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Abstract
Site-directed spin labeling has enabled protein structure determination using elec-
tron spin resonance pulsed dipolar spectroscopy (PDS). Small details in a distance 
distribution can be key to understanding important protein structure–function rela-
tionships. A major challenge has been to differentiate unimodal and overlapped 
multimodal distance distributions. They often yield similar distributions and dipo-
lar signals. Current model-free distance reconstruction techniques, such as Srivas-
tava-Freed singular value decomposition and Tikhonov regularization, can suppress 
these small features in uncertainty and/or error bounds, despite being present. In 
this work, we demonstrate that continuous wavelet transform (CWT) can distinguish 
PDS signals from unimodal and multimodal distance distributions. We show that 
periodicity in CWT representation reflects unimodal distributions, which is masked 
for multimodal cases. This work is meant as a precursor to a cross-validation tech-
nique, which could indicate the modality of the distance distribution.
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1  Introduction

Protein structure determination remains one of the most challenging and open 
research subjects. Site-directed spin labeling (SDSL) [1–4] in combination with 
pulsed dipolar spectroscopy (PDS) has enabled protein structure determination 
using electron spin resonance (ESR) spectroscopy [5–10]. Typically, a pair of 
spin probes are attached to the domain of interest in a protein utilizing SDSL. 
The dipolar coupling between the spin probes at distance r apart is inversely pro-
portional to r3 . Thus, measuring the dipolar coupling by PDS yields inter-spin 
distance information. Such distances can resolve aspects of protein structures 
directly and serve as crucial constraints in structural studies.

Proteins are highly dynamic entities and their conformational ensembles give 
rise to distance distributions between the spin pairs, P(r), rather than a single 
value of r, as shown in Fig.  1. The process of deriving P(r) from a PDS time 
domain signal, S(t), is an ill-posed problem [11, 12]. In general, a PDS signal can 
be expressed as

where �(t, r) is the kernel that depends on t and r, averaged over the angle � between 
the inter-spin dipolar vector and the direction of the external magnetic field. For 
all PDS techniques, �(t, r) is singular, and therefore, Eq.  (1) cannot be solved for 
P(r) by a simple inversion of �(t, r) . Various techniques have been proposed over 
the years to derive P(r) from PDS signals, including model-free [13–18], model-
based [19–21], and training-based methods [22, 23]. In model-free approaches, such 
as Tikhonov regularization (TIKR) [13] and SF-SVD [16, 17], distance distributions 
are heavily reliant on the PDS time-domain signals, as they operate independently of 
a priori information. Because of the nature of the problem of determining P(r), the 
solutions raise uncertainties, especially when the P(r) contains weak and/or shoul-
der peaks. In such cases, often there is no way to confirm whether the solutions truly 
represent the P(r) or they are artifact driven.

(1)S(t) = ∫ dr �(t, r)P(r),

Fig. 1   PDS signals capture the dipolar interaction between a pair of spin labels attached to a protein mol-
ecule (PDB code: 3ECV). Post-processing of the signal yields the distance distribution, P(r), between the 
spin pair
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1.1 � Major Challenge: Reconstruction of Small Details in P(r)

The kernel for DEER is given by

where the dipolar constant, a = �0 �
2
B
g2
e
∕2 h , �0 is the magnetic constant, �B the 

Bohr magneton, ge the free-electron g value, and h the Planck constant. The DEER 
signal in its discrete form can be written as

where K and P are the kernel matrix of size M × N and distance distribution vector 
with N rows. Note that the expression given in Eq.  (3) corresponds to the DEER 
signal originating from the interaction of an isolated pair of spin-1/2 particles. In 
a standard DEER experiment, the inter-molecular signal (or background) must be 
removed first.

The P(r) used in the simulations are shown in Fig. 2. All the distance distributions in 
model-I (top row) were produced by mixing different Gaussian distributions (shaded 
area). For model-II (bottom row), both Gaussian and Cauchy distributions were 
mixed in producing the distance distributions. The probability distribution functions 
can be defined as: Gaussian distribution, fG(r,�r, �r) =

�
1∕�r

√
2�

�
e−(r−�r)

2∕2 �2
r  and 

Cauchy distribution, fC(r,�r,Γr) = Γr∕
[
(r − �r)

2 + Γ2
r

]
 . The P(r) for each model is 

so designed that they are very similar with minor differences. Such small differences 
in the P(r) can be key in understanding protein structure–function relationships and 
structural changes. The parameters used in creating the P(r) are shown in Table 1.

