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Abstract— In this paper we present a novel kinematic rep-
resentation of a soft continuum robot to enable full shape
estimation using a purely geometric solution. The kinematic
representation involves using length varying piecewise constant
curvature segments to describe the deformed shape of the
robot. Based on this kinematic representation, we can use
overlapping length sensors to estimate the shape of continuously
deformable bodies without prior knowledge of the current
loading conditions. We show an implementation that assumes
one change in curvature along the length of a joint, using string
potentiometers as an arc length sensor, and an orientation
measurement from the tip of the continuum joint. For 56
randomized joint configurations, we estimate the shape of
a 250mm long continually deformable robot with less then
2.5mm of average error. The average error is reported for
each of the 10 different equally spaced points along the length,
demonstrating the ability to accurately represent the full shape
of the soft robot.

I. INTRODUCTION
Despite the potential of soft robots to interact with their

environment in ways that are difficult for their rigid coun-
terparts, soft robots may fail to realize that potential due
to their inability to perceive and interpret those interactions.
Without sensing methods and control algorithms that include
the effects of these interactions, we expect that effective
soft robot actions in uncertain environments will be limited.
Load-agnostic configuration estimation (meaning that the
method does not rely on accurate knowledge of loading
conditions) is a difficult problem that will not likely be
solved by a single estimation scheme. However, in this paper
we propose an approach that enables real-time estimation
of a deformable robot’s shape as a first step in tackling
this problem. We choose an approximation that leverages
multiple connected constant curvature segments since many
soft robots can be accurately described by a series of constant
curvature segments (see [1], [2]). Specifically, we construct
a shape estimation algorithm based on geometric properties
instead of on material properties, configurations, or loading
conditions. We then apply the method on a continuum soft
robot as described by Allen et al. [3] (see Fig. 1). However,
the method we present is general enough to work for other
similar deformable robots with length sensors that span the
shape of said robot. The inclusion of length sensors as
described in [4] would allow this scheme to be used in fully
soft robots such as those described by Williamson et al. [5].

We call the proposed geometric parametrization “length
varying piecewise constant curvature” (LVPCC), and it al-
lows for accurate representation of a continuum of complex
shapes.
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Fig. 1: Soft robotic actuator
used in this paper. Length sen-
sors are circled in blue and
the camera that is used as an
orientation sensor is circled in
red. For this paper only the
two sensors on the right of the
image were used.

The continuous shape
measurement capability
of the sensors used in
this method surpasses
the limitations of discrete
sensors, such as strain
gauges, that only measure
local curvature. The use of
overlapping length sensors
enables the measurement
of both curvature and
changes in curvature along
the length of the overlap,
offering the potential for
efficient shape estimation
with a limited number of
sensors through intelligent
data interpretation. The
approach proposed here is
also appealing because it
relies solely on geometric
measurements, specifically
lengths and angles,
rather than dynamic
measurements like forces
and torques, enabling
shape estimation without
the need for information
about loading conditions.
The method requires as few as three analog sensors and
remarkably low computational resources, which makes it
suitable for real-time proprioceptive estimation applications.

The contributions of this paper are:
• We derive a geometric representation of a soft robot

based on piecewise constant curvature (PCC) segments
whose lengths (or point of inflection) can vary. This
shape estimation scheme can handle large deflections
(which are representative of large external loading con-
ditions), and uses only geometric information without
knowledge of loading conditions.

• We implement a sensing-based solution of this represen-
tation that makes use of two string potentiometers and
one inertial measurement unit (IMU) orientation sensor.

• We perform validation and evaluation of the above.

II. RELATED WORK

Methods and sensors for soft robot shape estimation are
as diverse and varied as the different types of soft robots
that have been designed and produced. We first outline the
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different types of sensors used to estimate the shape of soft
robots, then discuss the use of different types of models.

Some shape sensors are as simple as resistive length
measurements, [6]–[9], or inductive measurements [10], [11].
Some use capacitive and pneumatic sensing combined with
numerical finite element models [12]. Others remove the
proprioceptive estimation problem from the robot by using
cameras external to the robot to capture images which allow
for 3D representation of the robot’s shape [13]–[15]. Many
of these methods are limited in that they provide information
only at discrete locations along the length of the soft robot,
which means that they can only accurately describe those
points and a model has to be used to fill in the gaps (i.e.
Constant Curvature, Variable Curvature, etc.). Some methods
attempt to circumvent this problem by sensing and using only
the end effector pose (see [16], [17]). While effective, these
methods ignore the rich information that could be gained
by understanding the full shape of the robot and can only
be used to control the tip or end of a continuum segment,
rather than the entire soft robot.

