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Abstract— Potential applications for large-scale soft robots
include interacting with humans while carrying a heavy load,
navigating in clutter, executing impact tasks like hammering
a nail into a wall, and so much more. Because of their
compliance and lack of fragile gear trains, soft robots are
uniquely suited to these tasks. However, we expect that path
planning may be more constrained by soft robot kinematics and
dynamics than traditional rigid robots. Generating dynamically
feasible trajectories for soft robots (especially large-scale soft
robots with higher payloads) is critical to the success of low-
level controllers tracking reference trajectories. This paper
introduces an optimization method to generate task and joint
space trajectories for soft robots that satisfy kinematic and
dynamic constraints which are unique to large-scale soft robots.
The method presented in this paper is an offline trajectory
generator that is then fed to a low-level PID joint angle
controller. We conduct two experiments to validate this method
on a continuum pneumatic soft robot of length 1.19 meters
in both simulation and on hardware. We show that this is a
viable method of planning trajectories for soft robots with a
reported median magnitude of error of 0.032 meters between
the planned and actual end effector trajectories.

I. INTRODUCTION

Robots have the potential to perform a wide variety of
tasks such as interacting with humans while lifting heavy
objects, navigating in clutter, and even performing explosive
or athletic motions like shooting a ball into a hoop or using
human tools like hammers. Soft robots have an advantage
over traditional rigid robots because of their compliance, and
the ability to store and use potential energy in their actuators
while performing such tasks. Effective and dynamically
feasible trajectory planning is important to enabling soft
robots to perform useful tasks while taking advantage of their
complicated dynamics. As the size and scale of soft robots
increase, effective trajectory planning becomes essential so
that soft robots can dynamically reach every point within
a planned trajectory [1]. Generating dynamically feasible
trajectories is also important so that a soft robot’s low-level
controller can closely track the planned reference trajectories.

Soft robots are different from rigid robots in both their
dynamics and kinematics. This can often make trajectory
planning for soft robots more difficult than for traditional
rigid robots for a number of reasons. First, the performance
and behavior of soft robots is inherently linked to pay-
load and actuation structure, unlike traditional highly-geared
robots, resulting sometimes in non-intuitive dynamics. In this
case, how can a human define the best or most optimal
trajectory a soft robot should take to move an object from
point A to point B? With traditional robots, for the most
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part, we are able to plan a path using kinematics only,
but we cannot ignore these important dynamic constraints
for soft robots. Additionally, traditional robots have little to
no uncertainty in their shape or where their end effector
is located in space (making it ideal to path plan using
kinematics). However, soft robots have a large amount of
uncertainty in both their total shape as well as the kinematics
describing their end effector pose. Finally, control for soft
robots which are most often underdamped can result in large
amounts of variation in their end effector location over time.

This paper presents a new path and trajectory plan-
ning method for large-scale and pneumatically-actuated soft
robots using both their dynamics and kinematics as con-
straints in an optimization problem. The optimization is
formulated subject to several constraints, including minimum
and maximum joint angle constraints, as well as a dynamic
torque constraint. We also introduce a new constraint on
pressure dynamics that helps our method generate dynam-
ically feasible trajectories for soft robots which include
systems with slower actuator dynamics. Additionally, the
cost function is formulated using the kinematics of the soft
robot. Planning a trajectory in this way solves several prob-
lems related to motion planning with soft robots, including
ensuring that a feasible trajectory can be planned while not
ignoring the complex dynamics of soft robots.

This paper presents the following contributions to the soft
robotics community:

1) a formulation that takes a high-level Cartesian space
task and distills it into a cost function that can be used
in an optimization problem subject to unique soft robot
constraints

2) a method to plan a reference trajectory of end effector
Cartesian positions and soft robot joint angles that is
feasible both kinematically and dynamically

3) a cascade control structure to deliver and execute
that reference trajectory on a robot in simulation and
hardware

We next provide an outline of the structure of this paper.
In section II, we discuss previous work on soft robot motion
planning. In section III, we give an overview of the dynamics
and kinematics of our soft robot platform. We also introduce
the optimization used to generate a trajectory of Cartesian
positions and joint angles, and present the algorithm and
method used to execute that trajectory on the soft robot. In
section IV, we detail the experiments we used to validate
our method in both simulation and on hardware. Section
V presents the results of the experiments. We conclude in
section VI with a discussion of the results and future work.20
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Fig. 1. The pneumatically-actuated continuum soft robot platform used for
testing planned trajectories in this paper.

