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We consider a minimization variant on the classical prophet inequality with monomial cost functions. A
firm would like to procure some fixed amount of a divisible commodity from sellers that arrive sequentially.
Whenever a seller arrives, the seller’s cost function is revealed and the firm chooses how much of the
commodity to buy. We first show that if one restricts the set of distributions for the coefficients to a family
of natural distributions that includes, e.g., the uniform and truncated normal distributions, then there is a
thresholding policy that is asymptotically optimal in the number of sellers. We then compare two scenarios,
based on whether the firm has in-house production capabilities or not. We precisely compute the optimal
algorithm’s competitive ratio when in-house production capabilities exist, and for a special case when they
do not. We show that the main advantage of the ability to produce the commodity in-house is that it shields

the firm from price spikes in worst-case scenarios.

1. Introduction For many divisible commodities, there exists a marketplace where sellers
arrive in a sequential fashion and a decision maker must make contracts to procure some amount
of the commodity without knowing the prices that future sellers will offer. In electricity markets,
for example, power generation capacity must be procured by load serving entities (LSEs) in order
to meet demand. The LSEs have limited information about the future prices of other options for
obtaining power supply when making procurement decisions. They must make an initial long-term

planning decision of how much to invest in their own generation capacity and then, afterwards,



Author: Minimization Prophet Inequalities
2 Mathematics of Operations Research 00(0), pp. 000-000, © 0000 INFORMS

procure power from third-party producers as needed in order to meet their demand forecasts. These
contracts are made with generators that arrive over a span of years or even decades (Sethi et al.
2005, Varaiya et al. 2011). The production cost functions are typically convex, due to capacity
limitations of generators and varying marginal costs across different generation options (Wood
and Wollenberg 2012); while the precise form of the cost functions may be complicated, it is
often modeled as a quadratic function in analytic work (Bose et al. 2014, Low 2014, Wood and
Wollenberg 2012). This form of sequential procurement is not limited to electricity markets. Other
examples include natural gas supply markets (Rajagopal et al. 2013) and provisioning resources
in cloud computing (Chaisiri et al. 2012). Typically, the decision maker has some knowledge of
the distributions that the cost functions will be drawn from (for example, using distributional
estimates derived from previous interactions), but does not know the cost functions ahead of time.
The uncertainty about future cost functions leaves the decision maker vulnerable to variability in
the costs of the sellers, and it is unclear how to make procurement decisions in the face of this
uncertainty.

LSEs typically maintain some generation capability to help insulate themselves from price fluc-
tuations and respond to emergencies; enterprise environments often make use of both external and
on-premise data centers, where the on-premise data center offers a safety net that serves to protect
them from uncertain price fluctuations while the cloud integration offers scalability. While it is
clear that in many cases, the ability to produce the commodity can help protect the decision maker
from uncertainty, it is unclear precisely what type of insurance it provides, or how effective this
ability is at providing insulation against price fluctuations, especially when the decision to invest

in production has to be made before the sellers’ prices are revealed.

1.1. Prophet inequalities. The setting of sequential procurement described above is a vari-
ation on the well-studied prophet inequality problem (Krengel and Sucheston 1977, 1978), where
a gambler sequentially observes realizations r;, i=1,...,n, of a series of independent random vari-
ables R;, i=1,...,n, and needs to accept one of them. After each realization, r;, the gambler must
irrevocably decide whether to accept r; or not. The gambler’s goal is to maximize the (expectation
of the) reward. The renowned classical prophet inequality states that the gambler can guarantee a
reward whose expectation is at least half of the optimal reward of a prophet who foresees all of the
realizations of the random variables ahead of time (Hill and Kertz 1992, Krengel and Sucheston
1978). The prophet inequality can be rephrased as follows: Upon observing r;, the gambler must
irrevocably select the value of x; € {0,1}, with the goal of maximizing ), x;r;, subject to >, x; = 1.

Many variations of the prophet inequality have been studied (see Section 1.4), but to our knowl-
edge only two (Disser et al. 2020, Esfandiari et al. 2015) have considered minimization varia-

tions; Esfandiari et al. (2015) show that the competitive ratio (of the minimization problem) is
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unbounded, and give a lower bound that is exponential in the number of random variables. The
role of in-house production has not been studied in the context of prophet inequalities, but it
is easy to see that it does not convey any meaningful advantage to the decision maker in most

previously-studied settings. We expand upon this later.

1.2. Problem formulation. In the problem we study, a decision maker faces a sequence of
non-negative independent random variables C; with known distributions D; supported on C; for
i€ {l,...,n}. Except when noted otherwise, let C' = (C4,...,C,), D= (Dy,...,D,). In every stage,
a realization ¢; of C; is drawn and and the decision maker needs to procure some amount z; € [0, 1],

such that the total amount procured is 1; that is, Y  x; = 1. We denote the decision algorithm

by an ordered set of n functions 7 = (m,...,m,), where 7; : C; X - - - x C; — [0, 1]. For any realization
c=(e1,...,¢,) and any p > 1, the cost of the decision maker is
n
ALG™(e,p) := Z ¢t (1)
i=1
where z; = m;(cy,...,¢;). Equation (1) models the cost incurred by the decision maker when procur-

ing from a sequence of suppliers, where the choice of p depends on the cost structure of the
application under consideration. The decision maker’s goal is to minimize E[ALG™(C,p)]. We call
this the minimization prophet inequality problem. We denote the input to this problem by a pair
(D, p); problem family F' = (D, p) consists of a positive real number p > 1 and a set of distributions
D.

Let OPT(c,p) denote the optimal value of the following optimization problem:

n
min g c;x?
C
i=1

st > @m=1; (2)
=1
0<z; <1; 1=1,...,n.

We define the competitive ratio for a problem family F' = (D,p) as

_E[ALG(C.p)]
CR(F,n)=inf sup ————%,
o) =00 EOPT(C.p)
where the expectations are taken over the random variables C; ~ D;, i =1,...,n.

If the in-house production option is present, the decision maker can produce the commodity
at a cost function whose coefficient we normalize to 1; we denote this by setting D; such that
P[Cy = 1] = 1. We define the competitive ratio for a problem family F' = (D,p) when the decision

maker has in-house production as follows:

- E[ALG"(C,p)]
CRin- ouse F7 =inf TRIODT/ Y N\
o) =00 S o EIOPT(C,p)]
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where D, is as above and the expectations are taken over random variables Cy ~ D,,..., C, ~ D,,.

Our setting differs from the classical prophet inequality setting in several aspects: (i) our goal
is to minimize the cost, as opposed to maximizing the reward; (ii) we allow the decision maker
to assign fractional values to x;; (iii) we consider non-linear as well as linear cost functions. In
addition, we take a close look at the role that the ability to produce the commodity in-house plays

in reducing the vulnerability of the decision maker to the uncertainty of future costs.

1.3. Our results We first show that as long as the distributions are “well behaved”, the

competitive ratio is asymptotically 1. More formally, we prove the following.