It is often challenging to reconstruct such small details in the P(r) with great con-
fidence. The DEER signals utilized for model-I and -II distance distributions are 
shown in Fig. 3. Visual inspection of the DEER time traces hardly shows any dif-
ferences, while the differences in their distance distributions are visible in the over-
lapped plots of the scaled P(r) (the left panel of Fig. 3).

Reconstructions by the SF-SVD [16, 17] and the DEERLab TIKR method [24] 
were compared with the model distance distributions in Figs.  4 and 5. While both 
methods captured major parts of the distance distribution patterns, the solutions varied 
significantly in some cases, e.g., (I.C-D) and (II.G-H) in Fig. 4 and (II.B-D) and (II.F-
H) in Fig. 5. This raises considerable doubt over the true nature of the P(r) in such 
cases. The shaded (gray) region in those figures represents the uncertainty (SF-SVD), 
the 50% and 95% confidence intervals (DEERLab TIKR). For the SF-SVD solutions, 
the uncertainty is much less than those of the TIKR, especially for the multimodal 
distributions. It is visible in both cases, but mainly for TIKR, that the uncertainty is 
greater in regions near the minor peak positions in the model P(r). More importantly, 
the 95% confidence interval for TIKR solutions, especially for model-II, shows large 
uncertainty associated with the solutions. At present, no cross-validation method exists 
to confirm the existence of multimodal distance distributions with one or more minor 
(or shoulder) peaks, which is necessary to improve the robustness of PDS analysis.

(2)�(t, r) = ∫
1

0

cos
[
(1 − 3 cos2 �) a t∕r3

]
d cos �,

(3)S = K P,
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1.2 � Proposed Method

Time-frequency analysis [25–30] is a reliable method to decouple a signal into 
its distinct constituent components by projecting it on the time-frequency plane. 
Short Time Fourier Transform (STFT) [25, 26, 29] is another strategy for such 
analysis, but a fixed window associated with STFT makes it unsuitable for sepa-
ration of overlapping signal components. Wavelet transform is a powerful method 
with great flexibility in time–frequency analysis, and hence, it is extremely use-
ful in extracting localized information from various types of signals [31, 32]. We 
propose the application of continuous wavelet transforms (CWT) in time–fre-
quency analysis to (1) identify differences in P(r) for practically identical PDS 
signals and (2) confirm the existence of multimodal P(r).

2 � Method

2.1 � Wavelet Transform

A wavelet transform (WT) can simultaneously represent the time–frequency 
information for analysis through signal localization and is defined as [33–35]

Fig. 2   The different distance distributions, P(r), used in the analysis. The traces show the P(r) and the 
shaded regions show the different components of a distance distribution. Set-I P(r) were produced by 
mixing Gaussian distributions and set-II were produced by mixing Gaussian and Cauchy distributions 
with different means ( �

r
 ), standard deviations ( �

r
 ) or width factor ( Γ

r
 ) in different proportions. The 

parameters are given in Table 1



	 A. Sinha Roy et al.

1 3

where s is the inverse frequency (or frequency range) observing parameter (also 
called scale parameter), � is the signal localization parameter (also called translation 
parameter), t represents the signal location, f(t) is the signal, F(�, s) is the wavelet-
transformed signal at a given signal localization and frequency, and �∗

(
t−�

s

)
 is the 

signal probing function obtained from a function called the “wavelet”, �(t) . The 
functions �(t) and �∗

(
t−�

s

)
 are commonly referred as “mother” and “daughter” 

wavelet, respectively, because �∗
(

t−�

s

)
 is derived from �(t) . �∗(t) is the complex 

conjugate of �(t) , which for a real function is the same, ( �∗(t) = �(t)).
The Fourier Transform (FT) can be considered as a special limiting case of the 

WT wherein s → (−i�)−1 , � → 0 , and � → e−i�t . Whereas an FT integrates out the 
time dependence, the WT is a function of both frequency, s −1 and time, � and thus 
can display correlations in the signal between them.

