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and computational work (Lee & Sung 2009; Inoue et al. 2013; Kitsios et al. 2017; Lee 2017;
Subrahmanyam et al. 2023), to name a few of the previous works. It was known that the
mean flow responds to pressure gradients faster than the turbulence. It has also been found
that there are history effects, and the law of the wall loses its predictive power. However,
it is unclear how one can account for history effects in a mean flow scaling. Consequently,
no good mean flow scaling exists for boundary layers with pressure gradients. This work
aims to account for history effects in the mean flow scaling and establish a universal mean
flow scaling for boundary layers subjected to arbitrary APGs and FPGs.

We begin our discussion by estimating the pressure gradients encountered in
engineering flows. Consider, for example, the boundary layer on the suction side of an
aerofoil, such as sterns on an underwater vehicle or a turbine blade. At large angles
of attack, the pressure gradient causes an appreciable change in the fluid velocity. An
order-of-magnitude estimate of the pressure gradient is

∣

∣

∣

∣

dP

ds

∣

∣

∣

∣

= α
ρU2

0

c
, (1.1)

where dP/ds is the pressure gradient along a streamline, U0 is the velocity of the incoming
fluid, c is the chord length, and α is an order 0.1 factor. Define

Π ≡
δ

ρτw

∣

∣

∣

∣

dP

ds

∣

∣

∣

∣

, (1.2)

where δ is the boundary layer thickness, and τw = ν dU/dy is the wall-shear stress. We
have

Π =
δ

ρτw

αρU2
0

c
=

2αδ/c

Cf

. (1.3)

A rough estimate according to Anderson (2011) is

Cf ∼ O(10−4–10−3), αδ/c ∼ O(0.001–0.01), (1.4a,b)

which leads to

Π ∼ O(1) to O(100). (1.5)

Following this estimate, we limit ourselves to |Π | between 1 and 100. Flows subjected to
a pressure gradient with Π < 1 will be in a quasi-equilibrium state, and flows subjected
to a pressure gradient with Π > 100 are rare.

Consider the scaling of the mean velocity. The canonical law of the wall (LoW) provides
a good working approximation of the mean flow in a zero pressure gradient (ZPG)
boundary layer. Here, the LoW refers to the scaling of the mean flow in the constant stress
layer (or the inner layer), where the inner scaled velocity follows a linear and a logarithmic
scaling of the inner scaled distance from the wall for y ! 5ν/uτ and ν/uτ $ y $ δ,
respectively:

U+ = y+ for y ! 5ν/uτ ,

U+ =
1

κ
log( y+) + B for ν/uτ $ y $ δ.

⎫

⎬

⎭

(1.6)

The behaviour of the mean flow in the buffer layer is also a function of y+ only, but there is
no accepted explicit expression. Here, U+ = U/uτ , where U is the mean velocity, uτ is the
friction velocity, y+ = yuτ/ν, ν is the kinematic viscosity, y is the wall-normal coordinate,
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A universal velocity transformation for boundary layers

t = 0t > 0
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Figure 1. (a) Schematic of the model problem. A fully developed channel is subjected to a suddenly imposed
APG and decelerates as a result. (b) Mean velocity profiles at a few time instants. The flow is initially at
a Reynolds number Reτ = 1000. An APG Π = +100 is imposed at t = 0. Shown here are velocity profiles
at tuτ,0/δ = 0.005 (blue), 0.035 (red) and 0.065 (yellow). The profiles are normalized with the density ρ,
viscosity µ and instantaneous wall shear stress τw(t). The dashed lines correspond to (1.6), but we allow κ and
B in (1.6) to vary. Best fits yield κ = 0.35, 0.23, 0.079 and B = 5.8, 5.48, 9.2 at tuτ,0/δ = 0.005, 0.035, 0.065,
respectively.

δ is an outer length scale (e.g. boundary layer thickness, half-channel height, pipe radius),
κ ≈ 0.4 is the von Kármán constant (keeping only one significant digit), and B ≈ 5 is a
constant (Kim, Moin & Moser 1987; Monty et al. 2009; Smits, McKeon & Marusic 2011;
Marusic et al. 2013; Morrill-Winter, Philip & Klewicki 2017). Equation (1.6) fails when the
boundary layer is subjected to a strong pressure gradient (Spalart & Watmuff 1993; Nagib
& Chauhan 2008; Monty, Harun & Marusic 2011). For illustrative purposes, consider the
model problem sketched in figure 1(a), where a fully developed channel is subjected to
a suddenly imposed APG. Figure 1(b) shows the velocity profiles in inner units, at a few
time instants after an APG Π = 100 is imposed suddenly on a Reτ,0 = uτ,0δ/ν = 1000
channel. Beside that the velocity is above the log law, the region within which U+ = y+

also retreats, which is quite peculiar. We discuss the scaling of the mean flow in the viscous
sublayer in Appendix A. Define

