2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) | 978-1-6654-9190-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/IR0S55552.2023.10342135

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 1-5, 2023. Detroit, USA

Structure from Action:
Learning Interactions for 3D Articulated Object Structure Discovery

Neil Nie® Samir Yitzhak Gadre®

Kiana Ehsanif ~ Shuran Song®

https://sfa.cs.columbia.edu/

Abstract— We introduce Structure from Action (SfA), a
framework to discover 3D part geometry and joint parameters
of unseen articulated objects via a sequence of inferred inter-
actions. Our key insight is that 3D interaction and perception
should be considered in conjunction to construct 3D articulated
CAD models, especially for categories not seen during training.
By selecting informative interactions, SfA discovers parts and
reveals occluded surfaces, like the inside of a closed drawer. By
aggregating visual observations in 3D, SfA accurately segments
multiple parts, reconstructs part geometry, and infers all joint
parameters in a canonical coordinate frame. QOur experiments
demonstrate that a SfA model trained in simulation can general-
ize to many unseen object categories with diverse structures and
to real-world objects. Empirically, SfA outperforms a pipeline
of state-of-the-art components by 25.4 3D IoU percentage points
on unseen categories, while matching already performant joint
estimation baselines.'

I. INTRODUCTION

For robots to be useful out-of-the-box, they must han-
dle a variety of objects—even those that are unfamiliar.
Beyond rigid objects, articulated objects, like drawers and
microwaves, are of particular interest [1], [30], [12], es-
pecially in household use-cases. For tasks involving novel
articulated objects, recovering 3D articulated CAD models
(e.g., URDFs) is a promising starting point, as they are
immediately useful in task-specific planning pipelines [43],
[51, [6], [7], [29]. For instance, recovering models of kitchen
drawers can lay the foundation for downstream planning to
retrieve objects within them. To discover the structure of
objects beyond training categories, there is evidence that in-
teraction is critical [12], [52]. Informative interaction allows
an agent to expose kinematic constraints (e.g., prismatic or
revolute joints) and observe occluded part geometry.

Inferring joints, kinematic constraints, and the full 3D
structure of articulated objects is a complex task that involves
tackling a diverse set of challenges:

o Inferring informative interactions. Given unstructured
point clouds, an agent must act intentionally to expose
structures, as random actions and repetitive actions may
not give signal about articulation.

o Persistent part aggregation in 3D. From an observed
sequence of interactions, it is necessary to discover new
parts and track existing parts, even in the presence of
severe occlusion. If an agent closes a drawer, the part

®Columbia University, TAllen Institute for Al Correspondence to
neil.nie@columbia.edu.
IFor code, data, and videos, see sfa.cs.columbia.edu/

perth

Observations

P e+
#

i Actions

Structure

-

%i& —> I:Z:il:n »a) Part segmentation

(SfA)

¢) Joint parameter d) Articulated CAD

n

= Pull Direction

Prismatic Joint Revolute Joint

Fig. 1. Structure from Action. Our framework discovers an object’s
structure through a sequence of 3D interactions. The resulting structure
includes a) part segmentation, b) 3D reconstruction for each part, and c)
joint parameters, together describing d) a 3D articulated CAD model.

should persist within the object representation, even when
it is not directly visible in the following steps.

o Cross-category generalization. The algorithm should
handle object categories unseen during training, with dif-
ferent joint configurations.

These challenges have motivated simplifying assumptions
in prior works (e.g., objects lie flat [12] or interactions are
given [18]). In this work, we introduce an approach for
constructing articulated 3D CAD models of objects using in-
teractions, thereby relaxing the aforementioned assumptions.

To address these challenges, we introduce Structure from
Action (SfA) to expose the object parts and joints through
interaction. Our key insight is that 3D interaction and per-
ception must be considered in conjunction to construct 3D
articulated CAD models. Specifically, SfA learns 1) a se-
quential interaction policy to expose the object’s hidden part
geometry and kinematics, 2) a dynamic part reconstruction
module that segments and completes the object parts by
aggregating visual observations, and 3) a joint estimation
module that infers object joint types and parameters based
on the observed motion. The final output is a 3D articulated
CAD model (see Fig. 1).

We evaluate SfA on unseen object instances and categories
from the PartNet-Mobility [8], [31], [50] dataset. Our exper-
iments validate the following contributions:

o An interaction policy that learns informative interaction
strategies in 3D to recover 3D articulated object structure.

o A learnable perception module that aggregates visual
observations on-the-fly to improve the accuracy of part
reconstruction and joint estimation.

978-1-6654-9190-7/23/$31.00 ©2023 IEEE 1222

Authorized licensed use limited to: Stanford University. Downloaded on January 01,2024 at 19:30:17 UTC from IEEE Xplore. Restrictions apply.

o A single SfA model (both the interaction and perception
modules) trained in simulation can generalize to many un-
seen object categories with unknown kinematic structures,
and to real-world objects.

II. RELATED WORK

Recently, interactive perception with articulated objects
has gained renewed interest. Here the goals are to recover
objects’ articulation structure, including objects’ part recon-
struction, segmentation, and joints estimation. An algorithm
should also handle objects with multiple parts. While prior
work tackles some of these challenges, SfA presents a com-
prehensive framework addressing all facets of the problem.