II. RELATED WORK

The related work in the area of soft robot trajectory
generation can be divided into topics on control for soft
robots, kinematics-only approaches to soft robot trajectory
generation, and dynamically constrained, optimization-based
approaches to soft robot trajectory generation. We will dis-
cuss works related to soft robots in all of these areas, and
discuss how our trajectory generation method extends the
ideas in those works.

A. Control for Soft Robots

Before a robot can execute a high-level trajectory in task
space, there must be a good low-level controller that can
track the high-level trajectory. Much of the research in
the area of controlling soft robotics has been focused on
creating accurate, real-time, low-level controllers that plan
a trajectory of inputs to a robotic system, whether they be
pressures or torques [2]. Because of the important effects
of underdamped and continuum dynamics, many soft robot
low-level controllers use model predictive control (MPC)
for trajectory following tasks [3]–[5], while others use data-
driven and machine learning methods [6]–[9].

The most similar to our approach in this paper is described
in [10], where an optimizer performs as a low-level con-
troller. The optimizer plans a trajectory of joint angles and
inputs to minimize the error between a reference trajectory
of Cartesian locations and the current robot tip position.
Despite being somewhat similar to our work, in this paper,
we plan trajectories at a higher level by not constraining the
tip position to a reference trajectory in time, but instead by
letting the optimization find trajectories that are dynamically
feasible.

B. Kinematics-Only Trajectory Generation for Soft Robots

Whether using model-based low-level control or not, there
is also research related to generating a reference trajectory in
task and joint space to be executed by a low-level controller.
One approach to task space motion planning for soft robots is
a kinematics-only approach. Some kinematics-only methods
use Jacobians to plan trajectories [11]. Others use inverse
kinematics optimizations [12], [13]. In [14], a whole-arm
planar planning algorithm is developed for a soft robot using
a constant curvature model as its kinematics. The robot
achieves a series of user-defined way points by adjusting its
shape along a time trajectory, and the shape is determined
using a Sequential Quadratic Programming algorithm. This
approach works for lightweight, planar soft robot arms, but
our robot is made of rigid and soft segments, with greater size
and mass subject to greater gravitational forces and therefore
cannot neglect dynamic constraints.

C. Dynamically Constrained Trajectory Generation for Soft
Robots

Another approach to soft robot trajectory planning is what
the authors in [15] call “Goal Directed Dynamics”. Although
the authors do not apply this method explicitly to soft robots,
they introduce a method of trajectory generation where an
optimization is provided a goal, and the robot’s dynamics and
kinematics serve as constraints that drive the robot to the goal
state. Many soft robot motion planners use optimizations
with a cost function driving the robot tip toward a goal point
and constraints on the input dynamics [16]. This method is
common in robots that use series elastic actuators (SEAs)
to introduce elasticity to their robot. For example, in [17]
they present an algorithm that generates a trajectory of motor
positions subject to maximum and minimum allowable motor
torques. Similarly, [18] enables a small robot arm with SEAs
to mimic human motion and drive the robot tip towards a
goal point using optimization.

Other works with robotic platforms more similar to ours
include [1], where a soft robot hanging straight down tries
to drive its end effector toward a goal point. They use direct
collocation trajectory optimization to generate a trajectory
of inputs that are then translated into manipulator motion
to achieve a goal point in Cartesian space. Other related
literature presents soft robot motion planners that have the
same general optimization structure: a cost function drives
the robot’s tip towards a goal point by changing the joint
angles and inputs. At each step in the trajectory, the opti-
mization is subject to dynamic constraints whether it be on
torques, pressures, or some mapping from input space to state
space [19], [20].

In this paper, we seek to build on the concept of motion
planning for soft robots using dynamically constrained opti-
mization. However, our method differs from previous works
in that our dynamic constraints are on input pressures and
pressure derivatives for large, pneumatically-actuated soft
robots designed to do complex (i.e. 6 degree-of-freedom)
tasks in Cartesian space.
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III. TRAJECTORY PLANNER FORMULATION

This section outlines the formulation of our high-level
trajectory planner for a soft robot. First, the dynamics and
kinematics of the robot arm are discussed. Second, we for-
mulate the optimization used to generate task and joint space
trajectories. Third, we present the algorithm that utilizes the
optimization to generate an offline trajectory. Finally, we
present the control cascade structure the robot uses to track
the generated trajectory.

