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Abstract

Neuron growth is a complex, multi-stage process that neurons undergo to develop sophisticated morphologies and in-
terwoven neurite networks. Recent experimental research advances have enabled us to examine the effects of various
neuron growth factors and seek potential causes for neurodegenerative diseases, such as Alzheimer’s disease, Parkin-
son’s disease, and amyotrophic lateral sclerosis. A computational tool that studies the neuron growth process could
shed crucial insights on the effects of various factors and potentially help find a cure for neurodegeneration. However,
there is a lack of computational tools to accurately and realistically simulate the neuron growth process within reason-
able time frames. Bio-phenomenon-based models ignore potential neuron growth factors and cannot generate realistic
results, and bio-physics-based models require extensive, high-order governing equations that are computationally ex-
pensive. In this paper, we incorporate experimental neurite features into a phase field method-based neuron growth
model using an isogeometric analysis collocation (IGA-C) approach. Based on a semi-automated quantitative analysis
of neurite morphology, we obtain relative turning angle, average tortuosity, neurite endpoints, average segment length,
and the total length of neurites. We use the total neurite length to determine the evolving days in vitro (DIV) and select
corresponding neurite features to drive and constrain the neuron growth. This approach archives biomimetic neuron
growth patterns with automatic growth stage transitions by incorporating corresponding DIV neurite morphometric
data based on the total neurite length of the evolving neurite morphology. Furthermore, we built a convolutional neural
network (CNN) to significantly reduce associated computational costs for predicting complex neurite growth patterns.
Our CNN model adopts a customized convolutional autoencoder as the backbone that takes neuron growth simulation
initializations and target iteration as the input and predicts the corresponding neurite patterns. This approach achieves
high prediction accuracy (97.77%) while taking 7 orders of magnitude less computational times when compared with
our IGA-C neuron growth solver.

Keywords: Neuron growth, Neurite morphometric features, Isogeometric collocation, Phase field method, Deep
learning, Convolution neural network, Auto-encoder

1. Introduction

In recent years, we have witnessed significant outgrowth in the neuron growth research field, and multiple attempts
to prevent neurodegenerative diseases with neuron growth factors have been made. Understanding nervous system
development is critical in searching for potential neurodegenerative disease treatments. Recent molecular biology
research has revealed many possible effects of neuron growth factors during disease pathogenesis [1, 2]. Alzheimer’s
disease, Parkinson’s disease, and amyotrophic lateral sclerosis are three devastating neurodegenerative disorders with
high morbidity and mortality for patients [3]. These diseases arise when neurons progressively lose connections
or functions due to alterations of certain neuron growth factors [4, 5]. Because most mammalian neurons cannot
intrinsically regenerate, they can not repair or replace themselves, making traditional treatments ineffective against
neurodegeneration [6, 7]. Although evidence shows that certain factors from developing neurons can help protect
mature neurons from degeneration [5], there is a lack of study of the specific functional role of these factors [8].
Therefore, understanding the factors involved during neuron growth is vital for seeking potential neurodegeneration
treatments. Neuron growth is a complex multi-stage process consisting of multiple stages of development, each with
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unique growth behaviors [9]. Primary rat hippocampal neurons in vitro have exhibited five key developmental stages
in their morphology [10]. In Stage 1, lamellipodia protrude from the initial neuron cell and extend into neurites of
similar length in Stage 2. The longest neurite will differentiate into a longer axon in Stage 3, while other neurites
slowly grow in Stage 4. Stage 5 is neuron maturation, in which neurons grow intricate patterns and form complex
neurite networks. This process spans several days in vitro (DIV), and each stage exhibits drastically different growth
behaviors driven by intracellular and extracellular biophysics processes that involve a wide range of neuron growth
factors [11, 12].

Considering the aggregating costs and arduous procedures needed for extensive cell culture experiments, mathe-
matical modeling of early neuron growth stages has been proposed to study neuron growth factor during the initial
neurite outgrowth [13], axon differentiation [14, 15], and axon guidance [16]. Among different neuron growth mod-
els, there exist two major schools of thought. One approach models neuron growth using stochastic methods that
follow phenomenological results [17, 18]. Along this direction, some literature models the growth process using axon
steering theory based on filopodia [19], external repulsive cues [20], and stochastic mechanism [21]. Generalized
neurite characteristics are utilized based on morphology [22, 23], and the surrounding substrate is incorporated [24].
While efficient to compute, these methods take limited biophysics into account. In contrast, models that attempt to
incorporate the effects of different neuron growth factors based on biophysical mechanisms behind neurite elongations
are prone to high computational cost and numerical instability [25, 26]. Despite the aforementioned approaches to
model the neuron growth process, most of them lack the ability to efficiently and accurately model realistic neuron
growth. Many rely heavily on broad assumptions or are associated with expensive computational costs, yet are still
unable to capture complex neurite morphology changes throughout the growth process.

Inspired by [27], we developed a phase field method-based neuron growth model with distinctive growth stage
transitions [28] to address these limitations in neuron growth modeling. Our isogeometric analysis collocation (IGA-
C) neuron growth model archives multi-stage neuron growth by considering the effect of intracellular tubulin con-
centration. By adjusting the assembly and disassembly rate of the tubulin transport coupled with the phase field
model, the model could simulate axon differentiation through different neurite elongation rates based on tubulin con-
centration. Yet, despite our implementation of biophysics-based approaches, our neuron growth model relies on
arbitrarily set growth stage transitions and can not capture similar biomimetic growth behaviors without extensive
manual parameter adjustments for a particular type of neuron. As a follow-up, in this paper we incorporate experi-
mentally observed neurite morphometric features into the biophysics-based IGA-C neuron growth model to simulate
biomimetic neuron growth behaviors with intrinsic growth stage transitions determined by neurite morphology. Based
on the semi-automated quantitative neurite morphometric evaluation [29], the developed neuron growth model uses
the total neurite length to determine the evolving DIV and select neurite morphometrics of the corresponding DIV to
constrain and drive neurite growth behaviors. The model can be easily adapted to different types of neurons, given the
corresponding neurite morphometrics.