(p+ ≡
ν

ρu3
τ

dP

dx
and β ≡

δ∗

ρu2
τ

dP

dx
, (1.7a,b)

which are common non-dimensional measures of the APG, with β being the Clauser
pressure gradient coefficient, δ∗ being the displacement height, and ρ being the fluid
density. The displacement height in a channel flow is defined as

δ∗ =

∫ δ

0

(

1 −
U

Uc

)

dy, (1.8)

where δ is the half-channel height, and Uc is the mean streamwise velocity at the
centreline. Here, the Clauser parameter is the ratio of the two quantities that cause
the momentum thickness to increase in a spatially developing boundary layer (in the
momentum integral equation). We will report both (p+ (Nickels 2004; Johnstone,
Coleman & Spalart 2010; Lozano-Durán et al. 2020; Knopp et al. 2021) and β in the
following for completeness. For this model problem, (p+ = 0.1, β = 11.6 at the initial
state.

We see clear history effects in figure 1(b): the same force leads to different velocity
profiles at different time instances. This is quite expected: since F = ma and Ft = m (V ,
the change in the fluid velocity is determined not solely by the instantaneous force but by
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P.E. Chen, W. Wu, K.P. Griffin, Y. Shi and X.I. Yang

the force acting on the fluid parcel for a period of time. Such history effects were also
noted in Perry, Marusic & Jones (2002), Bobke et al. (2017), Volino (2020) and Romero
et al. (2022b), among others. We see from figure 1(b) that the LoW in (1.6) with κ = 0.4
and B = 5 does not fit the data, not even the lower part of the velocity profiles, which is
in contrast to Galbraith, Sjolander & Head (1977), Perry (1966) and Spalart & Watmuff
(1993). By varying the two ‘constants’ in the log law, (1.6) fits the mean flow in the inner
layer (Nagib & Chauhan 2008; Lee & Sung 2009; Knopp et al. 2021), as indicated by the
black dashed lines in figure 1. Here, the inner layer is the layer where the outer length
scale does not play a role. In most studies, this layer is considered as y ! 0.15δ. However,
tuning κ and B to fit data reduces the modelling task to a fitting exercise. The same can be
said about the half power law (Stratford 1959; Perry & Schofield 1973; Knopp et al. 2021)
and other laws (Perry 1966; Perry, Bell & Joubert 1966; Ding et al. 2019; Subrahmanyam
et al. 2022) where one must also adjust the ‘constants’ to fit data. Although the LoW also
contains constants, i.e. κ and B, that must be calibrated against data, the fact that one does
not need to adjust these two constants as a function of the Reynolds number makes the
LoW ‘universal’.

This work aims to establish a universal mean velocity scaling for wall-bounded flows
subjected to arbitrary streamwise pressure gradients. Here, universality is with respect to
the pressure gradient and its history. Mean flow scalings are usually explicit algebraic
relations with the normalized velocity on the left-hand side and the dependent variables
on the right-hand side (Volino 2020; Romero et al. 2022a). If we were to follow this
path, we would be looking for a scaling for U as a function of the inner and outer length
scales and the history of the pressure gradients, which is a daunting task. Instead, we
will pursue the idea of velocity transformation. This idea has received much attention in
the high-Mach-number-flow literature (Huang & Coleman 1994; Trettel & Larsson 2016;
Volpiani et al. 2020; Griffin, Fu & Moin 2021). The goal of these transformations is to
find Um and Lm,

U∗ =

∫ U

0

1

Um

dU, y∗ =

∫ y

0

1

Lm

dy, (1.9a,b)

such that the transformed velocity U∗ follows the LoW and is a function of y∗ irrespective
of the density variation in the flow (Van Driest 1951; Modesti & Pirozzoli 2019; Modesti,
Pirozzoli & Grasso 2019). We have a similar goal, but instead of equilibrium boundary
layers, we study non-equilibrium boundary layers subjected to streamwise pressure
gradients. The objective is to find a transformation such that the transformed velocity U∗

follows the LoW and is a function of y∗ only, irrespective of the pressure gradient.
The rest of the paper is organized as follows. We derive the transformation in § 2. Details

of the validation direct numerical simulations (DNS) data are presented in § 3, followed
by test results in § 4. Finally, we conclude in § 5.

2. Velocity transformation

In this section, we derive the velocity transformation from the Navier–Stokes equation and
discuss its properties.

2.1. Assumptions

The derivation assumes the following. First, the flow is incompressible. Second, the mean
flow is two-dimensional. This holds when the pressure gradients are in the streamwise
direction. Third, the boundary layer is thin with respect to its rate of growth. That is, the

970 A3-4

1�
��

:

  
�7

2�7
�0

 �
��

��
�	

 3/
5

��
��

��
�	

� �
��

��
2:
1.