Articulated object manipulation. Articulated objects are an
important class of objects for manipulation, and the commu-
nity has come a long way to make datasets and benchmarks
to facilitate research in this direction [8], [31], [28], [50],
[33], [23]. A line of work tackles the problem of interacting
with articulated objects to move their parts [30], [49], [29],
[41]. Some work [25], [3] uses dual-arm manipulators to
enable more complex interaction. This work mostly focuses
on interacting with the purpose of completing a high-level
task (such as opening cabinets [41], etc.). Our goal is to learn
to interact with objects to discover joints and parts. Eisner,
et al. [11] propose a vision-based method to predict the flow
and articulated motions of an object. However, they do not
infer part segmentation or joints. Xu, et al. [52] propose a
single image-based policy network to recover joint axes, but
do not attempt to recover parts.

Perception from passive observation. Prior work has used
a variety of methods to recover object joint constraints, such
as using dense pose fitting [10], adapting neural radiance
field [35], inferring kinematic graphs [2], and semantic seg-
mentation [48]. Mu, et al. [32] propose a model to generate
shapes of articulated objects at unseen angles. These methods
require prior knowledge of the object or are category-
dependent. Moreover, researchers have addressed the part
segmentation and structure recovery from non-sequential
data (e.g., a single view or point cloud) [56], [46], [45], [15],
[21], [1], [22], [37], [38], [47], [14]. In contrast, our method
uses a sequence of data, which enables discovering parts
of unseen object categories without prior knowledge. The
community has tried to recover and track object structures
from motion cues between sequential observations [16], [17],
[24], [4], [53], [511, [55], [40], [27], [42], [34], [54], [39],
[18], [56]. However, these methods rely on motion existing in
the scene. Our method uses previous observations to predict
actions that result in informative motions.

Perception from interaction. Classical approaches use
hand-tuned actions to create informative motion for down-
stream perception [44], [19], [36]. In contrast, we use
a generalizable approach to predict the actions, even for
novel categories. Similarly, more modern approaches focus
on perception, using scripted robot actions and considers
only a single interaction timestep [18]. Kumar, et al. [20]
recover the mass distribution of the articulated objects using

interaction, but they do not recover joints or parts. Gadre,
et al. [12] proposed a method that learns both interaction
and perception. However, they consider a simplified 2D
case with revolute joints. In contrast, by using 3D actions
and perception, we are able to consider both revolute and
prismatic joints and relax restrictions on camera positioning.
Lv, et al. [26] proposed SAGCI, an interactive perception
method for articulated object structure discovery using a
differentiable physics engine. However, it does not explicitly
complete part geometry, nor does it represent occluded
part geometry persistently, which are core functionalities
supported by SfA. More recently, Hsu et al. [13] propose
Ditto in the House, which extends Ditto [18] for discovering
many parts and joints in scenes, leveraging a learned inter-
action policy. However, unlike SfA, they do not condition
their policy on their perceptual inference, thereby breaking
the perception-interaction loop. While they show a human-
interaction proof of concept, we implement a real-world SfA
with a UR-5 robot and RealSense cameras.

III. STRUCTURE FROM ACTION

We introduce Structure from Action (SfA), a learning
framework to interact with articulated objects to discover
their parts and joints. Our framework is agnostic to object
category and to the number of parts and joints that constitute
an object. Hence, SfA can generalize to novel categories.
Given an observation P, the initial RGB point cloud before
any interaction, SfA infers actions to reveal an objects’
parts and joint structure (§ III-A). Then by observing the
object motion, SfA discovers and reconstructs the object part
using a part aggregation module (§ III-B) and infers joint
parameters using a joint estimation module (§ III-C). Over
several timesteps, the output of the algorithm is an articulated
CAD model consisting of 3D part meshes along with the
revolute and prismatic joints that connect them (§ III-D).
Fig. 2 gives an overview of our approach.

A. Learning to Interact with Articulated Parts

The first step of SfA is to infer informative actions to re-
veal an object’s kinematic structure. An action is informative
if it isolates an individual part, instead of moving the whole
object or multiple parts. Furthermore, an informative action
should attempt to move new parts, instead of interacting with
the same part repeatedly.

Action representation. Inspired by AtP [12], we assume
a robot with two arms, which uses its end-effectors to
simultaneously hold and push different parts of the object.
These interactions allow the agent to isolate a single part
of the object and are particularly useful for small objects
without a fixed base. However, unlike AtP, we consider a
continuous 3D action space instead of a discrete 2D action
space. This provides the flexibility to handle parts rotating
and sliding about arbitrary axes. We represent a hold action
as a 3D point location. We define a push to be a 3D point
location and 3D direction along which an agent applies
a fixed force. Note, this definition makes no distinction
between “pulling” and “pushing”. In terms of the mechanics

1223

Authorized licensed use limited to: Stanford University. Downloaded on January 01,2024 at 19:30:17 UTC from IEEE Xplore. Restrictions apply.

Action
Prediction
§III-A

| Push Action

New Pointcloud
Observation t+1
(after interaction)

Pért Volume t Hold Action

liadavaadiam

Inferred actions

Candidate
push actions
i

Supervision (scene flow)

Points with flow Points w/o flow
for push for hold

Sampled
hold action

Fig. 3. Learning Interaction Policy. (/eft) During training, the 3D scene
flow is used to supervise the action directions (green). For a timestep, areas
where flow is zero are assumed to be good hold locations (red). (right)
Inferred candidate push actions conditioned on a sampled hold action.

of pulling, we assume that the agent has access to a suction
gripper that can be used to, say, pull a drawer or push a door.

