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ABSTRACT: Ammonia (NH3) oxidation is central to the global nitrogen cycle,
a delicate natural system that is now disrupted by human activities. The
electrocatalytic ammonia oxidation reaction (AOR) to dinitrogen (N2) presents a
promising avenue not only for the green remediation of wastewater but also as a
sustainable energy vector for the future. In this Perspective, we delve into the
intricacies of AOR, highlighting the unique properties of platinum (Pt) as the
best elemental metal catalyst, albeit with high overpotential and rapid
deactivation. Computational chemistry as a powerful tool has provided deep
insights into the nature of active sites and the elementary reaction steps of
electrochemical NH3 oxidation. We describe the structure sensitivity of this
reaction with (100)-type site motifs favorable for N−N bond formation via
dimerization while also touching upon the role of adsorbed hydroxyl species in
dehydrogenation pathways. Addressing surface deactivation is emphasized as
paramount for designing improved catalytic materials. This Perspective presents a holistic view of the recent advances, challenges,
and future opportunities in computational modeling of AOR or interfacial charge transfer reactions in general, providing a roadmap
for future research and innovations.
KEYWORDS: ammonia oxidation, electrocatalysis, heterogeneous catalysis, computational chemistry

■ INTRODUCTION
Ammonia (NH3) oxidation represents a series of redox
reactions pivotal to the global nitrogen cycle, which circulates
nitrogen through Earth’s atmosphere, soil, plants, and animals.1

In this cycle, bacteria convert air’s dinitrogen (N2) into
biologically usable forms and ultimately break down excessive
reactive nitrogen species, channeling N2 back into the
atmosphere. It is a beautiful exchange in nature. However,
humans have been tipping this delicate balance over the past
century. We are burning fossil fuels, emitting huge amounts of
nitrogen/sulfur oxides that lead to acid rain and smog. The
Haber−Bosch process artificially fixes nitrogen in NH3 on a
massive scale of ∼180 million tonnes annually. While this
addresses the food demands of our expanding population,
overfertilization in agriculture causes nutrient overloads in
ecosystems, resulting in water pollution linked to toxic algal
blooms, infant methemoglobinemia, and increased human
cancer risks. Industrial and domestic wastewater containing
various nitrogenous compounds such as nitrate (NO3

−), nitrite
(NO2

−), and NH3 further disrupt the cycle. We are stretching
this natural cycle to its limits, making a global problem that
needs immediate solutions (Figure 1).
The electrochemical NH3 oxidation reaction (AOR) is of

growing interest as a greener alternative to the current
wastewater remediation methods, including ion exchange,

biosorption, wet air oxidation, biofiltration, and biological
nitrification and denitrification.2 Because NH3 has a high
volumetric energy density, low explosion risk, and well-
established transportation infrastructure in comparison to
hydrogen (H2),

3 NH3 is also seen as a hydrogen-rich, energy
dense fuel that can be directly used in anion-exchange
membrane fuel cells (AEMFCs) or as an onboard carrier of
ultrapure H2 for proton-exchange membrane fuel cells
(PEMFCs).4 As our climate undergoes significant changes
due to anthropogenic carbon emissions, fuel cell technologies
using green NH3 present an opportunity for carbon-free, on-
demand electricity.5,6