��
7�

�2�
.�

�!
��

�5
��

2�
0.

�

�2

 .
�:

2�!
��

�.
::



A universal velocity transformation for boundary layers

velocity gradient in the wall-normal direction is much larger than that in the streamwise
direction (which is only approximately true for boundary layers but is exactly true for
channel flow). This assumption limits the discussion to attached flows, i.e. before incipient
separation. Fourth, the flow is assumed to be initially in an equilibrium state. That is, the
mean flow initially conforms to the LoW. Fifth, it is assumed that a universal velocity
transformation exists. Define

f ≡
dU∗

dy∗ (1 + ν+
t ). (2.1)

Here, ν+
t = νt/ν, where ν is the kinematic viscosity, νt = −⟨uv⟩/(dU/dy) is the eddy

viscosity, and −⟨uv⟩ is the Reynolds shear stress. By universality, f is a function of y∗

only in the inner layer. Like any assumption in any theory, (2.1) facilitates mathematical
derivations, and its validity must be verified empirically.

Since the transformed velocity U∗ is a function of the transformed wall-normal
coordinate y∗ only, it follows from this universality assumption that ν+

t is also a function
of only y∗ only in the inner layer. In addition, because f = 1 in the inner layer of ZPG
boundary layer flows (due to the constant stress layer), the universality assumption implies
that f ≡ 1 in all flows – in the layer where the outer length scale does not play a role.
Note that we do not need to assume a constant stress layer. The function f , in general, is a
function of y/δ.

2.2. Governing equation

The Reynolds-averaged streamwise momentum equation reads

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= −

1

ρ

∂P

∂x
+

∂τxx

∂x
+

∂τxy

∂y
, (2.2)

where

τxx = 2ν
∂U

∂x
−

〈

u′u′〉 , τxy = ν

(

∂U

∂y
+

∂V

∂x

)

−
〈

u′v′〉 . (2.3a,b)

The equation assumes incompressibility and two-dimensional mean flow. Hence the ∂/∂z

terms are dropped. Here, the uppercase letters denote mean quantities, the lowercase letters
denote instantaneous quantities, ′ denotes fluctuations, x, y and z are the streamwise,
wall-normal and spanwise directions, U, V, W or u, v, w give the velocity in the three
Cartesian directions, τ is the stress, and ⟨·⟩ denotes ensemble averaging. Invoking the thin
boundary layer assumption leads to

∂V

∂x
$

∂U

∂y
,

∂τxx

∂x
$

∂τxy

∂y
. (2.4a,b)

It follows from (2.2), (2.3a,b) and (2.4a,b) that

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= −

1

ρ

∂P

∂x
+

∂τxy

∂y
, (2.5)

where

τxy = ν
∂U

∂y
−

〈

u′v′〉 . (2.6)
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P.E. Chen, W. Wu, K.P. Griffin, Y. Shi and X.I. Yang

We take the y derivative of both sides of (2.5):

(

∂

∂t
+ U

∂

∂x
+ V

∂

∂y

)

∂U

∂y
+

∂U

∂y

∂U

∂x
+

∂V

∂y

∂U

∂y
= −

1

ρ

∂2P

∂x ∂y
+

∂2τxy

∂y2
. (2.7)

We seek to simplify (2.7). First, incompressibility requires

∂U

∂x
+

∂V

∂y
= 0. (2.8)

Second, the y momentum equation reads:

1

ρ

∂P

∂y
+

∂
〈

v2
〉

∂y
= 0. (2.9)

By applying ∂/∂x on both sides of (2.9), we have

1

ρ

∂2P

∂x ∂y
=

∂2
〈

v2
〉

∂x ∂y
$

∂2τxy

∂y2
, (2.10)

due to the thin boundary layer assumption. Substituting (2.8) and (2.10) into (2.7) leads to

D

Dt

∂U

∂y
=

∂2τxy

∂y2
. (2.11)

Invoking the eddy viscosity νt, the shear stress term is

τxy = ν
∂U

∂y

(

1 + ν+
t

)

. (2.12)

Here, νt is unspecified. Hence invoking νt introduces no modelling error. Plugging (1.9a,b)
and (2.1) into (2.12), we have

ν

τxy

Um

Lm

f = 1. (2.13)

2.3. Transformation

Equations (1.9a,b) and (2.13) lead to

U∗ =

∫ U

0

νf

τxy

dy∗

dy
dU. (2.14)

Equation (2.14) is a velocity transformation, but it requires knowledge of y∗. In the
following, we derive a transformation that maps y+ to y∗.