Action inference. The input to the action inference module is
the current object observation point cloud P, and part history
voxel volume H;. P, € R™*¢ is formed by selecting n points
via farthest point sampling over posed RGBD images. In
our case n = 2048. We consider ¢ = 9 channels encoding
the point’s XYZ location, 3D surface normal, and RGB
color. A part history volume H; encodes the agent’s current
belief about the object’s part segmentation and is spatially
aligned with P; (see §III-B for more details on H;). We
wish to associate each point with its current segmentation
prediction. Hence, we concatenate each point in P; with
its corresponding value from H;, before passing the points
into the action inference module. Action inference is hence
conditioned on the current belief about the part segmentation.
Intuitively, we want inferred actions to push parts that are
not already confidently segmented so that the downstream
perceptual model (§111-B) is able to discover these new parts.

The action inference module is composed of two point
transformer encoder-decoders [57], the first to infer a hold
score for each point and the second to infer a push action
for each point conditioned on a sampled hold location.

To predict the hold action, the network infers a score for
every point. A higher score indicates a better hold location.
We sample a hold location uniformly over the top & = 100
hold scores. We do not want to push on a part that we are
already holding. Hence, we condition the push prediction on
the selected hold action. Concretely, for each point in P;, we
compute the point-wise distance to the selected hold location

—) Articulated 3D CAD
Joint Model §III-D
Estimation §I1I-C
—
A
Part L Joint Parameter|__,
Aggregation
A
L—»
Dynamic Part
Reconstruction
§uI-B Part Volume t+1 Sequential '
~ - Interaction
Perception & Observation

o

sject, SFA infers and executes a sequence of informative actions
nd outputs an articulated 3D CAD model of the object (§ III-D).

and use it as an additional input to the push network. The
push network outputs a flow vector for each input point,
where the vector directions (seen in Fig. 3 (right)) indicate
the inferred push directions and the magnitude indicates the
push score of the action. At inference, we select the push
with the highest score to execute in tandem with the hold.

Dataset creation. 3D scene flow on a part can imply effec-
tive push actions on that part [11]. The direction of a good
push action is aligned with flow vectors, while the magnitude
of each flow vector gives a notion of how effective a push
is. Take for instance a door that swings open. Locations with
larger flow vectors correspond to points farther away from
the revolute axis. Interacting with such points is more likely
to create discernible motion given a push action with a fixed
force. We also notice that points with no flow can be used as
candidates for the hold action. While all points without flow
are not always equally good for holding, our results suggest
that this approximate supervision is sufficient in practice.

Based on this intuition, we generate a supervised dataset
using the PyBullet [9] simulator and URDF assets from
PartNet-Mobility [31]. We move a single part per step by
changing its simulation joint state directly. Once a part has
moved we consider it discovered. We repeat this process for
five timesteps per object, moving parts that have not been
discovered before moving parts that have already moved.
At each timestep, we save the point cloud generated from
posed RGBD views, observable scene flow per point, and the
ground truth part labels, with a single label for undiscovered
parts and unique labels for each discovered part. Once a part
has moved, we generate a categorical label for it.

Supervision and training. Recall our model takes the
current point cloud observation and the current part history
segmentation as input, it then predicts hold scores per point,
samples a hold location and predicts push scores per point
conditioned on the hold location. During training, we sample
interactions from our dataset i.i.d. By using 3D flow as
supervision as in Fig. 3 (left) and the ground truth history
as input, we supervise the hold network to predict no-flow
points with binary cross-entropy loss. The push network is
trained to predict 3D scene flow using MSE loss. Note,
ground truth history is used for training only.

1224

Authorized licensed use limited to: Stanford University. Downloaded on January 01,2024 at 19:30:17 UTC from IEEE Xplore. Restrictions apply.

Occluded Part Observed

Ny

Fig. 4. Dynamic part reconstruction. SfA completes part geometry by
aggregating all past observations in a spatially consistent manner.

Part Preserved

B. Learning Persistent Part Aggregation

The goal of the part aggregation module is to construct a
history volume H; that encodes the agent’s current belief of
the object structure (i.e., segmentation and geometry) from
all the past observations. Performing such part aggregation
is challenging since it requires the algorithm to establish
reliable correspondences between the part before and after
the movement. Here, point-to-point correspondences are in-
sufficient as large portions of the surface may disappear (e.g.,
a drawer as it closes). To tackle these challenges, we propose
a learning-based part aggregation module.

We choose to use volumetric representation to allow the
network better leverage the spatial alignment between dif-
ferent observations and the history volume #;. We represent
H, € Rv*v>vxd which is a 3D segmentation volume
aligned to the current observation in the world frame. In
our case, v = 96, representing spatial dimensions and d = 7
is the channel dimension. The d channels store a probability
distribution over part indices, with the first channel represent-
ing free space. Intuitively, H;, can be decoded to a discrete
segmentation by taking max, at each voxel.

