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Phytoliths are opal silica particles formed within plant tis-
sues. Diatoms are aquatic, single-celled photosynthetic algae
with silica skeletons. Phytolith and diatom morphotypes vary
depending on local environmental and climatic conditions
and because their silicate structures preserve well, the study
of phytolith and diatom morphotypes can be used to better
understand paleoclimatic and paleoenvironmental dynam-
ics and changes. This article presents original data from an
820cm-deep stratigraphy excavated at the Hazen diatomite
deposits, a high-elevation desert paleolake in the Fernley Dis-
trict, Northern Nevada, USA. The site has been studied for an
assemblage of fossilized threespine stickleback, Gasterosteus
doryssus, that reveal adaptive evolution. For this study, a to-
tal of 157 samples were extracted at 20 cm intervals cover-
ing approximately 24,500 years. After extraction, the samples
were mounted on slides and viewed under 400-1000x light
microscopy, enabling classification of 14 phytolith and 45 di-
atom morphotypes. Our data support paleoenvironmental re-
constructions of the Hazen Miocene paleolake.
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Specifications Table

Subject

Specific subject area
Data format

Type of data

Data collection

Data source location

Data accessibility

Ecology
Palaeoecological reconstruction of Miocene paleolake local environment
Raw
Table, Figure
Sediment samples were extracted from Miocene paleolake diatomite deposits
using metal chisels. The sediment was then ground with a needle tool in an 1.5ml
eppendorf tube and mounted onto glass slides using a medium viscosity oil-based
mounting agent and sealed with polymer nitrocellulose. Data was collected by
brightfield optical microscopy using a Meiji MT4300L at 40x-100x magnification.
Morphotypes were photographed using a Meiji Techno HD1500T camera.
Morphotypes were identified via comparison to published literature.
Institution: Loyola University Chicago

« City/Town/Region: Chicago

« Country: USA

- Latitude and longitude for collected samples/data: -119.18379, 39.496 (WGS84)
Repository name: Figshare
Repository DOI: 10.6084/m9.figshare.22715866
Direct URL to data: https://figshare.com/articles/figure/
Botanical_Microfossil_Morphotypes_-_Hazen_Diatomite_Formation/22715866

1. Value of the Data

 The fossil phytolith and diatom data can be used to reconstruct palaeoecological histo-
ries of local and regional vegetation, volcanic and fire activity, and other environmental

variables.

- Explainable changes in abundance and composition of ancient microfossil communities
may help predict how modern life might respond to similar environmental change.

« The paleoenvironment reconstruction may help explain observed adaptive evolution by
the threespine stickleback fish (Gasterosteus doryssus) collected from the same strati-

graphic sections.

