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1. Introduction

In this paper we study scheduling precedence-constrained tasks 
onto a set of related machines with non-uniform (machine depen-
dent) communication delays between the machines in order to 
minimize the makespan or the total weighted completion time. 
This problem is timely due to the prominence of large-scale, 
general-purpose machine learning platforms. For example, in sys-
tems such as Google’s TensorFlow [1] and Microsoft’s Azure Ma-
chine Learning (AzureML) [4], machine learning workflows are ex-
pressed via a directed acyclic graph (DAG), where jobs are made 
up of tasks, represented as vertices, and precedence relationships 
between the tasks, represented as edges. This abstraction allows 
data scientists to quickly develop and incorporate modular compo-
nents into their machine learning pipeline (e.g., data preprocessing, 
model training, and model evaluation) and then easily specify a 
workflow. The graphs that specify the workflows in platforms such 
as TensorFlow and AzureML can be made up of hundreds or even 
thousands of tasks, and the jobs may be run on systems with thou-
sands of machines. As a result, the performance of the platforms 
depends on how these precedence-constrained tasks are scheduled 
across machines.

The study of scheduling jobs composed of precedence-const-
rained tasks was initiated by [9], who studied scheduling a single 
job with n precedence-constrained tasks on m identical parallel 
machines with the goal of minimizing the makespan: the time un-
til the last task completes. More generally, the goal of minimizing 
the total weighted completion time is considered, where the total 
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weighted completion time is a weighted average of the comple-
tion time of each task in the job (these problems are denoted by 
P |prec|Cmax and P |prec| ∑ j w jC j respectively in 3-field notation1). 
Note that makespan is a special case of total weighted completion 
time as a dummy task with weight one can be added as the fi-
nal task of the job, with all other tasks given weight zero. For 
P |prec|Cmax, Graham showed that a simple list scheduling algo-
rithm can find a schedule of length within a multiplicative factor 
of (2 − 1/m) of the optimal. This result is still the best guarantee 
known for this setting.

Researchers have generalized this setting in several directions, 
in particular: (i) to heterogeneous machines and (ii) to accommo-
date inter-task communication. The majority of progress has been 
made on generalizations to heterogeneous machines. The focus has 
been on related machines, where each machine i has a speed si , 
each task j has a size p( j), and the time to run task j on ma-
chine i is p( j)/si . A sequence of results in the 1980s and 1990s 
culminated in a result that showed how to use list scheduling 
algorithms in combination with a partitioning of machines into 
groups according to their speeds in order to achieve an O (logm)-
approximation algorithm for Q |prec|Cmax [5]. This result was also 
extended in the same work to total weighted completion time by 
proposing a time-indexed linear programming technique, giving an 
O (logm)-approximation for total weighted completion time. The 
idea of using a group assignment rule to partition machines into 
groups of machines with similar speeds and then to assign tasks to 

1 Introduced by [8]: the first field denotes the machine environment: P for iden-
tical machines, Q for related machines; the second field denotes the job character-
istics: prec for precedence constraints, � for identical communication delays, ci, j
machine-dependent delays; the third field denotes the objective: Cmax for minimiz-
ing makespan, ∑ j w jC j for minimizing total weighted sum of completion times.
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a group has shown up frequently in the years since; it recently led 
to a breakthrough when this idea was combined with a variation 
of list scheduling to obtain a O (logm/ log logm)-approximation al-
gorithm for both makespan and total weighted completion time 
[12].

There has been little progress toward the goal of incorporat-
ing communication delays. Researchers of [10] studied minimizing 
weighted completion time on identical machines with machine-
dependent communication speeds.2 They showed that algorithms 
for communication-free problems (ones without inter-task com-
munication delays) cannot be adapted in a straightforward manner 
to this setting. Specifically, if one uses Graham’s list scheduling 
algorithm on the communication-free version of a problem and 
adds the communication delays incurred by the schedule, the over-
head can be (asymptotically) the sum of all of the communica-
tion delays. They showed that a greedy algorithm called Earliest 
Time First (ETF) produces schedules with a makespan bounded by 
(2 − 1/m)O P T (C F ) + �, where O P T (C F ) is the optimal schedule 
length for the communication-free problem and � is the amount
of communication delays caused by the longest chain generated 
by the ETF algorithm (which is in turn upper bound by the maxi-
mal communication time required by any chain in the precedence 
graph). In other words, the overhead from the communication-free 
problem can be reduced from the sum of all communication delays 
to the cost of a single chain in the precedence-constraint DAG.

The analysis of [10] has proven difficult to generalize to the re-
lated machines setting and there has been no progress on schedul-
ing with machine-dependent communication delays outside the 
context of identical machines. Recently, there has been a surge of 
progress on scheduling with machine-independent delays [6,7,13]. 
However, extensions of those results to machine-dependent com-
munication delays have proven difficult and the state-of-the-art 
result in the case of machine-dependent communication delays is 
still due to [10].

