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We consider a minimization variant on the classical prophet inequality with monomial cost functions. A

firm would like to procure some fixed amount of a divisible commodity from sellers that arrive sequentially.

Whenever a seller arrives, the seller’s cost function is revealed and the firm chooses how much of the

commodity to buy. We first show that if one restricts the set of distributions for the coefficients to a family

of natural distributions that includes, e.g., the uniform and truncated normal distributions, then there is a

thresholding policy that is asymptotically optimal in the number of sellers. We then compare two scenarios,

based on whether the firm has in-house production capabilities or not. We precisely compute the optimal

algorithm’s competitive ratio when in-house production capabilities exist, and for a special case when they

do not. We show that the main advantage of the ability to produce the commodity in-house is that it shields

the firm from price spikes in worst-case scenarios.

1. Introduction For many divisible commodities, there exists a marketplace where sellers

arrive in a sequential fashion and a decision maker must make contracts to procure some amount

of the commodity without knowing the prices that future sellers will offer. In electricity markets,

for example, power generation capacity must be procured by load serving entities (LSEs) in order

to meet demand. The LSEs have limited information about the future prices of other options for

obtaining power supply when making procurement decisions. They must make an initial long-term

planning decision of how much to invest in their own generation capacity and then, afterwards,
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procure power from third-party producers as needed in order to meet their demand forecasts. These

contracts are made with generators that arrive over a span of years or even decades (Sethi et al.

2005, Varaiya et al. 2011). The production cost functions are typically convex, due to capacity

limitations of generators and varying marginal costs across different generation options (Wood

and Wollenberg 2012); while the precise form of the cost functions may be complicated, it is

often modeled as a quadratic function in analytic work (Bose et al. 2014, Low 2014, Wood and

Wollenberg 2012). This form of sequential procurement is not limited to electricity markets. Other

examples include natural gas supply markets (Rajagopal et al. 2013) and provisioning resources

in cloud computing (Chaisiri et al. 2012). Typically, the decision maker has some knowledge of

the distributions that the cost functions will be drawn from (for example, using distributional

estimates derived from previous interactions), but does not know the cost functions ahead of time.

The uncertainty about future cost functions leaves the decision maker vulnerable to variability in

the costs of the sellers, and it is unclear how to make procurement decisions in the face of this

uncertainty.

LSEs typically maintain some generation capability to help insulate themselves from price fluc-

tuations and respond to emergencies; enterprise environments often make use of both external and

on-premise data centers, where the on-premise data center offers a safety net that serves to protect

them from uncertain price fluctuations while the cloud integration offers scalability. While it is

clear that in many cases, the ability to produce the commodity can help protect the decision maker

from uncertainty, it is unclear precisely what type of insurance it provides, or how effective this

ability is at providing insulation against price fluctuations, especially when the decision to invest

in production has to be made before the sellers’ prices are revealed.

1.1. Prophet inequalities. The setting of sequential procurement described above is a vari-

ation on the well-studied prophet inequality problem (Krengel and Sucheston 1977, 1978), where

a gambler sequentially observes realizations ri, i= 1, . . . , n, of a series of independent random vari-

ables Ri, i= 1, . . . , n, and needs to accept one of them. After each realization, ri, the gambler must

irrevocably decide whether to accept ri or not. The gambler’s goal is to maximize the (expectation

of the) reward. The renowned classical prophet inequality states that the gambler can guarantee a

reward whose expectation is at least half of the optimal reward of a prophet who foresees all of the

realizations of the random variables ahead of time (Hill and Kertz 1992, Krengel and Sucheston

1978). The prophet inequality can be rephrased as follows: Upon observing ri, the gambler must

irrevocably select the value of xi ∈ {0,1}, with the goal of maximizing
∑

i xiri, subject to
∑

i xi = 1.

Many variations of the prophet inequality have been studied (see Section 1.4), but to our knowl-

edge only two (Disser et al. 2020, Esfandiari et al. 2015) have considered minimization varia-

tions; Esfandiari et al. (2015) show that the competitive ratio (of the minimization problem) is
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unbounded, and give a lower bound that is exponential in the number of random variables. The

role of in-house production has not been studied in the context of prophet inequalities, but it

is easy to see that it does not convey any meaningful advantage to the decision maker in most

previously-studied settings. We expand upon this later.

1.2. Problem formulation. In the problem we study, a decision maker faces a sequence of

non-negative independent random variables Ci with known distributions Di supported on Ci for

i∈ {1, . . . , n}. Except when noted otherwise, let C = (C1, . . . ,Cn), D= (D1, . . . ,Dn). In every stage,

a realization ci of Ci is drawn and and the decision maker needs to procure some amount xi ∈ [0,1],

such that the total amount procured is 1; that is,
∑n

i=1 xi = 1. We denote the decision algorithm

by an ordered set of n functions π= (π1, . . . , πn), where πi : C1×· · ·×Ci → [0,1]. For any realization

c= (c1, . . . , cn) and any p≥ 1, the cost of the decision maker is

ALGπ(c, p) :=
n∑

i=1

cix
p
i , (1)

where xi = πi(c1, . . . , ci). Equation (1) models the cost incurred by the decision maker when procur-

ing from a sequence of suppliers, where the choice of p depends on the cost structure of the

application under consideration. The decision maker’s goal is to minimize E [ALGπ(C,p)]. We call

this the minimization prophet inequality problem. We denote the input to this problem by a pair

(D,p); problem family F = (D, p) consists of a positive real number p≥ 1 and a set of distributions

D.

Let OPT(c, p) denote the optimal value of the following optimization problem:

min
c

n∑
i=1

cix
p
i

s.t.
n∑

i=1

xi = 1; (2)

0≤ xi ≤ 1; i= 1, . . . , n.

We define the competitive ratio for a problem family F = (D, p) as

CR(F,n) = inf
π

sup
D∈D

E[ALGπ(C,p)]

E[OPT(C,p)]
,

where the expectations are taken over the random variables Ci ∼Di, i= 1, . . . , n.

If the in-house production option is present, the decision maker can produce the commodity

at a cost function whose coefficient we normalize to 1; we denote this by setting D1 such that

P[C1 = 1] = 1. We define the competitive ratio for a problem family F = (D, p) when the decision

maker has in-house production as follows:

CRin-house(F,n) = inf
π

sup
D2,...,Dn∈D

E[ALGπ(C,p)]

E[OPT(C,p)]
,



Author: Minimization Prophet Inequalities
4 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

where D1 is as above and the expectations are taken over random variables C2 ∼D2,. . . , Cn ∼Dn.

Our setting differs from the classical prophet inequality setting in several aspects: (i) our goal

is to minimize the cost, as opposed to maximizing the reward; (ii) we allow the decision maker

to assign fractional values to xi; (iii) we consider non-linear as well as linear cost functions. In

addition, we take a close look at the role that the ability to produce the commodity in-house plays

in reducing the vulnerability of the decision maker to the uncertainty of future costs.

1.3. Our results We first show that as long as the distributions are “well behaved”, the

competitive ratio is asymptotically 1. More formally, we prove the following.

Theorem 1. Fix p ≥ 1, 0 < ℓ ≤ u < ∞ and let F = (D, p), where D is the set of probability

distributions whose cumulative distribution functions (CDFs) are invertible, supported on [ℓ, u],

and with L-Lipschitz inverse for some fixed constant L. Then

CR(F,n) = 1+O

(
1

logn

)
.

The family of distributions of Theorem 1 includes many natural distributions including the uni-

form and the truncated normal and exponential distributions. To prove the theorem, we describe a

multi-thresholding algorithm for the minimization prophet inequality. Here, the algorithm ‘guesses’

the realization of the random variables and computes amounts to buy from the sellers based on

this guess. The algorithm then partitions the support into intervals. Whenever a seller arrives, the

algorithm buys some pre-allocated amount, which depends on which interval the cost realizes to.