Note that our neuron growth simulations with incorporated neurite features require days to complete, and the as-
sociated computational costs arise rapidly for multiple neuron cases as the domain increases in size. In addition, the
neurite morphometric feature implementation requires evaluating each incorporated neurite feature within each itera-
tion. In recent years, deep learning has been used in solving nonlinear high-dimensional partial differential equations
(PDEs) [30], and physics-informed neural networks [31] were developed. They have significantly alleviated compu-
tational costs without undermining analysis accuracy when studying a 2D reaction-diffusion system [32], intracellular
material transport process [33], and traffic jams in complex 3D neuron structures [34]. In this paper, we propose to use
a convolutional neural network-based (CNN) surrogate model to accurately predict intricate neurite growth patterns
with significantly lower computational costs than conventional simulations. The main contributions of the presented
neurite morphometric feature-driven IGA-C growth model and CNN-based prediction include:

• Incorporating experimentally observed neurite features into the IGA-C phase field neuron growth model to drive
and constrain biomimetic neuron growth behaviors with seamless intrinsic growth stage DIV transitions;

• An IGA-C neuron growth model that simulates rat hippocampal neuron growth process and is adaptable to
different types of neurons given neurite morphometric data of the growth behaviors; and

• A deep learning model based on CNN architecture, capable of accurate and fast predictions of complex neurite
networks. The model predicts neurite growth across different growth stages without an iterative process.
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The remainder of this paper is organized as follows. Section 2 reviews IGA-C-based phase field neuron growth.
Section 3 elaborates on the neurite morphometric features-driven neuron growth model that simulates biomimetic
neurite growth with intrinsic growth stage transition. Section 4 presents a CNN-based surrogate model for neuron
growth and showcases prediction results. Finally, we draw conclusions and discuss future work.

2. Review of IGA-C-based phase field neuron growth modeling

In this section, we review the phase field neuron growth model, IGA, and collocation method. IGA and phase field
methods are powerful numerical techniques utilized in simulating complex engineering problems. IGA is a high-order
numerical technique used in computational mechanics to approximate governing equations continuously, eliminating
the need for discretization in traditional finite element methods [35]. The phase field method solves evolving boundary
problems like fracture and dendrite solidification [36]. Combining these two techniques can effectively simulate
neurite growth with high accuracy.

2.1. Phase field neuron growth model

In our previous work, we developed an IGA-C-based phase field model to simulate the multi-stage neuron growth
process by introducing the effect of tubulin concentration [28]. By considering intracellular transport during the
growth, our model differentiates the longest neurite into an axon. We simulated different growth behaviors during
each stage to reproduce growth cone behaviors at neurite tips. By treating the neuron growth domain as a binary
phase field ϕ with phase “1” representing the neuron and phase “0” representing the surrounding medium, we solved
the phase field governing equations using the IGA-C method to simulate neurite growth patterns based on given
neuron configurations and parameters. In particular, we used IGA-C to solve the phase field equation (Eq. 1) coupled
with the tubulin equation (Eq. 2) and the neuroattractant equation (Eq. 3) through an energy term E (Eq. 4) and
competitive tubulin consumption term dL

dt (Eq. 5). In the phase field models, heat conduction was used to model
dendrite solidification at the interface in spherulites [37]. We borrow this idea to model the diffusion process of
releasing synaptogenesis particles such as neuroattractants, and use its gradient field for evaluating the energy term
(the driving force) to evolve the boundary based on ∂ϕ

∂t . The diffusion of neuroattractants is responsible for growth
cone pathfinding in the nervous system during synaptogenesis [38].

We provide a detailed list of variables in Table 1 for clarity. The main governing equations are defined as:

∂ϕ

∂t
= Mϕ[▽ · (a(Ψ)2 ▽ ϕ) −
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= δt ▽ · (ϕ ▽ ctub) − αt · ▽(ϕ ctub) − βt(ϕ ctub) + ϵ0
| ▽ (ϕ0)|2∫
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∂ϕ
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, (3)

E =
α

π
tan−1(Hϵ(

dL
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)γ △ csyn), (4)

dL
dt
= rg ctub − sg, (5)

where Mϕ is the phase field mobility coefficient, a(Ψ) is the anisotropy coefficient for the gradient, E is the energy
term for phase field growth, H is a constant value, and θ is the orientation term. In Eq. 2, δt is the tubulin diffusion
rate, αt is the tubulin active transport coefficient, βt is the tubulin decay coefficient, and ϵ0

|▽(ϕ0)|2∫
|▽(ϕ0)|2 dΩ

is the constant
tubulin production source term, where ϕ0 is the initial phase field variable and ϵ0 is the dimensionless production
coefficient term. In Eq. 3, csyn is the concentration of synaptogenesis particles such as neuroattractants, and K is the
dimensionless latent neuroattractant coefficient. In Eq. 4, E is the energy term responsible for driving cell growth at
the interface between phases. α

π
is a scaling coefficient, Hϵ is the Heaviside step function, and γ is the phase field

interfacial energy constant. In Eq. 5, rg and sg are the assembly and disassembly rate of tubulin concentration within
the cell boundary [39] to incorporate the effect of intracellular tubulin concentration.
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Table 1: Parameters utilized in the phase field neuron growth model.

Parameter Description Value Parameter Description Value
ϕ phase field variable - γ phase field interface energy constant 10

Mϕ Mobility coefficient 60 ctub Tubulin concentration -
a(Ψ) Neurite morphology gradient coefficient - δt Tubulin diffusion rate 4 (µm2/h)

H Orientation constant coefficient 0.007 αt Tubulin active transport rate 0.001 (µm/h)
θ Neurite growth orientation angle [0, 1] βt Tubulin decay coefficient 0.001 (1/h)

csyn Neuroattractant concentration - ϵ0 Tubulin production coefficient 15
Dc Neuroattractant diffusion coefficient - ϕ0 Initial phase field variable -
K Dimensionless latent neuroattractant 2 dL

dt Competitive tubulin consumption -
E Energy - rg Tubulin assembly rate 5
α
π

Scaling coefficient 0.2865 sg Tubulin disassembly rate 0.1
Hϵ Heaviside function -

Note: Default value is given if the parameter requires initialization. For dimensionless parameters, we show the default value without units.