Contributions. In this paper we propose a new scheduler 
for scheduling precedence-constrained tasks on related machine 
with machine-dependent communication speeds to minimize 
the makespan. We show that the scheduler, Generalized Earli-
est Time First (GETF), computes a schedule S whose makespan 
is at most O (logm/ log logm)O P T (C F ) + �, where O P T (C F ) is 
the optimal schedule length for the communication-free prob-
lem and � is the maximal communication delay that can be 
induced by a single chain in the precedence graph. We then 
generalize our result to the objective of minimizing the to-
tal weighted completion time and show that GETF produces a 
schedule S whose total weighted completion time is at most 
O (logm/ log logm) O P T (C F ) + ∑

j ω j�
S
j , where O P T (C F ) is the 

optimal total weighted completion time, ω j is the weight of task 
v j in the objective, and �S

j is the maximal communication delay 
caused by a single chain that terminates with job j. The makespan 
result matches state-of-the-art bounds for the special case when 
there are no communication delays ([12]). In addition, our proof 
technique yields a short and cleaner proof for the result of [10] for 
identical machines. In fact, we slightly improve upon the bound 
of [10], as the additive component of our bound is with respect 
to the average communication delay for each task in the chain, 
instead of the worst case delay. In the case of total weighted com-
pletion time, no previous result exists for the case of identical 
machines with machine-dependent communication times, but the 

2 We distinguish between communication speeds and communication delays: a 
communication delay is the time between the completion of a job on one machine 
and the start of another task on another machine, while communication speed is 
how fast one unit of data can be transferred between two machines.
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result matches the bound of [12] for Q |prec| ∑ j ω jC j – the case 
with related machines and no communication delays.

The key technical advance that enables our new result is a new 
Separation Principle, which allows us to separate the communica-
tion delay analysis from the analysis of the communication-free 
problem in the case of related machines. To prove the Separation 
Principle, we show that we can choose a chain in the DAG in such 
a way that the makespan is at most the sum of the solution to 
the communication-free problem and the communication delays 
on that particular chain.

We show that we can apply the Separation Principle to both 
makespan minimization and total weighted completion time by 
adapting the group assignment rules of [12]. In addition, we use 
the same proof technique to give a novel (and shorter) proof of 
the approximation ratio for ETF in the case of identical machines.

Related literature.
The best positive result for P |prec| ∑ j w jC j is currently a 

(2 + 2 ln 2 + ε)-approximation by [12] via a time-indexed linear 
programming relaxation technique. The work of [14] proved that 
it is NP-hard to achieve an approximation factor less than 2, given 
the assumption of a new variant of the Unique Game Conjecture 
introduced by [3]. The negative results for P |prec|Cmax carry over 
to P |prec| ∑ j ω jC j as makespan is a special case of total weighted 
completion time. For related machines, authors of [5] proposed 
a Speed-based List Scheduling algorithm that obtains an approx-
imation of O (logm) for Q |prec|Cmax , and a time-indexed linear 
programming technique that gives a O (logm) approximation for 
Q |prec| ∑ j ω jC j . Recently, an improvement to O (logm/ log logm)

for both objectives was proven in [12].
When there are positive communication delays, much less 

is known. No approximation ratio is known for P |prec, ci, j|Cmax

(scheduling precedence-constrained tasks with machine-dependent 
communication delays), and this was noted by [2] as one of the 10 
most important open questions in scheduling theory. The only al-
gorithm with a guaranteed worst-case performance bound in this 
setting is ETF [10]. We note that the setting of [10] is a generaliza-
tion of P |prec, ci, j|Cmax , as it concerns machine-dependent speeds, 
and each edge (v j, v j′ ) in the precedence graph is parameterized 
by a weight p j, j′ which denotes the amount of data that needs 
to be transferred between the machine that executed v j and the 
one that will execute v j′ . Given that p j, j′ units of data are passed 
from machine i to machine i′ , and the communication speed be-
tween these two machines is si,i′ , the communication delay is 
p j, j′
si,i′

. P |prec, ci, j|Cmax is recovered by setting p j, j′ = 1 for all tasks 
v j, v j′ .

Recently, there have been several breakthroughs for settings 
with constant communication delays. A O (log c · logm)-approx-
imation algorithm was proposed in [6] in the case of identical 
machines for P |prec, c|Cmax , where there is a fixed communica-
tion delay of c between each pair of machines (but no delay 
for two tasks scheduled on the same machine). This is the first 
result that is not linear in the communication delays in the ap-
proximation ratio for settings with communication delays. For re-
lated machines (Q |prec, c|Cmax), researchers of [13] proposed a 
O (logm log c/ log log c)(O P T + c)-approximation algorithm, where 
O P T is the optimal makespan for the problem when duplication 
is allowed. This translates to an O (log5 n/ log logn)-approximation 
to the makespan. Further, they were able to bound the duplication 
advantage to compute a no-duplication schedule. The work of [7]
improved this result to a O (log 3n)-approximation in the case of 
minimizing the makespan, and gave a O (log 4n)-approximation for 
minimizing total weighted completion time. However, their results 
do not apply to machine-dependent communication delays.
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2. Problem formulation

We consider the task of scheduling a job made up of a set V =
[n] tasks on a heterogeneous system composed of a set M = [m]
of machines with different processing and communication speeds. 
The precedence constraints on the tasks form a directed acyclic 
graph (DAG) G = (V , E), in which each node j represents a task 
and an edge ( j, j′) represents a precedence constraint. We inter-
changeably use node or task, as convenient. Precedence constraints 
are denoted by a partial order ≺, where j ≺ j′ means that task j′
can only be scheduled after task j completes. The processing de-
mand of task j is represented by p( j), and the amount of data that 
needs to be transmitted between task j and task j′ is represented 
by d( j, j′).