THEOREM 1. Fizp>1, 0</l<u<oo and let F = (D,p), where D is the set of probability
distributions whose cumulative distribution functions (CDFs) are invertible, supported on [¢,u],

and with L-Lipschitz inverse for some fized constant L. Then

CR(F,n)=1+4+0 ( ! > .
logn

The family of distributions of Theorem 1 includes many natural distributions including the uni-
form and the truncated normal and exponential distributions. To prove the theorem, we describe a
multi-thresholding algorithm for the minimization prophet inequality. Here, the algorithm ‘guesses’
the realization of the random variables and computes amounts to buy from the sellers based on
this guess. The algorithm then partitions the support into intervals. Whenever a seller arrives, the
algorithm buys some pre-allocated amount, which depends on which interval the cost realizes to.
We note that a similar result (i.e., that the competitive ratio is asymptotically 1) can be shown
for the maximization prophet inequality case, except that in the maximization case, the decision
maker sets x; =1 for some ¢, whereas here x; > 0 for every i. The asymptotic result holds whether
or not production capabilities exist, implying that for certain natural distributions, in-house pro-
duction is not beneficial when the decision maker has access to many sellers. When we relax the
distribution constraints, we get the following result, for decision makers with in-house production

capabilities.

THEOREM 2. Fizp>1 and let F'=(D,p), where D is the set of distributions whose support is

contained in [(,00), £ <1.

n—1\""
CRin-house(Fa ’/L) = (1 + MM) . (3)

To prove Theorem 2, we give matching upper and lower bounds on the competitive ratio. For
the upper bound, we compute the exact competitive ratio of a suboptimal, non-adaptive algorithm,
which is simpler to analyze than the optimal algorithm. To determine the input for which this

competitive ratio is the highest, we express the problem maximizing the competitive ratio as an
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optimization problem, and decompose it, allowing us to determine the value of each distribution in
the worst-case input. This gives an upper bound on the competitive ratio of the optimal algorithm,
as the cost of the optimal algorithm must be at most the cost of the suboptimal one, on any input.
For the lower bound, we give an example of an input for which the competitive ratio is tight, by
explicitly computing the expected cost of the optimal algorithm for this input.

Theorem 2 holds for p > 1. For the case p =1, Esfandiari et al. (2015) showed that the competitive
ratio is unbounded as well. Although their setting isn’t identical to ours!, it is straightforward to
adapt their proof to our setting, to show that for F'= (D, 1) where D is the set of distributions
supported on [0,00), CRiphouse(Fyn) > %. Taking the limit p — 1 in (3), we obtain the following

corollary to Theorem 2.

COROLLARY 1. Let F = (D,1), where D is the set of distributions supported on [¢,00), £ < 1.
CRin-house(Fa TL) - Z

Corollary 1 shows that the competitive ratio is, in fact, independent of n (and u), and only
depends on ¢, subsuming the bound of Esfandiari et al. (2015).

To understand the role in-house production plays in protecting the decision maker from uncer-
tainty, we would like to determine the competitive ratio for the case where no production capa-
bilities exist. Unfortunately, computing the parameterized (by p and n) competitive ratio for this
setting is more challenging than for the case with in-house production capabilities. We remark

upon this shortly, but first, we give the exact competitive ratio for the case n=p=2:

THEOREM 3. Let ¢,u be real numbers such that 0 </ <wu<oo. Let F =(D,2), where D is the

set of distributions supported on [£,u]. Then

on(r) ! W}W)

Computing the exact competitive ratio even for this simple case is more involved than when
there is in-house production. To prove the theorem, we compute the ‘worst case’ input distributions
Dy, D, by analytically solving a two level optimization in the space of probability distributions
under moment constraints. This turns out challenging as (i) both the numerator and denominator
in the competitive ratio depend on the distributions, and (ii) the optimal cost involves harmonic
means.

We can compare Theorem 3 with the competitive ratio with in-house production for F' as in
Theorem 3 with n =2: CRj,house(F,2) =1+ % From this, we can see that in-house production

! Their construction is for identical distributions, i.e., does not include the setting where the decision maker can
produce the commodity at a fixed price.



Author: Minimization Prophet Inequalities
6 Mathematics of Operations Research 00(0), pp. 000-000, © 0000 INFORMS

shields the decision maker from price spikes, as u appears on in the competitive ratio only when
there are no production capabilities. In other words, if we set u — oo, the competitive ratio is
unbounded when no in-house production exists, but it is finite with in-house production.

In the classical (linear, maximization) prophet inequality setting, Hill and Kertz (1981b) show
that, for any instance in which n > 2, there exists an instance in which n = 2 for which the
competitive ratio is at least as bad. Therefore, the exact competitive ratio for n =2 gives an upper
bound on the competitive ratio for any n > 2 in the classical case. We have already shown that this
is not the case with in-house production; the competitive ratio grows with n. We show that, when
there are no production capabilities, the case of n = 2 does not give a tight bound on the competitive
ratio either (at least for p = 2), by showing that when n =3 there exist values of ¢ and u for
which the competitive ratio is greater than that of Theorem 3. We also demonstrate numerically
that the competitive ratio is not monotone in n, unlike when there is in-house production. This
helps give some intuition as to why computing the precise competitive ratio for all n>2,p > 1 is
a challenging task. We leave it as an open question to analytically resolve the competitive ratio.

Proofs that do not appear in the main body can be found in the appendix.

1.4. Related work Krengel, Sucheston, and Garling (Krengel and Sucheston (1977, 1978))
first showed that the gambler’s expected reward is at least half of the prophet’s by analyzing
the optimal stopping rule. A simple example involving two distributions shows that this is tight.
Hill and Kertz (1981b) simplified and tightened the analysis of Krengel and Sucheston (1978)
by showing that the competitive ratio is maximized when n =2 and then (explicitly) computed
the worst case distribution for that case. Samuel-Cahn (1984) showed that a simple thresholding
algorithm—where the threshold depends on the expectation of the random variables—can achieve
the optimal bound, and later Kleinberg and Weinberg (2012) used a different threshold to show
the same bounds, and extend it to a more general setting. In some sense, our techniques are more
aligned with those of the earlier proofs, as we also explicitly compute the worst-case distributions
in order to obtain the upper bound. In contrast, however, it does not appear possible to compute
the worst case distribution in our case, as the competitive ratio is not minimized for n = 2, and
it is not clear how to compute the value of the optimal non-clairvoyant solution for larger values
of n. Instead, we compute the worst-case distribution for a suboptimal algorithm that is easier to
analyze, and show a matching lower bound. Many variants on the classical prophet in equality have
been studied (see Correa et al. (2019), Hill and Kertz (1992)). Prophet inequalities have recently
gained more attention as Hajiaghayi et al. (2007) and later Chawla et al. (2010) made a connection

between prophet inequalities and online ad-auctions, sparking broad interest in prophet inequalities
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within the operations research and computer science community, e.g., (Alaei 2014, Alaei et al. 2012,
Correa et al. 2020, Diietting et al. 2017, Kleinberg and Weinberg 2012).