We note that a similar result (i.e., that the competitive ratio is asymptotically 1) can be shown

for the maximization prophet inequality case, except that in the maximization case, the decision

maker sets xi = 1 for some i, whereas here xi > 0 for every i. The asymptotic result holds whether

or not production capabilities exist, implying that for certain natural distributions, in-house pro-

duction is not beneficial when the decision maker has access to many sellers. When we relax the

distribution constraints, we get the following result, for decision makers with in-house production

capabilities.

Theorem 2. Fix p > 1 and let F = (D, p), where D is the set of distributions whose support is

contained in [ℓ,∞), ℓ < 1.

CRin-house(F,n) =

(
1+

n− 1

ℓ1/(p−1)

)p−1

. (3)

To prove Theorem 2, we give matching upper and lower bounds on the competitive ratio. For

the upper bound, we compute the exact competitive ratio of a suboptimal, non-adaptive algorithm,

which is simpler to analyze than the optimal algorithm. To determine the input for which this

competitive ratio is the highest, we express the problem maximizing the competitive ratio as an
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optimization problem, and decompose it, allowing us to determine the value of each distribution in

the worst-case input. This gives an upper bound on the competitive ratio of the optimal algorithm,

as the cost of the optimal algorithm must be at most the cost of the suboptimal one, on any input.

For the lower bound, we give an example of an input for which the competitive ratio is tight, by

explicitly computing the expected cost of the optimal algorithm for this input.

Theorem 2 holds for p > 1. For the case p= 1, Esfandiari et al. (2015) showed that the competitive

ratio is unbounded as well. Although their setting isn’t identical to ours1, it is straightforward to

adapt their proof to our setting, to show that for F = (D,1) where D is the set of distributions

supported on [0,∞), CRin-house(F,n)≥ 1.11n

6
. Taking the limit p→ 1 in (3), we obtain the following

corollary to Theorem 2.

Corollary 1. Let F = (D,1), where D is the set of distributions supported on [ℓ,∞), ℓ < 1.

CRin-house(F,n) =
1

ℓ
.

Corollary 1 shows that the competitive ratio is, in fact, independent of n (and u), and only

depends on ℓ, subsuming the bound of Esfandiari et al. (2015).

To understand the role in-house production plays in protecting the decision maker from uncer-

tainty, we would like to determine the competitive ratio for the case where no production capa-

bilities exist. Unfortunately, computing the parameterized (by p and n) competitive ratio for this

setting is more challenging than for the case with in-house production capabilities. We remark

upon this shortly, but first, we give the exact competitive ratio for the case n= p= 2:

Theorem 3. Let ℓ, u be real numbers such that 0< ℓ≤ u<∞. Let F = (D,2), where D is the

set of distributions supported on [ℓ, u]. Then

CR(F,2) =
1

4

(√
u

ℓ
+

√
ℓ

u

)
+

1

2
.

Computing the exact competitive ratio even for this simple case is more involved than when

there is in-house production. To prove the theorem, we compute the ‘worst case’ input distributions

D1,D2 by analytically solving a two level optimization in the space of probability distributions

under moment constraints. This turns out challenging as (i) both the numerator and denominator

in the competitive ratio depend on the distributions, and (ii) the optimal cost involves harmonic

means.

We can compare Theorem 3 with the competitive ratio with in-house production for F as in

Theorem 3 with n = 2: CRin-house(F,2) = 1 + 1
ℓ
. From this, we can see that in-house production

1 Their construction is for identical distributions, i.e., does not include the setting where the decision maker can
produce the commodity at a fixed price.



Author: Minimization Prophet Inequalities
6 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

shields the decision maker from price spikes, as u appears on in the competitive ratio only when

there are no production capabilities. In other words, if we set u → ∞, the competitive ratio is

unbounded when no in-house production exists, but it is finite with in-house production.

In the classical (linear, maximization) prophet inequality setting, Hill and Kertz (1981b) show

that, for any instance in which n > 2, there exists an instance in which n = 2 for which the

competitive ratio is at least as bad. Therefore, the exact competitive ratio for n= 2 gives an upper

bound on the competitive ratio for any n≥ 2 in the classical case. We have already shown that this

is not the case with in-house production; the competitive ratio grows with n. We show that, when

there are no production capabilities, the case of n= 2 does not give a tight bound on the competitive

ratio either (at least for p = 2), by showing that when n = 3 there exist values of ℓ and u for

which the competitive ratio is greater than that of Theorem 3. We also demonstrate numerically

that the competitive ratio is not monotone in n, unlike when there is in-house production. This

helps give some intuition as to why computing the precise competitive ratio for all n≥ 2, p > 1 is

a challenging task. We leave it as an open question to analytically resolve the competitive ratio.

Proofs that do not appear in the main body can be found in the appendix.

1.4. Related work Krengel, Sucheston, and Garling (Krengel and Sucheston (1977, 1978))

first showed that the gambler’s expected reward is at least half of the prophet’s by analyzing

the optimal stopping rule. A simple example involving two distributions shows that this is tight.

Hill and Kertz (1981b) simplified and tightened the analysis of Krengel and Sucheston (1978)

by showing that the competitive ratio is maximized when n = 2 and then (explicitly) computed

the worst case distribution for that case. Samuel-Cahn (1984) showed that a simple thresholding

algorithm—where the threshold depends on the expectation of the random variables—can achieve

the optimal bound, and later Kleinberg and Weinberg (2012) used a different threshold to show

the same bounds, and extend it to a more general setting. In some sense, our techniques are more

aligned with those of the earlier proofs, as we also explicitly compute the worst-case distributions

in order to obtain the upper bound. In contrast, however, it does not appear possible to compute

the worst case distribution in our case, as the competitive ratio is not minimized for n= 2, and

it is not clear how to compute the value of the optimal non-clairvoyant solution for larger values

of n. Instead, we compute the worst-case distribution for a suboptimal algorithm that is easier to

analyze, and show a matching lower bound. Many variants on the classical prophet in equality have

been studied (see Correa et al. (2019), Hill and Kertz (1992)). Prophet inequalities have recently

gained more attention as Hajiaghayi et al. (2007) and later Chawla et al. (2010) made a connection

between prophet inequalities and online ad-auctions, sparking broad interest in prophet inequalities
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within the operations research and computer science community, e.g., (Alaei 2014, Alaei et al. 2012,

Correa et al. 2020, Düetting et al. 2017, Kleinberg and Weinberg 2012).

The minimization version of this problem is much less well studied. To our knowledge, only two

papers study it, (Disser et al. 2020, Esfandiari et al. 2015). Esfandiari et al. (2015) show that the

competitive ratio is at least exponential in n, even when the distributions are identical, and that

it is unbounded even if there are only three sellers; the latter result is shown by setting u→∞.

Their analysis does not shed light on the underlying reasons behind these bounds. We show that

the bound is determined solely by the lower bound of the distribution, not the upper bound or the

number of distributions. In addition to providing a tight bound, our results explain the driving

factors of the bounds of Esfandiari et al. (2015). Disser et al. (2020) study a variant of the prophet

inequality that, similarly to our setting, cannot be described as a simple stopping problem. In their

setting, at each time step an applicant arrives, and their cost is revealed. The decision maker must

immediately make a hiring decision, and if the applicant is hired, their duration of employment

(the number of time steps) is fixed. The constraint is that in every time step, at least one candidate

needs to be under contract, and the goal is to minimize the total hiring cost. This setting shares

several similarities with ours—it is a minimization problem and there is some notion of ‘fractional

allocations’ (in our case, setting xi < 1 and in theirs, hiring an applicant for less than the entire

duration). Other than these similarities however, the settings are very different and it is difficult

to compare the results.

Bounded distributions have also been studied in (the maximization version of the) classical

prophet inequalities. Unsurprisingly, the competitive ratio is strictly less than 2 if the distributions

are bounded (Hill 1983, Hill and Kertz 1981a). This is similar to our case, where the closer the

upper and lower bounds of the distributions, the better the competitive ratio.

