objective functions. Like ETF, GETF seeks to greedily run
711
Algorithm 1 Generalized Earliest Time First (GETF).
INPUT: tasks V ; machines M; precedence constraints ≺; group assignment rule f
OUTPUT: a schedule S = (�h, �t)
1: R ← {1, 2, . . . , n}
2: while R �= ∅ do
3: A = { j : j ∈ R, � j′ s.t. j′ ∈ R and j′ ≺ j}
4: For each j ∈A, i ∈ f (j):

τ j,i = earliest starting time on machine i;
mj = argmini∈ f (j){τ j,i}; τ j = mini∈ f (j){τ j,i}

5: B = { j : j ∈ argmin j: j∈A τ j}
6: Arbitrarily choose a task j from B.
7: h(j) =mj; t(j) = τ j

8: R ← R \ { j}
9: end while

tasks that can be started earliest, thereby minimizing the idle time
created by the precedence constraints. ETF, which is an algorithm
for identical machines, does not take into account the potential dif-
ference between the service rates of different machines. To account
for this, we use group assignment rules, similarly to [5]. More pre-
cisely, GETF groups machines with similar speeds together, and
assigns the tasks to the groups. Within each group, GETF uses a
greedy allocation rule.

GETF is parameterized by a group assignment function f : V →
[K], where K = �logγ m�, γ = logm/ log logm. The output of GETF
is a schedule S , which we represent by a pair S = (�h, �t), where
�h and �t represent the machine assignments and start times of the
tasks, respectively. In each iteration, GETF computes A, the set of
all of the tasks that are ready to process and are not yet scheduled.
For every task j in A, GETF calculates τ j,i , the earliest possible
starting time of j, if j was to execute on machine i. GETF then sets
τ j = mini∈ f (j) τ j,i , mj = argmini∈ f (j) τ j,i . In other words, τ j is the
earliest possible starting time for j if it is constrained to execute
on a machine in f (j), and mj is some machine in f (j) that it can
execute on at start time. GETF then computes B, the set of tasks in
A with the earliest starting times, arbitrarily chooses a task j from
B, and sets h(j) = mj and t(j) = τ j . The pseudocode for GETF is
given in Algorithm 1. We describe our group assignment functions
in the following subsections.

3.1. A group assignment rule for makespan

The group assignment rule fmksp that we use for the goal of
minimizing the makespan is adapted from [12], where it was de-
signed for the setting without communication delay. First, all ma-
chines with speed less than 1 are discarded (recall that the fastest
machine has speed m). The remaining machines are divided into K
groups M1, M2, . . . , MK where K = �logγ m�, γ = logm/ log logm,
such that group Mk, k ∈ [K − 1] contains machines with speeds
in range [γ k−1, γ k) and MK contains machines with speeds in
[γ K−1, γ K]. Note that K = O (logm/ log logm). The group assign-
ment rule fmksp is based on the solution of a linear program (LP),
which is a relaxation of the following mixed integer linear program
(MILP). We note that the solution of the MILP does not necessarily
give a feasible schedule, as it allows more than one job to concur-
rently execute on the same machine.

min
xi, j ,C j ,T

T

∑
i∈M

xi, j = 1 ∀ j (1a)

p(j)
∑
i∈M

xi, j
s(i)

≤ C j ∀ j (1b)

C j′ + p(j)
∑ xi, j

s(i)
≤ C j ∀ j′ ≺ j (1c)
i∈M

Y. Su, S. Vardi, X. Ren et al. Operations Research Letters 51 (2023) 709–716
∑
j∈V

p(j)xi, j
s(i)

≤ T ∀i (1d)

C j ≤ T ∀ j (1e)

xi, j ∈ {0,1} ∀i, j (1f)

The variable C j denotes the completion time of task j. The bi-
nary variable xi, j denotes whether task j is assigned to machine i.
Constraint (1a) ensures that every task is processed on some ma-
chine; Constraint (1b) guarantees that the processing time of task
j is bounded by its completion time; Constraint (1c) enforces the
precedence constraints between predecessor-successor pairs; Con-
straint (1d) guarantees that the total load assigned to any machine
is not be greater than the makespan; Constraint (1e) ensures the
makespan is not smaller than the completion time of any task.