A. Dynamics and Kinematics

The soft robot model used in this paper is for a pneumat-
ically driven hybrid robot arm consisting of a series of rigid
links and soft joints (see Figure 1). The soft segments are
continuum, constant-curvature joints made of blow-molded
plastic and driven by four independent pressure controlled
chambers. We model the continuum kinematics using six
constant curvature joint angles (two per joint) to determine
the robot’s position in task space. The angle of rotation about
each joint’s x-axis is denoted by u, and the angle of rotation
about the robot’s y-axis is denoted by v. See [3], [21] for
more details on the arm’s kinematic model.

In order to generate a dynamically feasible trajectory that
the robot can track, we use the Recursive Newton-Euler
formulation of the forward dynamics found in [22]. The
dynamics can be summarized as:

Kprsp = Mq̈ + Cq̇ +G+Kspringq +Kdq̇ (1)

where q is a vector of joint angles (two per joint), and q̇
and q̈ are the time derivatives of q. Kprs is a pressure-
to-torque mapping, M is the mass matrix, C contains the
Coriolis terms, and G is the gravity vector. Kspring and Kd

are spring coefficients and damping matrices that describe
the behavior of the continuum joints. Finally, p is a vector
of twelve pressures, one for each pressure chamber (or pair
of chambers in the case of the eight-bellows on the proximal
or base joint) on the robot arm. This means that there are
four control inputs for each joint.

B. The Trajectory Generation Optimization

Many trajectory optimization formulations in robotics gen-
erate trajectories of inputs to track a predetermined set of
reference joint angles for a robot. In this paper, we seek
to generate the reference trajectory itself (of dynamically
feasible joint angles), with the goal of accomplishing some
task in Cartesian space. In order to demonstrate the difference
between the two problems, we highlight several distinctions
between optimizing a trajectory of inputs for tracking, and
optimizing a trajectory of joint positions that would best
accomplish some task in Cartesian space.

The optimization used to simultaneously generate task and
joint space trajectories has the same structure as traditional
robotic trajectory tracking problems, meaning that it has a
cost function, design variables, and constraints. However, in
traditional robotic manipulator tracking problems (for both
rigid and soft robots), the cost function is often based on
the error between a predetermined reference trajectory of

commanded joint angles and actual joint angles. The design
variables are generally inputs to the manipulator (such as
torques for rigid robots and pressures for soft robots), and
there are constraints on the state of the robot at every time
step defined by the forward dynamics of the robot.

Our optimization differs from the traditional tracking
problem in several ways. First, we propose using joint angles
instead of inputs as design variables for the optimization
problem. Instead of feeding a reference trajectory to the
cost function, the cost function will be a quadratic cost
on the difference between the current Cartesian location
of the robot’s end effector and a single goal way point,
or a vector of way points placed throughout the robot’s
workspace. It is important to note that even if the way points
define a desired path, we do not expect to define a time-
based trajectory for that Cartesian path because doing so
may generate a trajectory that is infeasible based on the
dynamics and actuation limits of our soft robot. Second, the
optimization constraints will include a minimum and maxi-
mum pressure limit inside each chamber at the soft robot’s
joints, defined by the robot’s inverse dynamics, as well as
minimum and maximum allowable joint angles. We also
introduce a new constraint unique to large, pneumatically-
actuated soft robots like ours: a constraint on change in
pressure, ṗ. We describe this constraint in more detail below.
The optimization problem is formally defined as

min J = (ci+1 − ce)
TQ(ci+1 − ce)+

(qi+1 − qi)
TR(qi+1 − qi)+

(ci+1 − ci)
TH(ci+1 − ci)

w.r.t. qi+1, ∀i ∈ 0, 1, . . . , T

s.t. qmin ≤ qi+1 ≤ qmax, ∀i ∈ 0, 1, . . . , T

pmin ≤ pi+1 = K−1
prs(M(qi+1)q̈i+1

+ C(qi+1, q̇i+1)q̇i+1 +G(qi+1) +Kspringqi+1

+Kdq̇i+1) ≤ pmax, ∀i ∈ 0, 1, . . . , T

ṗmin ≤ ṗi+1 = differentiate(pi+1, pi) ≤ ṗmax,

∀i ∈ 0, 1, . . . , T
(2)