H, is initialized with all occupied voxels from the initial
point cloud observation assigned to the first part with prob-
ability one. Over a few interactions, we want to update H to
more accurately capture the various parts that make up the
object. If a discovered part (say ¢-th part) gets moved again,
the part aggregation module should update the occupancy of
i-th channel in H to reflect new observations, like filling in
surfaces that were previously occluded (Fig. 4 2nd step) or
preserving geometry when it is moved into occlusion (Fig. 4
3rd step). The model must also learn to copy over labels
of stationary parts to maintain parts’ permanence across
interaction steps.

Part aggregation network. The aggregation network is
constructed as 3D CNN. It takes the history #;_; and
voxelized point clouds V;_1,V; € RVXVXVXT ag input, and
outputs a new history H;. The 7 channels encode the object’s
occupancy (1D), surface normal (3D) and color (3D).

Supervision and training. We construct the target history
volume Hfl together with the offline data generation process
described in §III-A. At each step ¢, the target volume includes
channels for the parts moved by the agent and allocates new
channels if new parts are observed. For each part channel,
the target volume will include all surfaces that the camera
has observed in any of the past and current steps € (0,¢],
including surfaces that get occluded in this step.

Prismatic
Orientation

Revolute
Orientation

Position

Fig. 5. Joint Inference. (left) Revolute joint position and axis orientation
votes. (right) Prismatic joint orientation votes.

Since H$' is generated with a consistent part index across
steps, the network learns to keep track of part identity over
multiple interaction steps after the part was first discovered,
without explicitly tracking parts. Moreover, since H' in-
troduces part geometry incrementally for each step (only
after the surface is observed). It allows the network to learn
how to “aggregate” existing observations without the need to
“guess” the unobserved part geometry. Finally, since the ’Hft
preserves the part geometry once it is observed, it allows
the network to learn object permanence during occlusion.
As a result, this part aggregation module is able to discover,
track, and reconstruct the object part geometry using a single
network. The network and trained with voxel-wise cross-
entropy loss between the predicted and target volume.

C. Recovering Joints

Apart from the part information, it is also critical to infer
the object’s joint parameters to fully recover its kinematic
structure. To do so, we designed a joint inference module
that infers the object’s joint type and parameters from two
consecutive object observations FP;_; and P, with object
motion. If no part has moved, this interaction step will be
ignored for joint prediction.

With the learned action policy (i.e., simultaneously hold-
ing and pushing different parts), the agent tries to move
a single part at each step. This interaction strategy greatly
simplifies the joint inference module, which only needs to
consider the case of one component moving about a joint.

If more than one part is moved, the model will treat all
moving parts as one common part and predict one set of joint
parameters, this error could be fixed with future interaction
steps. Lastly, we assume that all movable parts are connected
to the base link via a joint, with the base link always labeled
as part on in the segmentation volume.

Joint network training and inference. The joint inference
module (modeled as a 3D CNN) is inspired by prior work
[18] and a popular joint parameter representation [22]. This
network takes as input V,_;,V;, which are the successive
voxelized point clouds also considered by the part aggrega-
tion network. The inferred joint parameters are represented
as one volumetric output J with three components: 1)
Jiype € RU*VXv*1 for joint type trained with BCE loss. 2)
Jaxis € RVXVXVX3 " oives per voxel predictions of the joint
axis direction (seen in Fig. 5 (right)), trained with cosine
similarity loss with ground truth value. 3) Jpos € RyXvxvxl
gives per voxel predictions of the position of the revolute

1225

Authorized licensed use limited to: Stanford University. Downloaded on January 01,2024 at 19:30:17 UTC from IEEE Xplore. Restrictions apply.

joint axis, which is represented using the distance between
each voxel to its corresponding joint axis position (seen in
Fig. 5 left), trained with MSE loss.

During training, we use the ground truth volumetric part
labels and only supervise on the output voxels of the moved
part. From these predictions, we can compute the joint
parameters by averaging the predictions over all voxels
labeled as the moving part inferred by the part aggregation
module. To track multiple joints over several steps, we
maintain a dictionary where the key is the part label inferred
by the part aggregation model and the value is a list of
{Jiypes Jaxis; Jpos}. If the policy interacts with a
part more than once, the inferred joint parameters will be
appended to the existing list in the dictionary. The final joint
parameters will be the median of all inferred values over
several interaction steps.

D. Constructing an Articulated CAD Model

Given the updated history volume H,, the last step is to
extract the 3D mesh for each part. Recall that each spatial
entry in H; encodes a probability distribution over parts.
We observe that computing an argmax over H; can result
in artifacts. To circumvent this problem, we directly deal
with the continuous probability values to extract a smoother
surface. First, we compute the inverted probability volume
7—2,5 = 1 — H;, where a value closer to O indicates higher
probabilities of the surface. Treating H, as a distance vol-
ume, we can apply marching cubes to extract surfaces. Since
H, consists of continuous value, we can further upsample
the volume (i.e., from 963 to 288%) to improve the mesh
quality without resorting to an expensive implicit surface
representation. Finally, by combining the 3D part mesh with
the estimated joint parameters (§I1I-C), we can generate a
consolidated URDF file describing the articulated 3D CAD
model as visualized in Fig. 1(d)).