While there is a large literature on prophet inequalities in both the classical setting and gener-

alizations, almost all of the papers consider linear cost functions (p= 1) and integral allocations

(i.e., ai ∈ {0,1}). Rubinstein and Singla (2017) consider submodular cost functions, where the

total reward is a submodular function of the rewards of the individual prizes; as mentioned previ-

ously, Disser et al. (2020) allow a notion of fractional allocations.

Perhaps the most related body of work to the nonlinear prophet problem posed in this paper is

the literature studying online2 convex optimization, e.g., see the surveys of Shalev-Shwartz (2012)

and Hazan (2016). Packing problems have received special attention in this literature, e.g., Agrawal

et al. (2014), Azar et al. (2016), Buchbinder and Naor (2009). However, the goal in the online

convex optimization literature is primarily to bound either the regret or the competitive ratio in

2 “Online” here is used as accepted in the computer science literature, equivalent to the way we define “sequential”.
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an adversarial setting (without distributional assumptions on the cost functions), whereas in the

case of prophet inequalities, it is to bound the ratio of the expectations when the distributions

are known a-priori. In particular, we assume that the online decision maker has information about

the distribution from which the cost functions are sampled and optimizes the average (expected)

cost with respect to such distributions. As such, there is a stream of related literature on online

convex optimization that focuses on online convex optimization with predictions, e.g., Andrew et al.

(2013), Chen et al. (2015, 2016). However, the assumptions and analytic tools in these papers are

very different than the assumptions and tools used in problem studied here.

In terms of techniques, our derivation of closed form competitive ratios depends on optimiz-

ing over the space of probability distributions under moment constraints. Optimizations of this

type arise in the classical problem of identifying maximum entropy distributions under moment

constraints (Cover and Thomas 2012) and more generally in the problem of finding robust Bayes

distributions (Grünwald and Dawid 2004). In those contexts, due to the specialty of the functionals

optimized (e.g., entropy), one can often show that the worst-case distribution has a density and

thus can utilize methods such as information inequality to pin down the form of the probabil-

ity density function (e.g., exponential family). Beyond these cases, analytical characterizations

of solutions of worst case distribution problems are extremely rare, and other work has typically

relied on numerical techniques for solving such problems. For example, Delage and Ye (2010) tackle

the distributional robust optimization problem under moment constraints. They obtain numeri-

cal solutions using sums of squares techniques. A key step in their work is solving the moment

problem of the form maxfξ Eξ[h(x, ξ)], where the distribution of fξ is optimized over a family of

distributions whose first and second moments are fixed. We encounter a similar problem: to bound

the competitive ratio we view it as an optimization problem, where we (analytically) optimize for

the worse case distribution. The functional that is optimized involves the ratio between the power

mean of expected values of a sequence of random variables and the expected value of their power

mean. To bound the competitive ratio we view it as an optimization problem and convert the ratio

into nested optimizations. In the innermost optimization, the numerator is fixed, and we optimize

over the family of distributions with a fixed first moment. Delage and Ye (2010) assume that h is

concave in ξ in order to use the dual of the problem to arrive at an efficient numerical method to

solve their problem. As the functional involved in our analysis is neither convex nor concave with

respect to the optimization variables (the probability distribution to be optimized), their approach

cannot be directly applied to our setting.

The comparison of the competitive ratio with and without in-house production capabilities is

novel. Conventional wisdom states that make-or-buy decisions are essentially a matter of compar-

ing internal and external production costs and choosing the least costly alternative. As this is a
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straightforward insight, most of the research on make-or-buy decisions focuses on more strategic

settings with competition between firms (Arya et al. 2008, Salop and Scheffman 1987). However,

more recently, there has been an increased interest in the make-or-buy decision in the face of uncer-

tainty, e.g., Chen and Guo (2014), Niu et al. (2019), although this line of research still focuses on

strategic settings. In contrast, in this paper we put aside the strategic issues and focus solely on

the impact of the decision to invest in production on a single decision maker facing a sequential

procurement problem with price uncertainty.

2. A multi-thresholding algorithm In this section we prove Theorem 1.

Theorem 1. Fix p ≥ 1, 0 < ℓ ≤ u < ∞ and let F = (D, p), where D is the set of probability

distributions whose cumulative distribution functions (CDFs) are invertible, supported on [ℓ, u],

and with L-Lipschitz inverse for some fixed constant L. Then

CR(F,n) = 1+O

(
1

logn

)
.

To prove the theorem, we describe an algorithm that attains this competitive ratio. The algorithm

is a multi-threshold algorithm: one such that the amount allocated at stage i does not depend on

the exact value of xi, only the range in which it falls (and, possibly, the number of xj : j < i such

that xj also falls in this interval).

To formally define the algorithm, we need some notation. Fix r = ⌊logn⌋, and set ϵ = u−ℓ
r
.

Partition [ℓ, u] into r intervals of size ϵ each: [ℓ, ℓ + ϵ), [ℓ + ϵ, ℓ + 2ϵ), ..., [u − ϵ, u]. For each j ∈

{1, . . . , r− 1}, let Ij denote the interval [ℓ+ (j − 1)ϵ, ℓ+ jϵ), and let Ir denote [u− ϵ, u]. For each

j ∈ {1, . . . , r} let 1i(j) denote the indicator function: 1i(j) = 1 iff ci ∈ Ij. Set 1(j) =
∑n

i=1 1i(j): the

random variable denoting the number of values ci for which ci ∈ Ij.

The algorithm Intervals is as follows. Fix δ = Θ
(

1
log3 n

)
. For each j ∈ {1, . . . , r}, compute

E[1(j)] and define sj := max{⌊E[1(j)]− δn⌋,0}. Assume that for j ∈ {1, . . . , r − 1}, sj cost coef-

ficients will be (exactly) ℓ + jϵ, and that all other coefficients will be u. Compute the optimal

allocation based on these assumptions; that is, the optimal allocations assuming that exactly sj

coefficients are ℓ+ jϵ, j ∈ {1, . . . , r − 1} and the rest, denoted by ν are u. Denote this allocation

by τ = (τ1, . . . , τr), where τj denotes the amount purchased per realization at price ℓ+ jϵ (i.e., the

total amount purchased at price ℓ+jϵ is skτk). Note that ν = n−
∑r−1

j=1 sj ≤ rδn and
∑r

k=1 skτk = 1.

In round i, Ci is realized and ci falls in some interval Ik. If at least sk of c1, . . . , ci−1 fell in Ik,

we say that slot k is full. If k= r or slot k is full, we “place i in slot r”, and set xi = τr. Otherwise,

place i in slot k and set xi = τk.

To prove Theorem 1, we need the following lemma, whose proof appears in the appendix.
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Lemma 1. For any c= (c1, . . . , cn) and p > 1,

OPT(c, p) =

(
n∑

i=1

cqi

) 1
q

,

where q=− 1
p−1

.

Proof of Theorem 1. Let q = − 1
p−1

. For any probability distribution whose inverse is L-

Lipschitz, the probability that it realizes to any interval is at least ϵ/L, hence E [1(j)]≥ ϵn/L, and

sj ≥ ϵn/L− δn. Let Φ(j) denote the event 1(j)≤ E [1(j)]− δn. By the additive Chernoff bound,

e.g., Alon and Spencer (2008), P[Φ(j)]≤ e−2nδ2 . Let ϵ′ = re−2nδ2 . By the union bound, the prob-

ability that some Φ(j) occurs (j ∈ {1, . . . , r}) is at most ϵ′, hence with probability at least 1− ϵ′

none of the events Φ(j), j ∈ {1, . . . , r} occur. That is, with probability at least 1− ϵ′, at least sj

coefficients are revealed to be in Ij, for every j.

To bound the cost of Intervals, we first compute the cost if the assumptions of Intervals

hold, using Lemma 1:

C = (s1(ℓ+ ϵ)q + s2(ℓ+2ϵ)q + · · ·+ sru
q + νuq)

1
q .

