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Abstract. Current biological neural controllers in biohybrid robotics
rely on networks of self-assembled neurons. However, to be able to re-
producibly create neuron circuits optimized for specific functions, the
connections that the neurons form need to be controlled. Towards ad-
dressing this need, we have developed a tool for the Generation of Au-
tomatic Neuron Graph-Like Interconnected Arrangements (GANGLIA),
which automatically generates micro-patterns using graph drawing algo-
rithms to place the cells based on an input array of neuron connections
and generate micro-patterns in a variety of common file formats. Four
network connectivities, ranging in levels of complexity, were used to as-
sess GANGLIA’s performance. As the complexity increased, the number
of intersections of neurite paths and the amount of time GANGLIA took
to generate the pattern increased. However, for the most complex circuit
tested here, GANGLIA took less than 8 s to generate a micro-pattern,
which is faster than manually generating an equivalent model. The fast,
automatic generation of micro-patterns has the potential to support the
design and fabrication process of complex neuron circuits in vitro for
biohybrid control.
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1 Introduction

Biohybrid controllers incorporate live biological neurons to process information
and generate signals to control a periphery. Biological neural controllers for bio-
hybrid robots have been fabricated using a variety of methods, including directly
using intact networks, such as intact brains in live animals [6], spinal explants
[17], and intact neuromuscular tissues [39]. Alternatively, cultured neurons can
be used for biohybrid control, either on a multi-electrode array to control a
simulated animal [9] or a robot [18,29,38] or as neurospheres co-cultured with
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muscle actuators [2,3]. Although these studies made several advances to imple-
ment neural controls in vitro for biohybrid systems, the neurons stochastically
self-assembled into circuit configurations. Not only does this make the result-
ing controller difficult to replicate, but this does not enable researchers to pre-
scribe specific circuit configurations or control dynamics. Techniques and tools
are needed to design and optimize a controller for specific functionalities and
fabricate controllers with custom and repeatable circuit connectivity.

To control the network connectivity of neurons in vitro, microfabrication
techniques can be used to control the placement and growth directions of neu-
rites. One common technique is to use microcontact printing to constrain cell
growth. Microcontact printing takes advantage of the neurons’ natural chemi-
cal and mechanical sensitivity to control neuron polarization and guide network
formation, by either using a gradient pattern of proteins [28] or patterning ar-
eas with cytophilic proteins on a cytophobic surface [24,36,41]. Another tech-
nique uses microstructures and microfluidics to limit where neurons can grow
physically. This can allow for the isolation and placement of individual cells us-
ing optimized channel geometries [15,37], microsieves [25], or microwells [27,35].
Specialized designs of the channel geometry also enabled the control of regions
that selectively allow for only neurite outgrowth using channels with bottlenecks
[21] or narrow, straight microgrooves [26,30,34]. Using similar microfabrication
techniques could enable researchers to produce biohybrid controllers with repro-
ducible biological neuronal networks. Although these techniques already demon-
strate the capability to guide the formation of simple neuronal circuits between
cells [24,41] or specific populations of cells [21,30,34], manually designing and
generating pattern layouts to represent more complex circuits, becomes increas-
ingly difficult and time-consuming as network complexity increases, particularly
if circuits must be designed manually.

Current existing neuron network modeling tools, such as NEURON [5], Brian
2 [32], and NEST [14], focus on the network and cellular dynamics, rather than
producing network layouts for in vitro fabrication. Other visualization tools,
such as BlenderNEURON [4], are suited for creating reconstructions of biologi-
cal neurons and circuits akin to those in the brain, which would be challenging
to reproduce using current in vitro constrained neuron circuit microfabrication
techniques. Furthermore, the manual editing of each neuron’s morphology to cre-
ate specific circuits will also suffer from challenges similar to those encountered
in the manual design of microfabrication pattern layouts for complex circuits.
Therefore, to bridge the gap between in vitro constrained neuron culture tech-
niques and producing specific complex circuits, a tool for automatically gener-
ating circuit layouts using existing experimental techniques is needed.