In recent decades, computational chemistry has emerged as
a powerful tool for understanding the mechanisms of catalytic
reactions at solid surfaces and guiding the design of improved
catalysts.7,8 For electrochemical AOR in particular, transition
metal catalysts are of fundamental interest due to their
promising performance for this chemistry.9−11 Platinum (Pt) is
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the best elemental metal catalyst for this reaction,12 followed
by Ir, with Co, Pd, and Rh being considered inactive13,14 from
experiments. In a computational study by Herron et al.,15 the
activities were ranked as Pt > Ir > Cu > Pd > Rh > Co. This
trend was obtained from the Sabatier analysis based on
activation energies and thermochemistry from density func-
tional theory (DFT) calculations at (111) metal surfaces. For
Rh, Co, Ir, Pt, and Pd, the rate-determining step is N−N bond
formation, and Pt has the most appropriate nitrogen binding
strength. The activity of Cu is limited by the proton−electron
transfer steps required to activate NH3 and is slightly lower
than that of Ir. One of the primary reasons for Pt’s superior
activity in the AOR is its unique electronic structure. Pt
possesses an optimal d-band center that facilitates the efficient
adsorption and desorption of the reaction intermediates. This
balance ensures that the intermediates do not bind either too
weakly (leading to reduced activity) or too strongly (resulting
in catalyst poisoning). However, Pt suffers from high
overpotential and fast deactivation.10 It is widely accepted
that (100)-type surface sites are predominantly more active
than those on (111) and (110) facets.16−19 Alloying Pt with Ir
reduces the onset potential of NH3 activation.20,21 Never-
theless, for large-scale adoption of this technology, it is
important to develop catalysts with minimal precious metals
and improved stability while efficiently catalyzing the oxidation
of NH3 to N2.
In this Perspective, we first cover the basics of nitrogen

chemistry, providing a reference point for the electrochemical
transformations of nitrogen species within a broad context. We
then discuss recent advances in the computational modeling of
NH3 oxidation to N2 on Pt, benchmarking with experimental
measurements if available. We focus on the nature of active
sites and elementary reaction steps occurring therein, along
with design principles of new catalytic materials. We also
discuss the challenges and opportunities in computationally
modeling electrochemical NH3 oxidation toward sustainable
energy and environmental technologies.

■ BASICS OF ELECTROCHEMICAL
TRANSFORMATIONS OF NITROGEN SPECIES

Electrochemical transformations of nitrogen species involve
the interconversion of ammonia (NH3), hydrazine (N2H4),
hydroxylamine (NH2OH), dinitrogen (N2), nitrogen oxide
(NO), nitrite (NO2

−), and nitrate (NO3
−) through a series of

elementary reaction steps.22,23 We include the equilibrium

potentials of relevant nitrogen chemistry in alkaline conditions
(pH = 14) on the reversible hydrogen electrode (RHE) scale
(Figure 2), derived from the experimental free energy change

(ΔG) of a reaction that is a measure of the spontaneity of the
transformation. It is related to the standard free energy change
(ΔG°) by the equation ΔG = ΔG° + RT ln(Q), where Q is the
reaction quotient, R is the gas constant, and T is temperature.
ΔG° can also be calculated using quantum chemistry and
statistical mechanics, as it is fundamentally linked to the
equilibrium constant K when ΔG is zero, i.e., ΔG° = −RT
ln(K). The standard potential (E°) of a redox reaction is
related to ΔG° of a reduction process by ΔG° = −nFE°, where
n is the number of transferred electrons, and F is Faraday’s
constant. For example, the standard Gibbs free energy change
of NH3 oxidation to N2 in alkaline conditions at 25 °C (as
written in eq 1) is −4.62 eV. The standard equilibrium
potential for the corresponding reduction process would be
−0.77 V vs SHE (standard hydrogen electrode), which is E°=
+0.05 V vs RHE (reversible hydrogen electrode).24

+ + + =°E2NH 6OH (aq) N 6H O 6e ( 0.77 V )3 2 2 SHE
(1)

However, in practice, it requires an extra potential, known as
overpotential, beyond what thermodynamics requires to attain
any appreciable current densities.25 The thermodynamics of
electrochemical NH3 oxidation provide important guidance on
the feasibility of the process. As shown in Figure 2, within the
potential window of 0.056−0.48 V vs RHE, there is no other
favorable product other than N2 for AOR, ensuring its
selectivity in low operating potentials of direct NH3 fuel
cells. This thermodynamic principle can be used to guide the
design of high-performance electrochemical systems by
leveraging specific NH3 chemistry.

■ COMPUTATIONAL MODELING OF
ELECTROCHEMICAL AMMONIA OXIDATION

In recent years, computational modeling has helped us
tremendously in gaining insights into reaction mechanisms,

Figure 1. The global nitrogen cycle disrupted by human activities.