IV. EXPERIMENTS

We train single perception and interaction models and

evaluate them on 48 unseen instances from 10 categories
and 77 instances from 7 unseen categories chosen from
PartNet-Mobility. When evaluating our method in simula-
tion, an agent executes actions directly in our PyBullet
[9] environment. For the real-world proof of concept, we
generate qualitative results for the perception component of
our pipeline.
Real-world setup. To demonstrate the feasibility of SfA
in the real-world settings, we set up a single-arm tabletop
environment, as shown in Fig. 6. The robot arm is equipped
with a cylindrical pusher, which moves the object parts
based on the inferred actions. The environment has four Intel
RealSense RGBD cameras, together capturing a RGB point
cloud of the object. The following video shows the real-world
pipeline: https://sfa.cs.columbia.edu.

Metrics. To better understand the quantitative performance
of SfA against competing algorithms, we measure various
metrics in simulation. We first evaluate the the effectiveness
of the interaction policies independent of the perception

model by measuring the optimal action ratio, which is #
optimal action / # total action [12]. An action is optimal if it
successfully moves a part that has not been discovered. If all
parts are discovered, moving any part is considered optimal.
The performance of object structure discovery is mea-
sured by following two aspects: 1) Part segmentation and
reconstructions. Evaluated by part-wise 3D Intersection over
Union (IoU) between predicted and ground truth part geom-
etry. 2) Joint inference. The accuracy of joint estimation is
evaluated by 1) classification accuracy (between prismatic or
revolute). 2) axis orientation error in degree. 3) axis position
error in normalized scale (revolute joint only). All objects
are scaled to fit in a 2 X 2 x 2 cube in this dataset, and
position error is evaluated with respect to this scale.

Baselines and Ablations. We test and compare with the
following alternative interaction or perception module to
study the efficacy of our system design:

e GT-Act (Oracle): to evaluate the perception module’s per-
formance upper bound, we test our perception module with
optimal actions computed based on the ground truth state.

o UMP-Net [52]: an interaction policy that aims to change
an objects’ joint state.

e Ditto [18]: a perception network that infers object’s part
segmentation and joint parameters from a single-step in-
teraction. We combine Ditto with the other interaction
policies to form a full pipeline.

o Heuristic: Heuristic baseline for joint inference with ICP.
Details can be found in Supp.

o AtP [12]: An interaction and perception model, which con-
siders only 2D sequential action and 2D part segmentation.

o NoHistory: An ablated version of SfA to evaluate the
perception module’s performance when multi-step part ag-
gregation is not used as input for interaction or perception.

A. Experimental Results

SfA outperforms baseline pipelines made of state-of-the-
art models. SfA goes beyond combining state-of-the-art
components; Tab. II illustrates this empirically. SfA, on aver-
age, outperforms the combination of existing interaction and
perception modules (Ditto+UMP-Act) by over 25 percentage
points on the 3D reconstruction task with unseen objects.
This result also suggests the immense benefit of considering
perception and interaction in conjunction (i.e., interaction is
based on perception and vice versa).

Generalization to unseen objects and categories. Our
method makes no category-level assumptions, and allows
it to generalize across categories. Tab. I, II, III, show
that SfA is able to achieve similar performance on unseen
categories when compared to training categories, and outper-
forms alternative methods for the majority of the categories.
Specifically, the SfA interaction model beats the closest
baseline by 8 optimal action points on unseen categories.
For objects with novel kinematics structures such as glasses,
the pipeline performance is slightly worse than categories
such as microwave, but still outperforms the best competing
methods by 16 percentage points in the mIoU evaluation as
seen in Tab II.

1226

Authorized licensed use limited to: Stanford University. Downloaded on January 01,2024 at 19:30:17 UTC from IEEE Xplore. Restrictions apply.

Step 1

Cylindrical
Pusher

Observation

Structure 'URS5 Robot Arm Intel RealSense

Intel RealSense Intel RealSense

Fig. 6. Realworld Result. We evaluate the SfA pipeline on real-world point cloud constructed from multiple RGBD frames. The model performs well
on previously unseen instances in the real world despite challenging noise artifacts from the real RGBD camera.

Interaction Sequence Interaction Sequence Interaction Sequence

Input

push

Action Value

hold

Structure

iee

Observation Ditto

Observation Ditto Ours

>t L =%

Fig. 7. Qualitative Result in Simulation. We show the step-by-step results from the SfA pipeline. The inferred actions prioritize new parts discovery
and expose articulations. Our method outperforms the Ditto [18] on both parts reconstruction and joints estimation (revolute: red, prismatic: blue).

TABLE 1
INTERACTION POLICY EVALUATION.

Unseen Instances in Training Categories Unseen Categories
== — — = d -
MY ATl E&c-GSm i M
AtP [12] 00 250 00 500 200 250 00 200 00 00 |200 00 200 200 200 200 0.0
UMP-Net [52] | 00 500 100 00 182 285 00 00 700 833 | 62 166 227 263 55 60 53
SfA 60.0 616 775 100 56.6 950 90.0 666 860 733 | 837 516 191 654 86.6 70.0 222

TABLE I
PART SEGMENTATION AND RECONSTRUCTION RESULTS.

Unseen Instances in Training Categories Unseen Categories
[T —— —— =] AR
My AmBELlTwFE &-Gm | M

SfA-Percep + GT-Act* | 79.5 79.6 925 946 912 947 823 873 734 804|715 879 922 864 929 838 787
Ditto[18]+UMP-Act[52] | 309 37.0 43.8 403 52.1 36.6 40.8 447 437 425|522 373 307 417 521 393 300

Ditto[18]+SfA-Act 244 404 482 43,6 360 66.6 434 508 705 525|540 412 33.0 421 609 366 314
SfA-NoHistory 488 759 86.1 824 66.1 898 684 867 646 875|956 698 49.6 627 839 721 43.6
SfA 715 70.1 931 87.0 689 922 616 852 750 957 | 89.1 788 49.1 58.6 853 67.0 493

1227
Authorized licensed use limited to: Stanford University. Downloaded on January 01,2024 at 19:30:17 UTC from IEEE Xplore. Restrictions apply.