We relax the above MILP to an LP by replacing constraint (1f)
with xi, j ≥ 0. Denote this LP by LP (1), and let x∗, C∗, T ∗ denote the
optimal solution of this LP. Note that T ∗ provides a lower bound on
O P T (C F) , the optimal makespan for the same problem with zero
communication delay. For each k ∈ [K], let s(Mk) = ∑

i∈Mk
s(i) de-

note the total speed of the machines in Mk . Let x
†
k, j = ∑

i∈Mk
x∗
i, j

be the total fraction of task j assigned to machines in Mk . For any
task j, define �(j) to be the largest index such that at least half of
j is (fractionally) assigned to machines in groups M�(j), . . . , MK :
�(j) = argmax�

{∑K
k=� x

†
k, j ≥ 1

2

}
. Task j is then assigned to the

group from M�(j), . . . , MK for which the total speed is maximized,
i.e.,

fmksp(j) = argmax
�(j)≤k≤K

s(Mk).

3.2. A group assignment rule for total weighted completion time

The group assignment rule f twct for the goal of minimizing
the total weighted completion time is similar in spirit to fmksp .
We first divide machines into groups as in Section 3.1. Without
loss of generality, we assume that p(j)

s(i) ≥ 1 for any task j and
machine i. Thus, we can divide the time horizon into the fol-
lowing time-indexed intervals of possible task completion times:
[1, 2], (2, 4], (4, 8], . . . , (2Q −1, 2Q] where Q =

⌈
log

(∑
j

p(j)
mini s(i)

)⌉
.

The following MILP forms the basis for the group assignment:

min
xi, j,q,C j

∑
j

ω jC j

∑
i

∑
q

xi, j,q = 1 ∀ j (2a)

p(j)
∑
i

∑
q

xi, j,q
s(i)

≤ C j ∀ j (2b)

C j′ + p(j)
∑
i

∑
q

xi, j,q
s(i)

≤ C j ∀ j′ ≺ j (2c)

q∑
t=1

∑
i

xi, j,t −
q∑

t=1

∑
i

xi, j′,t ≤ 0 ∀q, j′ ≺ j (2d)

∑
q

2q−1
∑
i

xi, j,q ≤ C j ∀ j (2e)

∑
j

p(j)

s(i)

q∑
t=1

xi, j,t ≤ 2q ∀i,q (2f)

xi, j,q ∈ {0,1} ∀i, j,q (2g)
712
Here, C j denotes the completion time of task j and ω j repre-
sents its weight in the objective function. The binary variable xi, j,q
denotes whether task j is assigned to machine i and it completes
in the q-th interval (2q−1, 2q]. Constraints (2a) – (2c) are analo-
gous to Constraints (1a) – (1c). Constraints (2c) and Constraint (2d)
enforce the precedence constraint for every predecessor-successor
pair. Constraint (2e) guarantees that the completion time of task
j is not smaller than the left boundary of the q-th interval
(2q−1, 2q]. The total load assigned to machine i up to q-th interval
is

∑
j
p(j)
s(i)

∑q
t=1 xi, j,t , and it should not be greater than the upper

bound 2q as in constraint (2f).
We relax constraint (2g) to form an LP, and denote this LP by

LP (2). Let x̃, C̃ denote the optimal solution for this LP. Note that ∑
j ω j C̃ j provides a lower bound for O P T (C F) . To set the group

assignment rule f twct , define �̃(j) similarly to �(j) but with respect
to x̃ instead of x∗: let x‡k, j = ∑

q∈[Q]
∑

i∈Mk
x̃i, j,q , and set �̃(j) =

argmax�

{∑K
k=� x

‡
k, j ≥ 1

2

}
.

The group assignment rule f twct for the goal of minimizing the
total weighted completion time is as follows:

f twct(j) = argmax
�̃(j)≤k≤K

s(Mk).

4. Results

For the goal of minimizing the makespan, our main result
provides a bound in terms of the total communication delay of
a terminal chain in the precedence graph. Specifically, let C =
μ1 ≺ μ2 ≺ . . . ≺ μ|C| be a terminal chain in the DAG and define
�(C, �h, f) to be the maximal communication delay for C when
the tasks are allocated according to �h and the group assignment
rule is f . Formally,

�(C, �h, f) :=
|C|∑
j=2

d(μ j−1,μ j)

s̄ f (μ j−1,μ j)
, (3)

where s̄ f (μ j−1, μ j) := mini∈ f (μ j) s(h(μ j−1), i) is the slowest speed
between h(μ j−1), the machine assigned to μ j−1, and any ma-
chine in the group f (μ j). With a slight abuse of notation, let
�(�h, f) := max�(C, �h, f), where the maximum is over all (ter-
minal) chains in the precedence DAG.

Theorem 4.1. For any problem in Q |prec, ci, j |Cmax , define �(�h, f) as
above, and denote the schedule produced by GETF with group assignment
rule fmksp by S = (�h, �t). Then

Cmax(S) ≤ O (logm/ log logm)O P T (C F) + �(�h, fmksp).