Unlike STFT, the WT employs a variable window width and a frequency parameter 
incorporated in the wavelet, that allows variation in both signal (e.g., time) and fre-
quency. This informs about locations of a particular frequency in the signal domain as 

(4)F(�, s) =
1

√
�s� ∫

+∞

−∞

f (t)�∗
�
t − �

s

�
dt,

Fig. 3   Two different sets of P(r) (left panel) and the corresponding DEER time traces (right panel) are 
shown. The DEER signals were calculated with dipolar evolution time of 5 μs and a time increment of 
6 ns
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well as identifies all frequencies that are present at a particular signal location or inter-
val. It results in analyzing a signal into different frequencies at different resolutions, 
allowing what is known as “multiresolution analysis”.

The wavelet-transformed signal F(�, s) is represented in the signal domain at a fre-
quency or frequency range, unlike the FT and STFT that represents signal just in the 
frequency domain. The location of data points in the wavelet domain is spatially cor-
related with the location of the signal domain. This reveals how a signal looks when 
observed from a specific frequency or frequency range.

The signal is reconstructed by inverse WT which is given as

where C� is admissibility constant which is written as

(5)f (t) =
1

C2
�
∫

+∞

−∞ ∫
+∞

−∞

1

s2
F(�, s)�

(
t − �

s

)
d� ds,

(6)C𝜓 =

√

2𝜋 ∫
+∞

−∞

|Ψ(𝜔)|2
|𝜔|

d𝜔 < ∞,

Fig. 4   Model-I P(r) along with the reconstructed distance distributions by the A–D SF-SVD method 
and E–L the DEERLab Tikhonov regularization method (TIKR). The gray shaded regions represent the 
uncertainty for SF-SVD (A–D), the 50% (E–H) and the 95% (I–L) confidence intervals for TIKR
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where Ψ(�) is the FT of the wavelet function �(t) . The constraint in Eq.  (6) 
implies that the wavelet function �(t) must also be oscillatory with zero mean, i.e., 
∫ +∞

−∞
�(t) dt = 0.

2.2 � Discretized Continuous Wavelet Transform (CWT)

Similar to the Fourier Transform, the WT in Eq. (4) is impractical for discrete data 
and a discretized version of CWT is used. For practical purposes, the translation 
parameter and the scale parameter are discretized as � = a and s = b , a and b both 
being integers. The CWT of a discrete input signal is defined as

where C[a, b] is the wavelet-transformed signal and f [tm] is the discrete input signal.
It should be noted that the discrete wavelet transform (DWT) is computationally 

more efficient than the CWT and applied more frequently. However, it is appropri-
ate for extracting specific information from a signal. The CWT, on the other hand, 

(7)C[a, b] =
1
√
b

p−1�

m=0

f [tm]�

�
tm − a

b

�
,

Fig. 5   Model-II P(r) along with the reconstructed distance distributions by the A–D SF-SVD method 
and E–H the DEERLab Tikhonov regularization method (TIKR). The gray shaded regions represent the 
uncertainty for SF-SVD (A–D), the 50% (E–H) and 95% (I–L) confidence intervals for TIKR
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is better suited for scanning all the time–frequency components in a signal for finer 
details, and hence, it is better suited for this work.

2.3 � CWT Time–Frequency Analysis in Python

Time–frequency analysis decouples a signal into its distinct constituent components 
by projecting it on the time–frequency plane. In this work, we used CWT time–fre-
quency analysis of PDS signals and the Python script for that is as follows.

3 � Results and Discussion

3.1 � Time–Frequency Analysis of PDS Signals

We calculated the CWT for the simulated DEER traces and plotted those in Figs. 6 
and 7. The first and second rows in those figures show the component P(r) and the 
component DEER traces. Starting with a unimodal distribution (the far left column), 
minor components comprising Gaussian and/or Cauchy distributions were added to 
create the other P(r) and DEER signals. The resultant DEER signals were produced 
by adding the component DEER time-domain signals (third row). In Figs. 6 and 7, 
the resultant DEER signals are practically identical to those of the dominant compo-
nent signals in the second rows of the figures because of the dominance of P(r)- I.A 
and P(r)- II.A in all the distance distributions in the two sets of model systems. In 
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addition, summing of such signals with slightly different time-periods of oscilla-
tions causes destructive interference or smoothing of the features associated with the 
individual components. The bottom rows of those two figures show contour plots of 
the CWT of the DEER signals for different frequency scales vs. time. The Python 
script for calculation is given in Sect. 2. It can be noticed immediately that the CWT 
time–frequency contour plots in both Figs. 6 and 7 illustrate minor, but clearly vis-
ible differences, suggesting strong similarity among all the distance distributions, 
with minor, but detectable differences among all of them. Thus, the time–frequency 
analysis reveals significant information about different samples prior to the P(r) 
reconstruction process. On the other hand, such results for identical samples could 
indicate artifacts, reproducibility issues, and inconsistency in sample preparation.