2. Objective

This article presents original phytolith and diatom data from a currently high-elevation desert
paleolake in Northern Nevada (Fernley District, USA) comprised of Miocene diatomite [1,2]. The
samples were originally collected to study the fossilized threespine stickleback, Gasterosteus do-
ryssus. 157 samples spanning approximately 24,500 years of stratigraphical deposition were ex-
tracted following a published protocol [3] to identify diatom and phytolith morphotypes. The
objective of this study was to offer a new dataset for future study of paleoenvironmental and pa-
leoclimatic contexts of paleolakes from the Hazen Miocene. Micrographs and morphological and
identification details of phytolith and diatom morphotypes can be found in Fig. 1 and Table 1.
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Fig. 1. Paleontological microfossils, including diatoms, phytoliths, sponge spicules, and unidentified morphotypes. Di-
atoms: 1a-1b,2,3, unidentified centric; 4a-4c¢,6,7, Aulacoseira spp.; 5a-5¢, Aulacoseira tenella; 8,10, Cymbella spp.; 9, Cym-
bella cymbiformis; 11,16, Lindavia rossii; 12,13,14,18, Pliocaenicus spp.; 15a-15b, Stephanodiscus spp.; 17, Cyclostephanos
tholiformis; 19,20, Semiorbis spp.; 21,22, Craticula spp.; 23, Fragilariales spp.; 24, Geissleria spp.(?); 25, Punctastriata
mimetica; 26, unidentified; 27, Aulacoseira subarctica. Phytoliths: 28, Poacae, Bulliform flabellate; 29,31a-31b, Broad-
leaf/Conifer, Spheroid psilate; 30, Broad-leaf/Conifer, Spheroid ornate; 32a-32b, Panicoideae (?), Bilobate (fragmented);
33,34,35,36,39,43, unidentified, Elongate entire (Type 1); 37, unidentified, Elongate entire (Type 2); 38, unidentified,
Elongate arcuate; 40,41,42,45,46, unidentified, Polygonal tabular; 44, Poacae, Rondel; 47,49, Broad-leaf/Conifer, Polyhedral
(slereid); 48, Poacae, Acicular (hair-like); 49,50,51, Broad-leaf/Conifer, Blocky. Other: 52-53, sponge spicule fragments;
54-60, unidentified.
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Table 1
Phytolith, diatom and other microfossil morphotype descriptions and identifications.
Microfossil type Morphology Identification Fig. 1 Panel References
Diatom Araphid Fragilaria vaucheriae [5]
Fragilariales spp. 23 [5]
Odontidium spp. [5]
Pseudostaurosira brevistriata [5]
Pseudostaurosira trainorii [5]
Punctastriata mimetica 25 [15]
Staurosira construens binodis [5]
Staurosira construens venter [5]
Staurosirella leptostauron dubia [5]
Staurosirella leptostauron [5]
Staurosirella pinnata [5]
Staurosirella spp. [5]
Tetracyclus spp. [5]
Asymmetric Amphora coffeaeformis [5]
Biraphid
Amphora spp. [5]
Cymbella cymbiformis 9 [12]
Cymbella spp. 8,10 [5]
Encyonema spp. [5]
Gomphoneis spp. [5]
Centric unidentified 1a-1b,2,3 [5]
Actinocyclus spp. [5]
Alveophora americana [18]
Aulacoseira spp. 4a-4c¢,6,7 [5]
Aulacoseira subarctica 27 [16]
Aulacoseira tenella 5a-5¢ [11]
Aulacoseira ambigua [5]
Aulacoseira canadensis [5]
Aulacoseira pusilla [5]
Lindavia rossii 11,16 [13]
Pliocaenicus spp. 12,13,14,18 [5]
Stephanodiscus spp. 15a-15b [5]
Chaetoceros spp. [5]
Semiorbis spp. 19,20 [5]
unidentified 26 [5]
Epithemioid Epithemia musculus [5]
Eunotioid Geissleria spp. (?) 24 [5]
Craticula spp. 21,22 [5]
Eunotia spp. [5]
Semiorbis spp. [5]
Monoraphid Cocconeis spp. [5]
Planothidium apiculatum [5]
Planothidium delicatulum [5]
Nitzschioid Nitzschia fonticola [5]
Surirelloid Surirella amphioxys [5]
Symmetric Biraphid Anomoeneis spp. [5]
Anomoeneis sculpta [5]
Navicula spp. [5]
Phytolith Bulliform flabellate Poaceae 28 [4]
Spheroid psilate Broadleaf/Conifer 29, 31a-31b [4]
Spheroid ornate Broadleaf/Conifer 30 [4]
Spheroid granulate  Broadleaf/Conifer [4]
spheroid plicate Broadleaf/Conifer [4]
Bilobate Panicoideae/Poaceae 32a-32b [4]
Cross (polylobate) Panicoideae/Poaceae [4]
Elongate entire unidentified 33,34,35,36,39,43  [17]
(Type 1)
Elongate entire unidentified 37 [17]
(Type 2)

(continued on next page)
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Table 1 (continued)

Microfossil type Morphology Identification Fig. 1 Panel References
Elongate arcuate unidentified 38 [4]
Polygonal tabular unidentified 40,41,42,45,46 [4]
Rondel Poaceae 44 [4]
Polyhedral Broadleaf/Conifer 47,49 [4]
(sclereid)
Acicular (hair-like)  Poaceae 48 [4]
Blocky Broadleaf/Conifer 49,50,51 [4]
Tracheary annulate unidentified [4]

Other Sponge spicule unidentified 52,53 [4]
Undetermined unidentified 54,55,56,57,58,59, NJ/A

60

3. Data Description

The dataset includes 14 phytolith morphotypes and 45 identifiable diatom morphotypes
>3um. Phytolith morphotypes were described according to ICPN2.0 [4]. Phytoliths originated
from both arboreal and grassland sources. Grassland morphotypes included bulliform flabellate
(Fig. 1; 28), rondel (Fig. 1; 44), bilobates (Fig, 1; 32a-32b), and acicular (Fig. 1; 48) phytolith.
Arboreal phytoliths included spheroids, both psilate (Fig. 1; 29, 31a-31b) and ornate (Fig. 1; 30),
polyhedral sclereids (Fig. 1; 47,49), and blockies (Fig. 1; 49,50,51). Other phytolith morphotypes
included elongate entire (Fig. 1; Type 1, 33,34,35,36,39,43; Type 2, 37), elongate arcuate (Fig. 1;
38), and polygonal tabulars (Fig. 1; 40,41,42,45,46).