Along with these simple measurement systems there are
more complicated sensing methods that rely on optical sen-
sors such as Fiber Bragg Gratings [18]–[20]. These methods
however are not easily generalized to different platforms. For
example in [21] they require a camera to be able to see down
the interior of the robot and use a learned model to return
position based on the view of IR reflective markings on the
inside of the joint. If the robot is not constructed such that
a camera placed on the inside can observe along the length
of the robot then the method would not work. Additionally
certain changes in the arrangement of the markings led
to failed estimation. Other optical fiber-based methods are
combined with a simplified model to enable Kalman Filter-
based estimation [22].

Machine learning in soft robotics control and estimation
is very active area of research [23]–[25]. Many of these
methods require platform-specific assumptions that make
these models brittle. These assumptions may be eliminated as
research continues, however, due to their very nature, learned
models pose the risk of being uninterpretable or being used
as a black box. As a direct result, the behavior of these
models becomes very difficult to predict, and extrapolating
outputs for conditions without training data can be danger-
ous.

As alternatives to machine learning, many researchers
have attempted to develop analytical models to describe
soft robots’ shape as they deform. The most basic of these
is the constant curvature (CC) model which says that the
whole shape of the soft robot or continuum joint can be
described by one circular arc. Because of its relative sim-
plicity, much of the work in soft robotics is based on this
model [16]. Additionally many groups take this approach
and by serially connecting very short segments they cre-
ate a piecewise constant curvature (PCC) robot [26]. The
LVPCC model we present in this paper is based on this
idea, but importantly, we add the ability of the segments
to change in length. Other similar methods exist, including

P1

P2

r r

M1

M2

h

Proximal

Distal

(a)

h

P1

P2

r r

M1

M2

α

(b)

Fig. 2: A planar geometric representation of a soft robot.
On the left shows the robot when undeformed. M1 and M2

represent lengths measured at a distance r away from the
center line. Points P1 and P2 are the point on the center line
where the measurements attach. h is the center line length
of the joint. The image on the right shows the same joint,
but deformed. Notice that M1 and M2 have both decreased
in magnitude, but the distance along the center line where
they attach is still fixed. α represents the total change in
orientation from the proximal to distal end of the robot.

the Variable Curvature method [27], polynomial fitting [28]
and others [29], [30]. These methods accurately model some
shapes of soft robots during operation, but rely heavily
on predetermined parameters (such as sensor placement) to
understand robot geometries. LVPCC removes this reliance
by observing information about the majority of the robot,
not just discrete points, and allowing that information to
drive the estimation. It should be noted as well that dynamic
models are also used to estimate the shape of soft robots,
such as Cosserat Rod models [31]–[33] and Pseudo rigid
body models [34], [35]. These methods remain difficult due
to the need for accurate system identification. By basing our
method solely on geometric relationships, it is generalizable
to any geometrically similar platform.

III. GEOMETRIC MODEL

Fig. 2 shows a planar representation of a soft bodied
joint with sensors attached, in a deformed (Fig. 2b) and
undeformed (Fig. 2a) state. M1 represents the length reported
by a length sensor that attaches to the proximal end of the
robot, and M2 represents the length reported by a sensor that
attaches to the distal end of the robot. P1 and P2 represent
the point along the center line at which these sensors attach.
That is to say, the distance from the proximal end of the
robot to P1 is equal to M1 in the straight configuration, and
the distance from the distal end of the robot to P2 is equal
to M2, it should be noted that P1 and P2 are not necessarily
the same distance away from the ends of the robot and that
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P1, P2 ∈ [0, 1]. The surface that M1 and M2 are measuring
is offset a distance r from the center line. h is the length of
the center line. The deformed joint shown in Fig. 2b shows
the same geometric representation of the robot, this time in
a deformed or deflected state. M1 and M2 have changed
length, but the distance along the center line to the points
where they attach, P1 and P2, has not changed. The distances
h and r have also been assumed to remain the same, but there
is a new variable α that represents the change in orientation
from the proximal to distal end of the robot. Undeformed,
α is equal to zero and M1 and M2 are equal to P1 ∗ h and
P2 ∗ h respectively.