The system is heterogeneous with respect to both processing 
and communication speeds. For processing speed, we consider the 
classical related machines model: machine i has speed s(i), and it 
takes p( j)/s(i) uninterrupted time units for task j to complete on 
machine i. Without loss of generality, we assume that the speed 
of the fastest machine is m. For communication speeds, we use 
a similar notion: machines i and i′ have communication speed 
s(i, i′) (possibly s(i, i) �= 0). We denote the time at which task j
starts executing by t( j), and the machine to which task j is as-
signed by h( j). If j ≺ j′ , h( j) = i and h( j′) = i′ , the communication 
delay between task j and j′ is d( j, j′)/s(i, i′). We note this is es-
sentially identical to the model of [10] (they parameterize pairs 
of machines by 1/s(i, i′) as opposed to s(i, i′)). For simplicity, we 
consider a setting where the machines are fully connected to each 
other, so any machine can communicate with any other machine. 
This is without loss of generality as one can simply set the com-
munication speed between any two disconnected machines to 0. 
We also assume that the preference constraint DAG is connected. 
This is also without loss of generality since we can connect all of 
the tasks in G to a dummy task n + 1, such that p(n + 1) = 0 and 
d( j,n + 1) = 0 for all j. Hence, our results trivially apply to the 
case of multiple jobs. Additionally, we assume that each machine 
can process at most one task at a time and the machines are as-
sumed to be non-preemptive, i.e., once a task starts on a machine, 
the scheduler must wait for the task to complete before assign-
ing any new task to this machine. This is a natural assumption in 
many settings, as interrupting a task and transferring it to another 
machine can cause significant processing overhead and communi-
cation delays due to data locality, e.g., [11].

We focus on two objective functions: minimizing the makespan, 
denoted Cmax , the time it takes for the final task to com-
plete, and minimizing the total weighted completion time of the 
job, denoted 

∑
j ω jC j , where C j is the completion time of 

task j and ω j is the weight of task j. We denote our prob-
lem settings by Q |prec, c∗

i, j|Cmax and Q |prec, c∗
i, j | 

∑
j ω jC j re-

spectively. For any scheduling problem � in Q |prec, c∗
i, j |Cmax

or Q |prec, c∗
i, j| 

∑
j ω jC j , its communication-free version, denoted 

�(C F ) , is identical to �, except that there are no communication 
delays in �(C F ) . For any such �, the optimal solution for �(C F ) is 
denoted by O P T (C F ) .

A chain in the DAG is a sequence of immediate predecessor-
successor pairs, whose first node has no predecessor. A terminal 
chain is a chain whose last node is a leaf node with no successors. 
Note that, because the DAG is connected, there must exist at least 
one terminal chain.

3. Generalized Earliest Time First (GETF) scheduling

In this section, we introduce an algorithm, Generalized Earliest 
Time First (GETF), and describe the group-assignment rules that 
we will use to provide worst-case guarantees for the goals of mini-
mizing our objective functions. Like ETF, GETF seeks to greedily run 
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Algorithm 1 Generalized Earliest Time First (GETF).
INPUT: tasks V ; machines M; precedence constraints ≺; group assignment rule f
OUTPUT: a schedule S = (�h, �t)
1: R ← {1, 2, . . . , n}
2: while R �= ∅ do
3: A = { j : j ∈ R, � j′ s.t. j′ ∈ R and j′ ≺ j}
4: For each j ∈A, i ∈ f ( j):

τ j,i = earliest starting time on machine i;
mj = argmini∈ f ( j){τ j,i}; τ j = mini∈ f ( j){τ j,i}

5: B = { j : j ∈ argmin j: j∈A τ j}
6: Arbitrarily choose a task j from B.
7: h( j) =mj; t( j) = τ j

8: R ← R \ { j}
9: end while

tasks that can be started earliest, thereby minimizing the idle time 
created by the precedence constraints. ETF, which is an algorithm 
for identical machines, does not take into account the potential dif-
ference between the service rates of different machines. To account 
for this, we use group assignment rules, similarly to [5]. More pre-
cisely, GETF groups machines with similar speeds together, and 
assigns the tasks to the groups. Within each group, GETF uses a 
greedy allocation rule.

GETF is parameterized by a group assignment function f : V →
[K ], where K = �logγ m�, γ = logm/ log logm. The output of GETF 
is a schedule S , which we represent by a pair S = (�h, �t), where 
�h and �t represent the machine assignments and start times of the 
tasks, respectively. In each iteration, GETF computes A, the set of 
all of the tasks that are ready to process and are not yet scheduled. 
For every task j in A, GETF calculates τ j,i , the earliest possible 
starting time of j, if j was to execute on machine i. GETF then sets 
τ j = mini∈ f ( j) τ j,i , mj = argmini∈ f ( j) τ j,i . In other words, τ j is the 
earliest possible starting time for j if it is constrained to execute 
on a machine in f ( j), and mj is some machine in f ( j) that it can 
execute on at start time. GETF then computes B, the set of tasks in 
A with the earliest starting times, arbitrarily chooses a task j from 
B, and sets h( j) = mj and t( j) = τ j . The pseudocode for GETF is 
given in Algorithm 1. We describe our group assignment functions 
in the following subsections.

3.1. A group assignment rule for makespan

The group assignment rule fmksp that we use for the goal of 
minimizing the makespan is adapted from [12], where it was de-
signed for the setting without communication delay. First, all ma-
chines with speed less than 1 are discarded (recall that the fastest 
machine has speed m). The remaining machines are divided into K
groups M1, M2, . . . , MK where K = �logγ m�, γ = logm/ log logm, 
such that group Mk, k ∈ [K − 1] contains machines with speeds 
in range [γ k−1, γ k) and MK contains machines with speeds in 
[γ K−1, γ K ]. Note that K = O (logm/ log logm). The group assign-
ment rule fmksp is based on the solution of a linear program (LP), 
which is a relaxation of the following mixed integer linear program 
(MILP). We note that the solution of the MILP does not necessarily 
give a feasible schedule, as it allows more than one job to concur-
rently execute on the same machine.

min
xi, j ,C j ,T

T

∑
i∈M

xi, j = 1 ∀ j (1a)

p( j)
∑
i∈M

xi, j
s(i)