The minimization version of this problem is much less well studied. To our knowledge, only two
papers study it, (Disser et al. 2020, Esfandiari et al. 2015). Esfandiari et al. (2015) show that the
competitive ratio is at least exponential in n, even when the distributions are identical, and that
it is unbounded even if there are only three sellers; the latter result is shown by setting u — oo.
Their analysis does not shed light on the underlying reasons behind these bounds. We show that
the bound is determined solely by the lower bound of the distribution, not the upper bound or the
number of distributions. In addition to providing a tight bound, our results explain the driving
factors of the bounds of Esfandiari et al. (2015). Disser et al. (2020) study a variant of the prophet
inequality that, similarly to our setting, cannot be described as a simple stopping problem. In their
setting, at each time step an applicant arrives, and their cost is revealed. The decision maker must
immediately make a hiring decision, and if the applicant is hired, their duration of employment
(the number of time steps) is fixed. The constraint is that in every time step, at least one candidate
needs to be under contract, and the goal is to minimize the total hiring cost. This setting shares
several similarities with ours—it is a minimization problem and there is some notion of ‘fractional
allocations’ (in our case, setting x; < 1 and in theirs, hiring an applicant for less than the entire
duration). Other than these similarities however, the settings are very different and it is difficult
to compare the results.

Bounded distributions have also been studied in (the maximization version of the) classical
prophet inequalities. Unsurprisingly, the competitive ratio is strictly less than 2 if the distributions
are bounded (Hill 1983, Hill and Kertz 1981a). This is similar to our case, where the closer the
upper and lower bounds of the distributions, the better the competitive ratio.

While there is a large literature on prophet inequalities in both the classical setting and gener-
alizations, almost all of the papers consider linear cost functions (p =1) and integral allocations
(i.e., a; € {0,1}). Rubinstein and Singla (2017) consider submodular cost functions, where the
total reward is a submodular function of the rewards of the individual prizes; as mentioned previ-
ously, Disser et al. (2020) allow a notion of fractional allocations.

Perhaps the most related body of work to the nonlinear prophet problem posed in this paper is
the literature studying online? convex optimization, e.g., see the surveys of Shalev-Shwartz (2012)
and Hazan (2016). Packing problems have received special attention in this literature, e.g., Agrawal
et al. (2014), Azar et al. (2016), Buchbinder and Naor (2009). However, the goal in the online

convex optimization literature is primarily to bound either the regret or the competitive ratio in

2 «Online” here is used as accepted in the computer science literature, equivalent to the way we define “sequential”.
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an adversarial setting (without distributional assumptions on the cost functions), whereas in the
case of prophet inequalities, it is to bound the ratio of the expectations when the distributions
are known a-priori. In particular, we assume that the online decision maker has information about
the distribution from which the cost functions are sampled and optimizes the average (expected)
cost with respect to such distributions. As such, there is a stream of related literature on online
convex optimization that focuses on online convex optimization with predictions, e.g., Andrew et al.
(2013), Chen et al. (2015, 2016). However, the assumptions and analytic tools in these papers are
very different than the assumptions and tools used in problem studied here.

In terms of techniques, our derivation of closed form competitive ratios depends on optimiz-
ing over the space of probability distributions under moment constraints. Optimizations of this
type arise in the classical problem of identifying maximum entropy distributions under moment
constraints (Cover and Thomas 2012) and more generally in the problem of finding robust Bayes
distributions (Grinwald and Dawid 2004). In those contexts, due to the specialty of the functionals
optimized (e.g., entropy), one can often show that the worst-case distribution has a density and
thus can utilize methods such as information inequality to pin down the form of the probabil-
ity density function (e.g., exponential family). Beyond these cases, analytical characterizations
of solutions of worst case distribution problems are extremely rare, and other work has typically
relied on numerical techniques for solving such problems. For example, Delage and Ye (2010) tackle
the distributional robust optimization problem under moment constraints. They obtain numeri-
cal solutions using sums of squares techniques. A key step in their work is solving the moment
problem of the form max;, E¢[h(z,&)], where the distribution of f¢ is optimized over a family of
distributions whose first and second moments are fixed. We encounter a similar problem: to bound
the competitive ratio we view it as an optimization problem, where we (analytically) optimize for
the worse case distribution. The functional that is optimized involves the ratio between the power
mean of expected values of a sequence of random variables and the expected value of their power
mean. To bound the competitive ratio we view it as an optimization problem and convert the ratio
into nested optimizations. In the innermost optimization, the numerator is fixed, and we optimize
over the family of distributions with a fixed first moment. Delage and Ye (2010) assume that h is
concave in ¢ in order to use the dual of the problem to arrive at an efficient numerical method to
solve their problem. As the functional involved in our analysis is neither convex nor concave with
respect to the optimization variables (the probability distribution to be optimized), their approach
cannot be directly applied to our setting.

The comparison of the competitive ratio with and without in-house production capabilities is
novel. Conventional wisdom states that make-or-buy decisions are essentially a matter of compar-

ing internal and external production costs and choosing the least costly alternative. As this is a
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straightforward insight, most of the research on make-or-buy decisions focuses on more strategic
settings with competition between firms (Arya et al. 2008, Salop and Scheffman 1987). However,
more recently, there has been an increased interest in the make-or-buy decision in the face of uncer-
tainty, e.g., Chen and Guo (2014), Niu et al. (2019), although this line of research still focuses on
strategic settings. In contrast, in this paper we put aside the strategic issues and focus solely on
the impact of the decision to invest in production on a single decision maker facing a sequential

procurement problem with price uncertainty.

2. A multi-thresholding algorithm In this section we prove Theorem 1.

THEOREM 1. Fizp>1, 0</l<u<oo and let F = (D,p), where D is the set of probability
distributions whose cumulative distribution functions (CDFs) are invertible, supported on [{,u],

and with L-Lipschitz inverse for some fized constant L. Then

1
CR(F,n):1+O( >
logn

To prove the theorem, we describe an algorithm that attains this competitive ratio. The algorithm
is a multi-threshold algorithm: one such that the amount allocated at stage ¢ does not depend on
the exact value of x;, only the range in which it falls (and, possibly, the number of z; : j < i such

that x; also falls in this interval).

u—~
-

To formally define the algorithm, we need some notation. Fix r = |logn|, and set € =
Partition [¢,u] into r intervals of size € each: [(,{ + €),[l + €,£ + 2¢),...,[u — €,u]. For each j €
{1,...,7 =1}, let I; denote the interval [¢ + (j — 1)¢,£ + je), and let I, denote [u — €,u]. For each
j€{1,...,r} let 1;(j) denote the indicator function: 1;(j) =1 iff ¢; € I;. Set 1(j) =>_, 1,(j): the

random variable denoting the number of values ¢; for which ¢; € I;.