To supplement the existing microfabrication techniques towards reproducible,
customized biohybrid controllers, we present a new 2D neuron circuit layout tool
for the Generation of Automatic Neuron Graph-Like Interconnected Arrange-
ments (GANGLIA) to create micro-patterns from a list of neuron connections
automatically. The automatic generation of patterns can greatly reduce the dif-
ficulty and time required to design viable stamps and scaffolds, especially for
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complex circuits. For neuron circuits to be achievable in vitro, the placement of
each soma must be distinct, and paths for each neurite cannot overlap to con-
trol the network connectivity. Similar challenges are addressed when generating
visualizations for complex graphs in discrete mathematics, particularly in the
problem of crossing minimization and uniform distribution of vertices [11,33].
Thus, GANGLIA uses graph drawing algorithms to determine candidate loca-
tions for neuron somas and neurites to rapidly produce patterns in seconds based
on the desired circuit connectivity. The entire micro-pattern can be exported to
common model files, including STEP, DXF, and SVG. These files can be used
either to fabricate a 3D-printed scaffold for microfluidic chips or for microcontact
printing stamps created using soft lithography.

2 Methods

2.1 Micro-pattern generation algorithm

To automatically design micro-patterns for custom biological neuron network
circuitry, a pipeline for GANGLIA was developed in Python 3.9.7 (https://
www.python.org/). GANGLIA takes an input of neuron connections, paired in
an array format, and determines candidate soma and branching node locations
for the micro-pattern using either the Fruchterman-Reingold [7,13] or Kamada-
Kawai [7,16] graph drawing algorithms from the iGraph (0.9.11) Python li-
brary (https://python.igraph.org/) [7] (Refer to Algorithm 1). Then, GANGLIA
parametrically generates a micro-pattern for the circuit using CadQuery (2.2.0)
(https://cadquery.readthedocs.io/). CadQuery enables the micro-pattern to be
exported to several formats (STEP, DXF, SVG, PNG), which can then be used
in external software to physically create the micro-pattern using other methods,
such as 3D printing (STEP file) or microcontact printing (DXF, SVG).

By implementing Algorithm 1, GANGLIA generates two potential layouts for
the placement of the somas using the Kamada-Kawai [7,16] and Fruchterman-
Reingold [7,13] graph drawing algorithms (Figure 1). After the user selects the

Algorithm 1 Determine candidate soma and branching node locations

Input: Neuron Connectivity: C = (Npre,1, Npost,1) . . . (Npre,i, Npost,i)
Output: Soma Locations: (xN1 , yN1) . . .

(
xNj , yNj

)
for Each Neuron j do

if Nj has > 1 post-synaptic connections then
Append C to insert a branching node.

end if
end for
Input connection list into the graph drawing algorithms
Display intermediate visual output from graph algorithm
User input on which graph drawing result to use → (xN1 , yN1) . . .

(
xNj , yNj

)

https://www.python.org/
https://www.python.org/
https://python.igraph.org/
https://cadquery.readthedocs.io/
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Algorithm 2 Generate neural circuit micro-patterns

Inputs: Neuron Connectivity: C = (Npre,1, Npost,1) . . . (Npre,i, Npost,i)
Soma Locations: (xN1 , yN1) . . .

(
xNj , yNj

)
Outputs: Neural Circuit Micro-Patterns (STEP, DXF, SVG, PNG)

Adjust soma and branching nodes positions based on scaling factor
for Each connection pair i do

if Cells are mutually connected without connections to other cells then
Add a curved path connecting the two cells
Add a gap to separate the axonal path from the dendritic path

else if The pre-synaptic cell connects to a branching node then
Add a long, straight path between branching node and pre-synaptic cell

else
Add a short path from post-synaptic cell towards pre-synaptic cell
Add a long path from pre-synaptic cell towards post-synaptic cell
Leave a short gap between axonal path and dendritic path

end if
end for
for Each Neuron j do

aj ← Number of Connections for Nj

if aj < 4 then
if Nj does not have an axon then

Add one long path for the axon
Add (4− aj − 1) short paths for dendrites

else
Add (4− aj) short paths for dendrites

end if
end if
Add circle for soma at

(
xNj , yNj

)
end for
Output neural circuit micro-patterns as desired file type

desired layout, Algorithm 2 generates a micro-pattern. Representations of the
micro-pattern can be exported into several file types for 3D-printable CAD mod-
els (STEP file) and 2D representations (DXF, SVG, PNG) (Figure 1).