Figure 2. A redox potential diagram of electrochemical trans-
formations of nitrogen species at pH = 14.24,26−28
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structure sensitivity, the role of adsorbed hydroxyl species, and
the surface deactivation of NH3 oxidation on metal surfaces,
specifically Pt. Although those aspects are intertwined in
nature, we discuss them separately in the following sections.
Reaction Mechanisms. Computational modeling has

played a crucial role in advancing our understanding of AOR
mechanisms on metal surfaces, particularly for the best
elemental metal catalyst, Pt. Two general mechanisms have
been proposed within the past decades (Figure 3): the Oswin−
Salomon (O−S) mechanism29 and the Gerischer−Mauerer
(G−M) mechanism.30 The O−S mechanism was proposed in
1963, according to which NH3 is adsorbed at surface sites (*)
and sequentially dehydrogenated to *N by OH− ions; then,
two *N adatoms subsequently dimerize on surface sites to
form N2. The G−M mechanism was originally proposed in
1970, in which NH3 can be partially dehydrogenated to *NHx
(x = 1 or 2) by *OH; then, the coupling of *NHx species takes
place to form *N2Hy, e.g., adsorbed hydrazine (*N2H4),
followed by the stepwise dehydrogenation of *N2Hy to N2. It is
important to note that neither of these mechanisms include
pathways for NO generation, which may occur concurrently
with N2 generation at high potentials prior to the possible
formation of nitrite (NO2

−) and nitrate (NO3
−)10 (Figure 2).

The stage at which N−N bonds emerge is what differentiates
the O−S and G−M mechanisms (Figure 3). The debate
between *OH or OH− (aq) as the reactive proton acceptors
will be discussed later in the Role of Adsorbed Hydroxyl
Species section. In the O−S mechanism, N−N bonds form
from *N species, while in the G−M mechanism, the partially
hydrogenated *NHx species are dimerized and *N is instead
considered as a poisoning species. In our opinion, this is a
subtle difference. There is evidence that the AOR mechanism
on Pt is potential-dependent with the G−M mechanism
prevailing at low potentials, under which full dehydrogenation
to *N is prohibited, and the O−S mechanism being favored at
moderate to high potentials.9 On Pt(111), NH3 dehydrogen-
ation to *NH2 limits its onset potential. Once generated, the
dimerization of *NH2 is kinetically possible with a barrier of
1.02 eV,15 albeit severely limiting the kinetic current.15 This is
consistent with the in situ infrared (IR) observation of the
NH2 wagging mode in *N2H4 on the Pt thin-film electrode,31

mainly populated with (111)-type surface sites. On Pt(100),10

constant-potential DFT calculations that explicitly consider the
coadsorption of *OH at a nearby site and include implicit
solvation at the solid−electrolyte interface suggest that the
dehydrogenation pathway is open toward *NH at an onset
potential of ∼0.5 V vs RHE.9,10 The bridge-stabilized *NH
species can dimerize to form *N2H2 with a surmountable
barrier of <0.5 eV. This theoretical insight aligns well with the
measured onset potential of NH3 oxidation.

9 Even within the
G−M mechanism, the true dimerization species on Pt(100) is
still under debate.9,10,32,33 At 1/2 ML, *NH2 species prefers
the Pt−Pt bridge site of Pt(100), from which the dimerization
barrier is significantly high (>2 eV); however, at an extremely
high surface coverage,33 *NH2 favors the Pt atop site, where it
can dimerize easily with a barrier of 0.3 eV at 1 ML coverage.33

Incorporating adsorbate−adsorbate interactions into micro-
kinetic modeling,11 coupled with in situ spectroscopic
measurements, is essential for probing the self-consistent
coverage of surface species and resolving the mechanism of
elementary reaction steps. For a more accurate modeling of
adsorbate coverage at operating conditions, going beyond a
mean-field treatment might be necessary to consider
adsorbate−adsorbate interactions. One of the common
approaches is to solve a stochastic Markov process within a
lattice-based kinetic Monte Carlo (KMC) framework.34 KMC
has been extensively employed in kinetics modeling in surface
science, for example, to account for local coverage effects,35

simulate surface diffusion processes,36 and model crystal
growth.37

Structure Sensitivity. One of the key factors that affects
the electrocatalytic AOR activity of metal surfaces is structure
sensitivity, which refers to the dependence of the reaction rate
on the crystallographic orientation and surface structure. First-
principles DFT calculations have been widely used to
investigate the structure sensitivity of electrochemical
ammonia oxidation on metal surfaces.9,10,15,17 These computa-
tional models have provided valuable insights into the
underlying origin of the structure sensitivity. It has been
shown from experimental single-crystal electrode studies that
Pt(100) is more active than the Pt(111) and Pt(110) sites in
terms of peak current densities (Figure 4a).16,19 (111)-type