1
log3 n

E[1(y)] and define s; := max{|E[1(j)] — dn],0}. Assume that for j € {1,...,7 — 1}, s; cost coef-

The algorithm INTERVALS is as follows. Fix § = @( ) For each j € {1,...,r}, compute
ficients will be (exactly) ¢ + je, and that all other coefficients will be u. Compute the optimal
allocation based on these assumptions; that is, the optimal allocations assuming that exactly s,
coefficients are ¢+ je, j € {1,...,r — 1} and the rest, denoted by v are u. Denote this allocation
by 7= (71,...,7,), where 7; denotes the amount purchased per realization at price ¢+ je (i.e., the
total amount purchased at price £+ je is s, 7). Note that v =n— Z;: sj<rénand Y ,_, 7 =1.

In round i, C; is realized and ¢; falls in some interval I. If at least s of ¢;1,...,¢;—; fell in I},
we say that slot k is full. If k=1 or slot k is full, we “place ¢ in slot r”, and set x; = 7,.. Otherwise,
place ¢ in slot k and set z; = 7;.

To prove Theorem 1, we need the following lemma, whose proof appears in the appendix.
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LEMMA 1. For any c=(cy,...,¢,) and p>1,

OPT(c,p) = (Z (f) ,

-

where ¢ = —p%l.

Proof of Theorem 1. Let ¢ = —p—il. For any probability distribution whose inverse is L-
Lipschitz, the probability that it realizes to any interval is at least ¢/L, hence E[1(j)] > en/L, and
sj > en/L —on. Let ®(j) denote the event 1(j) <E[L(j)] — on. By the additive Chernoff bound,
e.g., Alon and Spencer (2008), P[®(5)] < e=27"  Let ¢ =re=2"". By the union bound, the prob-
ability that some ®(j) occurs (j € {1,...,7}) is at most €', hence with probability at least 1 — ¢’
none of the events ®(j),j € {1,...,r} occur. That is, with probability at least 1 — €', at least s;
coefficients are revealed to be in I;, for every j.

To bound the cost of INTERVALS, we first compute the cost if the assumptions of INTERVALS

hold, using Lemma 1:

C= (51(€+6)‘1+52(€+2e)q+---+sruq+yuq)% .
For every ¢ that has been placed in slot j, £+ je is an upper bound on the realized price of C;.
Therefore
si(l+ €)1y + so(0+2€)7h + -+ (s, +v)ur? (4)
is an upper bound on the cost of the algorithm when no ®(j) occurs. This is exactly the optimal
solution of (2) under the assumptions of INTERVALS, hence equal to C. Therefore C' is an upper
bound on the cost incurred by the algorithm if no ®(j) occurs. If some ®(j) occurs, we take the

trivial upper bound of u for the cost of INTERVALS.

Hence
E [ALG™™™5(C,p)] < (1 =€) (s1(€+€)T+ s2(€+2€) + -+ + s,u + put)i + ¢'u.
From Lemma 1 and using the trivial lower bound on the cost fn?=!,
E[OPT(C,p)] > (1 —¢€) (5107 + sa({+€)?+ -+ s, (u—€)? + Vﬁq)% +€etnPt.

Set

1

s1(04€)T+ s2(042€)T 4 -+ + (s, + v)u?)1

B INTERVALS

(514 )L+ €)T + (82 +1) (04 26)T 4+ + (5, + 1)u?)7
Bopr = ((

81 +V)£q+32(€+e)q+---—G—sr(u—e)q)%

Q=

= (
<(
= (
> (

s+ so(l+e)!+---+s.(u—e€)?)9,
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_ (sjH+v)(L+jge) __u x _ (ron)(L+e)
1= e © = i 204 € = i Then
E [ALG’INTERVALS(C7 p)] < (1 - EI)BINTERVALS + G/U
E[OPT(C,p)] - (1 —¢€)Bopr
Bryrenvs + €'u
BOPT
< Brvwvas | 4 (5)
BOPT
< m;:LX €+ el (6)
< (en/L+ (r—1)on)(¢+e€) bt 7)
- (en/L —dn)l
=14 4e e

1
:1+@< >
logn

Inequality (5) holds because at least one value of s; will be at least en. To see why (6) holds, note

Zj ¢j
that S5

is a weighted sum of Z—J
J
Zj Cj _ ¢ b;
250 b b
and a weighted sum cannot be larger than the largest term. Inequality (7) holds as for every

- o
J=>1e < =~ O

3. Bounds for arbitrary functions (with in-house production) In this section, we prove
Theorem 2, which gives the competitive ratio when the set of price functions is constrained only by
a lower bound. The competitive ratio is given as a function of both p, the power of the monomial

in the cost function, and n, the number of sellers.

THEOREM 2. Fixp>1 and let F = (D,p), where D is the set of distributions whose support is

contained in [(,00), £ < 1.

n—1\""
CRin—house(Fa TL) = (1 + W) . (3)

Theorem 2 follows from matching upper and lower bounds. To obtain the upper bound, consider
the following non-adaptive algorithm, referred to as algorithm NA, for the problem. The algorithm
is non-adaptive in that it decides all of the amounts ahead of time. The algorithm NA purchases
the amounts as described by the solution to the following optimization problem.

Z C’ixf]

s.t. inzl; (8)

0<z;<1; 1=1,...,n.

min [E
xr
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First, we need an auxiliary lemma that is used to identify the ‘worst-case’ distributions for NA:
the distribution for which the ratio of E[ALGY*(C,p)] and E[OPT(C,p)] is maximized.

LEMMA 2. Let £, and u be real numbers such that 0 < £ < pu <u < oo, C be the set of all
random variables C' whose distribution is supported on [(,u], such that E[C] = p, and f be a strictly
concave function. Then a solution of

min - E[f(C)] (9)

cec

if it exists, is

ol with probability p, = Z:ﬁ,
¢, with probability p, = *=%.

We derive the competitive ratio of NA explicitly in terms of the power mean: for a sequence of

positive real numbers ¢ = (cy,...,c,), the power mean of ¢ with exponent ¢ is defined as M,(c) =
1 —1
(230 ey . (M_y(c) is the harmonic mean H(c) =n (é +-+ i) )

LEMMA 3. Fixp>1, andlet g= —p%l. Let ¢ and u be real numbers such that 0 < { <wu < oo and
C be a n-dimensional random vector with independent elements each of which has its distribution
supported on [£,u]. Then

E [[ALG™(C,p)] _ M,(E[C])
E[OPT(C,p)]  E[M,(C)]
Proof of Theorem 2. We prove the upper bound here; the proof of the lower bound is deferred

to the appendix.

First note that the competitive ratio is non-increasing in wu, as any distribution supported on
[¢,u] is also supported on [¢,u], where u’ > w. This means the supremum of the competitive ratio
must occur for u — co. We work with extended real numbers, RU {—o00,00} with 0-00:=0 (e.g.,
McShane 1983); this allows the seller to set the cost to oo, which simplifies the asymptotic analysis.