For every i that has been placed in slot j, ℓ+ jϵ is an upper bound on the realized price of Ci.

Therefore

s1(ℓ+ ϵ)τ p
1 + s2(ℓ+2ϵ)τ p

2 + · · ·+(sr + ν)uτ p
r (4)

is an upper bound on the cost of the algorithm when no Φ(j) occurs. This is exactly the optimal

solution of (2) under the assumptions of Intervals, hence equal to C. Therefore C is an upper

bound on the cost incurred by the algorithm if no Φ(j) occurs. If some Φ(j) occurs, we take the

trivial upper bound of u for the cost of Intervals.

Hence

E
[
ALGIntervals(C,p)

]
≤ (1− ϵ′) (s1(ℓ+ ϵ)q + s2(ℓ+2ϵ)q + · · ·+ sru

q + νuq)
1
q + ϵ′u.

From Lemma 1 and using the trivial lower bound on the cost ℓnp−1,

E [OPT(C,p)]≥ (1− ϵ′) (s1ℓ
q + s2(ℓ+ ϵ)q + · · ·+ sr(u− ϵ)q + νℓq)

1
q + ϵ′ℓnp−1.

Set

BIntervals = (s1(ℓ+ ϵ)q + s2(ℓ+2ϵ)q + · · ·+(sr + ν)uq)
1
q

≤ ((s1 + ν)(ℓ+ ϵ)q +(s2 + ν)(ℓ+2ϵ)q + · · ·+(sr + ν)uq)
1
q ,

BOPT = ((s1 + ν)ℓq + s2(ℓ+ ϵ)q + · · ·+ sr(u− ϵ)q)
1
q

≥ (s1ℓ
q + s2(ℓ+ ϵ)q + · · ·+ sr(u− ϵ)q)

1
q ,
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ϵj =
(sj+ν)(ℓ+jϵ)

sj(ℓ+(j−1)ϵ)
, ϵ† = ϵ′u

(ϵn)1/qℓ
and ϵ∗ = (rδn)(ℓ+ϵ)

(ϵn/L−δn)ℓ
. Then

E
[
ALGIntervals(C,p)

]
E [OPT(C,p)]

≤ (1− ϵ′)BIntervals + ϵ′u

(1− ϵ′)BOPT

≤ BIntervals + ϵ′u

BOPT

≤ BIntervals

BOPT

+ ϵ† (5)

≤max
j

ϵj + ϵ† (6)

≤ (ϵn/L+(r− 1)δn)(ℓ+ ϵ)

(ϵn/L− δn)ℓ
+ ϵ† (7)

= 1+
ϵ

ℓ
+ ϵ∗ + ϵ†

= 1+Θ

(
1

logn

)
.

Inequality (5) holds because at least one value of sj will be at least ϵn. To see why (6) holds, note

that
∑

j cj∑
j bj

is a weighted sum of
cj
bj
: ∑

j cj∑
j bj

=
∑
j

cj
bj

bj∑
i bi

,

and a weighted sum cannot be larger than the largest term. Inequality (7) holds as for every

j ≥ 1, ϵj ≤ ℓ+ϵ
ℓ
. □

3. Bounds for arbitrary functions (with in-house production) In this section, we prove

Theorem 2, which gives the competitive ratio when the set of price functions is constrained only by

a lower bound. The competitive ratio is given as a function of both p, the power of the monomial

in the cost function, and n, the number of sellers.

Theorem 2. Fix p > 1 and let F = (D, p), where D is the set of distributions whose support is

contained in [ℓ,∞), ℓ < 1.

CRin-house(F,n) =

(
1+

n− 1

ℓ1/(p−1)

)p−1

. (3)

Theorem 2 follows from matching upper and lower bounds. To obtain the upper bound, consider

the following non-adaptive algorithm, referred to as algorithm NA, for the problem. The algorithm

is non-adaptive in that it decides all of the amounts ahead of time. The algorithm NA purchases

the amounts as described by the solution to the following optimization problem.

min
x

E

[∑
i

Cix
p
i

]
s.t.

∑
i

xi = 1; (8)

0≤ xi ≤ 1; i= 1, . . . , n.
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First, we need an auxiliary lemma that is used to identify the ‘worst-case’ distributions for NA:

the distribution for which the ratio of E[ALGNA(C,p)] and E[OPT(C,p)] is maximized.

Lemma 2. Let ℓ,µ and u be real numbers such that 0 < ℓ ≤ µ ≤ u < ∞, C be the set of all

random variables C whose distribution is supported on [ℓ, u], such that E [C] = µ, and f be a strictly

concave function. Then a solution of

min
C∈C

E[f(C)] (9)

if it exists, is

C =

{
u, with probability pu =

µ−ℓ
u−ℓ

,

ℓ, with probability pℓ =
u−µ
u−ℓ

.

We derive the competitive ratio of NA explicitly in terms of the power mean: for a sequence of

positive real numbers c= (c1, . . . , cn), the power mean of c with exponent q is defined as Mq(c) =(
1
n

∑n

i=1 c
q
i

) 1
q . (M−1(c) is the harmonic mean H(c) = n

(
1
c1
+ · · ·+ 1

cn

)−1

.)

Lemma 3. Fix p > 1, and let q=− 1
p−1

. Let ℓ and u be real numbers such that 0< ℓ≤ u<∞ and

C be a n-dimensional random vector with independent elements each of which has its distribution

supported on [ℓ, u]. Then
E
[
[ALGNA(C,p)

]
E[OPT(C,p)]

=
Mq(E[C])

E[Mq(C)]
.

Proof of Theorem 2. We prove the upper bound here; the proof of the lower bound is deferred

to the appendix.

First note that the competitive ratio is non-increasing in u, as any distribution supported on

[ℓ, u] is also supported on [ℓ, u′], where u′ ≥ u. This means the supremum of the competitive ratio

must occur for u→∞. We work with extended real numbers, R∪ {−∞,∞} with 0 ·∞ := 0 (e.g.,

McShane 1983); this allows the seller to set the cost to ∞, which simplifies the asymptotic analysis.

Recall that D1 is a point-mass distribution with support {1}. We would like to determine the

worst-case distributions D2, . . . ,Dn for NA with u=∞. Let D =D2, . . . ,Dn and C = C2, . . . ,Cn,

where Ci ∼Di, i∈ {2, . . . , n}. By Lemma 3, the competitive ratio of NA is

sup
D

Mq(1,E[C])

E[Mq(1,C)]
, (10)

where q=−1/(p− 1). This optimization can be written as

sup
(D3,...,Dn)

sup
D2

Mq(1,E[C])

E[Mq(1,C)]
= sup

(D3,...,Dn)

sup
µ2

sup
D2∈D(µ2)

Mq(1,E[C])

E[Mq(1,C)]
,

where D(µ) is the set of all distributions whose mean is µ. Consider the inner optimization(
supD2∈D(µ2)

Mq(1,E[C])

E[Mq(1,C)]

)
. Here, D3, . . . ,Dn and µ2 are fixed, hence Mq(1,E[C]) is a constant. The

inner optimization is therefore is equivalent to:

inf
D2

E[Mq(1,C2, . . . ,Cn)] =EC2
[f(C2)] (11)

s.t. E[C2] = µ2,
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where f(c) =EC3,...,Cn [Mq(1,C)|C2 = c] is a strictly concave function in c. By Lemma 2, the solution

to (11) is a long-shot distribution, with

C2 =

{
u, with probability pu =

µ−ℓ
u−ℓ

,

ℓ, with probability pℓ =
u−µ
u−ℓ

.

.