The neuron growth model achieves neurite outgrowth by iteratively solving interface evolution using the phase
field governing equation (Eq. 1). The first few terms involving a(Ψ) introduce anisotropy into the neuron growth
model [27]. The following term involving E is a double well function with a coupling orientation term, 6H| ▽ θ|,
introduced in [40] to break dendrite growth symmetry. In the phase field model, θ indicates the change in the direction
of the extending neurites. The initial orientation θ is set as random values between [0, 1] throughout the domain and
the cell is initialized as a filled circle at the center of the binary domain ϕ, where we consider ϕ0 = 1 in the cell and
ϕ0 = 0 in the medium. The seed radius of the cell is set as r0 = 20△x. We initialize the tubulin concentration in the
cell as ctub =

1
2 (1 + tanh((r0 − r)/2)). In our earlier neuron growth model [28], we

• Developed a phase field model coupled with intracellular tubulin concentration to simulate the first four stages
of neuron growth, including lamellipodia formation, initial neurite outgrowth, axon differentiation, and dendrite
formation; and

• Implemented relative turning angle from experimental observations to guide neurite growth and demonstrated
similar end-stage neuron morphology reproduction; and

• Extended the model to simulate the growth of neural circuits, where multiple neurons build neurite interactions
and form neural networks.

Discussion. Despite the attempts made in the aforementioned model [28] to simulate growth behaviors, the model
still relies on arbitrarily-set iterations for each growth stage and can not accurately depict intrinsic growth stage tran-
sition. In addition, the model develops excessive branchings at later stages not observed in experimental cultures.
Moreover, parameters used in the model were manually tuned for rat hippocampal neuron behaviors, making it less
applicable to other types of neurons. These limitations undermine the practical implementations of the model. In
this paper, we propose incorporating neurite morphometric features from experimental cultures as a modular com-
ponent into the neuron growth model to overcome these limitations. Our proposed approach will improve the model
automation and its ability to simulate more biomimetic growth behaviors of a diverse range of neurons.

2.2. Isogeometric-collocation (IGA-C) method

In this work, we utilize the IGA-C method to solve the phase field neuron growth model for its flexibility and
accuracy [41, 42]. High-fidelity modeling for complex neuron morphologies is a significant challenge in computa-
tional biology [43, 44]. Using high-order spline basis functions, we can generate an accurate analysis of the phase
field model. Together with the collocation method, we directly solve the strong form of the phase field equation on
Greville Abscissae collocation points [45, 46].

B-splines basis function. In this paper, we choose cubic B-splines as the basis functions for our IGA-C solver
[47, 48]. For a univariate B-spline curve of degree p, it is defined using a sequence of nondecreasing real numbers,
ui, to construct an open knot vector U = {u1, u2, · · · un+p+1}, in which p is the B-spline order, and n is the number of
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basis functions. The basis function Ni,p(u) is defined based on the knot vectors, we have:

Ni,0(u) =

1, if ui ≤ u ≤ ui+1

0, otherwise,
(6)

Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u), p = 1, 2, ... (7)

where Ni,0(u) is piece-wise linear constant. Ni,p(u) is recursively defined based on a combination of preceding basis
functions. With control points P = {Pi}

n
i=1, we can construct a pth-order B-spline curve C(u) as:

C(u) =
n∑

i=0

Ni,p(u)Pi, 0 ≤ u ≤ 1 (8)

where Ni,p(u) is the B-spline basis function of p degree, defined over the knot vector U. Given an arbitrary u value in
the knot vector U, we can compute the point on the B-spline curve by multiplying the value of every non-zero basis
function Ni,p(u) with its control point Pi and taking a summation. For a 2D surface, we define the basis functions as
the tensor product of two univariate B-splines.

Greville abscissae collocation points. The Greville abscissae collocation method is a numerical technique for
solving strong form of PDEs [49, 46]. Using Greville abscissae points, it is relatively straightforward to implement and
accurate for problems with smooth solutions. It is also adaptable to a wide range of high-order differential equations.
For IGA, collocation methods have been recently shown to perform well as an alternative to Galerkin methods [50, 51]
while maintaining higher order convergence rates [52]. The Greville abscissae point ûi is defined based on knots in
the knot vector U = {u1, u2, · · · un+p+1} as:

ûi =
ui+1 + ... + ui+p

p
, i ∈ [1, n] (9)

which can be directly computed on given B-spline surfaces [52]. In the context of neuron growth, we can rewrite each
collocation point as ϕ̂ = {ϕ̂u, ϕ̂v}:

ϕ̂u =

∑i+p
i+1 u
p

and ϕ̂v =

∑ j+p
j+1 v

p
, (10)

where ϕ̂u and ϕ̂v are the components along each parametric direction of the collocation point ϕ̂. By directly solving
the strong form of the phase field neuron growth model, we obtain accurate and smooth results.

3. Neurite morphometric features-driven neuron growth

In this section, we first review experimental neuron culture procedures and semi-automated neurite morphometric
evaluation. Then, we present the computational pipeline for the feature-driven neuron growth model and go through
each implemented module in detail. Finally, we discuss our simulation results.

3.1. Experimental neuron culture and semi-automated neurite morphometric evaluation
Neuron cell culture. Neuron growth exhibits complex morphological characteristics as illustrated in Figure 1A,

and behavior changes throughout the process. For the work presented here, data was used from an existing experi-
mental neuron growth dataset of bright-field microscopy images [29]. Briefly, embryonic rat hippocampal neurons
were cultured over 6 DIV, and the first week of in vitro morphological development was imaged and analyzed. Cryop-
reserved primary, embryonic-day 18 (E18) rat hippocampal neurons (A36513, Gibco, USA) were cultured in dishes
coated with poly-D-lysine (P6407, Sigma-Aldrich, USA) following manufacturer protocol [53]. Neurons at a density
of 10, 000 cells/cm2 were seeded in Neurobasal Plus (A3582901, Gibco, USA) supplemented with 2% B-27 Plus
(A3582801, Gibco, USA). Except during the media change and microscopy imaging, the incubation was conducted
at 37 ◦C with 5% CO2. 50% culture media was replenished with fresh media after 24 hours. The imaging process
utilized the Echo Revolve Microscope (Echo Revolve | R4, inverted, BICO - The Bio Convergence Company, USA)
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Figure 1: Neuron growth images and neurite morphometric features. (A) Fluorescent images of rat hippocampal neurons to illustrate the complexity
of neuron structure. (B) Neurite morphometric features were extracted from experimental images of neuron cultures using semi-automated neurite
morphometric evaluation [29], including average relative turning angle θ̄t , average tortuosity τ̄, average segment length l̄seg, average degree n̄e, and
average total neurite length l̄total.

with a 12-megapixel color camera in the inverted configuration. The magnification was set at 20X or 40X, and cells
were imaged at 0.5, 1, 2, 3, 4, and 6 DIV.