Recall that D, is a point-mass distribution with support {1}. We would like to determine the
worst-case distributions D,,..., D, for NA with u=o00. Let D =D,,...,D,, and C =Cs,...,C,,
where C; ~ D;, i € {2,...,n}. By Lemma 3, the competitive ratio of NA is

M,(1,E[C
W BT O
where ¢ =—1/(p—1). This optimization can be written as

oy MALEC) g (1LE(C)
(Ds3,...,Dn) D2 E[Mq(lac)] (D3,...,Dn) p2 D2€D(u2) E[]Mq(lvc)]7

where D(u) is the set of all distributions whose mean is p. Consider the inner optimization

<supD2€D(#2) %). Here, Ds,..., D, and pu, are fixed, hence M,(1,E[C]) is a constant. The

(10)

inner optimization is therefore is equivalent to:

IBQf E[Mq(l,CQ,,Cn)] :ECz[f(CQ)] (11)
s.t.  E[Cs] = pa,
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.....

to (11) is a long-shot distribution, with

u—~0?
u—p
u—~0 "

o=l with probability p, = £=%
o ‘67 with probablhty Pe =

Note that while p, and p, are defined explicitly for every p, < co, they are not necessarily well-
defined when py = 0o. In this case, there are (exactly) two possible values of uy. Either pu; = 0o
(implying p, > 0), or py = 00, or uy = £ (implying p, = 0). However, if py = 0o, p, = 2, which is
undefined. We can nevertheless use this characterization to determine the value of p, for which the

supremum is attained by considering all possible values of p, when ps = 0o. Set €3 = p,,, therefore

.....

() and Z = Ec¢,,  c,[M,(1,Cs,Cs,...,C,)|Cy = u]. From the characterization C,, we have that
M,(1,E[C]) =n~Y4 (X + pd)7 and E[M,(1,C)] = (1 — &)Y + &:2.
If po =4,
wp  Me(LEC) (XHQ)%_ 12)
DoeD(uo=2) E[Mq(LC)] Y
If pip = 00,

M(LEC)  (nVax)T

sup = )
D2€D(pg=00) E[MQ(LC)] (1_62)Y+62Z
1
. (n=1/ax)a
as ¢ <0. As Y < Z, the supremum occurs for €; — 0, and as (12) is less than v , we have
that 1
M,(1,E[C n-l/ax)®
s MLEIC) _ (n7x)"
n2 DaeD(uz) E[My(1,C)] Y
and puo = 0o. As this result holds for any Ds,...,D,, we can apply the same argument to

each of them (keeping the remaining distributions constant), and conclude that the supremum

supp % occurs when, i € {2,...,n}, D, is a long-shot distribution, with p; = oo, where C; =/
with probability 1 —¢;, ¢, — 0.

‘We therefore obtain

o Mo(LE[C) . e
b E[M,(1,C)] o E[M,(L,C)]
—n V(M1 f.. 0 )
——
(n—1) terms

=(1+ (n— 1))~
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4. Bounds for arbitrary functions (without in-house production) We now turn to
the case when the decision maker cannot produce the commodity. We prove Theorem 3, which
gives the competitive ratio for p =n =2 when the decision maker has no production capabilities.
In addition, we show that—similarly to when the decision maker has production capabilities, but
unlike the classical prophet inequality scenario—the case n =2 does not set an upper bound on
the competitive ratio for arbitrary n. We further show that—unlike when the decision maker
has production capabilities—the competitive ratio is not monotone in n. These results give some

intuition as to why obtaining tight results for n > 2 appears to be a challenging task.

4.1. Proof of Theorem 3

THEOREM 3. Let £,u be real numbers such that 0 < <u<oo. Let F = (D,2), where D is the

set of distributions supported on [¢,u]. Then

CR(F,2)= <\/E+ \/9 3

We first show that the cost of both the prophet and the optimal algorithm can be written in

terms of harmonic means. We note that this result holds for any number of sellers.

LEMMA 4. Consider the minimization prophet inequality problem with input (D,2), D =
{D1,Ds,...,D,}. For any realization c,...,c, of the random variables C4,...,C,, the prophet’s
cost is OPT = M

The decision maker’s expected cost, i.e., the cost achieved by the optimal algorithm DP, is
E[ALG""(C,p)] =E[b1],

and -
bi 1 b -
xi_CiH<1_Cj)7 1=1,...,n, (13)
Jj=1
where b, =C,, and
H(c;,E[bi11])

b= —2 W i1 n—1.
9 (3 n

We use this result with n =3 in Subsection 4.2 to show that the competitive ratio for the case

of n =2 is not the worst for all n. For n =2, we can more succinctly phrase Lemma 4 as follows:

LEMMA 5. Consider the minimization prophet inequality problem with input (D,2), D =
{D;,D5}. The prophet’s cost is OPT = M, and the expected cost of the optimal online algo-

rithm conditioned on C) realizing to ¢, is H(C%E[CQD, where H(-,-) denotes the Harmonic mean.
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We now express the competitive ratio in terms of the prophet and decision maker’s costs, and

decompose this expression as follows:

| E[ALG"(C, 2) Ep, [H(Cy,Ep, [Cs])
f — 1 2 X 14
S EOPT(C,2)]  a'h Epy.0lH(Cr,Co) (14)

We can treat (14) as an optimization problem, however the objective function is not concave,
and in addition, (14) is an infinite-dimensional optimization (i.e., a semi-infinite program with an
infinite number of variables).

We address these issues by decomposing (14) as follows:

wp EolHCLELCD o Ep, [H(CEn ()
D1,Dy EDl,DQ [H(Cl7 02)] Dy po DQ:E[CQ]:IU.Q EDl,DQ [H(Cl) CQ)]

(15)

The proof of Theorem 3 now proceeds in three parts: (i) computing the ‘worst-case’ Dy, for any
D, (ii) given Dy, finding the ‘worst-case’ mean of D,, uy = E[Cy], and (iii) given D; and ps, finding

the ‘worst-case’ Dy. We take a bottom-up approach, solving (iii) first.

Computing the worst-case D,. Fixing D; and ps € [¢,u], numerator of the inner optimiza-
tion of (15) is constant. Computing the supremum is equivalent to computing the infimum of the

denominator; hence the problem of finding the worst-case D, can be formally stated as

inf / / H(cr,e5) dDy(cy) dDa(cs)

Dy ¢ Je

s.t. / Co dDQ(CQ) = U2, (16)
¢

where D, belongs to the set of all probability measures and Lebesgue integration is used to
express expectations (Dudley 2002).

We approach problem (16) by first considering a simpler version where D; is taken to be a point
mass, therefore C; is some fixed constant c¢;:

inf / H(Cl,Cg) d_DQ(CQ)
L

Dy
s.t. / Co dDQ(CQ) = Ua. (17)
L

Note that Problem (17) is exactly of the form given in Lemma 2, and hence the worst-case

distribution is as follows:

[
u, with probability ”2:;.

u

(18)

{6, with probability “=£2,
02 == h

As the solution of this problem does not depend on the value of ¢;, the same result holds for any

distribution D;.
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Finding the worst-case D; and pu,. Before attempting to compute u,, we turn to the
problem of identifying the worst-case D; as a function of D,. We show that D; does not depend

on the value of ps, hence D; can be determined without knowing pis.