≤ C j ∀ j (1b)

C j′ + p( j)
∑ xi, j

s(i)
≤ C j ∀ j′ ≺ j (1c)
i∈M
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∑
j∈V

p( j)xi, j
s(i)

≤ T ∀i (1d)

C j ≤ T ∀ j (1e)

xi, j ∈ {0,1} ∀i, j (1f)

The variable C j denotes the completion time of task j. The bi-
nary variable xi, j denotes whether task j is assigned to machine i. 
Constraint (1a) ensures that every task is processed on some ma-
chine; Constraint (1b) guarantees that the processing time of task 
j is bounded by its completion time; Constraint (1c) enforces the 
precedence constraints between predecessor-successor pairs; Con-
straint (1d) guarantees that the total load assigned to any machine 
is not be greater than the makespan; Constraint (1e) ensures the 
makespan is not smaller than the completion time of any task.

We relax the above MILP to an LP by replacing constraint (1f)
with xi, j ≥ 0. Denote this LP by LP (1), and let x∗, C∗, T ∗ denote the 
optimal solution of this LP. Note that T ∗ provides a lower bound on 
O P T (C F ) , the optimal makespan for the same problem with zero 
communication delay. For each k ∈ [K ], let s(Mk) = ∑

i∈Mk
s(i) de-

note the total speed of the machines in Mk . Let x
†
k, j = ∑

i∈Mk
x∗
i, j

be the total fraction of task j assigned to machines in Mk . For any 
task j, define �( j) to be the largest index such that at least half of 
j is (fractionally) assigned to machines in groups M�( j), . . . , MK : 
�( j) = argmax�

{∑K
k=� x

†
k, j ≥ 1

2

}
. Task j is then assigned to the 

group from M�( j), . . . , MK for which the total speed is maximized, 
i.e.,

fmksp( j) = argmax
�( j)≤k≤K

s(Mk).

3.2. A group assignment rule for total weighted completion time

The group assignment rule f twct for the goal of minimizing 
the total weighted completion time is similar in spirit to fmksp . 
We first divide machines into groups as in Section 3.1. Without 
loss of generality, we assume that p( j)

s(i) ≥ 1 for any task j and 
machine i. Thus, we can divide the time horizon into the fol-
lowing time-indexed intervals of possible task completion times: 
[1, 2], (2, 4], (4, 8], . . . , (2Q −1, 2Q ] where Q =

⌈
log

(∑
j

p( j)
mini s(i)

)⌉
. 

The following MILP forms the basis for the group assignment:

min
xi, j,q,C j

∑
j

ω jC j

∑
i

∑
q

xi, j,q = 1 ∀ j (2a)

p( j)
∑
i

∑
q

xi, j,q
s(i)

≤ C j ∀ j (2b)

C j′ + p( j)
∑
i

∑
q

xi, j,q
s(i)

≤ C j ∀ j′ ≺ j (2c)

q∑
t=1

∑
i

xi, j,t −
q∑

t=1

∑
i

xi, j′,t ≤ 0 ∀q, j′ ≺ j (2d)

∑
q

2q−1
∑
i

xi, j,q ≤ C j ∀ j (2e)

∑
j

p( j)

s(i)

q∑
t=1

xi, j,t ≤ 2q ∀i,q (2f)

xi, j,q ∈ {0,1} ∀i, j,q (2g)
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Here, C j denotes the completion time of task j and ω j repre-
sents its weight in the objective function. The binary variable xi, j,q
denotes whether task j is assigned to machine i and it completes 
in the q-th interval (2q−1, 2q]. Constraints (2a) – (2c) are analo-
gous to Constraints (1a) – (1c). Constraints (2c) and Constraint (2d)
enforce the precedence constraint for every predecessor-successor 
pair. Constraint (2e) guarantees that the completion time of task 
j is not smaller than the left boundary of the q-th interval 
(2q−1, 2q]. The total load assigned to machine i up to q-th interval 
is 

∑
j
p( j)
s(i)

∑q
t=1 xi, j,t , and it should not be greater than the upper 

bound 2q as in constraint (2f).
We relax constraint (2g) to form an LP, and denote this LP by 

LP (2). Let x̃, C̃ denote the optimal solution for this LP. Note that ∑
j ω j C̃ j provides a lower bound for O P T (C F ) . To set the group 

assignment rule f twct , define �̃( j) similarly to �( j) but with respect 
to x̃ instead of x∗: let x‡k, j = ∑

q∈[Q ]
∑

i∈Mk
x̃i, j,q , and set �̃( j) =

argmax�

{∑K
k=� x

‡
k, j ≥ 1

2

}
.

The group assignment rule f twct for the goal of minimizing the 
total weighted completion time is as follows:

f twct( j) = argmax
�̃( j)≤k≤K

s(Mk).

4. Results

For the goal of minimizing the makespan, our main result 
provides a bound in terms of the total communication delay of 
a terminal chain in the precedence graph. Specifically, let C =
μ1 ≺ μ2 ≺ . . . ≺ μ|C| be a terminal chain in the DAG and define 
�(C, �h, f ) to be the maximal communication delay for C when 
the tasks are allocated according to �h and the group assignment 
rule is f . Formally,

�(C, �h, f ) :=
|C|∑
j=2

d(μ j−1,μ j)

s̄ f (μ j−1,μ j)
, (3)

where s̄ f (μ j−1, μ j) := mini∈ f (μ j) s(h(μ j−1), i) is the slowest speed 
between h(μ j−1), the machine assigned to μ j−1, and any ma-
chine in the group f (μ j). With a slight abuse of notation, let 
�(�h, f ) := max�(C, �h, f ), where the maximum is over all (ter-
minal) chains in the precedence DAG.