TABLE III
JOINT EVALUATION.

Revolute joint Prismatic joint
Unseen Instances in Training Categories Unseen Categories Unseen Ins. | Unseen Cat.| Type
= = AR
e = = (5] L
'Xﬂég%u7$ﬂllﬁa'a°’°ﬁ‘£- EﬂllmAcc
| Rotation error (in degree) | | 7
Heuristic [40.0 89.8 75.1 89.2 154 104 47.8 59.64 9.17 |81.7 40.5 88.3 84.8 89.2 79.4|56.8 85.9 [81.9 69.7 | 52.7
Ditto [18](0.83 0.82 12.7 3.17 15.6 32.8 0.36 75.83 89.63]0.76 3.02 1.20 8.08 2.98 35.6|85.4 3.63 [2.93 1.27 | 68.9
SfA 0.39 0.79 11.43 1.02 542 8.61 044 2.11 3.72 049 3.74 1.77 7.52 1.94 35.3|1.49 0.27 [2.82 3.34 | 86.7
\ Position error for revolute joint (in normalized scale) | \
Heuristic [0.79 0.76 0.71 0.51 0.67 0.46 0.65 0.57 0.48 [0.82 0.67 0.76 1.17 0.73 0.42
Ditto [18](0.22 0.61 0.19 0.37 0.14 0.23 0.25 0.32 0.44 ({034 0.39 0.13 0.77 0.46 1.05
StA 0.06 0.12 0.03 0.26 0.24 0.07 0.07 0.01 0.05 [0.04 0.05 0.17 0.41 0.13 0.41

Furniture mloU vs. Multi-step Interaction top mloU vs. Multi-step Interaction

80

o
=)

g S
240 2
£ 240
20 SfA-Percep+GT-Act SfA-Percep+GT-Act
20
SFA SfA
SfA-NoHistory SfA-NoHistory
0 Ditto+SfA-Act ol / Ditto+SfA-Act
0 1 2 3 4 0 1 2 3 4
Interaction Steps Interaction Steps
Fig. 8. IoU w.r.t steps. SfA can better discover parts with sequential in-

teractions compared to single-step baseline [Ditto+SfA-Act][18]., especially
on multi-part objects such as furniture. SfA can discover the full structure
of two-part objects in one interaction step.

3D actions are necessary. Observing AtP’s performance
in Tab. I, we see that while 2D action space is sufficient
for simple objects like scissors, it is not effective for com-
plex objects with different joint types, and results in close
to zero effective actions for many object categories. The
AtP baseline’s performance drops considerably when the
object cannot fully be observed from the top-down view.
In contrast, our interaction policy is able to effectively
infer informative 3D actions for a wide variety of objects.
Furthermore, we also compare extensively against baselines
that employ 3D continuous action spaces. Specifically, we
compare to baselines that employ UMP-Net (see Tab. I and
Tab. II). SfA outperforms the 3D action space baselines in
nearly all categories for action inference (Tab. I) and parts
segmentation (Tab. II).

Sequential interaction boosts performance. Based on the
results in Fig. 8, we can observe that our method can not
only discover new parts, but also segment parts better than
Ditto [18], a single-step interaction baseline as well as our
ablated SfA-NoHistory baseline. The improvement is more
salient for objects with more than two parts (e.g., furniture
and refrigerators). Comparing SfA and SfA-Perception (Per-
cep.) + GT-Act in Tab. II, SfA is competitive with the ablated
version with GT interactions. This result indicates the relative
strength of the interaction module the pipeline.

Learned history aggregation helps. By using informative
interactions and aggregating visual observations in 3D, SfA
could reveal and track surfaces that are initially occluded and
better reconstruct part geometry (e.g., the inside of a drawer).

Comparing SfA and SfA-NoHistory in Tab. II, we see that
for most categories the addition of history improves perfor-
mance. These gains are most pronounced for objects with
more than three parts. In certain two-part object categories,
the NoHistory baseline beats SfA. This may be caused by
the accumulation of perception errors in the multi-step part
aggregation process.

SfA generalizes to real-world data. To validate the gener-
alization of our approach to real-world data, we implement
a robot system that uses a 6DoF robot arm, UR-5, and
four RealSense cameras to capture registered RGBD images
of real-world articulated objects. We deploy the full SFA—
trained in simulation—directly on this hardware, executing
actions sequentially in accordance with the inferred action,
recovering structure along the way. Fig. 6 demonstrates part
and joint discovery and part tracking. These results validate
the feasibility of SfA to recover CAD models from real-
world RGBD observations.

Limitation and assumptions. Our pipeline assumes that
only one joint is activated at each interaction step. While
this assumption is mainly satisfied by our learned interaction
policy, there can still be cases violating this assumption.
Additionally our algorithm does not estimate parameters
like friction, which can be useful for robot manipulation.