Experimentally-derived neurite morphometric features. Neurite morphometric features used to drive the
growth model in this work were taken from our prior neuron growth dataset [29]. We leveraged the distributions
of representative neurite morphological features per cell (Figure 1B), including average relative turning angle θ̄t, aver-
age tortuosity τ̄, average segment length l̄seg, neurite degrees (the number of neurite endpoints/tips n̄e), and the average
total length l̄total as a dataset shown in Table 2 [12, 29]. The relative turning angles θ̄t is the angle change between
consecutive change point segments. The tortuosity τ̄ is calculated by dividing the length of the neurite tracing by the
distance between its endpoints. The average segment length l̄seg is the average distance between change points of all
neurites for a given cell. Degree n̄e is the number of neurite endpoints for a given cell. The total length l̄total is the
length of all traced neurites part of a given cell.

Table 2: Neurite morphometric features statistics from DIV 0.5 to 6 from rat hippocampal neurons [29].

DIV θ̄t(◦) τ̄ n̄e l̄seg(µm) l̄total(µm)
µ σ Q1 Q3 Q1 Q3 Q1 Q3

0.5 22.18 11.65 1.0225 1.0776 1 2.5 5.05 7.82 27.53
1 22.82 10.82 1.0161 1.0757 1 3 5.58 8.36 36.54

1.5 21.34 9.69 1.0254 1.0507 1 4 5.64 9.39 53.19
2 22.32 8.01 1.0283 1.0685 1 4 6.39 10.35 84.34
3 22.88 6.78 1.0300 1.0725 2 6 8.35 10.95 155.13
4 21.28 4.91 1.0341 1.0623 3 7 6.65 10.86 218.74
6 20.32 2.65 1.0302 1.0498 6 10 10.24 12.36 554.73

Note: µ and σ are the mean and standard deviation, respectively. Q1 and Q3 are the
1st and 3rd quartiles of the features distribution.

3.2. Incorporating neurite morphometric features

Our previous neuron growth model [28] only utilizes relative turning angles θt extracted from experimental data
without adjustments throughout the entire simulation process. Therefore, it can not intrinsically transition between
adjacent neuron growth stages (DIV), leading to unnecessarily dense neurite branching during the simulation. In this
paper, we incorporate DIV-based neurite morphometric features from embryonic rat hippocampal neuron cultures
into our neuron growth model to better capture neurite morphological characteristics that vary across multiple growth
stages intrinsically. We provide a detailed explanation of parameters used in the feature-driven neuron growth proce-
dure in Table 3, and show the overall computational pipeline in Figure 2. Our feature-driven neuron growth consists
of five modules: IGA-C neuron growth solver (Module A), growth cone calculation (Module B), DIV determination
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(Module C), potential tip detection (Module D), and feature-based tip adjustment (Module E). Module A has been
reviewed in Section 2.1. We explain Modules B-E in detail below. Parameters in Table 3 are categorized based on
these four modules.

Table 3: Parameters utilized in feature-driven neuron growth procedure.

Module Parameter Description Module Parameter Description
Module B S neu Sites of detected neurons in ϕ Module D ζtip Tip intensity threshold

S gc Site of growth cones in ϕ ntips Number of neurite tips detected
nneu Number of neurons Module E lseg Evolving neurite segment length
S tips Sites of detected tips S tr Site of neurite tracings
lgc Size of growth cone lneu Neurite length

Hconv Convolution box filter dgeo Calculated geodesic distance
Module C Pinitial Initial neuron cell center θt Calculated relative turning angle

ltotal Evolving total neurite length τ Calculated tortuosity
l̄total Average total neurite length (xtip, ytip) Neurite tip coordinates
θ̄t Average relative turning angle (xroot, yroot) Neurite root coordinates
τ̄ Average tortuosity Algorithms ζsoma Soma geodesic threshold
n̄e Average number of neurite tips 1&2 I Intensity field
l̄seg Average neurite segment length Atip Area of the tip

γtip Tip area threshold

Note: Parameters (l̄total, θ̄t, τ̄, n̄e, and l̄seg) with a bar on top are obtained from experimental neuron cultures.

Growth cone calculation (Module B). Based on the IGA-C neuron growth solver (Module A), we incorporate
the effect of various neurite morphometric features into the model by adjusting competitive tubulin consumption dL

dt
at growth cones of neurite tips. This is achieved by adjusting Mϕ, rg, and sg values to change tubulin concentration
balance at neurite growth cones S gc. S gc is determined using a feature-driven neuron growth procedure (Modules
B-D) that takes ϕ as input and outputs corresponding S gc for each neuron based on neurite morphometric features of
the corresponding DIV in Table 2. During the neuron growth simulation, we run the IGA-C neuron growth solver until
the final DIV is reached by iteratively determining the evolving DIV based on the total neurite length l̄total (Figure 3).
In each iteration, we apply the feature-driven neuron growth procedure to adjust dL

dt , which affects the magnitude of E
(Eq. 4) for the phase field governing equation (Eq. 1) to drive neurite outgrowth. During the procedure, we first use
MATLAB’s connected component analysis to identify neurons S neu within the phase field ϕ. Then, for each identified
neuron, we search for potential neurite tips and identify their locations S tips using a convolution operation with a box
filter Hconv, which will be explained later in Module D. With identified neurite tips S tips, we can generate growth cones
S gc by selecting S tips neighboring area based on the growth cone size lgc (Module E). To simulate axon differentiation,
we adjust mobility term Mϕ on S gc furthest from the initial neural cell center Pinitial to 100 while keeping Mϕ on the
rest S gc as default 60. The Mϕ magnitude difference among neurite tips allows the longest neurite to grow faster than
the rest, therefore achieving axon differentiation. We then increase the rg value to 50 and decrease the sg value to
0 to drive neurite outgrowth at S gc as shown in Module B. Based on semi-automated neurite morphometric features
[12, 29] shown in Table 2, we can obtain relative turning angle θ̄t, average tortuosity τ̄, neurite endpoints n̄e, average
segment length l̄seg, and the total neurite length, l̄total to drive and constrain the neuron growth model.