Theorem 4.1. For any problem in Q |prec, ci, j |Cmax , define �(�h, f ) as 
above, and denote the schedule produced by GETF with group assignment 
rule fmksp by S = (�h, �t). Then

Cmax(S) ≤ O (logm/ log logm)O P T (C F ) + �(�h, fmksp).

The bound of Theorem 4.1 depends on a chain in the com-
puted solution; we show that this result translates to a bound 
that only depends on the problem parameters. Let C be a ter-
minal chain in the DAG, as above, and let smax denote the slowest 
speed between any two machines. Let �(C) := ∑|C|

j=2
d(μ j−1,μ j)

smax
, 

and let � := max�(C), where the maximum is over all chains 
in the precedence DAG. As �(C) ≥ �(C, �h, f ) for any C, �h, f , we 
have that � ≥ �(�h, fmksp), giving the following corollary.

Corollary 4.2. For any problem in Q |prec, ci, j |Cmax , let � be defined as 
above, and denote the schedule produced by GETF with group assignment 
rule fmksp by S . Then

Cmax(S) ≤ O (logm/ log logm)O P T (C F ) + �.
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In the special case of identical machines, the group assignment 
rule fmksp is redundant, as all machines have the same speed. In 
this case, we can bound the makespan of GETF with respect to 
a different parameter. Let �′(C, �h) = 1

m

∑|C|
j=2

∑m
i=1

d(μ j−1,μ j)

s(h(μ j−1),i)
, and 

set �′(�h) = max�′(C, �h), where the maximum is over all chains 
generated by the assignment �h.

Proposition 4.3. For any problem in P |prec, ci, j |Cmax , define �′ as 
above, and denote the schedule produced by GETF by S = (�h, �t). Then

Cmax(S) ≤
(
2− 1

m

)
O P T (C F ) + �′(�h).

We note that this improves upon the bound of [10], as their 
bound is with respect to the maximal possible communication de-
lay, while ours is with respect to the average communication delay.

For total weighted completion time, assume that the tasks are 
indexed with respect to their order in the schedule determined 
by GETF (breaking ties arbitrarily). Let C j = μ1 ≺ μ2 ≺ · · · ≺ μC j

be a terminal chain that includes task j, truncated at j = μC j
and 

define �(C j, �h, f , j) := ∑C j

�=2
d(μ�−1,μ�)

s̄ f (μ�−1,μ�)
to be the worst case com-

munication time for the chain C j for these choices of �h and f . As 
before, let �(�h, f , j) := max�(C j, �h, f , j), where the maximum is 
over chains ending in task j that are consistent with �h and f . This 
definition generalizes the notion of �(�h, f ) used in Theorem 4.1
for makespan.

Theorem 4.4. For any problem in Q |prec, ci, j | ∑ j ω jC j , denote the 
schedule produced by GETF with group assignment rule f twct by S =
(�h, �t). Then∑
j

ω jc j(S) ≤ O (logm/ log logm)O P T (C F )+
∑
j

ω j�(�h, f twct, j).

Similarly to Corollary 4.2, we obtain the following corollary 
to Theorem 4.4. Let smax denote the slowest speed between any 
two machines, let �(C j, j) := ∑C j

�=2
d(μ�−1,μ�)

smax
, and let �( j) :=

max�(C j, j), where the maximum is over all chains whose last 
task is j.

Corollary 4.5. For any problem in Q |prec, ci, j | ∑ j ω jC j , define �( j) as 
above, and denote the schedule produced by GETF with group assignment 
rule f twct by S . Then∑
j

ω jC j(S) ≤ O (logm/ log logm)O P T (C F ) +
∑
j

ω j�( j).

5. Proofs

To prove Theorems 4.1 and 4.4, we first prove a Separation Prin-
ciple, which gives a general upper bound for GETF for any choice 
of group assignment function. We then use the group assignment 
rules fmksp and f twct to obtain our bounds. The core idea behind 
the Separation Principle is the construction of a chain which is 
used to bound the overall makespan.

Theorem 5.1 (Separation Principle). For any problem in Q |prec,
c∗
i, j |Cmax and group assignment function f , GETF produces a schedule 
S = (�h, �t) of makespan

Cmax(S) ≤ P (C, �h) +
K∑

Dk( f ) + �(C, �h, f ),

k=1

713
where P (C, �h) := ∑|C|
j=1

p(μ j)

s(h(μ j))
, Dk( f ) :=

∑
j:k∈ f ( j) p( j)
s(Mk)

, and �(C, �h,

f ) = ∑|C|
j=2

d(μ j−1,μ j)

s̄ f (μ j−1,μ j)
, where C = μ1 ≺ μ2 ≺ . . . ≺ μ|C| is a termi-

nal chain in S .

Proof. For the purposes of the proof, we add two dummy tasks, 
denoted 0 and n +1, which must execute before and after all other 
tasks respectively. That is, p(0) = 0, p(n + 1) = 0, d(0, j) = 0 and 
d( j,n + 1) = 0 for all j ∈ [n]. The proof now proceeds in four steps:

(i) Construct a terminal chain. We inductively construct a termi-
nal chain C from its end to its start. Add task n + 1 to the end of 
the chain, and denote it μ|C| . From the immediate predecessors 
of task μ|C| , pick one of the tasks that finishes last and denote 
it by μ|C|−1. Continue inductively to construct the terminal chain 
μ1 ≺ μ2 ≺ . . . ≺ μ|C| , where μ1 is the task 0.