LEMMA 6. Fiz 0 </l <, <u<oo and suppose that Do takes the value ¢ with probability “—£2

u—~¢

L2=t " The distribution Dy for which (15) is mazimized is such that Cy =/tu

2
u—~L

and u with probability
with probability 1.

Proof of Lemma 6. First consider the case that D; is supported on a finite set of m arbitrary
points {cgl), . ,cgm)} with £ =c{" <. < {™ =u, where m € N is also arbitrary. Assume that
for some k* € [m],cgk*) = Vlu; we will show that this is without loss of generality. The problem of

identifying the worst-case D; can be written as follows, where for convenience, we use min instead

of max,
min qT—p
pER™ th
st. 1Tp=1, (19)
p=0,

where ¢ € R™ has entries ¢, = %H(Cgk),ﬁ) + ’f—jﬂ(cgk),u) and h € R™ has entries hy =

H (cgk), 2). This is a linear-fractional program which is equivalent to the following LP

. T
yelgl”l,rzleR Y

st. 1Ty=z,

hly=1,

Y,z 20,

with the change of variable y =p/h"p, z=1/hTp. Simplifying, we get

. T
min ¢'y
st. hly=1, (20)
y > 0.

Since hy, >0 and g > 0 for all k, a solution of (20) is clearly to place all mass on the coordinate

with the smallest ratio g /hy. Consider the ratio as a function of ¢;

r(61) _ uu_l? (Clag) + ALQ:ZZH(CM u) _ (Cl —+ IU/Q)(CLU/Q —+ /U,E) .
H(Cu H2) (01 + u) (01 + g)/lz

Compute
(ci — ul)(u—p2)(p2 — £)
(14 p2)(crp +ul) (e +u)(er +£)’

(logr(c1))" =
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which has a single root ¢; = v/fu on ¢ € R,. Furthermore, (logr(c1)) < 0 for ¢; < Vlu and
(logr(cy)) >0 for ¢; > \/lu, so ¢; = v/fu is a minimizer for log(r(c;)) as well as 7(c;). Thus the
solution to (19) is pg« = 1 and p;, = 0 for all k # k*. Note that as this solution minimizes (19) when
Viue {cgl), - cgm)} regardless of the choice of m, it must hold that this is optimal for completely
arbitrary choice of {c{”,...,c{™}: assume that there is a better choice of {¢{",...,c{™}, where
Veu ¢ {V,....¢{™}, and denote its solution by X (i.c., X is the vector of allocations to each
coordinate). Then X is also a solution for {c{",...,c{™}U+/2u, a contradiction to the optimality
of placing all of the mass on v/fu. Therefore, the worst case distribution among any distributions
supported on a finite number of points in [¢,u] is C; = v/fu with probability 1.

We proceed to show that the same solution structure holds when we consider any distributions
supported on the continuous interval [¢,u]. Suppose otherwise, i.e., there exists a different distri-
bution D; supported on [¢,u] that leads to a strictly better objective value for optimization (15).
Denote the random variable with distribution D; by C,. Denote the distribution that places all
the probability mass at v/fu by D7 and the corresponding random variable by C5. Let

B Ep, b, [H(Cy,C3)]
IO (H(Cr. B, )]

where D, is fixed as (18). Note here J is the objective function in (15) with the numerator and
denominator flipped (as we are working with minimization in this proof) and D, and pu, fixed.

Under our hypothesis here, there exists an € > 0 such that

J(D?*) > J(Dy) +e.

Consider a discrete approximation of D; supported on {€,0+ “;Z, U “T_é, u}, denoted by D, (T)

with the corresponding random variable denoted by C,(T'), where

t(u—2) t(u—2) (t+1)(u—2)

A _ — T <O =0,...,T—
P(Cl(T) (+= ) ]P’<£+ <Gy > t=0,...,T -1,

and P ((:H(T) :u) = P(Cy = u). Since Cy(T) converges to C; in distribution by construction,
J(Dy(T)) = J(D;) as T — co. Thus there exists a T} large enough such that for all 7> T,

J(D?) > J(Dy(T)) +¢€/2.

Since D, (T') is supported on a finite number of points, this contradicts with our earlier conclusion

that D7 is the worst case distribution for any distributions with a finite support. ]

Finding the worst-case u;. Lemma 6 gives Dy, and (18) describes Ds. It remains to identify
the value of uy € [¢,u] that maximizes (15). Simple calculus gives that uj = v ¢u.
Proof of Theorem 3. Plugging in the values of D; and D, into (15) completes the proof.  [J
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4.2. More than two sellers In the classical (linear, maximization) prophet inequality set-
ting, Hill and Kertz (1981b) show that, for any instance in which n > 2, there exists an instance
in which n =2 for which the competitive ratio is at least as bad. Therefore, the exact competitive
ratio for n =2 gives an upper bound on the competitive ratio for any n > 2. We show that, the
competitive ratio for the case of n =2 is not the worst for all n. Specifically, we show that there
exist values of ¢,u for which the competitive ratio for n = 3 is strictly higher. Note that it is not
the case that the competitive ratio is strictly higher for all ¢,u, as when ¢ = u, the competitive

ratio is 1 for any value of n.

LEMMA 7.  There exist £,u such that 0 <{ <u < oo for which

1 u 14 1
F i et hd -
CR( ,3)>4 <\/;+\/;>+2,
where F' = (D,2), and D is the set of distributions supported on [(,u].

To prove Lemma 7, we consider a specific sequence of distributions.
Proof. Let C; = (u+£)/2 w.p. 1 and Cy and C5 be such that C; =u w.p. 0.5, C; = ¢ w.p.
0.5 for i € {2,3}. For C = (Cy,C5,C3), we can calculate E[ALG""(C,2)] using Lemma 4 and
E[OPT(C,2)] using Lemma 1:

E[ALGOTT(C,2)]  (u® + €% + 6ul)(2u+ £)(20 + u)

E[OPT(C,2)]  uf+ 0%+ 38u2l2 + 16udl + 1603u’

For u=4, { =1, we have the ratio for n = 3 is approximately 1.1336; the competitive ratio for
n =2 with the given u, £ values is 1.125. O

As n =2 is not the worst case, one might conjecture that the competitive ratio is monotone in
n, as it is in the case where firms invest in production (Theorem 2). In Appendix C.2 we show
empirically that this does not appear to be the case. the competitive ratio is not monotone in
n. In fact, the number of sellers that exhibit the worst-case competitive ratio depends on the
distribution domain. When the domains are bounded by [1,2] and [1,4], the worst-case competitive
ratios transpire at three and four sellers respectively. Computing the exact competitive ratio as a

function of the problem parameters (p,n,¢,u) is a challenging open problem.