Integrating (2.11) in time, we have

∂U

∂y
=

(

∂U

∂y

)

0
+

∫ t

0

∂2τxy

∂y2
Dt, (2.15)

where the subscript 0 denotes quantities evaluated at the initial state. Note that the
integration is Lagrangian. Invoking the assumed initial state, the mean flow abides by
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A universal velocity transformation for boundary layers

the LoW, therefore,

(

∂U

∂y

)

0
=

(

u2
τ

ν

1

F( y+)

)

0
=

u2
τ,0

ν

1

F( y+
0 )

, (2.16)

where

F( y+
0 ) = 1 + κy+

0

(

1 − exp(−y+
0 /A)

)2
(2.17)

is a damping function (Van Driest 1956; Kawai & Larsson 2012; Yang & Lv 2018), A = 17
is a constant, y+

0 = yuτ,0/ν, and uτ,0 is the friction velocity at the initial state. The use of
the van Driest damping function is to give the equilibrium ∂U/∂y a closed expression. The
derivation itself does not necessarily need such an approximation. An alternative definition
for F is

F( y+
0 ) =

u2
τ,0

ν

1

(∂U/∂y)0
, (2.18)

where we have left (∂U/∂y)0 as is. Invoking (2.13) and the assumption that U∗ follows the
LoW, the left-hand side of (2.15) is

∂U

∂y
=

τxy

νf

1

F( y∗)
. (2.19)

Substituting (2.19) into (2.15) and rearranging, we have

F( y∗) =
1

(

∂U

∂y

)

0
+

∫ t

0

∂2τxy

∂y2
Dt

τxy

νf
. (2.20)

Here, F is given in (2.17), f ≡ 1 for y $ δ, its value in the outer layer can be measured
at the initial state (as a function of y/δ), and the derivative (∂U/∂y)0 is known from the
equilibrium LoW. Equations (2.20) and (2.14) are the transformations that we are looking
for.

2.4. Further simplification

We rearrange (2.20) and (2.14) to put them into the standard form as defined in (1.9a,b).
First, we define

g ≡
∂U/∂y − (∂U/∂y)0

(∂U/∂y)0
. (2.21)

It follows from (2.15), (2.16) and (2.21) that

g =
ν F( y+

0 )

u2
τ,0

∫ t

0

∂2τxy

∂y2
Dt. (2.22)

Equations (2.22) and (2.20) together give

y∗ = F−1
[

1 + gw

1 + g

τ+

f
F( y+

0 )

]

. (2.23)

Here, F−1 denotes the inverse function of F, τ+ = τxy/τxy,w, and gw is g evaluated at
the wall. Notice that τ+ is ill-defined at separation, therefore our scaling is valid up to
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incipient separation. The term (1 + gw)/(1 + g) in (2.23) accounts for the history effects.
Equation (2.23) gives

y∗ =

∫ y

0

F( y∗)

F′( y∗)

[

f

τ+

∂

∂y

(

τ+

f

)

−
1

1 + g

∂g

∂y
+

F′( y+
0 )

F( y+
0 )

dy+
0

dy

]

dy. (2.24)

Equations (2.24) and (2.14) give

U∗ =

∫ U

0

νf

τxy

F( y∗)

F′( y∗)

[

f

τ+

∂

∂y

(

τ+

f

)

−
1

1 + g

∂g

∂y
+

F′( y+
0 )

F( y+
0 )

dy+
0

dy

]

dU. (2.25)

Equations (2.24) and (2.25) are the velocity transformation.

2.5. Discussion

The transformations are collected below:

y∗ =

∫ y

0

F( y∗)

F′( y∗)

[

f

τ+

∂

∂y

(

τ+

f

)

−
1

1 + g

∂g

∂y
+

F′( y+
0 )

F( y+
0 )

dy+
0

dy

]

dy,

U∗ =

∫ U

0

νf

τxy

F( y∗)

F′( y∗)

[

f

τ+

∂

∂y

(

τ+

f

)

−
1

1 + g

∂g

∂y
+

F′( y+
0 )

F( y+
0 )

dy+
0

dy

]

dU.

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(2.26)

We have the following remarks. First, the transformation accounts for history effects
through the time integral g. It is interesting to note that the integral is not weighted,
therefore the flow does not ‘forget’. In other words, an event at t = 0 and an event at a
later time instant contribute equally to the transformation. Second, the transformation is
valid in the outer layer as well. The function f is 1 in the inner layer and varies as a
function of y/δ outside. By measuring f from the initial condition as a function of y/δ, the
transformation should collapse all velocity profiles. Hence the transformation avoids the
constant stress layer assumption, at least formally. Third, the transformation is presented as
a descriptive tool for now. The transformation shows how history should be accounted for
in mean flow scalings. It shows that pressure gradients do not affect the mean flow directly.
Instead, they affect the shear stress τxy, which then affects the mean flow. Closures for τxy

and ν+
t are needed for the transformation, a topic that we do not discuss here. Fourth, the

transformation involves a function inverse and therefore is not explicit.
In the following, we simplify and rewrite the transformation for the log layer in

a ZPG boundary layer, for Couette–Poiseuille flow, for a channel with a suddenly
imposed streamwise pressure gradient, and for spatially developing boundary layers with
streamwise pressure gradients.