The Length Varying Piecewise Constant Curvature
(LVPCC) model proposed here takes the deflected state of the
robot and assumes that it can be adequately represented by
dividing the total deformed shape into two sequential circular
arcs sharing a tangency constraint, but with an unknown
inflection point. The length varying aspect indicates that
each arc’s length can change. An example of these two
sequential circular arcs can be seen in Fig. 3. These arcs
are modeled as lying along the center line of the robot,
and as such the sum of these two arc lengths is equal to
h. Offsetting both of these arcs by a distance of ±r results
in the length of the surface measured by M1 and M2. The
sign of the offset is determined by the location of the center
of curvature of each arc. If the center of curvature is found
on the same side of the arc as the measurement surface, the
sign of the offset is negative, if it is found on the opposite
side it is positive. In other words if the bending is towards
the length sensors, the sign is negative, and away from the
length sensors the sign is positive. A positive offset means
the length sensor will return a measurement greater than
when the joint is straight and a negative offset means the
sensor will return a measurement less than when the joint
is straight. The sum of the angle between the normal to the
tangent of the first arc at its origin, and the normal to the
tangent of the second arc at its end point is equal to α.
The point at where these two arcs meet is referred to as the
transition point, Pt. The location of Pt will be represented
here as a fraction of the total arc length, for example if
Pt is located halfway along the length of center line then
Pt = 0.5. By modeling the joint in this way, and allowing
the transition point to change, more complex shapes can be
estimated then with standard piecewise constant curvature
models, where the segments of constant curvature are fixed
length. A representation of this model can be seen in Fig. 3
where a “c” shaped robot has been represented with a long
segment of relatively small curvature followed by a short
segment of relatively large curvature. Combining differing
lengths of differing curvatures allows the model to accurately
represent a large variety of shapes.

In order to use this model to estimate soft robot shape,
the relationship between the measurements M1, M2, α and
parameters which describe the shape need to be identified.
In the interest of space only the resultant relationships are
shown here, the derivation of which can be found in Chapter
3 of [36]. These equations are the following (where the
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Fig. 3: A planar deformed version of a soft robot with the
LVPCC model applied to it. Although in this case the change
of curvature occurs in the middle of the robot, the model
allows for the change to happen at any point along the length.

quantities for A and B are intermediate variables used for
convenience only):

A1 = P2

(
M1 − P1h+ P1αr

)
B1 = h−M2 − P1h− P2h− αr

+M1P2 +M2P1 + P1αr + P2αr (1)
and

Pt =
A1

B1

A2 = P1h
2 −M1h+M1M2 + P1α

2r2

+M1P2h−M2P1h+M1αr

− P1P2h
2 +M2P1αr

− 2P1αhr + P1P2αhr

B2 = hr −M2r − αr2 +M1P2r +M2P1r (2)

− P1hr − P2hr + P1αr
2 + P2αr

2

and

α1 =
A2

B2

A3 = −
(
P1h

2 −M1h+ α2r2 +M1M2

− P2α
2r2 +M1P2h−M2P1h+M1αr

+M2αr − αhr − P1P2h
2 −M1P2rα

− P1αhr + P2αhr + P1P2αhr
)

B3 = hr −M2r − αr2 +M1P2r (3)
+M2P1r − P1hr − P2hr

+ P1αr
2 + P2αr

2

and

α2 =
A3

B3
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In these equations the configuration parameters that are
used to describe the shape are α1, α2 and Pt. α1 and α2

represent the angles between the start and end of the first
and second segments of curvature respectively, and Pt is a
fraction representing the location along the center line of
the start of the second segment of constant curvature. Using
these equations and the three proposed measurements, the
soft robot shape can be modeled.