5. Concluding Remarks We study a sequential procurement problem where there exists a
marketplace with sellers arriving over time and investigate the impact of having in-house production
capacity. We first consider a natural class of cost distributions. In this case, we show that it
is possible to asymptotically achieve the optimal cost as the number of sellers grows. There is
no advantage to in-house production capabilities, which corroborates the intuition that, with an

abundance of sellers, there is less need for a ‘safety net’. Further, the decision maker can be



Author: Minimization Prophet Inequalities
Mathematics of Operations Research 00(0), pp. 000-000, © 0000 INFORMS 19

asymptotically optimal using a multi-threshold policy that is much less complex than the optimal
adaptive policy. More generally (with unrestricted distributions and a small number of sellers), the
ability to produce the commodity oneself provides insurance from price spikes, i.e., the competitive
ratio remains finite even if the upper bound on the cost is infinite when the decision maker has the
ability to produce the commodity but increases with the upper bound when it does not.

We have made several simplifying assumptions that need to be addressed in future work. The first
assumption is that the decision maker has unlimited production capacity. That is, it can produce
all of the required commodity in-house. This is made with some loss of generality, although we note
that the decision maker can compute ahead of time the amount that it needs to produce, so this
can be incorporated into the decision whether or not to invest in production. Another simplifying
assumption is that the production decision is binary, whereas in reality, different initial investments
would lead to different production capabilities and costs. In this paper we abstracted both of these
issues by normalizing the in-house cost function coefficient to 1.

The results of Sections 2 and 3 hold for general values of p (i.e., monomial cost functions), but
the results of Section 4 hold only for p = 2. It would be interesting to extend the results of Section 4
to other values of p, and indeed, to study the sequential procurement problem with more general
costs than monomials; it is not clear how to generalize our results. Additionally, we have introduced
a policy, INTERVALS, that is asymptotically optimal, but it would be interesting to understand
if other policies converge at a faster rate than INTERVALS. Further, it would be interesting to
understand the tradeoff between the rate of convergence to optimality and the complexity of the

policy. For example, can a single-threshold policy match the convergence rate of INTERVALS?
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Appendix A: Supporting Material for Section 2

LEMMA 1. For any c=(cy,...,¢,) and p>1,

OPT(e.p) = (Z ) |

=1

where ¢ = fp%l.

Proof. To obtain the prophet’s cost, we consider the Lagrangian of optimization (2).

Zn:cixf—l—/\ <1 _2":$Z> .
i=1 i=1

Taking the derivative yields

)\ —q
A=pca™!, e, xz:<> cl.
p

Substituting this into ), x; =1, we have

AN IS
(p) ;ci—l.

Substituting (A/p) = (32", ¢!) ", we get

i=1"1

The prophet’s cost is then

Appendix B: Supporting Material for Section 3

LEMMA 2. Let ¢, and u be real numbers such that 0 < € < pu <wu < oo, C be the set of all
random variables C whose distribution is supported on [¢,u], such that E[C] = p, and f be a strictly

concave function. Then a solution of

min - E[f(C)] (9)

cec

if it exists, is

~

<

7
u—~L"

e
=

w,  with probability p, = “=%,
¢, with probability p, =
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Proof. Denote the long-shot distribution in Lemma 2 by D* and let C' be a random variable

sampled from some distribution D supported on [¢,u] with mean p. Then

Edﬂcnz/f@ﬁuxw

u—2 z—/
:/f<u_£€+u_£u>dD(c)

u—c c—4
< D
< [ |i=iro+ s an
u—p w—2r
= L
L p 0+ B )
=Ep[f(C)],
where the inequality follows from Jensen’s inequality. U

LEMMA 3. Fixp>1, andlet q= —ﬁ. Let ¢ and u be real numbers such that 0 < £ <wu < oo and
C be a n-dimensional random vector with independent elements each of which has its distribution

supported on [£,u]. Then
E[[ALG™(C,p)]  M,(E[C))

EOPT(C.p)]  E[M,(C)]

1
Proof of Lemma 3. From Lemma 1, OPT(c,p) = (Z?Zlc?)%. As My(c)= (237 )7, the

expected prophet cost is simply E[OPT(C,p)] = neE [M,(c)]. Using similar reasoning, it is easy to

show that the cost of the optimal non-adaptive algorithm is
E[ALGN(C,p) = ni M, (E[C]),
as the optimization (8) is equivalent to (2) with E[C;] in place of C;. O

B.1. Proof of Theorem 2 (lower bound). It is straightforward to verify that, similarly
to the classical prophet inequality, the optimal policy can be characterized as a dynamic program.
We describe such an algorithm, denoted DP, and show that the cost-to-go functions of DP share
the same functional form as the cost functions.

To start, let us first define the cost-to-go functions J; on s; € [0,1] as follows:

Jn(sn) =cn(l—s,), (21)
Ji(si) = O<m<illl_ (@) +E[Jipa(si+ )], i=1,....n—1

The optimal causal policy is a mapping from the state (i.e., the accumulative amount of commodity

that was obtained up to time step i) s; € [0, 1] to the action x; € [0, 1] that takes the form

Tn(8y) =1—s,,

x;i(s;) € argmin ¢;(x;) + E[Jp1(s; +x)], i=1,...,n—1. (22)

nglglfsz
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The optimality of the dynamic programming recursion above is a classical result in the literature
of stochastic control (cf. Proposition 1.3.1 of Bertsekas (1995)) which relies on the simple intuition
that if the truncated policy {m;, mi11,...,7,} does not implement optimal solutions of (22), then
it would be possible to reduce the cost for the “tail problem” starting from stage ¢ with state s;
further by switching to an optimal policy. In Lemma 8, we show that the minimization in the DP

recursion can be solved analytically and therefore DP is implementable in polynomial time.

LEMMA 8. Let D be a distribution supported on [¢,u], where 0 <{<u<oo andp>1. An opti-

mal algorithm for the minimization prophet inequality problem for (D,p) has cost-to-go functions

Ji(si)=bi(1—s;,), i=1,...,n, (23)
where b; is defined recursively as
b, =C,, (24)
Cil[bit1]
(C;/@fl) n (E[biﬂ])l/”*l)p_l ’

The corresponding allocation is given by

(E[big])!/ D .
Y= - - _ (1-s), i=1,...,n. (26)
c; + (E[b;y4]) /=1
Proof. We prove that the cost-to-go functions are of the form (23) using backward induction.

The base case, J,,(s,) =b,(1 —s,)? = ¢,(1 —s,)? holds by the definition of the cost-to-go function.

bi:

Suppose that J;1(s;41) =bi1(1 — s;41)P. Then we have

Ji(s;) = min ¢;z? +E[J 1 (s +24)],

z; €[0,1]

= min ¢t +E[b; (1 —s; —x;)P).
x;€[0,1]

The first order optimality condition of the optimization above is
el = (1= sy = @) Elbi] = (/0w — b))V O V(1 = s, = 22) ) flsiv) =0,

where f(s;,x;) is a function of s; and z; satisfying f(s;,z;) >0 for x; >0, s; >0 and s; + x; > 0.