(ii) Partition [0, Cmax] into K + 1 intervals. Recall that K is the 
number of groups of machines in the group assignment rule of 
Section 3.1. Let T C

0 denote the union of the (disjoint) time inter-
vals during which the tasks of chain C are being processed. Define 
T C
1 , T C

2 , . . . , T C
K as follows: for each task μ j , j ∈ {2, . . . , |C|}, set 

Mk = f (μ j), and assign the time interval between the end of task 
μ j−1 and the start of task μ j to T C

k . That is, T C
k is the set of time 

intervals that tasks in the terminal chain C assigned to machines 
in group Mk have to wait before being processed. The sum of the 
lengths of the time intervals in 

⋃
k T C

k is exactly the makespan. 
Note that T C

k , k = {1, . . . , K } can be empty or contain more than 
one time interval.

(iii) Bound the idle time in between tasks in the chain. Consider a 
task μ j assigned to machine h(μ j). For each machine i ∈ f (μ j), let 
E(μ j−1, μ j, i) denote the union of disjoint idle time intervals on 
machine i between the end time of task μ j−1 and the start time 
of task μ j in the schedule S . Due to the greedy nature of GETF and 
the fact that the predecessor of each task in the terminal chain is 
the one that finished last, we know that no task could have started 
earlier on any machine in its assigned group, therefore the length 
of E(μ j−1, μ j, i) is bounded above by the communication delays 
between task μ j−1 and task μ j , i.e., for any i ∈ f (μ j),

|E(μ j−1,μ j, i)| ≤ d(μ j−1,μ j)

s(h(μ j−1), i)
,

otherwise task μ j could have started earlier on machine i. Let ēk
be the maximal time amount of time that any machine in group 
Mk is idle in the intervals of Tk , i.e., during the time that tasks in 
C waited to be processed on some machine in Mk . Then

K∑
k=1

ēk ≤
|C|∑
j=2

d(μ j−1,μ j)

mini∈ f (μ j) s(h(μ j−1), i)
=

|C|∑
j=2

d(μ j−1,μ j)

s̄ f (μ j−1,μ j)
. (4)

Note that the right hand side of (4) is exactly the definition of 
�(C, �h, f ) (3).

(iv) Bound the makespan. Denote the total length of the inter-
vals in Tk by tk . Let ek(i) denote the total idle time of machine i
in the intervals of Tk . By the definition of ek(i), there must be ex-
actly (tk − ek(i)) s(i) units processed on machine i during Tk . As 
the total number of units processed on machines in Mk in S is ∑

j: f ( j)=Mk
p( j), we have that for 1 ≤ k ≤ K ,∑

i∈Mk

(tk − ek(i)) s(i) ≤
∑

j: f ( j)=Mk

p( j). (5)

Recall that s(Mk) = ∑
i∈Mk

s(i). Rearranging (5), we get

tk ≤
∑

j: f ( j)=Mk
p( j) +

∑
i∈Mk

ek(i)s(i)
. (6)
s(Mk)) s(Mk)
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We now bound the makespan:

Cmax(S) =
K∑

k=1

tk + t0

≤
K∑

k=1

(∑
j: f ( j)=k p( j)

s(Mk))
+

∑
i∈Mk

ek(i)s(i)

s(Mk)

)
+

∑
μ j∈C

p(μ j)

s(h(μ j))

≤ P (C, �h) +
K∑

k=1

Dk( f ) +
K∑

k=1

ēk

∑
i∈Mk

s(i)

s(Mk)

≤ P (C, �h) +
K∑

k=1

Dk( f ) + �(C, �h, f ),

where the first inequality is from (6) and the last inequality is due 
to (4). �
5.1. Proof of Theorem 4.1

In order to apply the Separation Principle to prove Theorem 4.1, 
we prove bounds on P (C, �h) and 

∑K
k=1 Dk( fmksp) in the case of 

the group assignment rule defined in Section 3.1. The bounds are 
given in the following two lemmas, which are adapted from results 
in [12]. Theorem 4.1 follows directly from these lemmas, the Sep-
aration Principle, and the fact that T ∗ ≤ O P T (C F ) , where T ∗ is the 
optimal solution to LP (1).

Lemma 5.2. Let x∗, C∗, T ∗ denote the optimal solution to LP (1). Then 
P (C, �h) ≤ 2γ T ∗ for any �h consistent with fmksp.

Proof. For any j ∈ C, 
∑�( j)

k=1 x
†
k, j ≥ 1

2 , by the definition of �( j). 
Thus,

∑
i∈M

x∗
i, j

s(i)
=

K∑
k=1

∑
i∈Mk

x∗
i, j

s(i)
≥

�( j)∑
k=1

x†k, j
γ �( j)

≥ 1

2γ �( j)
≥ 1

2γ s(h(μ j))
,

(7)

where the first inequality is due to the fact that speed of any ma-
chine in groups M1, . . . , M�( j) is at most γ �( j) and the rightmost 
inequality is due to the fact that fmksp allocates task j to some 
group Mk where k ≥ �( j), hence its speed is at least γ �( j)−1. We 
can now bound P (C, �h) as follows:

P (C, �h) =
|C|∑
j=1

p(μ j)

s(h(μ j))
≤ 2γ

|C|∑
j=1

p(μ j)
∑
i∈M

x∗
i,μ j

s(i)

≤ 2γ

⎛
⎝C∗

μ1
+

|C|∑
j=2

p(μ j)
∑
i∈M

x∗
i,μ j

s(i)

⎞
⎠ (8a)

≤ 2γ C∗
μ|C| ≤ 2γ T ∗, (8b)

where the first inequality is due to (7), the second is due to Con-
straint (1b), the third is by repeated application of Constraint (1c), 
and the last inequality is due to Constraint (1e). �
Lemma 5.3. Let x∗, C∗, T ∗ be a feasible solution to LP (1). Then ∑K

k=1 Dk( fmksp) ≤ 2K T ∗ .