3.2 � Time–Frequency Analysis and the Modality of the Distance Distributions

For a qualitative analysis of the correlation between the differences in P(r) and the cor-
responding time–frequency contour plots, we have plotted the P(r) and DEER trace 
components along with their time–frequency plots for P(r)- I.D in Fig.  8 (top four 
rows). The CWT time–frequency contour plots show that both the frequency and 

Fig. 6   The similarity of the four DEER traces for model-I systems is reduced via the time–frequency 
analysis (bottom row) using CWT. The average P(r) (traces) along with the components (shaded distri-
butions) are plotted in the top row. The resulting components of DEER signals and the average DEER 
traces are shown in the next two rows. The bottom row illustrates the time–frequency contour plots 
resulting from CWT of the signals using ’Gaus2’ wavelet of the pywt Python library
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pattern along the time-domain varies with the modal distance of the distribution as well 
as its width. While the sum of the time–frequency plot shows close resemblance to 
the top row plot, indicating the dominance of the corresponding P(r) in the mixture, it 
also demonstrates clear differences. It can be seen that the time–frequency plots of the 
unimodal distributions have more prominent and periodic features compared to that of 
the summed signal. In multimodal and overlapping distance distributions, such peri-
odic patterns tend to cancel out. Thus, a time–frequency plot with truncated features 
suggests the presence of such multimodal and overlapped distance distributions. The 
same observations are the case for model-II in Fig. 9. The level of loss of the features 
is proportional to the number of closely spaced modal distances present in a distribu-
tion. Hence, it may be possible to train machine learning clustering algorithms against 
a large dataset of model distance distributions and their time–frequency patterns, which 
could then indicate the number of modal distances in a distribution.

3.3 � Time–Frequency Analysis Using Different Wavelets

In Fig. 10, we repeated the time–frequency analysis for model-I DEER time-domain 
signals using Gaussian-4 (‘Gaus4’) and Mexican Hat (‘Mexh’) wavelets and plotted 

Fig. 7   The similarity of the four DEER traces for model-II systems is reduced via the time–frequency 
analysis (bottom row) using CWT. The average P(r) (traces) along with the components (shaded distri-
butions) are plotted in the top row. The resulting components of DEER signals and the average DEER 
traces are shown in the next two rows. The bottom row illustrates the time–frequency contour plots 
resulting from CWT of the signals using ‘Gaus2’ wavelet of the pywt Python library
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the results along with that of the ‘Gaus2’ analysis, shown previously. Despite captur-
ing different time–frequency sensitivity, core features of the CWT spectral pattern 
remain the same. Small variations between the CWT spectra reveal the sensitivity 
patterns for the different wavelets, but the core features remain the same. Hence, it 
can been seen that CWT spectra obtain for the dipolar signal is largely independent 
of the type of wavelet used, demonstrating the robustness of the analysis. We found 
that among the wavelet families available for CWT time–frequency analysis at pre-
sent, the Gaussian family is the most suited for the analysis performed in this work. 
It is worth mentioning that other standard wavelets, such as Coiflet and Daubechies, 
are not available for CWT analysis in Python or MATLAB at present. Therefore, we 
plan to develop new wavelets for deeper time–frequency analysis of PDS signals in 
the near future.

Fig. 8   The four individual components of P(r)- I.D (left column), the corresponding DEER signals (mid-
dle column), and their CWT time–frequency plots (right column) are presented in the top four rows. The 
bottom row shows the summed P(r), DEER signal, and its time–frequency plot (magenta rectangular 
box)
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3.4 � Effect of Background Correction Error and Noise

So far, in our discussion, we have used simulated DEER spectra for an isolated 
pair of spin labels. Background signal originating from inter-molecular interac-
tions is significant in real DEER experiments, while noise is an inherent part of 
all spectroscopic signals. An error in background correction and the presence of 
signal noise, both of which can rarely be bypassed, could affect the reconstruction 
of distance distributions significantly. In the next set of analysis, we simulated 
DEER signals at various concentrations with background signals and Gaussian 
noise to achieve a signal-to-noise ratio (SNR) of 63. The DEER signal with back-
ground and noise were simulated using the following expression:

Fig. 9   The individual components of P(r)- II.D (left column), the corresponding DEER signals (middle 
column), and their CWT time-frequency plots (right column) are presented in the top four rows. The bot-
tom row shows the summed P(r), DEER signal, and its time–frequency plot (magenta rectangular box)
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where S(t) is the isolated pair signal expression given in Eq. (1), � ≈ 10−3 �M−1 �s−1 , 
the modulation depth Δ (set to 0.5), a parameter associated with the distribution of 
spin-labeled molecules in the sample d, and the doubly labeled protein concentration 
C given in �M [36]. We introduced error in background correction using different 
values of C and d while simulating model-I DEER signals and predicting the back-
ground and the parameters are given in Table 2.