First, for the log and the viscous layers, we have

τxy = const. (2.27)

It follows that g = 0 and τ+/f = 1. Hence for flows in the constant stress layer, the velocity
transformation reduces to U∗ = U+ and y∗ = y+.

Second, we consider the Couette–Poiseuille flow. Figure 2(a) shows a schematic of the
flow. The flow is subjected to an APG near one wall and an FPG near the other. The stress
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A universal velocity transformation for boundary layers

z
x

x

δPG

(a) (b)

Uw

Uw U
∞

y

Figure 2. (a) A sketch of Couette–Poiseuille flow. The flow is subjected to an FPG near the top plate and an
APG near the bottom plate (Johnstone et al. 2010; Coleman & Spalart 2015). (b) A sketch of a boundary layer
subjected to APGs. The pressure gradient (PG) is imposed by varying the freestream velocity. The reader is
directed to Bobke et al. (2017) for more details.

τxy is a linear function of y. The function f can be measured from the Couette flow, and
f = 1. It follows that g = 0, therefore (2.23) becomes

F( y∗) = τ+ F( y+). (2.28)

The velocity transformation becomes

U∗ =

∫ U

0

νf

τxy

F( y∗)

F′( y∗)

(

1

τ+

∂τ+

∂y
+

F′( y+)

F( y+)

dy+

dy

)

dU. (2.29)

Third, for channel flow with a suddenly imposed streamwise pressure gradient, the mean
advection is 0, therefore the Lagrangian integration degenerates to an Eulerian one, i.e.
Dt = dt. It follows that (2.22) becomes

g =
ν F( y+

0 )

u2
τ,0

∫ t

0

∂2τxy

∂y2
dt, y > 0. (2.30)

Furthermore, measuring f from the initial condition, we have f = 1 − y/δ.
Fourth, for a spatially developing turbulent boundary layer with streamwise pressure

gradients, Lagrangian integration is along the streamline, and (2.22) becomes

g =
ν F( y+

0 )

u2
τ,0

∫ t

0

∂2τxy

∂y2

ds

|U |
, y > 0, (2.31)

where ds is along a streamline, and |U | is the velocity magnitude. Equation (2.31)
is singular at the wall because of the no-slip condition. However, this singularity is
removable. We know that the velocity follows U+ = y+ sufficiently close to the wall,
irrespective of any non-equilibrium effects. Since U∗ is a universal function of y∗, we
must have U∗ = y∗ sufficiently close to the wall as well. This gives directly y∗ = y+ at the
wall, thereby removing the singularity at the wall.

3. Computational set-up

To test the velocity transformation, we conduct DNS of channel flows subjected to a
suddenly imposed APG or FPG. The flow is sketched in figure 1(a). It is a fully developed
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Case Reτ,0 Π0 β (p+ × 103 Lx × Ly × Lz nx × ny × nz (x+ × (y+ × (+
z N

R5A1 544 1 [0.13, 3.88] [1.84, 187] 4π × 2 × 2π 576 × 243 × 540 11.8 × (0.048, 7.23) × 6.32 3
R5A10 544 10 [1.31, 20.1] [18.4, 488] 4π × 2 × 2π 576 × 243 × 540 11.8 × (0.048, 7.23) × 6.32 4
R5A100 544 100 [19.9, 49.5] [184, 1245] 4π × 2 × 2π 576 × 243 × 540 11.8 × (0.048, 7.23) × 6.32 12
R5F10 544 −10 [−2.49, −0.94] [−11.9, −7.6] 4π × 2 × 2π 1024 × 512 × 1024 13.4 × (0.13, 6.72) × 6.70 1
R5F100 544 −100 [−24.9, −1.93] [−119, −16.1] 4π × 2 × 2π 1024 × 512 × 1024 12.6 × (0.12, 6.32) × 6.29 1
R10A10 1000 10 [1.17, 8.17] [10.1, 91.9] 8π × 2 × 3π 2048 × 512 × 1536 12.3 × (0.12, 6.15) × 6.13 2
R10A100 1000 100 [11.6, 44.1] [100, 573] 8π × 2 × 3π 2048 × 512 × 1536 12.3 × (0.12, 6.15) × 6.13 3