The bound of Theorem 4.1 depends on a chain in the com-
puted solution; we show that this result translates to a bound
that only depends on the problem parameters. Let C be a ter-
minal chain in the DAG, as above, and let smax denote the slowest
speed between any two machines. Let �(C) := ∑|C|

j=2
d(μ j−1,μ j)

smax
,

and let � := max�(C), where the maximum is over all chains
in the precedence DAG. As �(C) ≥ �(C, �h, f) for any C, �h, f , we
have that � ≥ �(�h, fmksp), giving the following corollary.

Corollary 4.2. For any problem in Q |prec, ci, j |Cmax , let � be defined as
above, and denote the schedule produced by GETF with group assignment
rule fmksp by S . Then

Cmax(S) ≤ O (logm/ log logm)O P T (C F) + �.

Y. Su, S. Vardi, X. Ren et al. Operations Research Letters 51 (2023) 709–716
In the special case of identical machines, the group assignment
rule fmksp is redundant, as all machines have the same speed. In
this case, we can bound the makespan of GETF with respect to
a different parameter. Let �′(C, �h) = 1

m

∑|C|
j=2

∑m
i=1

d(μ j−1,μ j)

s(h(μ j−1),i)
, and

set �′(�h) = max�′(C, �h), where the maximum is over all chains
generated by the assignment �h.

Proposition 4.3. For any problem in P |prec, ci, j |Cmax , define �′ as
above, and denote the schedule produced by GETF by S = (�h, �t). Then

Cmax(S) ≤
(
2− 1

m

)
O P T (C F) + �′(�h).

We note that this improves upon the bound of [10], as their
bound is with respect to the maximal possible communication de-
lay, while ours is with respect to the average communication delay.

For total weighted completion time, assume that the tasks are
indexed with respect to their order in the schedule determined
by GETF (breaking ties arbitrarily). Let C j = μ1 ≺ μ2 ≺ · · · ≺ μC j

be a terminal chain that includes task j, truncated at j = μC j
and

define �(C j, �h, f , j) := ∑C j

�=2
d(μ�−1,μ�)

s̄ f (μ�−1,μ�)
to be the worst case com-

munication time for the chain C j for these choices of �h and f . As
before, let �(�h, f , j) := max�(C j, �h, f , j), where the maximum is
over chains ending in task j that are consistent with �h and f . This
definition generalizes the notion of �(�h, f) used in Theorem 4.1
for makespan.

Theorem 4.4. For any problem in Q |prec, ci, j | ∑ j ω jC j , denote the
schedule produced by GETF with group assignment rule f twct by S =
(�h, �t). Then∑
j

ω jc j(S) ≤ O (logm/ log logm)O P T (C F)+
∑
j

ω j�(�h, f twct, j).

Similarly to Corollary 4.2, we obtain the following corollary
to Theorem 4.4. Let smax denote the slowest speed between any
two machines, let �(C j, j) := ∑C j

�=2
d(μ�−1,μ�)

smax
, and let �(j) :=

max�(C j, j), where the maximum is over all chains whose last
task is j.

Corollary 4.5. For any problem in Q |prec, ci, j | ∑ j ω jC j , define �(j) as
above, and denote the schedule produced by GETF with group assignment
rule f twct by S . Then∑
j

ω jC j(S) ≤ O (logm/ log logm)O P T (C F) +
∑
j

ω j�(j).

5. Proofs

To prove Theorems 4.1 and 4.4, we first prove a Separation Prin-
ciple, which gives a general upper bound for GETF for any choice
of group assignment function. We then use the group assignment
rules fmksp and f twct to obtain our bounds. The core idea behind
the Separation Principle is the construction of a chain which is
used to bound the overall makespan.

Theorem 5.1 (Separation Principle). For any problem in Q |prec,
c∗
i, j |Cmax and group assignment function f , GETF produces a schedule
S = (�h, �t) of makespan

Cmax(S) ≤ P (C, �h) +
K∑

Dk(f) + �(C, �h, f),

k=1

713
where P (C, �h) := ∑|C|
j=1

p(μ j)

s(h(μ j))
, Dk(f) :=

∑
j:k∈ f (j) p(j)
s(Mk)

, and �(C, �h,

f) = ∑|C|
j=2

d(μ j−1,μ j)

s̄ f (μ j−1,μ j)
, where C = μ1 ≺ μ2 ≺ . . . ≺ μ|C| is a termi-

nal chain in S .