We summarized the results in Fig. 11 for model-I distance distributions. We com-
pared the time–frequency plots for the simulated isolated pair DEER signal (I.A3 
to I.D3) and the noise-added DEER signals with background error (I.A6 to I.D6). 
The differentiating time–frequency pattern for the unimodal and multimodal dis-
tance distributions show up in both the analysis in the region of frequency scale 
≥ 0 , while the differences in the latter analysis emerges for frequency scale < 0 . We 

(8)V(t) =

⟨
(1 − Δ) + Δ �(t, r)P(r)

⟩

r

× e−� ΔC |t|d∕3 + Gaussian noise,

Fig. 10   Time–frequency plots for model-I DEER time-domain signals using three symmetric but differ-
ent wavelets, namely: ‘Gaus2’ (top row), ‘Gaus4’ (middle row), and ’Mexh’ (bottom row) wavelets of the 
pywt Python library

Table 2   Parameters used in 
simulating DEER signal with 
background and noise

P(r) Actual background SNR Predicted background

I.A C = 100 μM , d = 3.0 63 C = 85 μM , d = 3.0
I.B C = 130 μM , d = 2.9 63 C = 150 μM , d = 3.0
I.C C = 150 μM , d = 2.8 63 C = 120 μM , d = 3.0
I.D C = 180 μM , d = 2.85 63 C = 207 μM , d = 3.0
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Fig. 11   Simulated noise-free DEER time-domain signals for model-I distance distributions (I.A1 to 
I.D1). The isolated spin pair signals (I.A2 to I.D2) and the corresponding time–frequency plots (I.A3 
to I.D3) are compared with the background corrected signals (I.A5 to I.D5) and their time–frequency 
analysis (I.A6 to I.D6). The error in the background correction process is demonstrated in (I.A4 to I.D4), 
which shows the actual (dotted black line) and predicted backgrounds (dotted cyan line). Both sets of 
time–frequency analysis were done using ’Gaus2’ wavelet of the pywt Python library
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introduced significant error in concentrations (15–20%) during the background cor-
rection to emphasize its effect in the time–frequency analysis. The test confirmed 
that the time–frequency analysis in differentiating different distance distributions is 
effectively unperturbed to error in background signal removal and the presence of 
signal noise.

4 � Conclusion

Through SDSL, spin labels are attached to specific domains of a protein, and then, 
application of PDS yields targeted structural information, i.e., distance distributions 
between the spin probes. The derivation of distance distributions is an ill-posed 
problem and in many cases, and the results vary with the methods of reconstruction 
used in the analysis. In such cases, it is important to cross-validate the results and 
propose a solution with the least uncertainty. We illustrated in this work that contin-
uous wavelet transform-based time–frequency analysis could be used for distinguish-
ing unimodal and multimodal distance distributions. We used eight model distance 
distributions and compared the solutions obtained from SF-SVD and the DEERLab 
Tikhonov regularization methods to illustrate the issue. The CWT time–frequency 
analysis reliably distinguishes between such very similar PDS signals, indicating the 
presence of unimodal vs. multimodal distance distributions. This method could be 
further developed for analysis of PDS signals to cross-validate derived distance dis-
tributions and reduce the uncertainty associated with such analysis. In addition to 
model-free methods that generate distance distributions from dipolar signals, this 
method can also be potentially used with training-based P(r) reconstruction meth-
ods. We demonstrated its robustness against effects such as error in the DEER back-
ground correction process and signal noise.

The future work will include development of Coiflet and Daubechies wavelets in 
CWT. Additionally, we plan to analyze a large dataset of PDS signals and employ 
appropriate machine learning tools to quantify the correlation between CWT 
time–frequency patterns and the number of peaks in the distance distributions.
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Appendix A: DEERLab Script
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