The unconstrained minimizer is

(E[bira])/7—
T D oo s,
G + (Efbig1)"/ 1]

which satisfies 0 <z; < (1—s;) <1 for s; € [0, 1]. It follows that
]

p/(p—1) /(=D p,
Jl(sl) _ (E[bz-',-l ) 5 (1 _ Si)p _|_ Cf E[bz-‘rl] - 1 _ Si)p
(/7 + (Blbia Vo) (/70 + @) /o)
c;Elb;
_ E +1] T (1 _ Si)p-

( 1/(p—1) + (E[byy]) /P~ 1)
Thus, the claim holds for any i. O
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Proof of Theorem 2 (lower bound).
Consider the optimal algorithm, DP, on the particular distribution where C; = ¢ with probability
1—¢€, and C; = u — oo with probability € >0 for all i € {1,...,n}. From the DP recursion and by
Lemma 8, we have E[b,] =E|c,] — oo as u — oo,

1
E[b,1]=E =Elc,_1] — o0, as u— o0,

1
(2470 4+ (&) /0-0)”

and thus E[b;] — oo as u — oo inductively for all 4. It follows that E[ALG""(C,p)] = 1. Following
the same lines of arguments as in the proof of the upper bound, we can calculate E[OPT(C, p)] for
€ — 0, and obtain the competitive ratio for DP with the given distribution as

DP _ p—1
f E[ALG" (C,p)] (14 1
e E[OPT(C,p)] 01/ =1

Appendix C: Supporting Material for Section 4

C.1. Proof of Lemma 5

LEMMA 4. Consider the minimization prophet inequality problem with input (D,2), D =
{D1,Ds,...,D,}. For any realization ci,...,c, of the random variables C4,...,C,, the prophet’s
cost is OPT = M

The decision maker’s expected cost, i.e., the cost achieved by the optimal algorithm DP, is
E[ALG™(C,p)] =E[bi],

and
i—1

b; b,
= — 1--2 =1,... 1
‘TZ CZH< Cj)? ? ) 7”7 (3)

Jj=1
where b, =C,, and
bi:H(Ci’E[bm]), i=1,...,n—1.

We prove a more general result; Lemma 5 is a special case.
Proof of Lemma 4. Concerning the first part of Lemma 4 (the prophet’s cost and allocations):

the Lagrangian for (2) with p =2 can be written as (keeping the positivity constraints):
I
i=1

Differentiating gives that, for all i, z; = \/¢; with Y ; = 1. Substituting gives A = (Zn cil)_l,

i=1 "1

and rearranging then completes the proof.
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For the optimal online algorithm’s cost and allocations: By Lemma 8, we have

.U

— P gy =1, n,
Ci+E[bi+1]( )

with b,, = C,, and
_ _CElbin] _ H(ci, Ebiia])
! c; + E[b1+1] 2 ’

It follows that ,
bi bl i—1
.TZZCZ(].—SZ):C’L<1—Z{L'7 .
j=1
Expression (13) then holds by induction: The base case holds as (13) is equivalent to the expression

above for x;. Suppose (13) holds for z;, then

i—1
-eif(-2).

j=1
and ) -
- b b; 1 b : b
SR (IR OB (&)
+ jli[l Cj Cijlill C] ]lel C]

Thus we have

0

C.2. Non-monotonicity in n In this section, we explore the competitive ratio of the opti-
mal online algorithm in the case where the firm cannot produce the commodity. The numerics
highlight the complex behavior of this setting, illustrating the difficulty in precisely characterizing
the competitive ratio in this case and showing a variety of interesting non-monotonicities.

We partition the experiments into two sections. First we consider a general class of discrete

distributions over [¢,u] and then explore specific cases with long-shot and point mass distributions.

General discrete distributions To explore the competitive ratio we create examples by
discretizing the interval [¢,u] and considering distributions D, ..., D, supported on S points in
{{,+A,...,u} where A= (u—¥)/(S—1). The problem of identifying the worst case distribution
(with the given support) that maximizes the competitive ratio is a non-linear and non-convex
program over the probability mass functions of D, ..., D,. We solve this non-linear program numer-
ically using an interior point method for n € {2,...,6} and S € {3,...,6}. While these solutions are
local, they are likely also global, as we obtain consistent results for a number of runs with random

initializations.
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FicURrE 1. Competitive ratios under the worst-case discretized distributions.

We restrict to small values of n and S in these experiments due to (i) the complexity of evaluating
the expected optimal prophet’s cost is O(S™), (ii) the non-convex and nonlinear nature of the
optimization problem at hand, and (iii) the fact that no significant change in the results has been
observed when we increase the S value.

Fig. 1 presents the results of our experiments. The competitive ratio E[ALG]/E[OPT] for (¢,u) €
{(1,2),(1,4)} is shown in Fig. 1 over the range of n values considered. The most important obser-
vation is that the competitive ratio is not monotonic — we observe that the competitive ratio as a
function of n is unimodal; the peak is at value of n that increases with .

Fig. 2 depicts the worst-case distributions for n € {3,...,6}, v =4 (structurally similar results
are obtained for u =2), and S =6. In each panel of Fig. 2, we show the probability mass function
of D, fort=1,...,n. Consistent with the intuition from the results in the paper, we see that across
for any n value, the resulting D;, i =1,...,n is either point-mass or long-shot. This motivates us

to focus on these distributions in the following section.

Point-mass/long-shot distributions Motivated by the results above, we focus on long-shot
and point mass distributions in this section. This allows us to explore a wider variety of settings
with considerably less computational effort. Specifically, we focus on S =3 as D; is supported on
{¢,m,u} for some intermediate point m € (¢,u). We include the locations of the intermediate points
as optimization variables and re-run the simulations for larger values of n.

The resulting competitive ratios are depicted in Fig. 3, which confirms the observations that we
made for Fig. 1 with a larger range of n values.

Since the worst case distributions we consider are either point-mass or long-shot, we can summa-
rize them using an indicator (point-mass or long-shot) and the mean E[C;]’s. Fig. 4 shows the mean

values of the worst case distributions for (¢,u) = (1,4). Structurally similar results are obtained
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FIGURE 3. Competitive ratio under the worst case long-shot/point mass distributions.

for (¢,u) = (1,2). Many observations can be made regarding Fig. 4. First, note that the structure
of the sequence of worst case distributions for any n is always such that there exists a k(n) for

which D; is point-mass for ¢ < k(n) and D; is long-shot for k(n) < i <mn. Second, for each fixed n,
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the sequence of means for which D;’s are long-shot, i.e. {E[C;]:i > k(n)}, is a decreasing sequence.

Finally, the transition point k(n) is nondecreasing in n. Formally establishing these properties may

pave the way to obtaining exact quadratic prophet inequalities for general n > 2.
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FIGURE 4. Mean values of the worst case long-shot/point mass distributions for (¢,u) = (1,4). For each n values,

there are two line segments, the first (solid) line segment corresponds to ¢ values for

which D;’s are point-mass.

When there is only one 4 has a point-mass distribution, the line-segments becomes a point. The second (dashed) line

segment corresponds to ¢ values for which D;’s are long-shot.
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