Proof. For the purposes of the proof, we add two dummy tasks,
denoted 0 and n +1, which must execute before and after all other
tasks respectively. That is, p(0) = 0, p(n + 1) = 0, d(0, j) = 0 and
d(j,n + 1) = 0 for all j ∈ [n]. The proof now proceeds in four steps:

(i) Construct a terminal chain. We inductively construct a termi-
nal chain C from its end to its start. Add task n + 1 to the end of
the chain, and denote it μ|C| . From the immediate predecessors
of task μ|C| , pick one of the tasks that finishes last and denote
it by μ|C|−1. Continue inductively to construct the terminal chain
μ1 ≺ μ2 ≺ . . . ≺ μ|C| , where μ1 is the task 0.

(ii) Partition [0, Cmax] into K + 1 intervals. Recall that K is the
number of groups of machines in the group assignment rule of
Section 3.1. Let T C

0 denote the union of the (disjoint) time inter-
vals during which the tasks of chain C are being processed. Define
T C
1 , T C

2 , . . . , T C
K as follows: for each task μ j , j ∈ {2, . . . , |C|}, set

Mk = f (μ j), and assign the time interval between the end of task
μ j−1 and the start of task μ j to T C

k . That is, T C
k is the set of time

intervals that tasks in the terminal chain C assigned to machines
in group Mk have to wait before being processed. The sum of the
lengths of the time intervals in

⋃
k T C

k is exactly the makespan.
Note that T C

k , k = {1, . . . , K } can be empty or contain more than
one time interval.

(iii) Bound the idle time in between tasks in the chain. Consider a
task μ j assigned to machine h(μ j). For each machine i ∈ f (μ j), let
E(μ j−1, μ j, i) denote the union of disjoint idle time intervals on
machine i between the end time of task μ j−1 and the start time
of task μ j in the schedule S . Due to the greedy nature of GETF and
the fact that the predecessor of each task in the terminal chain is
the one that finished last, we know that no task could have started
earlier on any machine in its assigned group, therefore the length
of E(μ j−1, μ j, i) is bounded above by the communication delays
between task μ j−1 and task μ j , i.e., for any i ∈ f (μ j),

|E(μ j−1,μ j, i)| ≤ d(μ j−1,μ j)

s(h(μ j−1), i)
,

otherwise task μ j could have started earlier on machine i. Let ēk
be the maximal time amount of time that any machine in group
Mk is idle in the intervals of Tk , i.e., during the time that tasks in
C waited to be processed on some machine in Mk . Then

K∑
k=1

ēk ≤
|C|∑
j=2

d(μ j−1,μ j)

mini∈ f (μ j) s(h(μ j−1), i)
=

|C|∑
j=2

d(μ j−1,μ j)

s̄ f (μ j−1,μ j)
. (4)

Note that the right hand side of (4) is exactly the definition of
�(C, �h, f) (3).

(iv) Bound the makespan. Denote the total length of the inter-
vals in Tk by tk . Let ek(i) denote the total idle time of machine i
in the intervals of Tk . By the definition of ek(i), there must be ex-
actly (tk − ek(i)) s(i) units processed on machine i during Tk . As
the total number of units processed on machines in Mk in S is ∑

j: f (j)=Mk
p(j), we have that for 1 ≤ k ≤ K ,∑

i∈Mk

(tk − ek(i)) s(i) ≤
∑

j: f (j)=Mk

p(j). (5)

Recall that s(Mk) = ∑
i∈Mk

s(i). Rearranging (5), we get

tk ≤
∑

j: f (j)=Mk
p(j) +

∑
i∈Mk

ek(i)s(i)
. (6)
s(Mk)) s(Mk)

Y. Su, S. Vardi, X. Ren et al. Operations Research Letters 51 (2023) 709–716
We now bound the makespan:

Cmax(S) =
K∑

k=1

tk + t0

≤
K∑

k=1

(∑
j: f (j)=k p(j)

s(Mk))
+

∑
i∈Mk

ek(i)s(i)

s(Mk)

)
+

∑
μ j∈C

p(μ j)

s(h(μ j))

≤ P (C, �h) +
K∑

k=1

Dk(f) +
K∑

k=1

ēk

∑
i∈Mk

s(i)

s(Mk)

≤ P (C, �h) +
K∑

k=1

Dk(f) + �(C, �h, f),

where the first inequality is from (6) and the last inequality is due
to (4). �
5.1. Proof of Theorem 4.1

In order to apply the Separation Principle to prove Theorem 4.1,
we prove bounds on P (C, �h) and

∑K
k=1 Dk(fmksp) in the case of

the group assignment rule defined in Section 3.1. The bounds are
given in the following two lemmas, which are adapted from results
in [12]. Theorem 4.1 follows directly from these lemmas, the Sep-
aration Principle, and the fact that T ∗ ≤ O P T (C F) , where T ∗ is the
optimal solution to LP (1).