where ci+1 is the Cartesian location of the end effector and
ce is the desired Cartesian location. We add additional terms
((ci+1−ci) and (qi+1−qi)) to the cost function to achieve a
smooth trajectory. Q is a weighting matrix on error between
our desired and actual Cartesian location, R is a weighting
matrix on smoothness in joint space, and H is a weighting
matrix on smoothness in Cartesian space. T is a user-defined
time horizon over which to optimize the trajectory and i is
a timestep in that horizon. pmax is the maximum pressure
allowed in a single blow-molded chamber based on safety
constraints. For our robot, the maximum allowable pressure
was 310 KPa. ṗi+1 is a constraint on pressure dynamics.
The rate of change of pressure is constrained by several soft
robot parameters like the current volume and pressure of the
individual blow-molded chambers, the maximum allowable
diameter of the pressure valves used to fill and vent the
chambers, and the electrical current available to open and
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close the same valves (in the case of our specific hardware).
ṗmax may also a be function of q or rather q̇, but we have
no way of expressing this in the optimization problem with
our current dynamic formulation. The combination of these
variables means that there is a constraint on how fast the
blow-molded chambers can actually reach a commanded
pressure.

C. Generating a Trajectory

To compute a trajectory of joint angles that will cause the
end effector to travel to some desired location, we present
Algorithm 1, which is computed offline. This algorithm starts
with the initial state of the robot at q0 and q̇0. It then enters
a while loop that terminates when the predicted robot tip
would be within some ϵ distance of ce.

The optimization described in Equation 2 takes place
inside of the “while” loop. The optimization algorithm
COBYLA (Constrained Optimization By Linear Approxi-
mation) returns qnextTraj (a trajectory for all joint angles
over the time horizon T ). COBYLA uses Algorithm 2, or
constrFunc internally. This serves as the function that en-
forces constraints on pTraj and ṗTraj (pressure and pressure
dot trajectories across the horizon) described in Equation 2.
Algorithm 2 shows how we iterate over qnextTraj to calculate
pTraj and ṗTraj .

Algorithm 1 Trajectory Generator
1: i = 0
2: qi = q0
3: q̇i = q̇0
4: while ||ci+1 − ce||2 > ϵ do
5: qnextTraj ← COBY LA(T, constrFunc, costFunc)
6: qi+1 = qnextTraj [0]
7: q̇i+1 = differentiate(qi+1, qi, dt)
8: ci+1 = get fk(qi+1) ▷ forward kinematics
9: qi = qi+1

10: q̇i = q̇i+1

11: i = i + 1
12: end while

Algorithm 2 Constraint Function
1: qnextTraj = optimizer() ▷ optimizer chosen joint

angle trajectory across horizon
2: qk = qTraj[0]
3: for k = 0 : T do
4: qk+1 = qnextTraj [k + 1]
5: q̇k+1 = differentiate(qk+1, qk)
6: q̈k+1 = differentiate(q̇k+1, q̇k)
7: pTraj [i+ 1] = dynamics(qk+1, q̇k+1, q̈k+1) ▷ Eq 1
8: ṗTraj [i+ 1] = differentiate(pi+1, pi)
9: end for

10: return pTraj , ṗTraj

COBYLA also uses Algorithm 3, or the costFunc. Al-
gorithm 3 calculates the cost function in Equation 2. Inside

Algorithm 3, we iterate over qnextTraj and sum up the cost
at each timestep in the horizon.

Algorithm 3 Cost Function
1: qnextTraj = optimizer() ▷ optimizer chosen joint

angle trajectory across horizon
2: qj = qTraj[0]
3: cost = 0
4: for j = 0 : T do
5: qj+1 = qnextTraj [j + 1]
6: cj+1 = get fk(qj+1) ▷ forward kinematics
7: cost = cost+ (cj+1 − ce)

TQ(cj+1 − ce) + (qj+1 −
qj)

TR(qj+1 − qj) + (cj+1 − cj)TH(cj+1 − cj)
8: end for
9: return cost

After the optimization algorithm has converged on a
trajectory of optimal and feasible joint angles, the first set of
joint angles in qnextTraj is saved as the next predicted state
of the robot. The optimization is performed over and over,
each time using the next predicted state of the robot as the
first set of joint angles in qnextTraj .