DIV determination (Module C). To achieve intrinsic DIV transition during simulation, we need to correctly
determine the evolving DIV for S neu during the simulation. As shown in Module C, we incorporate an automatic
neurite tracing algorithm (Algorithm 1) into the computational pipeline to calculate the total neurite length, ltotal, and
use it to determine the current DIV. Algorithm 1 takes neuron growth phase field ϕ as input and outputs all primary,
secondary, and tertiary neurite tracings based on their morphology connections in the neurite structure. In this process,
we first calculate the corresponding neuron cell initial coordinate Pinitial based on centroids of detected S neu. Then, the
algorithm calculates the geodesic distance, dgeo, within the neuron cell from Pinitial. To correctly differentiate neurites
from the soma in a binary domain, we leverage a soma geodesic threshold ζsoma. Neurite tracing is then achieved by
propagating from the maximum geodesic value, max(dgeo), to the minimum geodesic value, max(dgeo), in the same
connected neurite. As shown in Figure 3, once primary neurite tracing is complete, the algorithm repeats the tracing
procedure and removes traced neurites to differentiate among primary, secondary, and tertiary tracings. Finally, based
on obtained neurite tracings, we can calculate the total neurite length, ltotal, by summing up the geodesic distance of

7



Figure 2: IGA-C neuron growth computational pipeline incorporating neurite morphometric features extracted from experiments. (A) IGA-C phase
field neuron growth solver. (B) Updating neuron growth cone to guide neurite outgrowth. (C) Intrinsic growth stage transition based on Algorithm 1
and determined DIV. (D) Detecting potential tips using Algorithm 2. (E) Neurite morphometric features-based tip adjustments.
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each neurite, lneu, and determine the corresponding DIV.

Algorithm 1 Automatic Neurite Tracing (Figure 3)
Input: Neurite growth field ϕ
Output: Neurite tracing and total neurite length ltotal

Procedure Primary neurite tracing
1: Obtain binary neurite growth, ⌊ϕ⌉
2: Calculate the geodesic distance, dgeo, from the center of soma Pinitial to each tip
3: Remove soma region: Set ⌊ϕ⌉ = 0 where dgeo > ζsoma

4: for each neurite do
5: Propagate and trace from max(dgeo) to min(dgeo) to obtain neurite tracings S tr

6: end for
7: Set dgeo along S tr to 0 to remove traced neurites

Procedure Secondary and tertiary neurite tracing
8: Repeat Step 3&4 to obtain secondary and tertiary neurites

Procedure Total neurite length calculation
9: for each neurite tracing do

10: Calculate each neurite length: lneu = max(dgeo) − min(dgeo)
11: end for
12: Compute total neurite length: ltotal =

∑
lneu

Figure 3: Neurite tracing procedure (Algorithm 1) that takes ϕ as input and traces three generations of neurites. (A) Input phase field ϕ. (B)
Geodesic distance dgeo in neuron from Pinitial to neurite tips S tips. Tracing is achieved by propagating along neurites based on dgeo. (C) Output all
neurite tracings S tr and the sum of all neurite lengths.

Potential tip detection (Module D). To simulate neurite outgrowth in the IGA-C phase field neuron growth
model, we carry out a “growth-cone” like activation of the energy term E, as shown in Module D. This approach
allows us to incorporate the number of neurite endpoints n̄e from experiments into the neuron growth model. We
develop a neurite tip detection algorithm (Algorithm 2) with an adjustable threshold value ζtip to constrain the number
of tips S tips. The tip detection algorithm can automatically detect neurite tips based on a given ζtip of 0.4. In Figure 4,
the algorithm takes neurite growth pattern ϕ as input and outputs a list of potential tips in the domain. The neurite
tips are detected as the locations of high intensity magnitude with fewer neighbors than the rest of the neurite regions
(Figure 4C). First, the algorithm calculates an intensity field I by applying convolution on ϕ using a box filter Hconv:

I(m, n) = ϕ(m, n) ⊗Hconv(m, n) =
lkl∑

i=1

lkl∑
j=1

Hconv(i, j) · ϕ(m − i, n − j), 1 ≤ m ≤ M, 1 ≤ n ≤ N, (11)

where Hconv is the convolution kernel, and lkl is kernel size. M and N are the dimensions fo the domain. Then, we can
identify tips by extracting sites with intensity magnitudes lower than ζtip × max(I) (Figure 4D). Based on the 1st and
3rd quartiles of n̄e given in Table 2, we can adjust ζtip to constrain the number of detected tips to fit within the range.
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Algorithm 2 Neurite tip detection (Figure 4)
Input: Neurite growth phase field ϕ, ζtip = 0.4, and γtip = 10
Output: Detected tips S tips

Procedure Detect potential neurite tip locations S tips

1: Goal: To obtain tips by extracting areas with intensity I lower than ζtip
2: Calculate intensity I using convolution on binary ϕ: I = ⌊ϕ⌉ ⊗ Hconv

3: if I > ζtip × max(I) then
4: I = 0
5: end if

Procedure Filter out tips with small areas (noise)
6: Goal: To obtain tip centroids S tips and tip areas Atip using connected component analysis
7: for each detected tip do
8: if Atip ≤ γtip then
9: S tips = 0

10: end if
11: end for

Figure 4: Tip detection procedure (Algorithm 2). (A) Input ϕ field. (B) A zoomed-in view of the tip area (the cyan dashed square in (A)). (C)
Intensity field I is calculated using convolution to ϕ inside the neuron cell (where ϕ = 1). For visualization, lkl is set as 3 (default value is 20). (D)
Detecting potential neurite tips S tips based on tip intensity threshold ζtip × max(I). ζtip is set to 0.4. (E) Growth cone S gc generated based on S tips.
lgc is set as 5. (F) Generated growth cone S gc across the entire neuron.