Lemma 5.2. Let x∗, C∗, T ∗ denote the optimal solution to LP (1). Then
P (C, �h) ≤ 2γ T ∗ for any �h consistent with fmksp.

Proof. For any j ∈ C,
∑�(j)

k=1 x
†
k, j ≥ 1

2 , by the definition of �(j).
Thus,

∑
i∈M

x∗
i, j

s(i)
=

K∑
k=1

∑
i∈Mk

x∗
i, j

s(i)
≥

�(j)∑
k=1

x†k, j
γ �(j)

≥ 1

2γ �(j)
≥ 1

2γ s(h(μ j))
,

(7)

where the first inequality is due to the fact that speed of any ma-
chine in groups M1, . . . , M�(j) is at most γ �(j) and the rightmost
inequality is due to the fact that fmksp allocates task j to some
group Mk where k ≥ �(j), hence its speed is at least γ �(j)−1. We
can now bound P (C, �h) as follows:

P (C, �h) =
|C|∑
j=1

p(μ j)

s(h(μ j))
≤ 2γ

|C|∑
j=1

p(μ j)
∑
i∈M

x∗
i,μ j

s(i)

≤ 2γ

⎛
⎝C∗

μ1
+

|C|∑
j=2

p(μ j)
∑
i∈M

x∗
i,μ j

s(i)

⎞
⎠ (8a)

≤ 2γ C∗
μ|C| ≤ 2γ T ∗, (8b)

where the first inequality is due to (7), the second is due to Con-
straint (1b), the third is by repeated application of Constraint (1c),
and the last inequality is due to Constraint (1e). �
Lemma 5.3. Let x∗, C∗, T ∗ be a feasible solution to LP (1). Then ∑K

k=1 Dk(fmksp) ≤ 2K T ∗ .

Proof. Define x†k, j and �(j) with respect to x∗ , similarly to Sec-
tion 3.1. We first bound s(fmksp(j)), where s(f (j)) is s(Mk) with
k = f (j):
714
1

2s(fmksp(j))
≤

K∑
k=�(j)

x†k, j
s(fmksp(j))

≤
K∑

k=�(j)

x†k, j
s(Mk)

≤
K∑

k=1

x†k, j
s(Mk)

,

where the first inequality is because
∑K

k=�(j) x
†
k, j ≥ 1

2 , and the sec-
ond is because of the definition of fmksp . Therefore

K∑
k=1

Dk(fmksp) =
K∑

k=1

∑
j: fmksp(j)=Mk

p(j)

s(Mk)
=

∑
j∈V

p(j)

s(fmksp(j))

≤ 2
∑
j∈V

K∑
k=1

p(j)x†k, j
s(Mk)

= 2
∑
j∈V

K∑
k=1

∑
i∈Mk

p(j)x∗
i, j

s(Mk)

≤ 2
K∑

k=1

T ∗ = 2K T ∗,

where the first inequality is from the bound on s(fmksp(j)) and the
second is due to Constraint (1d), noting that the constraint can be
rewritten as follows:

∑
j∈V p(j)xi, j ≤ T s(i). �

5.2. Proof of Theorem 4.4

Given a schedule S = (�h, �t) for a DAG G , once again assume
that the tasks are indexed with respect to their order in the sched-
ule determined by GETF and let G(S, j) denote the subgraph of G
induced by the set of the tasks that have been scheduled up to
task j (i.e., the nodes 1, . . . , j and edges between these nodes).
Recall that C j = μ1 ≺ μ2 ≺ · · · ≺ μC j

is a terminal chain that in-
cludes task j, truncated at j = μC j

, and define P (C j, �h) similarly

to P (C, �h), but with respect to C j : P (C j, �h) := ∑
μ j∈C j

p(μ j)

s(h(μ j))
.

Let Dk(f twct, S, j) denote the load of machines in group Mk in S
resulting from tasks 1, . . . , j (note that we need S in the notation
as it defines the task order):

Dk(f twct,S, j) :=
∑

μ j∈[j], f twct(μ j)=k p(μ j)

s(Mk)
. (9)

We apply the Separation Principle for each task j (in the order
defined by S) and combine these inequalities as follows:

∑
j

ω jC j ≤
∑
j

ω j

(
P (C j, �h) +

∑
k

Dk(f twct,S, j)

)

+
∑
j

ω j�(�h, f twct, j).