This approach of solving for an entire time horizon,
but only storing the first time step in qnextTraj , before
reformulating the optimization and resolving is reminiscent
of receding horizon control (or MPC). The main reason for
this approach is two-fold. First, we do not know apriori the
required time to reach from our initial condition to the final
goal pose at the tip of the soft robot in Cartesian space.
By optimizing over a horizon, but building the planned
trajectory by one step for each iteration, we expect to
find a dynamically feasible solution in whatever minimum
time is possible. Second, although there is a large potential
parameter space relative to the horizon length T , and the
number of steps stored from qnextTraj for each iteration,
in practice we empirically found an approach that worked
best given the problem formulation and optimizer used. This
approach involved using a shorter horizon T , and taking
only the first set of joint angles from that horizon, while
re-optimizing over and over. This allowed the optimizer to
more quickly converge on a smoother and faster (i.e. shorter
in time) trajectory of joint angles.

D. Cascade Control Structure

Once a trajectory of joint angles has been generated
offline, we track that trajectory using the control cascade
structure shown in Figure 2.

The trajectory generator box in green consists of the meth-
ods described in the last two sections, including Equation 2
and the algorithms that use it. The trajectory is generated
offline, although we plan to use the same algorithms to do
real-time trajectory planning in the future. The trajectory
generator outputs a reference trajectory of joint angles which
are then fed to a joint-level PID controller. The PID gains for
the joint-level controller were tuned offline to achieve smooth
behavior given step inputs. The joint controller calculates a
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Fig. 2. A visual depiction of the cascade control structure. A single or
set of desired Cartesian way points is given to the trajectory generator. A
trajectory is computed offline, and the resulting trajectory of joint angles
are sent to a joint PID controller. Reference pressures are sent to a pressure
PID controller, which sends a PWM signal to control the robot’s pneumatic
valves to fill or vent air into pneumatic chambers. Everything in orange
happens in real time.

vector of reference pressures which are then fed to a low-
level PID pressure controller. The output of the PID pressure
controller (with gains also tuned offline) is a PWM signal,
which drives pressure valves onboard the robot that allow air
to flow in or out of the pressure chambers. Everything inside
the orange box happens in real-time.

IV. VALIDATION EXPERIMENT

A. Hardware Description

The robot used to validate our trajectory generator is
shown in Figure 1. The arm consists of three pneumatically
driven soft continuum segments. As discussed in section III-
A, each soft segment is driven by four independent pressures
which create a net torque that causes the robot to bend about
an inextensible steel cable at the center of the joint. Each
soft segment is connected by a rigid link that contains the
pneumatic valves and pressure sensors used to fill and vent
the chambers. Despite the joints being continuum joints, we
model the robot as having a total of six degrees of freedom,
or six joint angles. To measure joint angles, we use six HTC
Vive Trackers which are attached to the arm at the top and
bottom of each link. See [21], [22] for more details on the
makeup of each soft segment and the transformations used
to convert Vive Tracker data to joint angles.

B. Experiments

We validated our trajectory generator by conducting two
different experiments in simulation (see Figure 3) and on the
actual robot hardware. In each experiment, way points were
fed to the trajectory generator to compute paths of different
Cartesian shapes.

In the first experiment, we gave the trajectory generator
a single way point, or a single desired end effector location
in Cartesian space at ce = [−.075, .769, .541]T . We chose
this location because it is away from any workspace sin-
gularities. We chose the starting location to be at ci=0 =

Fig. 3. The robot in a simulation environment.

[−0.769, 0.075, 0.541]T again to start the robot away from
workspace singularities. The optimization horizon was T =
.3 seconds with a time step of .1 seconds. Because we
wanted the trajectory to quickly and smoothly converge on
the desired Cartesian location, the weighting matrices, which
have a significant impact on the speed and performance of
the final trajectory, used in the cost function were Q =
diag(5, 5, 5), R = diag(10, ..., 10), and H = diag(5, 5, 5).
These weighting matrices were empirically tuned.

For the first experiment, we also compared our trajectory
generator to a direct input to the underlying PID controller
to show the effect of the planner versus closed-loop control.
The same PID gains were used to send the joint angle step
command and trajectory of joint angle commands to the robot
in simulation.

In the second experiment, we gave the trajectory generator
a series of way points that formed a circle of radius 0.15
meters. The top of the circle (or starting position of the end
effector) was chosen to be at ci=0 = [−.288, .288, .288]T .
The cost function used the same weighting matrices as the
first experiment. This experiment also had an additional cost
on the distance between the current end-effector position and
future way points to ensure a smooth trajectory between way
points. However, the weighting of this cost compared to the
weighting on distance between end-effector and next way
point and smoothness was relatively small, and likely could
be removed as it had almost no affect on the final generated
trajectory. The optimization horizon was also the same as
the first experiment.