Note that while pu and pℓ are defined explicitly for every µ2 <∞, they are not necessarily well-

defined when µ2 =∞. In this case, there are (exactly) two possible values of µ2. Either µ2 =∞

(implying pu > 0), or µ2 =∞, or µ2 = ℓ (implying pu = 0). However, if µ2 =∞, pu =
∞
∞ , which is

undefined. We can nevertheless use this characterization to determine the value of pu for which the

supremum is attained by considering all possible values of pu when µ2 =∞. Set ϵ2 = pu, therefore

pℓ = (1−ϵ2). To simplify the notation, let X = 1+
∑n

j=3 µ
q
j , Y =EC3,...,Cn [Mq(1,C2,C3, . . . ,Cn)|C2 =

ℓ] and Z = EC3,...,Cn [Mq(1,C2,C3, . . . ,Cn)|C2 = u]. From the characterization C2, we have that

Mq(1,E[C]) = n−1/q (X +µq
2)

1
q and E[Mq(1,C)] = (1− ϵ2)Y + ϵ2Z.

If µ2 = ℓ,

sup
D2∈D(µ2=ℓ)

Mq(1,E[C])

E[Mq(1,C)]
=

(X + ℓq)
1
q

Y
. (12)

If µ2 =∞,

sup
D2∈D(µ2=∞)

Mq(1,E[C])

E[Mq(1,C)]
=

(
n−1/qX

) 1
q

(1− ϵ2)Y + ϵ2Z
,

as q < 0. As Y < Z, the supremum occurs for ϵ2 → 0, and as (12) is less than
(n−1/qX)

1
q

Y
, we have

that

sup
µ2

sup
D2∈D(µ2)

Mq(1,E[C])

E[Mq(1,C)]
=

(
n−1/qX

) 1
q

Y
,

and µ2 = ∞. As this result holds for any D3, . . . ,Dn, we can apply the same argument to

each of them (keeping the remaining distributions constant), and conclude that the supremum

supD
Mq(1,E[C])

E[Mq(1,C)]
occurs when, i∈ {2, . . . , n}, Di is a long-shot distribution, with µi =∞, where Ci = ℓ

with probability 1− ϵi, ϵi → 0.

We therefore obtain

sup
D

Mq(1,E[C])

E[Mq(1,C)]
= lim

ϵi→0,∀i

n−1/q

E[Mq(1,C)]

= n−1/q
(
Mq(1, ℓ, . . . , ℓ︸ ︷︷ ︸

(n− 1) terms

)
)−1

= (1+ (n− 1)ℓq)−1/q.

□
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4. Bounds for arbitrary functions (without in-house production) We now turn to

the case when the decision maker cannot produce the commodity. We prove Theorem 3, which

gives the competitive ratio for p= n= 2 when the decision maker has no production capabilities.

In addition, we show that—similarly to when the decision maker has production capabilities, but

unlike the classical prophet inequality scenario—the case n= 2 does not set an upper bound on

the competitive ratio for arbitrary n. We further show that—unlike when the decision maker

has production capabilities—the competitive ratio is not monotone in n. These results give some

intuition as to why obtaining tight results for n> 2 appears to be a challenging task.

4.1. Proof of Theorem 3

Theorem 3. Let ℓ, u be real numbers such that 0< ℓ≤ u<∞. Let F = (D,2), where D is the

set of distributions supported on [ℓ, u]. Then

CR(F,2) =
1

4

(√
u

ℓ
+

√
ℓ

u

)
+

1

2
.

We first show that the cost of both the prophet and the optimal algorithm can be written in

terms of harmonic means. We note that this result holds for any number of sellers.

Lemma 4. Consider the minimization prophet inequality problem with input (D,2), D =

{D1,D2, . . . ,Dn}. For any realization c1, . . . , cn of the random variables C1, . . . ,Cn, the prophet’s

cost is OPT= H(c1,...,cn)

n
.

The decision maker’s expected cost, i.e., the cost achieved by the optimal algorithm DP, is

E[ALGDP(C,p)] =E[b1],

and

xi =
bi
ci

i−1∏
j=1

(
1− bj

cj

)
, i= 1, . . . , n, (13)

where bn =Cn and

bi =
H(ci,E[bi+1])

2
, i= 1, . . . , n− 1.

We use this result with n= 3 in Subsection 4.2 to show that the competitive ratio for the case

of n= 2 is not the worst for all n. For n= 2, we can more succinctly phrase Lemma 4 as follows:

Lemma 5. Consider the minimization prophet inequality problem with input (D,2), D =

{D1,D2}. The prophet’s cost is OPT= H(c1,c2)

2
, and the expected cost of the optimal online algo-

rithm conditioned on C1 realizing to c1 is H(c1,E[C2])

2
, where H(·, ·) denotes the Harmonic mean.
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We now express the competitive ratio in terms of the prophet and decision maker’s costs, and

decompose this expression as follows:

inf
π

sup
D1,D2

E[ALGπ(C,2)]

E[OPT(C,2)]
= sup

D1,D2

ED1
[H(C1,ED2

[C2])]

ED1,D2
[H(C1,C2)]

. (14)

We can treat (14) as an optimization problem, however the objective function is not concave,

and in addition, (14) is an infinite-dimensional optimization (i.e., a semi-infinite program with an

infinite number of variables).

We address these issues by decomposing (14) as follows:

sup
D1,D2

ED1
[H(C1,ED2

[C2])]

ED1,D2
[H(C1,C2)]

= sup
D1

sup
µ2

sup
D2:E[C2]=µ2

ED1
[H(C1,ED2

[C2])]

ED1,D2
[H(C1,C2)]

. (15)

The proof of Theorem 3 now proceeds in three parts: (i) computing the ‘worst-case’ D1, for any

D2, (ii) given D1, finding the ‘worst-case’ mean of D2, µ2 =E[C2], and (iii) given D1 and µ2, finding

the ‘worst-case’ D2. We take a bottom-up approach, solving (iii) first.

Computing the worst-case D2. Fixing D1 and µ2 ∈ [ℓ, u], numerator of the inner optimiza-

tion of (15) is constant. Computing the supremum is equivalent to computing the infimum of the

denominator; hence the problem of finding the worst-case D2 can be formally stated as

inf
D2

∫ u

ℓ

∫ u

ℓ

H(c1, c2) dD1(c1) dD2(c2)

s.t.

∫ u

ℓ

c2 dD2(c2) = µ2, (16)

where D2 belongs to the set of all probability measures and Lebesgue integration is used to

express expectations (Dudley 2002).

We approach problem (16) by first considering a simpler version where D1 is taken to be a point

mass, therefore C1 is some fixed constant c1:

inf
D2

∫ u

ℓ

H(c1, c2) dD2(c2)

s.t.

∫ u

ℓ

c2 dD2(c2) = µ2. (17)

Note that Problem (17) is exactly of the form given in Lemma 2, and hence the worst-case

distribution is as follows:

C2 =

{
ℓ, with probability u−µ2

u−ℓ
,

u, with probability µ2−ℓ
u−ℓ

.
(18)

As the solution of this problem does not depend on the value of c1, the same result holds for any

distribution D1.
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Finding the worst-case D1 and µ2. Before attempting to compute µ2, we turn to the

problem of identifying the worst-case D1 as a function of D2. We show that D1 does not depend

on the value of µ2, hence D1 can be determined without knowing µ2.

Lemma 6. Fix 0< ℓ≤ µ2 ≤ u<∞ and suppose that D2 takes the value ℓ with probability u−µ2
u−ℓ

and u with probability µ2−ℓ
u−ℓ

. The distribution D1 for which (15) is maximized is such that C1 =
√
ℓu

with probability 1.

Proof of Lemma 6. First consider the case that D1 is supported on a finite set of m arbitrary

points {c(1)1 , . . . , c
(m)
1 } with ℓ = c

(1)
1 < · · · < c

(m)
1 = u, where m ∈ N is also arbitrary. Assume that

for some k⋆ ∈ [m], c
(k⋆)
i =

√
ℓu; we will show that this is without loss of generality. The problem of

identifying the worst-case D1 can be written as follows, where for convenience, we use min instead

of max,

min
p∈Rm

q⊤p

h⊤p

s.t. 1⊤p= 1, (19)

p≥ 0,

where q ∈ Rm has entries qk = u−µ2
u−ℓ

H(c
(k)
1 , ℓ) + µ2−ℓ

u−ℓ
H(c

(k)
1 , u) and h ∈ Rm has entries hk =

H(c
(k)
1 , µ2). This is a linear-fractional program which is equivalent to the following LP

min
y∈Rm,z∈R

q⊤y

s.t. 1⊤y= z,

h⊤y= 1,

y, z ≥ 0,

with the change of variable y= p/h⊤p, z = 1/h⊤p. Simplifying, we get

min
y∈Rn

q⊤y

s.t. h⊤y= 1, (20)

y≥ 0.