As both P (C j, �h) and Dk(f twct, S, j) are independent of the com-
munication constraints, we can use the group assignment rule f twct

to tighten the bound. Divide the time horizon into Q sets, as
defined in Subsection 3.2. For any task j, define q(j) to be the
minimum value of q such that both

∑q
t=1

∑
i x̃i, j,t ≥ 1

2 and C̃ j ≤ 2q

are satisfied. Intuitively, q(j) can be viewed as a rough estimate of
the completion time of task j. Such a q(j) must exist as both in-
equalities trivially hold for q = Q , as 2Q is an upper bound on the
completion time (excluding communication times) of any task. For
every q ∈ [Q], define Jq = { j : q(j) = q}. We require the following
result, which shows that an optimal solution to LP (2) is a feasible
solution to LP (1) when it is solved for the jobs in Jq .

Lemma 5.4. Let x̃, C̃ denote the optimal solution to LP (2). For every task
j, set α j = ∑q(j) ∑

i x̃i, j,t . Then for any q ∈ [Q],
t=1

Y. Su, S. Vardi, X. Ren et al. Operations Research Letters 51 (2023) 709–716
x∗
i, j =

q∑
t=1

x̃i, j,t
α j

∀ j ∈ Jq, i

C∗
j = 2C̃ j ∀ j ∈ Jq

T ∗ = 2q+1.

is a feasible solution for LP (1) when it is solved for the tasks in Jq. Fur-
thermore,

∑
j∈Jq

p(j)
s(f twct(j))

≤ 2q+2K .

Proof. It suffices to verify that x∗, C∗ and T ∗ satisfy all the con-
straints in LP (1). By the definition of α j , it is clear that Constraint
(1a) holds for any task j ∈ Jq . To validate that constraint (1b) is
satisfied, note that α j ≥ 1/2 by definition and so a direct substitu-
tion on the left hand side yields the right hand side due to (2b).
Similarly, constraint (2c) ensures that constraint (1c) is satisfied
and constraint (2f) ensures that constraint (1d) is satisfied. Finally,
C∗

j ≤ 2q by the definition of q(j) and thus constraint (1e) holds.
The proof that

∑
j∈Jq

p(j)
s(f twct(j))

≤ 2q+2K is essentially identical to

the proof of Lemma 5.3, with f twct , �̃(j) and x‡k, j instead of fmksp ,

�(j) and x†k, j and the equality in the second line of the second
equation block is replaced with an inequality. �

Using Lemma 5.4, we prove the following.

Lemma 5.5. P (C j, �h) + ∑
k Dk(f twct, S, j) ≤ 32(γ + K) · C̃ j

Proof. Let x̃, C̃ denote the optimal solution to LP (2). Similarly to
the proof of Lemma 5.2,

∑
q∈[Q]

∑
i∈M

x̃i, j,q
s(i)

≥
�̃(j)∑
k=1

x‡k, j

γ �̃(j)
≥ 1

2γ �̃(j)
≥ 1

2γ s(h(μ j))
. (10)

Let x∗, C∗, T ∗ be as in Lemma 5.4, and let C be any chain in
the DAG induced by the nodes of Jq . Similarly to Lemma 5.2,

P (C, �h) =
∑

μ j∈C

p(μ j)

s(h(μ j))
≤ 2γ

∑
μ j∈C

p(μ j)
∑
q∈[Q]

∑
i∈M

x̃i,μ j ,q

s(i)

≤ 2γ
∑

μ j∈C
p(μ j)

∑
i∈M

x∗
i,μ j

s(i)
≤ 2γ · 2q+1,

where the first inequality is due to (10) and the second is due
to the definition of x∗ . The third inequality is due to reasoning
identical to that of lines (8a) and (8b) in the proof of Lemma 5.2,
using the fact that x∗, C∗, T ∗ is a feasible solution to LP (1).

We can represent the chain C j as a concatenation of chains in
the DAGs induced by tasks in J1, . . . , Jq(j) . Thus,

P (C j, �h) ≤
q(j)∑
t=1

2γ · 2t+1 ≤ 8γ · 2q(j). (11)

We bound
∑

k Dk(f twct, S, j) as follows:

∑
k

Dk(f twct,S, j) ≤
q(j)∑
t=1

∑
μ j∈Jt

p(μ j)

s(f twct(μ j))

≤
q(j)∑
t=1

2K · 2t+1 ≤ 8K · 2q(j), (12)

where the first inequality is from the definition of Dk(f twct, S, j)
in (9) and because the tasks in G(S, j) form a subset of ∪q(j)

t=1Jq ,
and the second inequality is from Lemma 5.4.
715
By the definition of q(j), for task j either (a)
∑q(j)−1

t=1

∑
i x̃i, j,t <

1
2 or (b) C̃ j > 2q(j)−1. If (a) holds, then

2q(j)−1 ≤ 2q(j)−1 · 2
⎛
⎝ Q∑

t=q(j)