2.2 Performance assessment of GANGLIA

To test the functionality of GANGLIA, micro-patterns were generated for four
different connectivity networks: (1) a half-center oscillator inspired by central
pattern generators [22], (2) a human-generated network composed of 9 cells, (3)
a network for the control of a single limb joint for rat locomotion [10], and (4) a
Boolean network for the control of Aplysia feeding [40]. These networks varied in
their level of complexity, as determined by their number of cells and cell-to-cell
connections. For each circuit, after determining the soma and branching node
locations using the graph drawing algorithm, the circuit pattern is generated and
scaled based on the desired lengths for the dendritic and axonal paths. To scale
the pattern, the average distance of each connection was calculated based on
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the initial soma and branching node locations. The average distance was used to
scale the final pattern size relative to a target length between the center of two
somas. The target length is the sum of the following: target axon length, den-
drite length, gap distance between the axon and the dendrite (”synaptic cleft”),
and the soma diameter. This ratio between the target length and the average
distance was used to scale the initial soma and branching node positions. After
scaling the positions, the neurite pathways for each connection were generated
(Algorithm 2). The dendrite length and gap distance were kept constant, but
the axon length was variable for each cell, depending on the final distance be-
tween the two connected cells (See Algorithm 2). Each neurite connection must
have distinct pathways between the pre- and post-synaptic cell that do not inter-
sect with other pathways to pattern these networks in vitro using microcontact
printed stamps or microfluidic chips. Thus, to assess GANGLIA’s performance
in generating micro-patterns for these networks, the number of intersections be-
tween neurite pathways and the computational run time were measured for each
pattern generated.

To measure the computational run time, the tool was used on a Windows
10 machine with an AMD Ryzen 7 3700X 8-core processor, 16 GB RAM, and
an NVIDIA GeForce RTX 2080 SUPER graphics card. The tool was run in the
Anaconda 3 distribution of Spyder 5.4.2. The run-time calculated included the
time the tool took to complete the two procedures in Algorithms 1 and 2 but
excluded the time in which the tool waited for any user inputs and the time the
tool took to export the files.

3 Results and Discussion

GANGLIA automatically generated micro-patterns for all four connectivity net-
works used as test cases (Figure 2). Since the automatic pattern generation is
parametrically driven, different elements of the network, such as the area for
the soma and the lengths of the axons and dendrites, can be used to scale the
pattern to a larger or smaller size. The area designed for the soma can easily be
scaled to either support smaller single-cell bodies or larger neurospheres. Fur-
thermore, the lengths of the neurites can be either user-defined or potentially
driven by realistic sizes based on experimental studies of neuron development
[12,19,20]. However, with thicker neurite widths, there is an increased risk of
overlaps between distinct neurite paths.

The number of intersections also increased with network complexity, as char-
acterized by the number of cells, branching nodes, and connections (Table 1).
Overlapping neurite paths is not desirable since these would not allow for the
control of the connectivity between cells. Thus, these points of intersection could
indicate locations where the layout of the somas and branching nodes may need
to be modified to make distinct neurite paths. One potential option could be
including additional graph drawing algorithms, such as the Davidson-Harel lay-
out [7,8], the distributed recursive graph layout (DrL) [7,23], or the large graph
layout (LGL) [1,7], to provide more options for soma placements that might
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Fig. 1. Using only a list of paired values, indicating which two neurons are connected,
GANGLIA can generate a micro-pattern for visually representing the network. Cur-
rently, GANGLIA provides the user with two possible layout options; each determined
using a different graph drawing algorithm (Fruchterman-Reingold [7,13] or Kamada-
Kawai [7,16]). Once the user inputs the desired layout (in this figure, Kamada-Kawai
or ”kk” was selected, as indicated by the continuing solid black arrows), GANGLIA
can finalize the micro-pattern design and export the design in four file types: STEP,
DXF, SVG, and PNG. The dashed line from the Fruchterman-Reingold result indicates
that the user did not select that layout.

not include these intersections. Another alternative could be scaling GANGLIA
to use a three-dimensional space, rather than only creating planar patterns, to
accommodate increasingly complex patterns. Several graph drawing algorithms
have already been implemented as part of the iGraph library, such as the 3D
Fruchterman-Reingold [7,13], 3D Kamada-Kawai [7,16], and 3D DrL [7,23]. Fur-
thermore, complex circuits could potentially be split into smaller, simpler subcir-
cuits with 2D layouts, which could be combined to form a 3D network. However,
when translating these designs to physical stamps or scaffolds, creating a 3D,
user-defined circuit in vitro may require more complex cell manipulation tech-
niques. Furthermore, experimental validation for fabricating these networks in
vitro by verifying expected synaptic connections and circuit activity is needed.