Since hk > 0 and qk > 0 for all k, a solution of (20) is clearly to place all mass on the coordinate

with the smallest ratio qk/hk. Consider the ratio as a function of c1

r(c1) =
u−µ2
u−ℓ

H(c1, ℓ)+
µ2−ℓ
u−ℓ

H(c1, u)

H(c1, µ2)
=

(c1 +µ2)(c1µ2 +uℓ)

(c1 +u)(c1 + ℓ)µ2

.

Compute

(log r(c1))
′ =

(c21 −uℓ)(u−µ2)(µ2 − ℓ)

(c1 +µ2)(c1µ2 +uℓ)(c1 +u)(c1 + ℓ)
,
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which has a single root c1 =
√
ℓu on c1 ∈ R+. Furthermore, (log r(c1))

′ < 0 for c1 <
√
ℓu and

(log r(c1))
′ > 0 for c1 >

√
ℓu, so c1 =

√
ℓu is a minimizer for log(r(c1)) as well as r(c1). Thus the

solution to (19) is pk⋆ = 1 and pk = 0 for all k ̸= k⋆. Note that as this solution minimizes (19) when
√
ℓu∈ {c(1)1 , . . . , c

(m)
1 } regardless of the choice of m, it must hold that this is optimal for completely

arbitrary choice of {c(1)1 , . . . , c
(m)
1 }: assume that there is a better choice of {c(1)1 , . . . , c

(m)
1 }, where

√
ℓu /∈ {c(1)1 , . . . , c

(m)
1 }, and denote its solution by X (i.e., X is the vector of allocations to each

coordinate). Then X is also a solution for {c(1)1 , . . . , c
(m)
1 }∪

√
ℓu, a contradiction to the optimality

of placing all of the mass on
√
ℓu. Therefore, the worst case distribution among any distributions

supported on a finite number of points in [ℓ, u] is C1 =
√
ℓu with probability 1.

We proceed to show that the same solution structure holds when we consider any distributions

supported on the continuous interval [ℓ, u]. Suppose otherwise, i.e., there exists a different distri-

bution D̃1 supported on [ℓ, u] that leads to a strictly better objective value for optimization (15).

Denote the random variable with distribution D̃1 by C̃1. Denote the distribution that places all

the probability mass at
√
ℓu by D⋆

1 and the corresponding random variable by C⋆
1 . Let

J(D1) :=
ED1,D2

[H(C1,C2)]

ED1
[H(C1,ED2

[C2])]
,

where D2 is fixed as (18). Note here J is the objective function in (15) with the numerator and

denominator flipped (as we are working with minimization in this proof) and D2 and µ2 fixed.

Under our hypothesis here, there exists an ϵ > 0 such that

J(D⋆
1)>J(D̃1)+ ϵ.

Consider a discrete approximation of D̃1 supported on {ℓ, ℓ+ u−ℓ
T

, . . . , u− u−ℓ
T

, u}, denoted by D̃1(T )

with the corresponding random variable denoted by C̃1(T ), where

P
(
C̃1(T ) = ℓ+

t(u− ℓ)

T

)
= P

(
ℓ+

t(u− ℓ)

T
≤ C̃1 < ℓ+

(t+1)(u− ℓ)

T

)
, t= 0, . . . , T − 1,

and P
(
C̃1(T ) = u

)
= P(C̃1 = u). Since C̃1(T ) converges to C̃1 in distribution by construction,

J(D̃1(T ))→ J(D̃1) as T →∞. Thus there exists a T1 large enough such that for all T > T1,

J(D⋆
1)>J(D̃1(T ))+ ϵ/2.

Since D̃1(T ) is supported on a finite number of points, this contradicts with our earlier conclusion

that D⋆
1 is the worst case distribution for any distributions with a finite support. □

Finding the worst-case µ2. Lemma 6 gives D1, and (18) describes D2. It remains to identify

the value of µ2 ∈ [ℓ, u] that maximizes (15). Simple calculus gives that µ⋆
2 =

√
ℓu.

Proof of Theorem 3. Plugging in the values of D1 and D2 into (15) completes the proof. □
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4.2. More than two sellers In the classical (linear, maximization) prophet inequality set-

ting, Hill and Kertz (1981b) show that, for any instance in which n > 2, there exists an instance

in which n= 2 for which the competitive ratio is at least as bad. Therefore, the exact competitive

ratio for n= 2 gives an upper bound on the competitive ratio for any n ≥ 2. We show that, the

competitive ratio for the case of n= 2 is not the worst for all n. Specifically, we show that there

exist values of ℓ, u for which the competitive ratio for n= 3 is strictly higher. Note that it is not

the case that the competitive ratio is strictly higher for all ℓ, u, as when ℓ = u, the competitive

ratio is 1 for any value of n.

Lemma 7. There exist ℓ, u such that 0< ℓ< u<∞ for which

CR(F,3)>
1

4

(√
u

ℓ
+

√
ℓ

u

)
+

1

2
,

where F = (D,2), and D is the set of distributions supported on [ℓ, u].

To prove Lemma 7, we consider a specific sequence of distributions.

Proof. Let C1 = (u+ ℓ)/2 w.p. 1 and C2 and C3 be such that Ci = u w.p. 0.5, Ci = ℓ w.p.

0.5 for i ∈ {2,3}. For C = (C1,C2,C3), we can calculate E[ALGOPT(C,2)] using Lemma 4 and

E[OPT(C,2)] using Lemma 1:

E[ALGOPT(C,2)]

E[OPT(C,2)]
=

(u2 + ℓ2 +6uℓ)(2u+ ℓ)(2ℓ+u)

u4 + ℓ4 +38u2ℓ2 +16u3ℓ+16ℓ3u
.

For u = 4, ℓ = 1, we have the ratio for n = 3 is approximately 1.1336; the competitive ratio for

n= 2 with the given u, ℓ values is 1.125. □

As n= 2 is not the worst case, one might conjecture that the competitive ratio is monotone in

n, as it is in the case where firms invest in production (Theorem 2). In Appendix C.2 we show

empirically that this does not appear to be the case. the competitive ratio is not monotone in

n. In fact, the number of sellers that exhibit the worst-case competitive ratio depends on the

distribution domain. When the domains are bounded by [1,2] and [1,4], the worst-case competitive

ratios transpire at three and four sellers respectively. Computing the exact competitive ratio as a

function of the problem parameters (p,n, ℓ, u) is a challenging open problem.

5. Concluding Remarks We study a sequential procurement problem where there exists a

marketplace with sellers arriving over time and investigate the impact of having in-house production

capacity. We first consider a natural class of cost distributions. In this case, we show that it

is possible to asymptotically achieve the optimal cost as the number of sellers grows. There is

no advantage to in-house production capabilities, which corroborates the intuition that, with an

abundance of sellers, there is less need for a ‘safety net’. Further, the decision maker can be
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asymptotically optimal using a multi-threshold policy that is much less complex than the optimal

adaptive policy. More generally (with unrestricted distributions and a small number of sellers), the

ability to produce the commodity oneself provides insurance from price spikes, i.e., the competitive

ratio remains finite even if the upper bound on the cost is infinite when the decision maker has the

ability to produce the commodity but increases with the upper bound when it does not.