Table 1. DNS details of channel flows subjected to a suddenly imposed adverse (Π > 0) or favourable (Π < 0) pressure gradient. Here, Reτ,0 is the initial Reynolds
number; Π is positive for APG and negative for FPG; Lx, Ly and Lz are the domain sizes in the streamwise, wall-normal and spanwise directions. Normalization is by the
half-channel height. Also, nx, ny and nz are the numbers of grid points in the three Cartesian directions, and (x+, (y+ and (z+ are the grid spacings in the three directions.
For (y+, we list the resolution at the wall and the channel centre. We list the grid resolution at the beginning or the end of the DNS. For Π > 0, a finer grid must be
employed at the beginning than at the end, and we list the grid resolution at the beginning of the DNS, and vice versa. Parameter N is the number of ensembles used to
compute the flow statistics.
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A universal velocity transformation for boundary layers

Case Flow type Reference Reτ Π β (p+ × 103

CGSR5A CP Coleman et al. (2015) 589 +1.59 — 2.7
CGSR12F CP Coleman et al. (2015) 1210 −0.39 — −0.32
JCSR3A CP Johnstone et al. (2010) 336 +1.24 — 3.7
JCSR6F CP Johnstone et al. (2010) 627 −0.36 — −0.57
m13 APG-BL Bobke et al. (2017) [190, 896] [3.80, 5.51] [0.86, 1.49] [5.0, 21.3]
m16 APG-BL Bobke et al. (2017) [189, 934] [5.82, 8.67] [1.55,2.55] [10.9, 27.7]
m18 APG-BL Bobke et al. (2017) [192, 973] [7.29, 12.5] [2.15,4.07] [16.0, 33.6]
b1 APG-BL Bobke et al. (2017) [190, 862] ≈4.11 ≈1 [5.1, 14.3]
b2 APG-BL Bobke et al. (2017) [189, 910] ≈7.55 ≈2 [10.6, 20.8]
ZPG ZPG-BL Schlatter & Örlü (2010) [252; 1271] 0 0 0

Table 2. Details of the Couette–Poiseuille (CP) flows and the boundary layer (BL) flows. The nomenclature
is [Initial of authors][Reτ /100][PG], where Reτ is the friction Reynolds number. Further details of the flows
can be found in Coleman, Garbaruk & Spalart (2015) and Johnstone et al. (2010), and are not repeated here
for brevity. The velocity in a Couette–Poiseuille flow increases monotonically from one wall to the other. It
is therefore not straightforward to define the heights of the boundary layers near the two walls. Consequently,
defining β is not straightforward for Couette–Poiseuille flow. The nomenclature of the BL cases is the same as
in Bobke et al. (2017). The ranges of Reτ and Π are shown in the table. Note that for cases b1 and b2, Π is
approximately a constant, while for cases m13, m16 and m18, it is varying. We also include the ZPG-BL data
in Schlatter & Örlü (2010) for comparison purposes.

two-dimensional turbulent channel. At t = 0, a constant pressure gradient dP/dx is
imposed suddenly, and subsequently held constant for the duration of the simulation. The
mean flow evolves with time as a result.

Table 1 shows the DNS details. The nomenclature is as follows: R[Reτ,0/100] F/A[|Π |],
where F is for FPG, and A is for APG. For APGs, Π is 1, 10 or 100, corresponding
to a weak APG, a moderate APG, and a strong APG. For FPGs, Π = −10 or −100,
corresponding to a moderate or strong FPG. FPGs are not very challenging (or interesting)
because the canonical LoW works reasonably well for flows with FPGs (Townsend 1956;
Mellor & Gibson 1966), although FPGs have interesting effects on the eddies in the flow
(Volino 2020). The initial Reynolds number is Reτ,0 = 544 or 1000. The Reynolds number
increases when an FPG is applied and decreases when an APG is applied. The size of the
channel is (4π × 2 × 2π)δ for the R5 (Reτ,0 = 544) cases, and (8π × 2 × 3π)δ for the
R10 (Reτ,0 = 1000) cases. The domain sizes for the R5 and R10 cases are different because
the initial fields were generated by different authors. Nonetheless, both domains are larger
than that of the minimal channel (Lozano-Durán & Jiménez 2014). The grid resolution is
comparable to that in Mathur et al. (2018) and Yang et al. (2021), and is such that the flow
is well-resolved from the beginning to the end. We employ statistically uncorrelated initial
flow fields, and repeat the simulations multiple times to get converged statistics following
Lozano-Durán et al. (2020), Chung (2005) and He & Seddighi (2015). The code that we
use is the same as in Lee & Moser (2015). Details of the code can be found in Graham
et al. (2016) and Lee & Moser (2015), and are not detailed here for brevity.