In addition to the number of intersections, the time to generate a micro-
pattern also increased with complexity (Table 1). The difference between the
time to generate a pattern using either graph drawing algorithm was small since
most of the computational time was spent to generate the CAD model (Algo-
rithm 2, Table 1). Despite the increase in run time, GANGLIA still only takes
seconds to generate a full 3D-printable CAD model for the micro-pattern, which
could take a human designer several minutes to hours to generate manually.
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Fig. 2. Four different networks (half-center oscillator [22], user-generated 9-cell net-
work, rat single limb joint control [10], and Boolean network of Aplysia feeding [40])
were used to test GANGLIA’s micro-pattern generation capabilities. For each net-
work, GANGLIA generated distinct layouts using different graph drawing algorithms
(Fruchterman-Reingold [7,13] or Kamada-Kawai [7,16]
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Table 1. The run time for each procedure described in Algorithms 1 and 2 auto-
matically create a 3D-printable CAD model for a neuron network micro-pattern and
the number of resulting neurite path intersections correspond to the complexity of the
network, as characterized by the number of cells, branching nodes, and synapses (cell-
to-cell connections). The first procedure (Algorithm 1) determine candidate positions
and the second procedure (Algorithm 2) generate the micro-pattern are indicated by
p1 and p2, respectively.

Network Cells Nodes Synapses Algorithm Intersections
Run Time (s)
p1 p2

Half-Center
Oscillator [22]

2 0 2
FR
KK

0
0

0.178
0.178

0.278
0.275

User-Designed
9-Cell Network

9 1 10
FR
KK

0
0

0.207
0.205

2.304
2.322

Rat Single
Limb Joint
Control [10]

10 6 20
FR
KK

4
9

0.241
0.238

4.831
5.200

Boolean
Network of
Aplysia

Feeding [40]

12 6 22
FR
KK

9
9

0.241
0.242

7.252
7.148

4 Conclusion

Biohybrid controllers using biological neurons have demonstrated the ability
to control different peripheries but need to employ fabrication methods that
are repeatable and enable a user to implement a designed circuit scheme. Cur-
rent microfabrication and micromanipulation techniques enable researchers to
control neuron cell placement and circuit formation when fabricating biohybrid
controllers. However, existing techniques require the user to manually design
the circuit schematic, which becomes increasingly difficult and time-consuming
with increasingly more complex network requirements. To supplement existing
microfabrication tools for creating user-designed circuits of biological neurons
in vitro, GANGLIA was developed to automatically generate a micro-pattern
using an input of paired neuron connections and graph drawing algorithms. To
assess the performance of GANGLIA’s pattern generation, four network con-
nectivities, with varying complexity, were used: a half-center oscillator [22], a
human-designed 9-cell network, a control network for a single rat limb joint [10],
and a control network for Aplysia feeding [40]. With the increase in complexity,
the number of intersections and the computational run time increased. How-
ever, the run time for the most complex network (Aplysia feeding) was far less
than the time required to generate an equivalent model manually. In the future,
GANGLIA could be further extended into 3D design space, which may reduce
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or eliminate the number of intersections. Additionally, patterns generated by
GANGLIA could be coupled with neuron growth simulations [31] to predict how
networks will form and function when grown on resulting patterns. Overall, the
automatic generation of micro-patterns for more complex neuron circuits pro-
vided by GANGLIA will greatly reduce circuit prototyping design cycle time
and supports the future creation in vitro biohybrid controllers.

Code Availability The designs and the pattern-generation tool GANGLIA
presented in this paper are available at https://doi.org/10.5281/zenodo.7790394.
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