Proof. Define x†k, j and �( j) with respect to x∗ , similarly to Sec-
tion 3.1. We first bound s( fmksp( j)), where s( f ( j)) is s(Mk) with 
k = f ( j):
714
1

2s( fmksp( j))
≤

K∑
k=�( j)

x†k, j
s( fmksp( j))

≤
K∑

k=�( j)

x†k, j
s(Mk)

≤
K∑

k=1

x†k, j
s(Mk)

,

where the first inequality is because 
∑K

k=�( j) x
†
k, j ≥ 1

2 , and the sec-
ond is because of the definition of fmksp . Therefore

K∑
k=1

Dk( fmksp) =
K∑

k=1

∑
j: fmksp( j)=Mk

p( j)

s(Mk)
=

∑
j∈V

p( j)

s( fmksp( j))

≤ 2
∑
j∈V

K∑
k=1

p( j)x†k, j
s(Mk)

= 2
∑
j∈V

K∑
k=1

∑
i∈Mk

p( j)x∗
i, j

s(Mk)

≤ 2
K∑

k=1

T ∗ = 2K T ∗,

where the first inequality is from the bound on s( fmksp( j)) and the 
second is due to Constraint (1d), noting that the constraint can be 
rewritten as follows: 

∑
j∈V p( j)xi, j ≤ T s(i). �

5.2. Proof of Theorem 4.4

Given a schedule S = (�h, �t) for a DAG G , once again assume 
that the tasks are indexed with respect to their order in the sched-
ule determined by GETF and let G(S, j) denote the subgraph of G 
induced by the set of the tasks that have been scheduled up to 
task j (i.e., the nodes 1, . . . , j and edges between these nodes). 
Recall that C j = μ1 ≺ μ2 ≺ · · · ≺ μC j

is a terminal chain that in-
cludes task j, truncated at j = μC j

, and define P (C j, �h) similarly 

to P (C, �h), but with respect to C j : P (C j, �h) := ∑
μ j∈C j

p(μ j)

s(h(μ j))
. 

Let Dk( f twct, S, j) denote the load of machines in group Mk in S
resulting from tasks 1, . . . , j (note that we need S in the notation 
as it defines the task order):

Dk( f twct,S, j) :=
∑

μ j∈[ j], f twct(μ j)=k p(μ j)

s(Mk)
. (9)

We apply the Separation Principle for each task j (in the order 
defined by S) and combine these inequalities as follows:

∑
j

ω jC j ≤
∑
j

ω j

(
P (C j, �h) +

∑
k

Dk( f twct,S, j)

)

+
∑
j

ω j�(�h, f twct, j).

As both P (C j, �h) and Dk( f twct, S, j) are independent of the com-
munication constraints, we can use the group assignment rule f twct

to tighten the bound. Divide the time horizon into Q sets, as 
defined in Subsection 3.2. For any task j, define q( j) to be the 
minimum value of q such that both 

∑q
t=1

∑
i x̃i, j,t ≥ 1

2 and C̃ j ≤ 2q

are satisfied. Intuitively, q( j) can be viewed as a rough estimate of 
the completion time of task j. Such a q( j) must exist as both in-
equalities trivially hold for q = Q , as 2Q is an upper bound on the 
completion time (excluding communication times) of any task. For 
every q ∈ [Q ], define Jq = { j : q( j) = q}. We require the following 
result, which shows that an optimal solution to LP (2) is a feasible 
solution to LP (1) when it is solved for the jobs in Jq .

Lemma 5.4. Let x̃, C̃ denote the optimal solution to LP (2). For every task 
j, set α j = ∑q( j) ∑

i x̃i, j,t . Then for any q ∈ [Q ],
t=1
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x∗
i, j =

q∑
t=1

x̃i, j,t
α j

∀ j ∈ Jq, i

C∗
j = 2C̃ j ∀ j ∈ Jq

T ∗ = 2q+1.

is a feasible solution for LP (1) when it is solved for the tasks in Jq. Fur-
thermore, 

∑
j∈Jq

p( j)
s( f twct( j))

≤ 2q+2K .

Proof. It suffices to verify that x∗, C∗ and T ∗ satisfy all the con-
straints in LP (1). By the definition of α j , it is clear that Constraint 
(1a) holds for any task j ∈ Jq . To validate that constraint (1b) is 
satisfied, note that α j ≥ 1/2 by definition and so a direct substitu-
tion on the left hand side yields the right hand side due to (2b). 
Similarly, constraint (2c) ensures that constraint (1c) is satisfied 
and constraint (2f) ensures that constraint (1d) is satisfied. Finally, 
C∗

j ≤ 2q by the definition of q( j) and thus constraint (1e) holds. 
The proof that 

∑
j∈Jq

p( j)
s( f twct( j))

≤ 2q+2K is essentially identical to 

the proof of Lemma 5.3, with f twct , �̃( j) and x‡k, j instead of fmksp , 

�( j) and x†k, j and the equality in the second line of the second 
equation block is replaced with an inequality. �

Using Lemma 5.4, we prove the following.