IV. HARDWARE

In order to validate the developed model, real-world tests
were performed on a soft continuum robot joint. The hard-
ware platform that was used for this purpose is a pneumatic
hybrid rigid-soft robot joint shown in Fig. 1. This platform
and serially connected versions have been studied in [1], [3],
[16]. It consists of 4 blow-molded bellows located around
an inextensible cable acting as a spine. For the purposes of
validating this estimation model and method we manually
applied a force and moment to deflect the robot and cause
non-constant curvature across the entire joint. Part of this test
was to see how well two constant curvature segments could
approximate the actual joint shape. The sensors that we used
consist of two spring potentiometers made by Unimeasure
[37]. These are rotary potentiometers where the resistance
seen across two legs of the potentiometer is linearly related
to the amount that the potentiometer has turned. They have
a constant spring return force of 2.2N and an output of
approximately 10mV/mm with 5V excitation. An Arduino
Mega with a breakout I2C Analog to Digital Converter board
was used to read in the output voltage of the potentiometers
and convert the voltage into lengths. This data is then sent
over the Arduino’s serial line via a USB cable to a host
computer which combines these length measurements and an
orientation measurement of the tip of the joint to estimate
the shape of the robot. In order to measure the change in
orientation from the base of the joint to the end, the IMU
data from a ZED Mini is used. The ZED Mini outputs
a filtered version of the IMU data, which is available at
100Hz. It should be noted that the ZED camera’s IMU
was used because it was available, but that any device that
measures relative orientation could be used instead (including
the visual odometry provided by the ZED Mini if used in a
feature-rich environment).

V. EXPERIMENTS

To evaluate the performance of the model and sensing
method, we compared the center line of our soft robot
as estimated by our algorithm with the actual center line
position. To measure the ground truth of the center line
position we attached a set of IR reflective Cortex Motion
Capture dots to our hardware platform. We then inflated the
robot to a pressure, and manually deflected it via a winch-
driven cable attached to the top of the joint (see Fig. 4).
After deflection, we measured the location of these IR dots.
To ensure the deflection was planar for these experiments,
the robot was made to deform along a rigid backstop
which can be seen in Fig. 4. In addition to the LVPCC

Fig. 4: A picture of the 2D experimental setup. The back
plate that was used to constrain the deformation of the joint
to a plane is the wood panel seen here. In white are the
Motion capture dots that were observed as ground truth.

estimation, we recorded the deflected angle of the end of
the joint and estimated a single constant curvature shape for
comparison as done in [3], [16], [17]. It should be noted that
the comparison to constant curvature is not done because
constant curvature estimation is expected to be accurate for
the deflections seen here, but because it provides a simple
and effective benchmark to compare estimation methods.
Any comparison with other PCC methods would require us
to assume the location of the piecewise constant curvature
sections. However, this is exactly the strength of the approach
in this paper (that we estimate an inflection point as part of
the process). In addition, comparison to a constant curvature
model shows that the configurations we chose were indeed
poorly described by a single circular arc and are therefore
good configurations for evaluating our algorithm.

We repeated this test for 56 different joint configurations.
For each of the configurations measured, two seconds of data
was collected, and the estimated values were averaged across
that time, with a sensor update rate of ≈100Hz. Fig. 5 shows
a simplified representation of six of these configurations,
and a video showing all 56 configurations can be seen here:
https://youtu.be/WfbcGrP8cpo. It is important to
remember that the motion capture data is only used for
ground truth comparison, not for shape estimation.

VI. RESULTS

The results in Fig. 5 show the qualitative performance
of this algorithm. In terms of quantitative results, we start
by examining the distribution of error for all markers at
each configuration. Fig. 6 shows box plots representing the
distance from each IR marker to the predicted center line
for a random sampling of 28 of the configurations tested.
The black box represents the 25th and 75th percentiles and
the cyan line represents the median value, with whiskers
representing values lying within 1.5 of the inter-quartile
range from the median. Each box represents the distribution
of the errors for all markers averaged over a two second
window. For example, for configuration 19 using the LVPCC
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Fig. 5: Six representative configurations realized during the course of the experiment. The green line represents a constant
curvature model fit. The black represents the proposed LVPCC model, and the red represents ground truth data taken by the
Cortex Motion capture system.

model, the highest error was less then 10mm (seen in the
figure as an outlier) and the lowest was below 2mm. This is
of course assuming that the motion capture measurements for
ground truth are perfectly accurate, and that the IR markers
do not shift relative to the soft deformable robot (neither of
which is completely true).