In the second experiment, we also compared our trajectory
generator to sending step commands of joint angles that
moved the robot’s end-effector to the same series of way
points that formed a circle of radius .15 meters.

C. Software Description

Algorithm 1 was written in Python. The optimizer used
to solve Equation 2 was the scipy.optimize.minimize
function. All the trajectories were computed on an AMD
Ryzen 9 5900 12-Core Processor. After the trajectories were
computed, they were sent to the joint PID controller at a
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Fig. 4. Graphs showing the trajectories generated given a single way
point, and how well the robot tracked the trajectories. Column (a) shows the
trajectories in simulation, and column (b) shows the trajectories on hardware.
Also shown is the path the robot took given a step input of joint angles.

a rate of 200 Hz. Pressure commands were sent from the
joint controller to the pressure PID controller at 475 Hz.
The pressure controller ran at 1 kHz.

V. RESULTS

Figure 4 shows the generated Cartesian reference trajecto-
ries for the first experiment in dashed lines. Each Cartesian
direction is shown plotted versus time. Also shown in Figure
4 is a solid line of the simulation and hardware robots
tracking the generated trajectories. The dash-dot line shows
the Cartesian path the robot took in simulation when given
a step input of joint angles rather than a reference trajectory
of joint angles. The simulation trajectory is shown in the left
column and the hardware trajectory is shown in the right
column.

Figure 5 shows the same trajectories as Figure 4 but in the
xy plane, along with the simulation and hardware tracking
results. Our trajectory generator computed trajectories that
take 4.3 seconds to travel from the starting location to the
desired ending location. Table I shows the mean, median, and
maximum error between the generated reference trajectories
and trajectory the robot took. For reference, our robot’s total
length is 1.19 meters. As can be seen in Table I, the total
mean magnitude of error between the generated trajectory
and executed trajectory in simulation was 0.051 meters, and
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Fig. 5. 2D depictions of the generated trajectories given a single way
point, and how well the robot tracked them. (a) shows the simulation
trajectories. (b) shows the hardware trajectories. The green dot represents
the robot’s starting point, and the red triangle represents its ending point.
See https://youtu.be/Ew4b-6SRi-Y for a video of the robot executing this
trajectory.

TABLE I
ERROR STATISTICS BETWEEN GENERATED REFERENCE TRAJECTORY

AND CARTESIAN POSITIONS FOR A LINE.

Cartesian Directions x y z Total

Simulation Mean (m) 0.034 0.027 0.018 0.051
Simulation Median (m) 0.011 0.003 0.008 0.015

Simulation Max (m) 0.279 0.167 0.079 .320
Hardware Mean (m) 0.039 0.023 0.024 0.056

Hardware Median (m) 0.020 0.007 0.022 0.032
Hardware Max (m) 0.159 0.097 0.081 0.183

the total median magnitude of error was 0.015 meters. On
hardware, the total mean absolute error was 0.056 meters,
and the total median absolute error was 0.032 meters.

Figure 6 shows the generated Cartesian reference trajecto-
ries for the second experiment in dashed lines (similar to the
format for Figure 4, but with a different goal location). Also
shown in the dash-dot line is the path the simulation robot
took when given a series of joint angle step commands. The
simulation trajectory is again shown in the left column and
the hardware trajectory is shown in the right column.

Figure 7 shows the same circular trajectories as Figure
6 but in the xy plane. It also shows the simulation and
hardware tracking of these trajectories. Our trajectory gen-
erator computed trajectories that take 18.9 seconds to travel
from the starting location, around the circle, and back to
the starting location. Table II shows the mean, median, and
maximum error between the generated reference trajectories
and trajectories the robot took for both simulation and
hardware experiments. As can be seen in Table II, the total
mean magnitude of Cartesian error between the generated
trajectory and executed trajectory in simulation was 0.017
meters, and the total median magnitude of error was 0.019
meters. On hardware, the total mean absolute error was 0.025
meters, and the total median absolute error was 0.025 meters.

VI. DISCUSSION AND CONCLUSION

Figures 4 through 7 indicate that the soft robot trajectory
generation algorithm presented in this paper can generate
dynamically feasible and useful paths and trajectories for soft
robots to follow. This is supported by statistics in Tables I

Authorized licensed use limited to: Brigham Young University. Downloaded on December 19,2023 at 01:24:17 UTC from IEEE Xplore.  Restrictions apply. 