We will also use the boundary layer data in Bobke et al. (2017), and the
Couette–Poiseuille data in Coleman & Spalart (2015) and Johnstone et al. (2010). The
flows are sketched in figure 2. Flow parameters that are relevant to this analysis are
tabulated in table 2. Further details are not shown here for brevity.
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Figure 3. Mean velocity profiles at a few time instants. (a–c) Plots of U+ as a function of y+. Here,
normalization is by the wall-shear stress at time t. (d– f ) Plots of U∗ as a function of y∗. Here, U∗( y∗) is
the transformed velocity. Cases: (a,d) R5A1, (b,e) R5A10, (c, f ) R5A100. Here, time t is normalized with
δ/uτ,0. CH is the velocity profile in a fully developed Reτ = 544 channel.
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Figure 4. Mean velocity profiles at a few time instants. (a,b) Plots of U+ as a function of y+. Here,
normalization is by the wall-shear stress at time t. (c,d) Plots of U∗ as a function of y∗. Here, U∗( y∗) is
the transformed velocity. Cases: (a,c) R10A10, (b,d) R10A100. CH is the velocity profile in a fully developed
Reτ = 1000 channel.

4. Results

4.1. Channel flow results

First, we present the channel flow results. Figures 3 and 4 show the mean velocity profiles
in the APG cases. Figure 3 shows the R5 results, and figure 4 shows the R10 results.
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Figure 5. Mean velocity profiles at a few time instants. (a,b) Plots of U+ as a function of y+. Here,
normalization is by the wall-shear stress at time t. (c,d) Plots of U∗ as a function of y∗. Here, U∗( y∗) is
the transformed velocity. Cases: (a,c) R5F10, (b,d) R5F100. CH is the velocity profile in a fully developed
Reτ = 544 channel.
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Figure 6. Eddy viscosity at various time instants. (a–c) Plots of ν+
t as a function of y+. (d– f ) Plots of ν+

t as
a function of y∗. Cases: (a,d) R5A1, (b,e) R5A10, (c, f ) R5A100.

The results at other time instants are similar and are not shown here for brevity. In R5A1,
a weak APG is applied, and the flow is at a quasi-equilibrium state. As a result, both U+

and U∗ follow the LoW. In R5A10 and R10A10, a moderate APG is applied, and we see
noticeable deviations in U+ from the LoW after the APG has acted on the flow for some
time at t = O(10). On the other hand, the transformed velocity U∗ follows the LoW closely
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Figure 7. Same as figure 6 but for the R10 cases: (a,c) R10A10, (b,d) R10A100.
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Figure 8. Same as figure 6 but for the R5F cases: (a,c) R5F10, (b,d) R5F100.

at all time instants. In R5A100 and R10A100, a strong APG is applied. The viscous units
fail to collapse the velocity profiles, and only U∗ follows the LoW.

Figure 5 shows the mean velocity profiles in the two FPG cases. FPGs give rise to
noticeable deviations from the LoW in R5F100 when the velocity and the wall-normal
coordinate are normalized using the viscous units. Nonetheless, the transformed velocity
profiles collapse and follow the LoW.

Per the universality assumption, the viscous scaled eddy viscosity is a universal function
of the transformed wall-normal coordinate y∗. In § 2, we noted: ‘Like any assumption
in any theory, (2.1) facilitates mathematical derivations, and its validity must be verified
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Figure 9. Mean velocity profiles in Couette–Poiseuille flows (a) before and (b) after the transformation.
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Figure 10. Mean velocity profiles in boundary layer flows at multiple streamwise locations: (a,d) Reτ = 300,
(b,e) Reτ = 500, (c, f ) Reτ = 700. ZPG is the velocity profile in a zero pressure gradient boundary layer at
Reτ = 1272.

empirically.’ In the following, we test (2.1) against empirical data. Figures 6 and 7 show
the eddy viscosity in the APG cases. Figure 6 shows the R5 results, and figure 7 shows the
R10 results. The flow in R5A1 is at a quasi-equilibrium state, y+ and y∗ are not very
different, and ν+

t collapses well when plotted as a function of both y+ and y∗. In R5A10,
R5A100, R10A10 and R10A100, the pressure gradients are strong, the conventional
viscous scaling does not collapse data, and only the transformed wall-normal coordinate
collapses data. Figure 8 shows the normalized eddy viscosity of the FPG cases. The results
are similar to the APG cases: the viscous scaling does not collapse data, whereas the
transformed coordinate does. These results verify the universality assumption.

4.2. Couette–Poiseuille and boundary layer flows

Next, we show the Couette–Poiseuille flow results. Figure 9 shows the mean velocity
profiles before and after the transformation. The flows are subjected to fairly weak pressure
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gradients. As a result, the viscous scaled velocity profiles do not deviate far from the LoW,
and the velocity transformation leads to a slightly better collapse of the velocity profiles.

Finally, figure 10 shows the boundary layer results. The transformation collapses all
profiles, and the transformed velocity profiles follow the LoW. However, the collapse is
less convincing compared to the results in figures 3 and 4. We think that this is a lack of
statistical convergence – compared to channel flow, where one can average among many
ensembles and in the two homogeneous directions, the boundary layer is amenable to
averaging in time and the spanwise direction. A lack of statistical convergence incurs errors
in the derivative calculations, which in turn affect the quality of the data collapse – an
aspect that needs further attention.