Figure 3. Reaction pathways of ammonia oxidation to N2 with three potential regions for N2 generation, poisoning by *NO, and NOx formation.
Adapted from ref 38 with permission. Copyright American Chemical Society.
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surface sites are less active in terms of activating NH3 than
(100) to begin with due to site coordination. Compared to
Pt(111), *NH2 on Pt(100) is more stable by 0.73 eV.
However, a more important factor governing the structure
sensitivity is their capability of binding *N, as shown in Figure
4b. On (111) and (110) sites, N binds strongly at the hollow
and bridge sites, respectively, which prevents its removal
through dimerization; for example, there is a 2.24 eV barrier
for N−N coupling on Pt(111).17 Once *N is transiently
generated, it blocks the sites for the further adsorption of NH3,
resulting in diminishing current densities. However, on (100)-
type sites, *N slightly prefers to adsorb on the bridge sites, at
which *N dimerization across the hollow is facile (Figure
4b).9,10,17 The nearly degenerate adsorption of the bridge and
hollow *N species on (100)-type sites eliminates the energy
sink of the hollow sites found in the (111)-type counterparts,
representing one key factor of the structure sensitivity of AOR
on metal surfaces.
Role of Adsorbed Hydroxyl Species. The role of

surface-adsorbed hydroxyl (OH) species in AOR kinetics, in
comparison to that of bulk solution-phase OH−, remains
largely elusive. On Pt, *OH is considered as a relevant species
because of its favorable formation starting at ∼0.3 V vs
RHE.40,41 At high potentials >0.7 V vs RHE, *OH can serve as
a passivation species on Pt electrodes (Figure 5a), thus
inhibiting NH3 oxidation.

41 As a coadsorbed spectator species
(Figure 5b), *OH has hydrogen bonding interactions with

*NH2 and *NH, facilitating the dehydrogenation of *NH2 by
OH−. The consideration of these subtle interactions drastically
improves the agreement of theoretical calculations with
experimental measurements in terms of the onset potential
of AOR on Pt(100).9 As a proton acceptor (Figure 5c), the
dehydrogenation reactivity of *OH and OH− has been directly
compared using ab initio molecular dynamics (AIMD) with
slow-growth advanced sampling.42 Two different models were
used to represent high potential (HP) and low potential (LP)
systems controlled by the amount of potassium (K) atoms in
the bulk solution. The effective electrode potential was
calculated using the equation USHE = (Φ − ΦSHE)/e, where
Φ is the ensemble-averaged work function of the system, and
ΦSHE (4.43 eV) is the work function of the standard hydrogen
electrode.43 The model consisted of bulk water molecules and
OH− ions above the surface to simulate the solid−liquid
interface. It was determined that the adsorbed hydroxyl (*OH)
was the reactive species during NH3 dehydrogenation under
the reaction conditions rather than the OH− in bulk water.42

However, the electrode potential from AIMD simulations with
one or two added K atoms is still much higher than the
experimental potential range, and the energetics along the
reaction coordinate of the dehydrogenation pathways can be
compromised by possible side reactions involving explicit
water molecules at the interface. As a buffer species (Figure
5d), it has been shown that the electrocatalytic activity of Pt
catalysts can be significantly improved by modification with
rare earth oxides, e.g., CeO2.

44 Additives with surface hydroxyl
likely improve the supply capacity of *OH at the active Pt sites
to participate in dehydrogenation or modulate reaction
energetics. These results indicate that engineering active sites
with OH-rich metal oxide moieties in their proximity can be
one of the promising ways to design high-performance anode
materials for AOR.