V. CONCLUSION

We present SfA, a learning framework that discovers 3D
parts geometry and joint parameters of novel articulated
objects through a sequence of inferred interactions. Our
results show that by coupling interactions and perception,
the model can discover and reconstruct 3D articulated CAD
models of objects from novel categories and with unknown
kinematic structures. These results substantiate SfA’s poten-
tial to enable robots to interact and reconstruct 3D articulated
CAD models autonomously.

Acknowledgements. This work was supported in part by NSF
Awards #2143601, #2037101, and #2132519. We would like to
thank Google for the URS robot hardware. SYG is supported by a
NSF Graduate Research Fellowship. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies, either
expressed or implied, of the sponsors.

1228

Authorized licensed use limited to: Stanford University. Downloaded on January 01,2024 at 19:30:17 UTC from IEEE Xplore. Restrictions apply.

[1]
[2]

[4]

[5]
[6]

[7]
[8]

[9]

[10]

(11]
[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

REFERENCES

B. Abbatematteo, S. Tellex, and G. Konidaris, “Learning to generalize
kinematic models to novel objects,” CoRL, 2019.

H. Abdul-Rashid, M. Freeman, B. Abbatematteo, G. D. Konidaris, and
D. Ritchie, “Learning to infer kinematic hierarchies for novel object
instances,” arXiv, 2021.

R. Bertolucci, A. Capitanelli, C. Dodaro, N. Leone, M. Maratea,
F. Mastrogiovanni, and M. Vallati, “Manipulation of articulated objects
using dual-arm robots via answer set programming,” Theory Pract.
Log. Program., 2021.

M. J. Black and A. D. Jepson, “Eigentracking: Robust matching and
tracking of articulated objects using a view-based representation,”
1JCV, 1998.

F. Burget, A. Hornung, and M. Bennewitz, “Whole-body motion
planning for manipulation of articulated objects,” ICRA, 2013.

A. Capitanelli, M. Maratea, F. Mastrogiovanni, and M. Vallati, “Au-
tomated planning techniques for robot manipulation tasks involving
articulated objects,” AI*IA, 2017.

——, “On the manipulation of articulated objects in human-robot
cooperation scenarios,” Robotics Auton. Syst., 2018.

A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al., “Shapenet: An
information-rich 3d model repository,” arXiv, 2015.

E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

K. Desingh, S. Lu, A. Opipari, and O. C. Jenkins, “Efficient non-
parametric belief propagation for pose estimation and manipulation of
articulated objects,” Science Robotics, 2019.

B. Eisner, H. Zhang, and D. Held, “Flowbot3d: Learning 3d articula-
tion flow to manipulate articulated objects,” arXiv, 2022.

S. Y. Gadre, K. Ehsani, and S. Song, “Act the part: Learning interaction
strategies for articulated object part discovery,” ICCV, 2021.

C.-C. Hsu, Z. Jiang, and Y. Zhu, “Ditto in the house: Building
articulation models of indoor scenes through interactive perception,” in
IEEE International Conference on Robotics and Automation (ICRA),
2023.

J. Huang, H. Wang, T. Birdal, M. Sung, F. Arrigoni, S.-M. Hu,
and L. Guibas, “Multibodysync: Multi-body segmentation and motion
estimation via 3d scan synchronization,” arXiv, 2021.

W.-C. Hung, V. Jampani, S. Liu, P. Molchanov, M.-H. Yang, and
J. Kautz, “Scops: Self-supervised co-part segmentation,” CVPR, 2019.
A. Jain, S. Giguere, R. Lioutikov, and S. Niekum, “Distributional
depth-based estimation of object articulation models,” CoRL, 2021.
A. Jain, R. Lioutikov, C. Chuck, and S. Niekum, “Screwnet: Category-
independent articulation model estimation from depth images using
screw theory,” in ICRA, 2021.

Z. Jiang, C.-C. Hsu, and Y. Zhu, “Ditto: Building digital twins of
articulated objects from interaction,” arXiv, 2022.

D. Katz, M. Kazemi, J. A. Bagnell, and A. Stentz, “Interactive segmen-
tation, tracking, and kinematic modeling of unknown 3d articulated
objects,” ICRA, 2013.

K. N. Kumar, I. Essa, and C. K. Liu, “Estimating mass distribution of
articulated objects through non-prehensile manipulation,” arXiv, 2019.
T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer, D. Fox,
and S. Birchfield, “Camera-to-robot pose estimation from a single
image,” ICRA, 2020.

X. Li, H. Wang, L. Yi, L. Guibas, A. L. Abbott, and S. Song,
“Category-level articulated object pose estimation,” CVPR, 2020.

L. Liu, W. Xu, H. Fu, S. Qian, Y.-J. Han, and C. Lu, “Akb-48: A
real-world articulated object knowledge base,” arXiv, 2022.

Q. Liu, W. Qiu, W. Wang, G. D. Hager, and A. L. Yuille, “Nothing
but geometric constraints: A model-free method for articulated object
pose estimation,” arXiv, 2020.

X. Liu and K. M. Kitani, “V-mao: Generative modeling for multi-arm
manipulation of articulated objects,” CoRL, 2021.

J. Lv, Q. Yu, L. Shao, W. Liu, W. Xu, and C. Lu, “Sagci-system: To-
wards sample-efficient, generalizable, compositional, and incremental
robot learning,” in ICRA, 2022.