We have made several simplifying assumptions that need to be addressed in future work. The first

assumption is that the decision maker has unlimited production capacity. That is, it can produce

all of the required commodity in-house. This is made with some loss of generality, although we note

that the decision maker can compute ahead of time the amount that it needs to produce, so this

can be incorporated into the decision whether or not to invest in production. Another simplifying

assumption is that the production decision is binary, whereas in reality, different initial investments

would lead to different production capabilities and costs. In this paper we abstracted both of these

issues by normalizing the in-house cost function coefficient to 1.

The results of Sections 2 and 3 hold for general values of p (i.e., monomial cost functions), but

the results of Section 4 hold only for p= 2. It would be interesting to extend the results of Section 4

to other values of p, and indeed, to study the sequential procurement problem with more general

costs than monomials; it is not clear how to generalize our results. Additionally, we have introduced

a policy, Intervals, that is asymptotically optimal, but it would be interesting to understand

if other policies converge at a faster rate than Intervals. Further, it would be interesting to

understand the tradeoff between the rate of convergence to optimality and the complexity of the

policy. For example, can a single-threshold policy match the convergence rate of Intervals?
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Appendix A: Supporting Material for Section 2

Lemma 1. For any c= (c1, . . . , cn) and p > 1,

OPT(c, p) =

(
n∑

i=1

cqi

) 1
q

,

where q=− 1
p−1

.

Proof. To obtain the prophet’s cost, we consider the Lagrangian of optimization (2).

n∑
i=1

cix
p
i +λ

(
1−

n∑
i=1

xi

)
.

Taking the derivative yields

λ= pcix
p−1
i , i.e., xi =

(
λ

p

)−q

cqi .

Substituting this into
∑

i xi = 1, we have(
λ

p

)−q n∑
i=1

cqi = 1.

Substituting (λ/p)
−q

= (
∑n

i=1 c
q
i )

−1
, we get

xi =
cqi∑n

j=1 c
q
j

.

The prophet’s cost is then

OPT=
n∑

i=1

cpq+1
i(∑n

j=1 c
q
j

)p =

∑n

i=1 c
q
i(∑n

j=1 c
q
j

)p =

(
n∑

j=1

cqj

)−(p−1)

.

□

Appendix B: Supporting Material for Section 3

Lemma 2. Let ℓ,µ and u be real numbers such that 0 < ℓ ≤ µ ≤ u < ∞, C be the set of all

random variables C whose distribution is supported on [ℓ, u], such that E [C] = µ, and f be a strictly

concave function. Then a solution of

min
C∈C

E[f(C)] (9)

if it exists, is

C =

{
u, with probability pu =

µ−ℓ
u−ℓ

,

ℓ, with probability pℓ =
u−µ
u−ℓ

.
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Proof. Denote the long-shot distribution in Lemma 2 by D⋆ and let C be a random variable

sampled from some distribution D supported on [ℓ, u] with mean µ. Then

ED[f(C)] =

∫
f(c)dD(c)

=

∫
f

(
u−x

u− ℓ
ℓ+

x− ℓ

u− ℓ
u

)
dD(c)

≤
∫ [

u− c

u− ℓ
f(ℓ)+

c− ℓ

u− ℓ
f(u)

]
dD(c)

=
u−µ

u− ℓ
f(ℓ)+

µ− ℓ

u− ℓ
f(u)

=ED⋆ [f(C)],

where the inequality follows from Jensen’s inequality. □

Lemma 3. Fix p > 1, and let q=− 1
p−1

. Let ℓ and u be real numbers such that 0< ℓ≤ u<∞ and

C be a n-dimensional random vector with independent elements each of which has its distribution

supported on [ℓ, u]. Then
E
[
[ALGNA(C,p)

]
E[OPT(C,p)]

=
Mq(E[C])

E[Mq(C)]
.

Proof of Lemma 3. From Lemma 1, OPT(c, p) = (
∑n

i=1 c
q
i )

1
q . As Mq(c) =

(
1
n

∑n

i=1 c
q
i

) 1
q , the

expected prophet cost is simply E[OPT(C,p)] = n
1
qE [Mq(c)]. Using similar reasoning, it is easy to

show that the cost of the optimal non-adaptive algorithm is

E[ALGNA(C,p) = n
1
qMq(E[C]),

as the optimization (8) is equivalent to (2) with E[Ci] in place of Ci. □

B.1. Proof of Theorem 2 (lower bound). It is straightforward to verify that, similarly

to the classical prophet inequality, the optimal policy can be characterized as a dynamic program.

We describe such an algorithm, denoted DP, and show that the cost-to-go functions of DP share

the same functional form as the cost functions.

To start, let us first define the cost-to-go functions Ji on si ∈ [0,1] as follows:

Jn(sn) = cn(1− sn), (21)

Ji(si) = min
0≤xi≤1−si

ci(xi)+E [Ji+1(si +xi)] , i= 1, . . . , n− 1.

The optimal causal policy is a mapping from the state (i.e., the accumulative amount of commodity

that was obtained up to time step i) si ∈ [0,1] to the action xi ∈ [0,1] that takes the form

xn(sn) = 1− sn,

xi(si)∈ argmin
0≤xi≤1−si

ci(xi)+E [Ji+1(si +xi)] , i= 1, . . . , n− 1. (22)
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The optimality of the dynamic programming recursion above is a classical result in the literature

of stochastic control (cf. Proposition 1.3.1 of Bertsekas (1995)) which relies on the simple intuition

that if the truncated policy {πi, πi+1, . . . , πn} does not implement optimal solutions of (22), then

it would be possible to reduce the cost for the “tail problem” starting from stage i with state si

further by switching to an optimal policy. In Lemma 8, we show that the minimization in the DP

recursion can be solved analytically and therefore DP is implementable in polynomial time.

Lemma 8. Let D be a distribution supported on [ℓ, u], where 0< ℓ≤ u<∞ and p > 1. An opti-

mal algorithm for the minimization prophet inequality problem for (D,p) has cost-to-go functions

Ji(si) = bi(1− si)
p, i= 1, . . . , n, (23)

where bi is defined recursively as

bn =Cn, (24)

bi =
ciE[bi+1](

c
1/(p−1)
i +(E[bi+1])

1/p−1
)p−1 , i= 1, . . . , n− 1. (25)

The corresponding allocation is given by

xi =
(E[bi+1])

1/(p−1)

c
1/(p−1)
i +(E[bi+1])1/(p−1)

(1− si), i= 1, . . . , n. (26)

Proof. We prove that the cost-to-go functions are of the form (23) using backward induction.

The base case, Jn(sn) = bn(1− sn)
p = cn(1− sn)

p holds by the definition of the cost-to-go function.

Suppose that Ji+1(si+1) = bi+1(1− si+1)
p. Then we have

Ji(si) = min
xi∈[0,1]

cix
p
i +E[Ji+1(si +xi)],

= min
xi∈[0,1]

cix
p
i +E[bi+1(1− si −xi)

p].

The first order optimality condition of the optimization above is

cix
p−1
i − (1− si −xi)

p−1E[bi+1] =
(
c
1/(p−1)
i xi − (E[bi+1])

1/(p−1)(1− si −xi)
)
f(si, xi) = 0,

where f(si, xi) is a function of si and xi satisfying f(si, xi)> 0 for xi ≥ 0, si ≥ 0 and si + xi > 0.

The unconstrained minimizer is

xi =
(E[bi+1])

1/(p−1)

c
1/(p−1)
i +(E[bi+1)1/(p−1)]

(1− si),

which satisfies 0≤ xi ≤ (1− si)≤ 1 for si ∈ [0,1]. It follows that

Ji(si) =
ci(E[bi+1])

p/(p−1)(
c
1/(p−1)
i +(E[bi+1])1/(p−1)

)p (1− si)
p +

c
p/(p−1)
i E[bi+1](

c
1/(p−1)
i +(E[bi+1])1/(p−1)

)p (1− si)
p

=
ciE[bi+1](

c
1/(p−1)
i +(E[bi+1])1/p−1

)p−1 (1− si)
p.