Surface Deactivation. Surface deactivation is a major
challenge in electrocatalytic NH3 oxidation on Pt-based
catalysts. Computational modeling has provided deep insights
into the underlying origin of deactivation processes. Initially,
surface-adsorbed *N was considered as the poisoning species,
as postulated in the G−M mechanism.30 This is only plausible
at (111)-type sites, in which their dimerization at hollow sites
is kinetically prohibited.16 Intriguingly, at high operating
potentials (>0.63 V vs RHE), the dehydrogenation of *NH
to *N becomes thermodynamically feasible on (100)-type
surface sites,9,15,17 which coincides with the onset potential of
surface deactivation. On Pt(100), however, *N binds rather
weakly on the bridge sites, and their dimerization is
barrierless,9,10 which suggests that *N is not a true poisoning
species. The current hypothesis is that *N is only a precursor
to the surface deactivation of Pt(100). At high potentials,
surface sites have a high coverage of *OH, which easily couples
with *N to form *NOH, the dehydrogenation of which leads
to strongly bonded *NO.9,10 This is supported by differential
electrochemical mass spectroscopy (DEMS)19 measurements,
detecting both desorbed NO and N2O on Pt(100) but not on
Pt(110) and Pt(111) at potentials >0.6 V (Figure 6a). In situ
attenuated total reflection infrared (ATR-IR) spectroscopy
(Figure 6b) suggests the formation of bridged NO on Pt
electrodes above the onset potential of NH3 oxidation,
resulting in reaction inhibition and surface deactivation.31 To
alleviate the poisoning issue, it is highly desirable to avoid the
formation of *N because its coupling to surface *OH to form
strongly bonded *NO seems inevitable. Weakening *NO

Figure 4. Structure sensitivity of AOR on Pt catalysts. (a)
Voltammetric profiles of Pt(100), Pt(111), and Pt(110) single-crystal
surfaces.19 (b) Adsorption energies of *N (blue) and the *N2

#

transition state (green) as a function of the regular coordination
number (CN) of the active sites on different Pt surfaces.39 Panel (a) is
reproduced from ref 19 with permission. Copyright Elsevier. Panel
(b) is reproduced from ref 39 with permission. Copyright American
Chemical Society.
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adsorption might also be a good strategy that allows its facile
reduction if transiently formed. To mitigate surface deactiva-
tion, various strategies have been proposed, including the use
of alloyed catalysts, surface modification, and co-catalysts.45 To
further theoretically screen catalytic materials, *N and *NO
adsorption energies can be employed as two reactivity
descriptors in a microkinetic model that includes the formation
of precursor species in surface deactivation pathways, as shown
in (Figure 3).

■ CURRENT LIMITATIONS AND CHALLENGES IN
COMPUTATIONAL MODELING

Computational modeling has become an essential tool in many
scientific fields including electrochemistry. However, there are
limitations and challenges that must be addressed to improve
the accuracy and reliability of computational models. In the
current computational science paradigm, there is a lack of
efficient ways to incorporate coverage effects of surface
adsorbates into kinetics. Oftentimes, the coverage of reaction
intermediates is assumed or only included on an ad hoc basis
in microkinetic modeling. Including surface adsorbates self-
consistently in microkinetics is a key step for improving ab
initio kinetic models. Expectedly, it is extremely challenging to
consider all possible intermediates at different coverages.
Leveraging deep learning algorithms might hold the key to a
new paradigm of catalysis modeling enabled by data

science.46−48 In terms of machine learning (ML), interpretable
deep learning is particularly promising49 because we can gather
insights on electronic structure,50,51 surface chemisorption,52

and adsorbate−adsorbate interactions53 from the rich physical
knowledge of surface chemistry and catalysis. In a recent work
by Pillai et al.,54 the electronic structure properties that govern
the surface reactivity of Pt-based AOR catalysts were unraveled
by interpretable deep learning within the theory infused neural
network (TinNet) framework.55 In this study, the most
important governing factor of nitrogen stabilization on the
two Pt-based alloys Pt3Ru and Pt3Ru1/2Co1/2 relative to Pt was
found to be the adsorbate resonance energies of the frontier
N2p orbitals, followed by the conventional d-band center of the
active site atoms. Both factors fine-tune the adsorption
energies of nitrogen through the position and occupation of
adsorbate-metal antibonding states formed by the hybrid-
ization of the surface d-state and renormalized adsorbate states.
The computational cost of atomistic simulations can be