Because the phase field method solves interface movement based on energy balance, there exist small protrusions
that could be incorrectly identified as tips by Algorithm 2. Therefore, we apply a clearing step at the end to filter out
tips with small areas based on a tip area threshold γtip (the default value is 10). Furthermore, because Algorithm 2 is
intensity-based with connected component analysis, neurites from the same neuron will not intersect as I will decrease
when neurites approach each other, while I on neurites from different neurons will not be affected.

Feature-based tip adjustment (Module E). After determining evolving DIV and detecting potential neurite tips,
we use the external cue-guided mechanism and energy activation zones introduced in the neuron growth model [28]
to guide neurite growth. During neuron growth, an actin-rich protrusion at the neurite tip called the growth cone is
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responsible for exploring the surrounding environment and guiding the neurite growth toward extracellular cues (Fig-
ure 5A). The extracellular medium will affect neurite growth because neurites consume various proteins and chemical
concentrations during the growth and tend to grow towards extracellular attractive cues with high concentration. With
the external cue-guided mechanism, we can specify the direction neurites should grow towards by changing the exter-
nal cue placement (Figure 5B). Based on the evolving DIV, we first select and implement the corresponding neurite
morphometric features (θ̄t, τ̄, l̄seg) from Table 2. During the feature-based tip guidance procedure, we can selectively
update external cues to guide the growing neurites so that neurite segments between updates satisfy the range set by
the 1st and 3rd quartiles (Q1, Q3) of l̄seg by monitoring the average segment length lseg. lseg was calculated by dividing
ltotal by the number of neurite tips recorded. To update external cue placement in Module E, we identify neurite tracing
S tr based on the neurite tip S tips. Then, we calculate the neurite tortuosity τ by dividing the geodesic distances lneu

between the tip and the root by the corresponding Euclidean distance:

lneu = max(dgeo) − min(dgeo), (12)

τ =
lneu√

(xtip − xroot)2 + (ytip − yroot)2
, (13)

where (xtip, ytip) and (xroot, yroot) are the coordinates of the neurite tip and root, respectively. Then, to implement the
average experimental neurite tortuosity τ̄, we repeatedly generate new θt based on θ̄t to place the external cue, until
the calculated neurite tortuosity τ ∈ [τ̄(Q1), τ̄(Q3)]. To generate a new θt, we first calculate the direction of the neurite
using endpoints of S tr. Then, we generate a new θt using Gaussian distribution for each S tips based on mean µ and
standard deviation σ of experiment θ̄t:

θt(x) =
1

σ
√

2π
exp

(
−

1
2

( x − µ
σ

)2 )
. (14)

As shown in Figure 5B, the external cue (cyan dot) is then placed near the neurite tip (red dot) based on θt, and the
tip section S tip closest to the cue is selected as the energy activation zone to simulate the effect of the growth cone.
Once all neurite tips are detected, the updated S tips of each neuron are then passed back for growth cone generation
in Module B.

Figure 5: Neurite growth cone and external cue-guided mechanism. (A) The growth cone is an actin-rich protruding area at the neurite tip. (B)
External cue-guided mechanism. The neurite tip is first detected, then an external cue (cyan dot) is placed based on θt , and finally a growth cone
(orange square zone) is selected close to the external cue.

3.3. Neurite features driven neuron growth results
In this section, we study single- and multiple-neuron growth scenarios using the proposed feature-driven neu-

ron growth model and summarize improvements based on a comparison with experimental neuron cultures and
our previous neuron growth model [28]. Our feature-driven neuron growth IGA-C solver is developed using MAT-
LAB (R2022a) on a desktop with 12 cores and 64GB memory. The batch computation used Bridges-2 Supercom-
puter at Pittsburgh Supercomputer Center through Advanced Cyberinfrastructure Coordination Ecosystem (ACCESS)
[54, 55].

To compare the feature-driven IGA-C model with our previous neuron growth model, we set up scenarios for 1-7
neurons. In Figure 6A, we first show a selection of neuron culture images with different numbers of neurons as a
reference. In Figure 6B-D, we compare our previous neuron growth model (top row) and our feature-driven model
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Figure 6: Neurite morphometric features-driven neuron growth results with intrinsic growth stage transition. (A) Experimental neuron growth
culture images of rat hippocampal neurons. (B) Neuron growth simulation results at each DIV using our previous neuron growth model [28] (top
row) and feature-driven neuron growth model (bottom row). (C-D) Comparison of both models for 1 to 7-neuron scenarios.
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Figure 7: Feature-driven neuron growth model simulation results using a grid size of 400x400. (A) DIV 6 single neuron growth simulation results
with neurite morphometric features implementations. (B) Multiple neuron scenarios (2-7 neurons) simulation results.

(bottom row) on a single neuron over the growth process from DIV 0.5 to DIV 6. It is obvious that our previous
neuron growth shows unnecessary branching at a later stage not observed in experimental images (Figure 6A), while
our feature-driven neuron growth model results exhibit less neurite branching with much fewer neurite endpoints.
This behavior illustrates the effect of n̄e, which constrains the number of neurite endpoints throughout the growth.
Our feature-driven model shows relatively straight neurites through each DIV. This indicates the effect of tortuosity τ̄,
which continuously guides the neurite to grow in a relatively straight path through the external-cue-guided mechanism.
To simulate multiple neurons (2-7 neurons) as shown in Figure 6C&D, we leverage MATLAB’s connected component
analysis to iterate through each neuron S neu within ϕ and apply Modules B-E accordingly. For each S neu, individual
S tips and Mϕ are calculated and then combined together with other neurons at the end of the iteration to drive ϕ
interface change in Module A.

In Figure 7, we present more results using the feature-driven neuron growth model. All neuron growth simula-
tion results ranging from 1 to 7 neurons show similar morphology compared to corresponding experimental neuron
cultures. Among single neuron scenarios (Figure 7A), most neurites attain straight neurite behaviors and experience
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oscillating small bending behaviors due to τ̄ implementations. Neurite branching behaviors are also observed as
neurites grow further out. Some cases develop all three generations of neurites (primary, secondary, and tertiary).
Both of these features are representative of increasing n̄e at later DIV. For a quantitative comparison, we apply the
semi-automated neurite morphometric evaluation to single neuron cases shown in Figure 7A and compare the corre-
sponding features to experiments in DIV 4; see Table 4. We can observe that our feature-driven neuron growth model
generates similar neurite morphology compared to experimentally cultured neurite growth results.