R. Martin Martin and O. Brock, “Online interactive perception of
articulated objects with multi-level recursive estimation based on task-
specific priors,” IROS, 2014.

R. Martin-Martin, C. Eppner, and O. Brock, “The rbo dataset of
articulated objects and interactions,” IJRR, 2019.

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]
(371

[38]

[39]
[40]

[41]

[42]
[43]
[44]
[45]
[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

(571

1229

M. K. Mittal, D. Hoeller, F. Farshidian, M. Hutter, and A. Garg,
“Articulated object interaction in unknown scenes with whole-body
mobile manipulation,” arXiv, 2021.

K. Mo, L. Guibas, M. Mukadam, A. Gupta, and S. Tulsiani,
“Where2act: From pixels to actions for articulated 3d objects,” arXiv,
2021.

K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su,
“PartNet: A large-scale benchmark for fine-grained and hierarchical
part-level 3D object understanding,” CVPR, 2019.

J. Mu, W. Qiu, A. Kortylewski, A. L. Yuille, N. Vasconcelos, and
X. Wang, “A-sdf: Learning disentangled signed distance functions for
articulated shape representation,” ICCV, 2021.

T. Mu, Z. Ling, F. Xiang, D. Yang, X. Li, S. Tao, Z. Huang, Z. Jia,
and H. Su, “Maniskill: Generalizable manipulation skill benchmark
with large-scale demonstrations,” arXiv, 2021.

A. Noguchi, U. Igbal, J. Tremblay, T. Harada, and O. Gallo, “Watch it
move: Unsupervised discovery of 3d joints for re-posing of articulated
objects,” arXiv, 2021.

A. Noguchi, X. Sun, S. Lin, and T. Harada, “Neural articulated
radiance field,” ICCV, 2021.

S. Pillai, M. Walter, and S. Teller, “Learning articulated motions from
visual demonstration,” RSS, 2014.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” CVPR, 2017.
C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space,” NeurIPS,
2017.

S. Qian, L. Jin, C. Rockwell, S. Chen, and D. F. Fouhey, “Understand-
ing 3d object articulation in internet videos,” arXiv, 2022.

T. Schmidt, R. A. Newcombe, and D. Fox, “Dart: Dense articulated
real-time tracking,” RSS, 2014.

H. Shen, W. Wan, and H. Wang, “Learning category-level gener-
alizable object manipulation policy via generative adversarial self-
imitation learning from demonstrations,” arXiv, 2022.

A. Siarohin, O. J. Woodford, J. Ren, M. Chai, and S. Tulyakov,
“Motion representations for articulated animation,” CVPR, 2021.

J. Sturm, A. Jain, C. Stachniss, C. C. Kemp, and W. Burgard,
“Operating articulated objects based on experience,” IROS, 2010.

J. Sturm, C. Stachniss, and W. Burgard, “A probabilistic framework
for learning kinematic models of articulated objects,” JAIR, 2011.

S. Tsogkas, I. Kokkinos, G. Papandreou, and A. Vedaldi, “Semantic
part segmentation with deep learning,” arXiv, 2015.

J. Wang and A. Yuille, “Semantic part segmentation using composi-
tional model combining shape and appearance,” CVPR, 2015.

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” TOG,
2019.

Y. Weng, H. Wang, Q. Zhou, Y. Qin, Y. Duan, Q. Fan, B. Chen, H. Su,
and L. J. Guibas, “Captra: Category-level pose tracking for rigid and
articulated objects from point clouds,” ICCV, 2021.

R. Wu, Y. Zhao, K. Mo, Z. Guo, Y. Wang, T. Wu, Q. Fan, X. Chen,
L.J. Guibas, and H. Dong, “Vat-mart: Learning visual action trajectory
proposals for manipulating 3d articulated objects,” arXiv, 2021.

F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang,
Y. Yuan, H. Wang, L. Yi, A. X. Chang, L. J. Guibas, and H. Su,
“SAPIEN: A simulated part-based interactive environment,” CVPR,
2020.

Z. Xu, Z. Liu, C. Sun, K. Murphy, W. Freeman, J. Tenenbaum, and
J. Wu, “Unsupervised discovery of parts, structure, and dynamics,”
ICLR, 2019.

Z. Xu, H. Zhanpeng, and S. Song, “Umpnet: Universal manipulation
policy network for articulated objects,” RA-L, 2022.

J. Yan and M. Pollefeys, “A general framework for motion segmen-
tation: Independent, articulated, rigid, non-rigid, degenerate and non-
degenerate,” ECCV, 2006.

G. Yang, D. Sun, V. Jampani, D. Vlasic, F. Cole, C. Liu, and
D. Ramanan, “Viser: Video-specific surface embeddings for articulated
3d shape reconstruction,” NeurIPS, 2021.

L. Yi, H. Huang, D. Liu, E. Kalogerakis, H. Su, and L. Guibas, “Deep
part induction from articulated object pairs,” TOG, 2019.

V. Zeng, T. E. Lee, J. Liang, and O. Kroemer, “Visual identification
of articulated object parts,” in /ROS, 2021.

H. Zhao, L. Jiang, J. Jia, P. H. S. Torr, and V. Koltun, “Point
transformer,” CoRR, 2020.

Authorized licensed use limited to: Stanford University. Downloaded on January 01,2024 at 19:30:17 UTC from IEEE Xplore. Restrictions apply.