prohibitively expensive for large systems or long time scales.
For example, ab initio atomistic modeling of the electrode−
electrolyte interface is currently limited by the enormous
computing it would take to describe the electric double layer
accurately while also considering ion effects, electrode
potential, pH, and solvation. To model rare events like
chemical reactions, advanced sampling methods, such as
replica-exchange molecular dynamics,56 metadynamics,57 and

Figure 5. Role of surface-adsorbed hydroxyl species as (a) an inhibitor,41 (b) a spectator,9 (c) a proton acceptor,42 and (b) a buffer44 in
electrocatalytic NH3 oxidation. Panel (a) is reproduced from ref 41 with permission. Copyright American Chemical Society. Panel (b) is
reproduced from ref 9 with permission. Copyright American Chemical Society. Panel (c) is reproduced from ref 42 with permission. Copyright
American Chemical Society. Panel (d) is reproduced from ref 44 with permission. Copyright American Chemical Society.
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blue moon ensemble,58 are required to capture the dynamics of
catalytic processes within an acceptable simulation time frame.
One requirement for the accuracy and efficiency of such
enhanced sampling methods is an accurate potential energy
surface, which can potentially be provided by well-trained
machine learning potentials.59,60 The development of highly
accurate and efficient machine learning potentials by learning
from ab initio data for describing electrocatalytic processes is
promising.60 Improvements to algorithms61,62 and computa-
tional data ecosystems63,64 will help to discover more about the
phenomena buried at the solid−electrolyte interfaces.
Finally, the complexity of electrochemical systems, such as

the presence of multiple reaction pathways and the coupling of
physical processes at different scales, e.g., mass transport, can
also pose challenges for computational modeling. Addressing
these limitations and challenges will require interdisciplinary
collaborations between experimentalists and theorists as well as
the development of new theoretical and computational
methods.48,65

■ FUTURE OUTLOOK AND OPPORTUNITIES
The field of electrochemical NH3 oxidation (AOR) has seen
significant advances in recent years, largely attributed to the
widespread adoption of computational modeling. As computa-
tional power and algorithms continue to improve, there is great

potential for further insights into AOR and the development of
more efficient catalysts. For example, the use of hybrid
functionals in DFT calculations can improve the accuracy of
predictions, while the development of more efficient
algorithms that reduce computational costs is required for
enabling larger-scale simulations. One emerging technique is to
use ML algorithms that can predict material properties by
learning from data. By training ML models on large data sets of
known catalysts and their properties, ML algorithms can
transfer the learned knowledge by fine-tuning with a small but
more accurate data set in a transfer learning scheme,66,67

making accurate predictions about the properties of new
materials. Compared to a first-principles only approach,
computational costs can be significantly lowered by ML
algorithms once they are trained with data. Machine learning
has already been used successfully to find improved AOR
catalysts11 and for other advances of catalysis science.46

Another promising technique is data-enhanced multiscale
modeling,48 which combines different levels of modeling
techniques and data science to provide a more comprehensive
understanding of catalytic processes. For example, molecular
dynamics simulations can be used to study the behavior of a
collection of atoms and molecules, while continuum models
can provide insights into the behavior of the systems by
considering transport processes. A data-enhanced multiscale
modeling technique can be used to develop a better
understanding of the solid−electrolyte interface with thorough,
yet efficient, computational approaches. Probing the multiscale
behavior of the solid−electrolyte interface will deepen our
fundamental understanding of AOR (or charge transfer
reactions in general) and may lead to its optimization toward
practical applications.
The future of computational modeling is bright with many

opportunities for further insights. By continuing to develop
and refine computational techniques, the discovery timeline of
new catalytic materials with improved AOR efficiencies can be
greatly shortened, meeting the need for global efforts toward
decarbonization. Resolving key steps in surface deactivation
and finding strategies for significantly improving surface
stability are vital for the future implementation of this
technology in energy and environmental applications.
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