Diatom morphotypes were evaluated based on the Database Diatoms of North America [5].
Diatoms were mostly centric and biraphid with some eunotioid and araphids present. Some cen-
tric diatoms were unidentifiable (Fig. 1; 1a-1b,2,3). Some were identifiable to the class or family
level, including Aulacoseira spp. (Fig. 1; 4a-4c) and Stephanodiscus spp. (Fig. 1; 15a-15b), and
some to the species level: A. tenella (Fig. 1; 5a-5c), L. rossii (Fig. 1; 11,16), C. tholiformis (Fig. 1;
17), and A. subarctica (Fig. 1; 27). Asymmetric Biraphid diatoms included Cymbella spp. (Fig. 1;
8,10) and C. cymbiformis (Fig. 1; 9). Symmetric Biraphid diatoms included Craticula spp. (Fig. 1;
21,22) and Geissleria spp. (Fig. 1; 24). Araphid diatoms were particularly small and were identi-
fied as Fragilariales spp. (Fig. 1; 24), with one species-level identification of P. mimetica (Fig. 1;
25). Finally, two Eunotioid diatoms were isolated, one non-identifiable (Fig. 1; 26) and the other
identified as Semiorbis spp. (Fig. 1; 16,20). There were seven unidentified diatom morphotypes.

Other microremains included fragmented sponge spicules (Fig. 1; 52,53) and indeterminate
microfossils (Fig. 1; 54,55,56,57,58,59,60).

4. Experimental Design, Materials and Methods
4.1. Experimental design

The ‘Bot-Meps’ Protocol [3] was followed for the sampling and slide preparation processes
used to develop the presented dataset. Here is a brief summary of the major steps:

(1) A 5mm wide chisel was used to outline a 1 cm x 1 cm section as a sampling region. This
was done in a fume hood onto a protective surface.

(2) The same chisel was used to separate the 1 x 1 cm sample from the rock matrix, at
depths ranging from 2-4 cm, depending on the thickness of the specimen.

(3) The sample was placed in 1.5 mL Eppendorf tubes and ground to a fine powder us-
ing a needle tool. Between each sample the tools used were cleaned to prevent cross-
contamination.
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(4) Resulting powder was mounted onto glass slides with medium viscosity mounting oil and
sealed.

(5) Slides were analyzed using a brightfield optical microscope with 40 and 100 x objec-
tive le5ses and 10 x eye lenses. Microphotographs were achieved using a Meiji Techno
HD1500T microscope camera.

4.2. Materials

Diatomite samples came from Pit L, Quarry D, of the Hazen Diatomite Deposits, a 10.3 Myo
Miocene paleolake (Fig. 2) from Northern Nevada [6,7]. Phytoliths and diatoms were extracted
from diatomite samples at 20 cm intervals over 820 cm of section that captured adaptive evo-
lution by G. doryssus [6,8-10].

Nevada, USA

A
Study Area D
Reno @

[ ]
([

Carson City

Pit L, Quarry D
Hazen Diatomite Deposits

Fig. 2. Location of the study area (c) within the state of Nevada (b) in the United States of America (a).

4.3. Methods

The samples were extracted and prepared following the ‘Bot-MEPS’ Protocol [3], though be-
cause our samples were free of carbonates and organic residues (Cerasoni, unpublished data) we
did not follow the steps to remove those residues, nor did we need the heavy liquid flotation
separation technique. The resulting ground samples were analyzed by brightfield optical mi-
croscopy at 40x and 100x magnification. The identification of each morphotype was carried out
by matching with a high degree of confidence size, shape, surface texture and unique features
to previously published databases and standards [11-18]. All microfossils that did not match any
known published diatom or phytolith morphotype were recorded as unidentified, but still pre-
sented here.
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