∑
i

x̃i, j,t

⎞
⎠

≤ 2

⎛
⎝ Q∑

t=q(j)

2t−1
∑
i

x̃i, j,t

⎞
⎠ ≤ 2C̃ j,

where the last inequality is due to constraint (2e) in the LP (2). If
(b) holds then 2q(j)−1 < C∗

j = 2C̃ j . In both cases, 2q(j)−1 is upper
bounded by 2C̃ j , and hence 2q(j) is upper bounded by 4C̃ j . Com-
bining this with Inequalities (11) and (12) completes the proof. �

Combining Lemma 5.5 with the fact that
∑

j ω j C̃ j is lower
bounded by O P T (C F) completes the proof of Theorem 4.4:∑

j

ω jC j(S) ≤ 32(γ + K)
∑
j

ω j C̃ j +
∑
j

ω j�(�h, f twct, j)

≤ O (logm/ log logm) · O P T (C F) +
∑
j

ω j�(�h, f twct, j).

5.3. Proof of Proposition 4.3

The proof technique of the Separation Principle can be used to
provide a new, simpler proof of the approximation ratio of ETF in
the case of identical machines. Without loss of generality, we as-
sume that the machines all have speed 1. The proof can be broken
into three steps.

(i) Choose one of the longest terminal chains C.
(ii) Bound the idle time in between tasks. Let I(μ j−1, μ j) be the

time interval between the end time of task μ j−1 and the start
time of μ j for j = 2, 3, . . . , |C|, and for each machine i ∈ M , define
E(μ j−1, μ j, i) as a union of disjoint idle time intervals on machine
i during the time interval I(μ j−1, μ j). For any machine i ∈ M, j =
2, 3, . . . , |C|, it holds that |E(μ j−1, μ j, i)| ≤ d(μ j−1,μ j)

s(h(μ j−1),i)
, otherwise

task μ j could have started earlier on machine i.
(iii) Bound the makespan. During the union of the time inter-

vals in between the tasks of C, ∪ j∈{2,...,|C|} I(μ j−1, μ j), exactly ∑|C|
j=2

∑m
i=1(|I(μ j−1, μ ji)| − |E(μ j−1, μ j, i)|) processing units are

executed (this is precisely the time that the machines are not idle),
and this is bounded by a sum of the processing units for all the
tasks except those in the terminal chain. Therefore

|C|∑
j=2

m∑
i=1

(|I(μ j−1,μ j)| − |E(μ j−1,μ j, i)|
)

≤
n∑
j=1

p(j) −
|C|∑
j=1

p(μ j). (13)

We bound Cmax as follows.

Cmax(S) =
|C|∑
j=2

|I(μ j−1,μ j)| +
|C|∑
j=1

p(μ j)

≤ 1

m

n∑
j=1

p(j) + m − 1

m

|C|∑
j=1

p(μ j) + 1

m

|C|∑
j=2

m∑
i=1

|E(μ j−1,μ j, i)|

≤
(
2− 1

m

)
O P T (C F) + �′(�h),

Y. Su, S. Vardi, X. Ren et al. Operations Research Letters 51 (2023) 709–716
where the first inequality is due to Inequality (13) and the last in-
equality is due to the following: (i) 1

m

∑n
j=1 p(j) ≤ O P T (C F) , and

(ii) the makespan of any schedule should at least cover the pro-
cessing time of any chain C in the DAG, therefore

∑|C|
j=1 p(μ j) ≤

O P T (C F) and (iii) from the definitions of �′(�h) and E(μ j−1, μ j, i).

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et
al., Tensorflow: a system for large-scale machine learning, in: OSDI 16, 2016,
pp. 265–283.

[2] Nikhil Bansal, Scheduling: open problems old and new, in: MAPSP, 2017, http://
www.mapsp2017.ma .tum .de /MAPSP2017 -Bansal .pdf.

[3] Nikhil Bansal, Subhash Khot, Optimal long code test with one free bit, in: 2009
50th Annual IEEE Symposium on Foundations of Computer Science, IEEE, 2009,
pp. 453–462.

[4] David Chappell, Introducing Azure Machine Learning. A Guide for Technical
Professionals, Sponsored by Microsoft Corporation, 2015.

[5] Fabián A. Chudak, David B. Shmoys, Approximation algorithms for precedence-
constrained scheduling problems on parallel machines that run at different
speeds, J. Algorithms 30 (2) (1999) 323–343.

[6] Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, Yihao
Zhang, Scheduling with communication delays via lp hierarchies and clustering,
in: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), IEEE, 2020, pp. 822–833.

[7] Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, Yihao
Zhang, Scheduling with communication delays via lp hierarchies and clus-
tering ii: weighted completion times on related machines, in: Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2021,
pp. 2958–2977.