Both methods, constant curvature (CC) and the length
varying piecewise constant curvature (LVPCC), were com-
pared. Across all of the 56 configurations the average median
error (found by averaging the median error of all 56 config-
urations) was 16.61mm for the CC and the average median
error was 2.35mm for the LVPCC method, or in other words
the error was approximately seven times larger for the CC
method as opposed to the LVPCC. The minimum median
error (calculated as the minimum of the list of median errors)
across all 56 configurations was 2.13mm for the CC method
and only 0.79mm for the LVPCC method.

Another interesting way of looking at the data from the
experiment is looking at the error at each marker across
the different joint configurations. Fig. 7 shows the average
error across all 56 configurations reported as a single number
for each marker, with “0” being the marker closest to the
proximal end and “9” being the marker closest to the distal
end. For the LVPCC method the average error does not sig-
nificantly increase for the markers from proximal (2.43mm)
to distal (2.6mm). For the CC method the error significantly
increases from the proximal (1.05mm) to distal (33.69mm)

markers. It makes intuitive sense that the proximal end of
the joint has low error for both methods, because it is so
close to the origin, it would require significant curvature for
the error to be large. However the fact that the average error
per marker does not grow as the distance from the origin to
the marker under consideration increases seems to indicate
that the shape is well estimated by the LVPCC method, and
that the shape is unsurprisingly not well estimated by the CC
method.

Finally in Fig. 8 we show the distribution of the error
for all markers and all configurations for each of the two
estimation methods. This is in contrast to the summary
statistics that we first presented. Overall, the LVPCC method
results in a much tighter distribution with a much lower
mean or median error. While the CC method has higher error
and variance. The mean and median errors are 2.55mm and
2.28mm for LVPCC, and 17.05mm and 12.81mm for CC
respectively. This shows that for a wide range of non-trivial
loading conditions, the LVPCC method presented provides
better accuracy and precision.

VII. FUTURE WORK AND CONCLUSION

The work presented in this paper is the first stage of
developing LVPCC model. By validating this model in two
dimensions, we prove its merit which shows the value of
further research into the important extension to three dimen-
sions. This extension is ongoing, but holds promise, with all
the same advantages presented in Section I applying to the
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Fig. 6: Box plots showing the distribution of error for 28 of the 56 configurations. For some of the configurations the
CC model approximated the error quite well (e.g. 6 and 37) however for the majority of configurations the LVPCC model
significantly outperformed the CC model in terms of estimating the robot’s shape.

Fig. 7: Scatter plot showing average error associated with
each marker. The numbers 0 through 9 represent markers
placed proximally to distally.

three dimensional case. Preliminary results are encouraging
but have raised several difficulties (e.g. measurement of
singularities in the 3D case, the effect of torsion about the
central axis), that need to be addressed. In order to extend
this model to three dimensions, one more measurement of
the angular deflection at the distal point of the soft robot is
required. In CAD, we have already validated that by using
geometric relationships the measurement can be transformed
to appropriately represent the deformed length of the robot.
More information on preliminary results can be seen in [36].

We have shown a novel geometric representation for a
continuum soft robot joint consisting of three configuration
variables that can be analytically determined with the use

Fig. 8: Histogram showing the distribution of the errors for
all markers across all configurations. The LVPCC method
has a much smaller spread as well as having a lower average
error. The CC method’s spread is large, and its average error
is close to 7 times the average error of the LVPCC method.

of three simple measurements. Due to the geometric nature
of this model, it is applicable to any similarly shaped robot
or any robot that could be accurately represented in such a
way. This includes more compliant soft robots where mul-
tiple segments can represented with LVPCC by combining
multiple length measurements at fixed intervals serially to
approximate and estimate the true shape (similar to what was
done in simulation in [38]). We have implemented this model
on a real soft robot and showed that it accurately represents
the shape of the robot, with less then 2.5mm of median
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error for a joint that is 250mm long. Additional work needs
to be done to validate estimation for 3D deformation, and
to evaluate the feasibility of this method for use in a real-
time control algorithm, although both the electronics for data
acquisition, and the algorithm complexity are simple enough
that this should not be a concern. Finally the algorithm will
need to be evaluated for singularities, and modifications to
improve robustness near the singularities may be needed to
estimate shape consistently across the whole workspace.
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