Table 4: Neurite morphometric features statistics comparison.

Dataset θ̄t(◦) τ̄ n̄e l̄seg(µm) l̄total(µm)
µ σ Q1 Q3 Q1 Q3 Q1 Q3

Experiments 21.28 4.91 1.0341 1.0623 3 7 6.65 10.86 218.74
Simulations 25.56 5.97 1.0437 1.0947 5 6 6.72 7.134 202.01

4. CNN-based prediction of the neuron growth process

In this section, we demonstrate a convolutional neural network (CNN) based surrogate model to predict neuron
growth scenarios. We first introduce our CNN auto-encoder implementation with multiple layers. Then, we explain
our data generation procedures. Finally, we present our model prediction results compared to the IGA-C solver.

4.1. CNN auto-encoder model

We propose to use CNN with auto-encoder architecture to predict neuron growth. CNN is a subset of machine
learning techniques proposed to operate on tensor data based on convolution operations. To achieve efficient and
accurate prediction of the neurite growth pattern, we adopt a light convolutional autoencoder [32] as the backbone
of our surrogate model, consisting of a multi-layer encoding and decoding architecture. The 3-channel input tensor
consisting of phase field ϕ, orientation θ, and target iteration iter goes through a 3-layer encoding process and then a
4-layer decoding process with a Sigmoid activation function at the output to predict neuron growth (Figure 8).

Figure 8: Convolutional neural network (CNN) with the auto-encoder architecture for neuron growth prediction.

Given a specific iteration, the model takes the neuron initializations as input and outputs the pattern of the grown
neurite based on the target iteration number in the input tensors. The input includes the initial phase field ϕ, the
orientation θ, and the target iteration number iter, where ϕ is a 300 × 300 matrix representing the initialized pattern
of the neuron cell, and θ is randomly initialized between [0,1] for each neuron growth case. The model builds
correlations among the input channels by extracting cross-channel features using convolution layers and rectified linear
unit (ReLU) activation functions. The encoder reduces the spatial dimensionality of the input tensor and increases
the number of channels (Figure 8). The decoder correlates and upsamples abstract features from the low-dimension
representation to generate a 300×300 neuron growth prediction (ϕ). During the encoding process, we also implement
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max-pooling layers to help prevent overfitting by only considering the element with the maximum value. As for the
activation function, we choose ReLU because ReLU has shown similar accuracy while requiring less computational
time compared to other widely used activation functions [32]. ReLU pushes negative values within the tensor to 0
while not affecting positive values. Because the phase field ϕ is binary, we add the Sigmoid activation function at the
end to scale and reduce CNN model prediction to 0 and 1.

During the training process, we use binary cross-entropy (BCE) to calculate the loss gradients for back-propagation.
Because the phase field ϕ is binary, we can treat the neuron growth problem as a binary classification problem in a 2D
matrix for simplicity. BCE is ideally suited for this study since BCE loss computes the degree of divergence between
binary predictions and the ground truth. Although the commonly used mean square error (MSE) loss function allows
the model to make similar neurite growth pattern predictions, it cannot correctly generate predictions with magnitudes
between 0 and 1. BCE is defined as:

BCE = −
1
N

N∑
1

[yi × log(P(yi)) + (1 − yi) × log (P(1 − yi))], (15)

where yi is the binary label, and P(yi) is the probability of the entity being yi for all N entities. We train the model with
a learning rate α of 1e-4 for 450 epochs. BCE enables us to treat the problem as a binary classification problem but
does not provide a suitable error representation of the 2D domain. Thus, we use the mean magnitude of the relative
error (MRE)) on the test dataset to better evaluate model performance and visualize relative errors of the 2D binary
field (ϕ) [56]. The MRE is defined as:

MRE =

√
1
n
∑n

1 (ϕgt − ϕpred)2

ϕmax
gt − ϕmin

gt
× 100%, (16)

where n is the number of pixels in one matrix, ϕgt is the ground truth, and ϕpred is the prediction. ϕmax
gt and ϕmin

gt are
the maximum and minimum values of the ground truth. From the generated dataset, each neuron case has three input
channels: ϕ with neuron cells initialized near the center of the domain, orientation θ initialized to obtain evolving
growth patterns, and target iteration iters.

4.2. Data generation

Using the IGA-C-based phase field neuron growth model with incorporated neurite features, we run a batch of
neuron growth cases with different neuron placements. For each case, we initialize neuron cells as solid circles inside
the domain and randomly initialize an orientation θ. For multiple neuron growth cases with complex neurite network
formations, we initialize multiple neuron cells in the domain for the solver to develop neurite interactions among
neurons. We consider seven types of neuron scenarios in our model, from 1 to 7 neurons, for generating the training
dataset. In each case, we initialize the domain as a 60×60 quadrilateral control mesh with neuron cell initialization
and a corresponding random variable θ of the same size to introduce different growth behaviors into the model. The
domain adaptively expands as the neurite growth approaches the boundary. We run the solver until DIV 6 is reached
for each case with a time step △t = 0.05. Simulation results at each iteration are extracted and stored based on
collocation points in the domain. Because we adaptively expand the domain during the simulation, the final mesh
size varies case by case. We downsample the domain into 300 × 300 to fit the dataset into our convolutional neural
network. Then, to lower memory requirements and remove redundant information, we extract 60 data frames per case.
Our CNN model takes the initial phase field ϕ, case-specific randomly initialized orientation θ, and target iteration
iter as the input and outputs predicted ϕ at target iter. Thus, we extract and assemble these three variables from each
data point to obtain a dataset of size (105, 60, 300, 300, 3). Before training, the dataset is shuffled and split 75/25 as
training and testing dataset, respectively.

4.3. Single and multiple neuron CNN predictions

In this section, we present predictions of single and multiple neuron cases using our CNN surrogate model. After
setting up our model architecture using Pytorch [57], we use Tesla V100-16 on Bridge-2 Supercompter at Pittsburgh
Supercomputer Center (PSC) to train the model on 75% of randomized neuron dataset for 450 epochs. The model
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reaches an average MRE of 2.56% using our previous neuron growth dataset and 2.23% using the feature-driven
neuron growth dataset.