[8] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and
approximation in deterministic sequencing and scheduling: a survey, in: P.L.
Hammer, E.L. Johnson, B.H. Korte (Eds.), Discrete Optimization II, in: Annals of
Discrete Mathematics, vol. 5, Elsevier, 1979, pp. 287–326.

[9] Ronald L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl.
Math. 17 (2) (1969) 416–429.

[10] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, Chung-Yee Lee, Scheduling
precedence graphs in systems with interprocessor communication times, SIAM
J. Comput. 18 (2) (1989) 244–257.

[11] Yu-Kwong Kwok, Ishfaq Ahmad, Static scheduling algorithms for allocating
directed task graphs to multiprocessors, ACM Comput. Surv. 31 (4) (1999)
406–471.

[12] S. Li, Scheduling to minimize total weighted completion time via time-indexed
linear programming relaxations, in: 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), Oct 2017, pp. 283–294.

[13] Biswaroop Maiti, Rajmohan Rajaraman, David Stalfa, Zoya Svitkina, Aravindan
Vijayaraghavan, Scheduling precedence-constrained jobs on related machines
with communication delay, in: FOCS 2020, IEEE, 2020, pp. 834–845.

[14] Ola Svensson, Conditional hardness of precedence constrained scheduling on
identical machines, in: Proceedings of the Forty-Second ACM Symposium on
Theory of Computing, ACM, 2010, pp. 745–754.
716

http://refhub.elsevier.com/S0167-6377(23)00181-5/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf
http://www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibB6AFBEEA02BA49C46141904EAB3189DAs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibB6AFBEEA02BA49C46141904EAB3189DAs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibB6AFBEEA02BA49C46141904EAB3189DAs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibAEF85187B57EF4E2F37C52C0B7CEEA7Es1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibAEF85187B57EF4E2F37C52C0B7CEEA7Es1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibD890B1DEB2F7B98214D1A7EBD6C5D29Es1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibD890B1DEB2F7B98214D1A7EBD6C5D29Es1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibD890B1DEB2F7B98214D1A7EBD6C5D29Es1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibBF7D2CF73BACC2E661CC69E2E3FC266Bs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibBF7D2CF73BACC2E661CC69E2E3FC266Bs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibBF7D2CF73BACC2E661CC69E2E3FC266Bs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibBF7D2CF73BACC2E661CC69E2E3FC266Bs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibA116BB5F8B53CD2A4FF26EEA60DD8A68s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibA116BB5F8B53CD2A4FF26EEA60DD8A68s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibA116BB5F8B53CD2A4FF26EEA60DD8A68s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibA116BB5F8B53CD2A4FF26EEA60DD8A68s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bibA116BB5F8B53CD2A4FF26EEA60DD8A68s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib71F975FDA2C66ECB66993537E109B9FBs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib71F975FDA2C66ECB66993537E109B9FBs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib71F975FDA2C66ECB66993537E109B9FBs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib71F975FDA2C66ECB66993537E109B9FBs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib5770137F47A122365B54AD63B03F64CCs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib5770137F47A122365B54AD63B03F64CCs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib563612BC3A3F1FE0AEDA8DF44646847Fs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib563612BC3A3F1FE0AEDA8DF44646847Fs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib563612BC3A3F1FE0AEDA8DF44646847Fs1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib786275917C736F86E32E464B60BA544As1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib786275917C736F86E32E464B60BA544As1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib786275917C736F86E32E464B60BA544As1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib9C964F899AE3133C986C454EF65B1D60s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib9C964F899AE3133C986C454EF65B1D60s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib9C964F899AE3133C986C454EF65B1D60s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib54244ABCC6E5078325DB998D00F5C431s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib54244ABCC6E5078325DB998D00F5C431s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib54244ABCC6E5078325DB998D00F5C431s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib902C9D49DCF5FE662F6D64BB5E5FD368s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib902C9D49DCF5FE662F6D64BB5E5FD368s1
http://refhub.elsevier.com/S0167-6377(23)00181-5/bib902C9D49DCF5FE662F6D64BB5E5FD368s1

	Communication-aware scheduling of precedence-constrained tasks on related machines
	1 Introduction
	2 Problem formulation
	3 Generalized Earliest Time First (GETF) scheduling
	3.1 A group assignment rule for makespan
	3.2 A group assignment rule for total weighted completion time

	4 Results
	5 Proofs
	5.1 Proof of Theorem 4.1
	5.2 Proof of Theorem 4.4
	5.3 Proof of Proposition 4.3

	References