Lemma 5.5. P (C j, �h) + ∑
k Dk( f twct, S, j) ≤ 32(γ + K ) · C̃ j

Proof. Let x̃, C̃ denote the optimal solution to LP (2). Similarly to 
the proof of Lemma 5.2,

∑
q∈[Q ]

∑
i∈M

x̃i, j,q
s(i)

≥
�̃( j)∑
k=1

x‡k, j

γ �̃( j)
≥ 1

2γ �̃( j)
≥ 1

2γ s(h(μ j))
. (10)

Let x∗, C∗, T ∗ be as in Lemma 5.4, and let C be any chain in 
the DAG induced by the nodes of Jq . Similarly to Lemma 5.2,

P (C, �h) =
∑

μ j∈C

p(μ j)

s(h(μ j))
≤ 2γ

∑
μ j∈C

p(μ j)
∑
q∈[Q ]

∑
i∈M

x̃i,μ j ,q

s(i)

≤ 2γ
∑

μ j∈C
p(μ j)

∑
i∈M

x∗
i,μ j

s(i)
≤ 2γ · 2q+1,

where the first inequality is due to (10) and the second is due 
to the definition of x∗ . The third inequality is due to reasoning 
identical to that of lines (8a) and (8b) in the proof of Lemma 5.2, 
using the fact that x∗, C∗, T ∗ is a feasible solution to LP (1).

We can represent the chain C j as a concatenation of chains in 
the DAGs induced by tasks in J1, . . . , Jq( j) . Thus,

P (C j, �h) ≤
q( j)∑
t=1

2γ · 2t+1 ≤ 8γ · 2q( j). (11)

We bound 
∑

k Dk( f twct, S, j) as follows:

∑
k

Dk( f twct,S, j) ≤
q( j)∑
t=1

∑
μ j∈Jt

p(μ j)

s( f twct(μ j))

≤
q( j)∑
t=1

2K · 2t+1 ≤ 8K · 2q( j), (12)

where the first inequality is from the definition of Dk( f twct, S, j)
in (9) and because the tasks in G(S, j) form a subset of ∪q( j)

t=1Jq , 
and the second inequality is from Lemma 5.4.
715
By the definition of q( j), for task j either (a)
∑q( j)−1

t=1

∑
i x̃i, j,t <

1
2 or (b) C̃ j > 2q( j)−1. If (a) holds, then

2q( j)−1 ≤ 2q( j)−1 · 2
⎛
⎝ Q∑

t=q( j)

∑
i

x̃i, j,t

⎞
⎠

≤ 2

⎛
⎝ Q∑

t=q( j)

2t−1
∑
i

x̃i, j,t

⎞
⎠ ≤ 2C̃ j,

where the last inequality is due to constraint (2e) in the LP (2). If 
(b) holds then 2q( j)−1 < C∗

j = 2C̃ j . In both cases, 2q( j)−1 is upper 
bounded by 2C̃ j , and hence 2q( j) is upper bounded by 4C̃ j . Com-
bining this with Inequalities (11) and (12) completes the proof. �

Combining Lemma 5.5 with the fact that 
∑

j ω j C̃ j is lower 
bounded by O P T (C F ) completes the proof of Theorem 4.4:∑

j

ω jC j(S) ≤ 32(γ + K )
∑
j

ω j C̃ j +
∑
j

ω j�(�h, f twct, j)

≤ O (logm/ log logm) · O P T (C F ) +
∑
j

ω j�(�h, f twct, j).

5.3. Proof of Proposition 4.3

The proof technique of the Separation Principle can be used to 
provide a new, simpler proof of the approximation ratio of ETF in 
the case of identical machines. Without loss of generality, we as-
sume that the machines all have speed 1. The proof can be broken 
into three steps.

(i) Choose one of the longest terminal chains C.
(ii) Bound the idle time in between tasks. Let I(μ j−1, μ j) be the 

time interval between the end time of task μ j−1 and the start 
time of μ j for j = 2, 3, . . . , |C|, and for each machine i ∈ M , define 
E(μ j−1, μ j, i) as a union of disjoint idle time intervals on machine 
i during the time interval I(μ j−1, μ j). For any machine i ∈ M, j =
2, 3, . . . , |C|, it holds that |E(μ j−1, μ j, i)| ≤ d(μ j−1,μ j)

s(h(μ j−1),i)
, otherwise 

task μ j could have started earlier on machine i.
(iii) Bound the makespan. During the union of the time inter-

vals in between the tasks of C, ∪ j∈{2,...,|C|} I(μ j−1, μ j), exactly ∑|C|
j=2

∑m
i=1(|I(μ j−1, μ ji )| − |E(μ j−1, μ j, i)|) processing units are 

executed (this is precisely the time that the machines are not idle), 
and this is bounded by a sum of the processing units for all the 
tasks except those in the terminal chain. Therefore

|C|∑
j=2

m∑
i=1

(|I(μ j−1,μ j)| − |E(μ j−1,μ j, i)|
)

≤
n∑
j=1

p( j) −
|C|∑
j=1

p(μ j). (13)

We bound Cmax as follows.

Cmax(S) =
|C|∑
j=2

|I(μ j−1,μ j)| +
|C|∑
j=1

p(μ j)

≤ 1

m

n∑
j=1

p( j) + m − 1

m

|C|∑
j=1

p(μ j) + 1

m

|C|∑
j=2

m∑
i=1

|E(μ j−1,μ j, i)|

≤
(
2− 1

m

)
O P T (C F ) + �′(�h),
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where the first inequality is due to Inequality (13) and the last in-
equality is due to the following: (i) 1

m

∑n
j=1 p( j) ≤ O P T (C F ) , and 

(ii) the makespan of any schedule should at least cover the pro-
cessing time of any chain C in the DAG, therefore 

∑|C|
j=1 p(μ j) ≤

O P T (C F ) and (iii) from the definitions of �′(�h) and E(μ j−1, μ j, i).
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