5. Conclusions

We derived a velocity transformation that maps the mean velocity profiles in boundary
layers with pressure gradients to the canonical law of the wall (LoW) before incipient
separation. The Navier–Stokes equation alone does not give the transformation. Like the
semi-local transformation that relies on the assumption that ν+

t is a universal function
of y∗

sl, our transformation relies on (2.1), a direct consequence of which is that ν+
t is a

universal function of y∗. In addition to (2.1), we assume two-dimensional attached mean
flows at low speeds, and the knowledge of the mean flow at the equilibrium condition.

The derived transformation contains mean flow information and shear stress information
only. History effects are accounted for via a Lagrangian integral of the total shear stress
originating from the initial equilibrium state. The transformation suggests that it is the
total shear stress that plays into the hysteresis in the mean flow. Furthermore, since the
integration weights all historical events equally, the flow does not forget unless the effects
of one event are cancelled by another.

The validity of the transformation is tested in channel flows subjected to suddenly
imposed pressure gradients, Couette–Poiseuille flows, and spatially developing turbulent
boundary layers with moderate APGs. We show that while the inner-unit scaled velocity
profiles deviate from the LoW, the transformed profiles follow the LoW closely,
irrespective of the streamwise pressure gradients. Further validation of the scaling will
be pursued in future studies.

Finally, we comment on the practicality of the present transformation. The LoW is
the cornerstone of many wall-bounded turbulence models. However, since the LoW is
valid for equilibrium boundary layers only, the reliance on the LoW is a major source of
uncertainty in turbulence modelling. As a result, there has always been a need for universal
mean flow scalings for non-equilibrium boundary layers. This work will help to address
that need. While this paper presented the velocity transformation as a descriptive tool,
future work will explore its potential for predictive modelling. Consider, for example,
RANS modelling. At a given iteration, one would have a velocity field, which allows
one to compute the eddy viscosity and the total shear stress to get to the next iteration.
When computing the eddy viscosity in the wall layer, one often needs a damping function.
The available damping functions are functions of y+ (or constructed assuming they are
functions of y+), which is based on the LoW and therefore is not always accurate. Our
scaling can be used to augment the damping function. The resulting damping function
would depend on the Lagrangian history of the total shear stress, but the information is
solved for and is available in the simulation. We will leave such practical applications to
future studies.
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Appendix A. Mean flow scaling in the viscous sublayer

We discuss the scaling of the mean flow in the viscous sublayer.
First, expanding the mean velocity according to Taylor series in the wall layer gives

U =
∂U

∂y

∣

∣

∣

∣

w

y +
1

2

∂2U

∂y2

∣

∣

∣

∣

w

y2 + O( y3). (A1)

The definition of τw gives

∂U

∂y

∣

∣

∣

∣

w

=
τw(t)

ν
. (A2)

Evaluating the Navier–Stokes equation at the wall gives

∂2U

∂y2

∣

∣

∣

∣

w

=
Px

ρν
. (A3)

Here, Px = dP/dx.
Second, substituting (A2) and (A3) into (A1), we have

U+ = y+ +
Pxν

2ρτw
3/2

y+2 + O( y3), (A4)

where U+ = U/uτ (t), y+ = uτ (t) y/ν, uτ (t) =
√

τw(t)/ρ, and ν is the kinematic
viscosity. The second term is subjected to the effect of pressure gradients. This explains
the deviation of the mean flow from the canonical linear scaling in the viscous sublayer.

For an equilibrium channel, Pxδ/(2ρτw Reτ ) = −0.5/Reτ , and the second term in the
Taylor expansion is −0.001y+2, which amounts to −0.025 at y+ = 5. For a boundary layer
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Figure 11. The mean velocity profile in the viscous sublayer of (a) R5A100 and (b) R10A100. The markers
show the grid point locations.

subjected to a strong APG, e.g. case R5A100, Pxδ/(2ρτw Reτ ) = 50/Reτ ≈ 0.1, and the
second term in the Taylor expansion is 0.1y+2, which amounts to 2.5 at y+ = 5.

Figure 11 shows the mean velocity profiles in the viscous sublayer. The profiles are
normalized via the wall stress, viscosity and fluid density. For brevity, we present results
in the two cases with the strongest APGs. The time instants are such that the effects of
the imposed APGs have already manifested. We have the following two observations.
First, the mean velocity profiles follow the linear scaling up to about y+ ≈ 0.4 and 0.7 in
figures 11(a,b), respectively, and this region contains 6 and 9 grid points in, respectively.
Second, the quadratic scaling (A4) is a more powerful scaling than the linear scaling.
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