Using our CNN-based model, we can predict the growth of single neuron cases and calculate the absolute error
compared to corresponding IGA-C solver results (Figure 9A&B). Each neuron prediction closely resembles neurite
growth patterns shown in ground truth with complex branching and axon differentiation. We also observe that the
highest error occurs at the neurite tips. As the iter number increases, more neurite tips form due to branching.
Consequently, the mean MRE of single neuron predictions goes up to 2.87% in the cases shown. We then study
multi-neuron scenarios (2-7 neurons) with complex neurite networks using our CNN-based model and compare the
results with IGA-C results (Figure 9C&D). In each case shown, we observe that more neurons form more complex
neurite networks with the largest mean MRE of 4.99% and that these results show that our model can reproduce
similar neurite growth patterns to the IGA-C solver with high accuracy.

To better visualize our model performance, we plot the MRE in a scatter plot with the average MRE as a red line
(see Figure 10A&C). We observe that model prediction error climbs as iter increases when complex neurite patterns
form for all cases. The maximum MRE appears on multi-neuron cases at later iter, particularly for ones with complex
neurite network formations. We record a maximum MRE of 19.48% and 7.60% for our previous neuron growth model
and the proposed feature-driven neuron growth model, respectively. We select four worst-case predictions based on
MRE for both models (see Figure 10B&D) and observe that they exhibit similar incorrect neurite patterns in areas far
away from the center, indicating a lack of information during training in these areas. This finding is within expectation
because our neuron growth problem is set to grow from the center to the edge of the domain that is adaptively expanded
during the simulation. Therefore, no matter how large our dataset is, there will always be a lack of information near
the boundary. Consequently, our end-to-end CNN-based model may be limited when facing complex neurite networks
near the domain boundary. We also observe that the computation time of our CNN prediction (approximately 0.25s
per prediction) is vastly faster than that of the IGA-C neuron growth solver (approximately 240 hours on average).
Therefore, the CNN-based model can predict complex neuron growth patterns up to 7 orders of magnitude times faster
than the IGA-C neuron growth solver.

5. Conclusion and future work

This paper demonstrates a new computational pipeline to incorporate experimental neurite morphometric features
into an IGA-C phase field model to simulate biomimetic intrinsic multi-stage neuron growth behaviors. Furthermore,
we demonstrate that a CNN-based surrogate model can significantly reduce the associated computational cost for
neuron growth predictions. Based on the results presented in this paper, we conclude that:

• We have incorporated experimentally observed neurite morphometric features across 6 DIV into the IGA-C
neuron growth model to drive and constrain the neuron growth process. The model generates biomimetic
multiple-neuron scenarios with neurite interactions statistically comparable to experimental results.

• The feature-driven neuron growth model is adaptable to different neuron growth behaviors by switching to a
different set of neurite morphometric features. In this paper, we utilize rat hippocampal neuron data.

• The CNN surrogate model can predict the multi-stage neuron growth process. Our model can learn from an
abstract representation of neuron growth data and generate end-to-end accurate growth predictions at a given
iteration. Our proposed model accurately predicts all growth stages (< 2.23% error) while taking 7 orders of
magnitude less computational times compared with our IGA-C neuron growth solver.

The CNN model significantly broadens future research possibilities due to its fast and accurate prediction capabil-
ity. Our model enables researchers to visualize neuron growth results ahead of time without going through expensive
neuron growth experimental trial and error to achieve desirable results. In particular, the proposed machine learning
model will supplement traditional neuron culture experiments by enabling researchers to test and predict the effects of
hypothetical experimental conditions before implementing them in vitro. The proposed computational pipeline will
allow researchers to plan experiments more efficiently and reduce experimental costs significantly by generating large
amounts of predictions based on given initial conditions.
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Figure 9: CNN-based model prediction results of single neuron cases using two neuron growth models. (A, C) Single and multiple neuron growth
prediction using our previous neuron growth model [28]. (B, D) Single and multiple neuron growth prediction using feature-driven neuron growth
model. The top row is the CNN prediction, and the bottom row is the corresponding absolute error. These results show that our CNN model can
reproduce similar neurite growth patterns to the IGA-C solver with high accuracy (MRE < 5%).
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Figure 10: CNN-based model prediction error. (A, C) CNN-based model accuracy statistics of our previous and feature-driven neuron growth
models using the test dataset. MRE of all test datasets are plotted as scatter points, and the average MRE is plotted as the red line. (B, D) Four
worst CNN predictions of both models.

Whereas the model presented in this work substantially improves neuron growth modeling accuracy and speed,
some limitations point to interesting future research directions. Our current features-driven IGA-C neuron growth
model does not consider experimentally-measured growth rates of axons and dendrites [10]. Our growth model lever-
ages the fixed mobility term difference to differentiate the growth rates of dendrites and axons. In the future, this can
be improved by incorporating experimentally-measured growth rates. Another limitation is the lack of informative
neuron growth factors, such as extracellular and intracellular concentrations, crucial for understanding the biophysics
process behind the scenes. This information in future models may help reveal critical and previously unknown re-
lationships between neuron growth and neurodegenerative diseases. In the future, we can combine our model with
material transport in neurons to explore complex biophysics-coupled neurite morphologies [58, 59]. As shown in
CNN predictions, our model lacks the accuracy of modeling neurite growth far away from the center of the soma,
where information degrades. To better understand potential neurophysiological implications, we will carry out an
uncertainty quantification study of our growth results. Finally, our feature-driven neuron growth model is limited to
2D using hierarchical B-splines. We plan to extend our neuron growth model to 3D and implement truncated hier-
archical B-splines (THB-spline) [60, 61]. Note that our current neuron growth code is implemented in MATLAB,
we plan to convert it into C/C++ to improve computational speed. Furthermore, the surrogate CNN model is trained
based solely on simulation data without any information from the phase field governing equations. The residuals of
the governing equations could be considered during the model training process using physics-informed loss functions
[31, 33]. A generalized surrogate model can be trained and adjusted to different types of neuron growth using the
transfer learning approach [62]. Along the deep learning direction, we are also exploring more efficient and effective
model architectures such as recurrent neural networks (RNN) and transformers [63] to better understand temporal
changes during the neuron growth process [64].
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