Thus, the claim holds for any i. □
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Proof of Theorem 2 (lower bound).

Consider the optimal algorithm, DP, on the particular distribution where Ci = ℓ with probability

1− ϵ, and Ci = u→∞ with probability ϵ > 0 for all i ∈ {1, . . . , n}. From the DP recursion and by

Lemma 8, we have E[bn] =E[cn]→∞ as u→∞,

E[bn−1] =E

 1(
c
−1/(p−1)
n−1 +(E[bn])−1/(p−1)

)p−1

=E[cn−1]→∞, as u→∞,

and thus E[bi]→∞ as u→∞ inductively for all i. It follows that E[ALGDP(C,p)] = 1. Following

the same lines of arguments as in the proof of the upper bound, we can calculate E[OPT(C,p)] for

ϵ→ 0, and obtain the competitive ratio for DP with the given distribution as

inf
π∈Π

E[ALGDP(C,p)]

E[OPT(C,p)]
=

(
1+

n− 1

ℓ1/(p−1)

)p−1

.

□

Appendix C: Supporting Material for Section 4

C.1. Proof of Lemma 5

Lemma 4. Consider the minimization prophet inequality problem with input (D,2), D =

{D1,D2, . . . ,Dn}. For any realization c1, . . . , cn of the random variables C1, . . . ,Cn, the prophet’s

cost is OPT= H(c1,...,cn)

n
.

The decision maker’s expected cost, i.e., the cost achieved by the optimal algorithm DP, is

E[ALGDP(C,p)] =E[b1],

and

xi =
bi
ci

i−1∏
j=1

(
1− bj

cj

)
, i= 1, . . . , n, (13)

where bn =Cn and

bi =
H(ci,E[bi+1])

2
, i= 1, . . . , n− 1.

We prove a more general result; Lemma 5 is a special case.

Proof of Lemma 4. Concerning the first part of Lemma 4 (the prophet’s cost and allocations):

the Lagrangian for (2) with p= 2 can be written as (keeping the positivity constraints):

1

2

n∑
i=1

cix
2
i −λ(x1 + . . .+xn − 1).

Differentiating gives that, for all i, xi = λ/ci with
∑n

i=1 xi = 1. Substituting gives λ=
(∑n

i=1 c
−1
i

)−1
,

and rearranging then completes the proof.
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For the optimal online algorithm’s cost and allocations: By Lemma 8, we have

xi =
E[bi+1]

ci +E[bi+1]
(1− si), i= 1, . . . , n,

with bn =Cn and

bi =
ciE[bi+1]

ci +E[bi+1]
=

H(ci,E[bi+1])

2
, i= 1, . . . , n− 1.

It follows that

xi =
bi
ci
(1− si) =

bi
ci

(
1−

i−1∑
j=1

xj

)
.

Expression (13) then holds by induction: The base case holds as (13) is equivalent to the expression

above for x1. Suppose (13) holds for xi, then

1− si =
i−1∏
j=1

(
1− bj

cj

)
,

and

1− si+1 = 1− si −xi =
i−1∏
j=1

(
1− bj

cj

)
− bi

ci

i−1∏
j=1

(
1− bj

cj

)
=

i∏
j=1

(
1− bj

cj

)
.

Thus we have

xi+1 =
bi+1

ci+1

(1− si+1) =
bi+1

ci+1

i∏
j=1

(
1− bj

cj

)
.

□

C.2. Non-monotonicity in n In this section, we explore the competitive ratio of the opti-

mal online algorithm in the case where the firm cannot produce the commodity. The numerics

highlight the complex behavior of this setting, illustrating the difficulty in precisely characterizing

the competitive ratio in this case and showing a variety of interesting non-monotonicities.

We partition the experiments into two sections. First we consider a general class of discrete

distributions over [ℓ, u] and then explore specific cases with long-shot and point mass distributions.

General discrete distributions To explore the competitive ratio we create examples by

discretizing the interval [ℓ, u] and considering distributions D1, . . . ,Dn supported on S points in

{ℓ, ℓ+∆, . . . , u} where ∆= (u− ℓ)/(S− 1). The problem of identifying the worst case distribution

(with the given support) that maximizes the competitive ratio is a non-linear and non-convex

program over the probability mass functions ofD1, . . . ,Dn. We solve this non-linear program numer-

ically using an interior point method for n∈ {2, . . . ,6} and S ∈ {3, . . . ,6}. While these solutions are

local, they are likely also global, as we obtain consistent results for a number of runs with random

initializations.
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Figure 1. Competitive ratios under the worst-case discretized distributions.

We restrict to small values of n and S in these experiments due to (i) the complexity of evaluating

the expected optimal prophet’s cost is O(Sn), (ii) the non-convex and nonlinear nature of the

optimization problem at hand, and (iii) the fact that no significant change in the results has been

observed when we increase the S value.

Fig. 1 presents the results of our experiments. The competitive ratio E[ALG]/E[OPT] for (ℓ, u)∈

{(1,2), (1,4)} is shown in Fig. 1 over the range of n values considered. The most important obser-

vation is that the competitive ratio is not monotonic – we observe that the competitive ratio as a

function of n is unimodal; the peak is at value of n that increases with u.

Fig. 2 depicts the worst-case distributions for n ∈ {3, . . . ,6}, u= 4 (structurally similar results

are obtained for u= 2), and S = 6. In each panel of Fig. 2, we show the probability mass function

of Di for i= 1, . . . , n. Consistent with the intuition from the results in the paper, we see that across

for any n value, the resulting Di, i= 1, . . . , n is either point-mass or long-shot. This motivates us

to focus on these distributions in the following section.

Point-mass/long-shot distributions Motivated by the results above, we focus on long-shot

and point mass distributions in this section. This allows us to explore a wider variety of settings

with considerably less computational effort. Specifically, we focus on S = 3 as Di is supported on

{ℓ,m,u} for some intermediate point m∈ (ℓ, u). We include the locations of the intermediate points

as optimization variables and re-run the simulations for larger values of n.

The resulting competitive ratios are depicted in Fig. 3, which confirms the observations that we

made for Fig. 1 with a larger range of n values.

Since the worst case distributions we consider are either point-mass or long-shot, we can summa-

rize them using an indicator (point-mass or long-shot) and the mean E[Ci]’s. Fig. 4 shows the mean

values of the worst case distributions for (ℓ, u) = (1,4). Structurally similar results are obtained
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(d) (ℓ, u) = (1,4), n= 6

Figure 2. Probability mass functions of the worst case discretized distributions
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Figure 3. Competitive ratio under the worst case long-shot/point mass distributions.

for (ℓ, u) = (1,2). Many observations can be made regarding Fig. 4. First, note that the structure

of the sequence of worst case distributions for any n is always such that there exists a k(n) for

which Di is point-mass for i≤ k(n) and Di is long-shot for k(n)< i≤ n. Second, for each fixed n,
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the sequence of means for which Di’s are long-shot, i.e. {E[Ci] : i > k(n)}, is a decreasing sequence.

Finally, the transition point k(n) is nondecreasing in n. Formally establishing these properties may

pave the way to obtaining exact quadratic prophet inequalities for general n> 2.

0 1 2 3 4 5 6 7 8 9 10 11
i
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2.5

3

3.5

4

E[
a i]

n = 2, point-mass
n = 2, long-shot
n = 3, point-mass
n = 3, long-shot
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n = 5, point-mass
n = 5, long-shot
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n = 7, long-shot
n = 8, point-mass
n = 8, long-shot
n = 9, point-mass
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n = 10, point-mass
n = 10, long-shot

Figure 4. Mean values of the worst case long-shot/point mass distributions for (ℓ, u) = (1, 4). For each n values,

there are two line segments, the first (solid) line segment corresponds to i values for which Di’s are point-mass.

When there is only one i has a point-mass distribution, the line-segments becomes a point. The second (dashed) line

segment corresponds to i values for which Di’s are long-shot.
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