0 5 10 15 20
Time(s)

−0.45

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

X(
m

)

0 5 10 15 20
Time(s)

0.30

0.35

0.40

0.45

0.50

0.55

Y(
m

)

0 5 10 15 20
Time(s) 

 (a)

0.270
0.275
0.280
0.285
0.290
0.295
0.300
0.305

Z(
m

)

Simulation Trajectory
Reference Trajectory
Step Input Trajectory

0 5 10 15 20
Time(s)

−0.45

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

0 5 10 15 20
Time(s)

0.30

0.35

0.40

0.45

0.50

0.55

0 5 10 15 20
Time(s) 

 (b)

0.26

0.27

0.28

0.29

0.30

0.31

Hardware Trajectory
Reference Trajectory

Fig. 6. Graphs showing the trajectories generated to form a circle of .15
meters, and how well the robot tracked the trajectories. Column (a) is the
slow trajectory, and column (b) is the fast trajectory. Also shown is the path
the robot took given a series of step inputs of joint angles.
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Fig. 7. Circular trajectories generated in both simulation and hard-
ware shown in the xy plane, along with the robot’s tracking results.
(a) shows the simulation trajectories. (b) shows the hardware trajectories.
See https://youtu.be/Ew4b-6SRi-Y for a video of the robot executing this
trajectory.

TABLE II
ERROR STATISTICS BETWEEN GENERATED REFERENCE TRAJECTORY

AND CARTESIAN POSITIONS FOR A CIRCLE.

Cartesian Directions x y z Total

Simulation Mean (m) 0.011 0.010 0.002 0.017
Simulation Median (m) 0.011 0.009 0.002 0.019

Simulation Max (m) 0.025 0.028 0.006 0.029
Hardware Mean (m) 0.018 0.011 0.006 0.025

Hardware Median (m) 0.016 0.007 0.004 0.025
Hardware Max (m) 0.060 0.042 0.029 0.072

and II where the largest median magnitude of error between
generated and executed trajectories in any direction is only
0.032 meters for an arm of length 1.19 meters.

However, it is clear that improvements could be made to
the algorithm. The trajectories generated for the physical
robot are smooth, but the tracking of these trajectories in
hardware show small oscillations around the reference tra-
jectories. This error could stem from a few possible sources.
First, the dynamic model used to generate trajectories does
not perfectly match the dynamics of the real system. The
paper used to mathematically model our soft robot indicates
that there are possibly unmodeled dynamics between pres-
sures and joints [22]. Additionally, the commanded pressures
from the PID control were never greater than or equal
to pmax, meaning that our algorithm was not pushing the
system to be overly aggressive based on our current cost
function tuning. This is possibly due to not having an
accurate analytical expression for ṗ. Despite the fact that
our dynamic model does not match the real robot, this is not
necessarily an indication of a poorly formulated trajectory
planner, but instead a confirmation that improved dynamic
models for soft robots are still an open research question
and necessary to further improve performance. When our
dynamic model used in the trajectory generator matched the
simulation’s dynamics, the robot was able to closely track
the generated trajectories as seen in the previously mentioned
figures.

The second source of possible error contributing to the
non-smooth motion of the physical robot’s end effector is
our low-level joint controller. We used a PID controller to
drive the joint angles of the real robot towards the desired
trajectory. We tuned the gains of the controller to follow the
highly dynamic trajectories, but as can be seen in Figures 5
and 7, this often caused the robot’s end effector to oscillate
around the reference trajectory. Creating a better joint-level
soft robot controller is outside of the scope of this paper,
but our results could build on existing research in this area
(see [3], [4], [6], [10]). We plan to implement one of these
controllers in the future for better trajectory tracking.

In conclusion, this paper presents a dynamically feasible
trajectory generation algorithm for highly compliant, un-
deractuated soft robots. This algorithm takes a high-level,
ambiguous task (such as moving from point A to point B),
and distills it down into a mathematical optimization problem
that can be used to generate a path in Cartesian space as well
as a trajectory of joint angles to follow that path. Future work
on this algorithm includes making it real-time and closed
loop. By using current end effector positions and re-planning
the trajectory in real-time, we can account for uncertainties
in the soft robot’s shape and dynamics.
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