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ABSTRACT

Together, data from brain scanners and smartphones have sufficient coverage of biology, psychology, and envi-
ronment to articulate between-person differences in the interplay within and across biological, psychological, and
environmental systems thought to underlie psychopathology. An important next step is to develop frameworks that
combine these two modalities in ways that leverage their coverage across layers of human experience to have
maximum impact on our understanding and treatment of psychopathology. We review literature published in the last 3
years highlighting how scanners and smartphones have been combined to date, outline and discuss the strengths
and weaknesses of existing approaches, and sketch a network science framework heretofore underrepresented in
work combining scanners and smartphones that can push forward our understanding of health and disease.
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Bit by bit, putting it together
Piece by piece, only way to make a work of art
Every moment makes a contribution
Every little detail plays a part...
Putting it together
That’s what counts!
—Stephen Sondheim, Putting it Together

Humans are complex systems with feelings, thoughts, and
actions that are interconnected and that change over time
(1-3). Changes that occur in these complex systems are the
product of dynamic processes that span multiple levels of
analysis: biological, psychological, and environmental. An
essential goal of biological psychiatry is to understand how
between-person differences in the interplay within and across
these levels lead some people to experience chronic difficulties
in adaptively changing their behavior to meet life’s changing
demands. Two influential methodological approaches have
been used to meet this goal. One approach uses brain scan-
ners to primarily capture aspects of the biological and psy-
chological layers of human systems, identifying neural
correlates of deviations in cognition, affect, and behavior
accompanying clinical disorders. Creative designs incorporate
aspects of the environmental layer of human systems into this
work with scanners, simulating social exclusion by using ball-
tossing games in which participants are excluded from play (4),
exposing participants to aversive odors while in the scanning
environment (5), and using complex media (film, television, or
podcasts) as stimuli (6), for example. However, situating these
data within the sociocultural milieu of human experience to
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understand how the interplay between biological, psychologi-
cal, and environmental layers of human experience produces
clinical symptoms remains a challenge. A second approach,
smartphone-based techniques, captures individuals’ current
symptoms, as well as the psychosocial correlates of those
experiences, in naturalistic environments (7). Work in this
modality has characterized the interplay between psychologi-
cal and environmental systems but, unlike work with scanners,
does not tie these relations back to the biological level of
analysis.

Together, scanners and smartphones have sufficient
coverage of biology, psychology, and environment to articulate
between-person differences in the interplay within and across
biological, psychological, and environmental systems thought
to underlie psychopathology. An important next step is to
develop frameworks that combine these two modalities in
ways that leverage their coverage across important layers of
human experience to have maximum impact on our under-
standing and treatment of psychopathology. What might this
combination of scanners and smartphones look like? By un-
dertaking a systematic review of literature using data
combining brain scanners (inclusive of brain imaging modal-
ities and related methods to record neural processes) and
smartphones (inclusive of experience sampling and related
ambulatory assessments delivered via smartphone or other
portable digital technologies) published in the last 3 years, we
identified existing approaches to combining smartphones and
scanners in psychiatry research (see the Supplement for de-
tails of the systematic review). With these findings from the
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extant literature in hand, we 1) outline and discuss the
strengths and weaknesses of existing approaches and 2)
sketch a network science framework heretofore underrepre-
sented in work combining scanners and smartphones that can
capture the richness of the multiple interacting units across the
biological, psychological, and environmental systems high-
lighted in theories of psychopathology.

EXISTING APPROACHES TO COMBINING SCANNERS
AND SMARTPHONES

Six approaches to combining scanners and smartphones were
identified in the extant literature.

Bivariate Associations

By far, the most common way of combining scanners and
smartphones was by estimating bivariate associations be-
tween indices from scanners and smartphones via either cor-
relation or regression approaches (Figure 1A). This approach to
combination was concerned with the extent to which in-
scanner data could predict real-world behavior [see (8) for
example]. The inclusion of smartphone data, often collected as
participants went about their daily lives, allowed an assess-
ment of the extent to which scanner data, which are high in
experimental control but low in ecological validity, predicted
ecologically valid experiences. When links were observed be-
tween scanner and smartphone data, this was sometimes
interpreted as evidence for identifying mechanistic insight into
real-world behavior. For example, an observed association
between the blood oxygen level-dependent (BOLD) response
in reward-related regions during reward anticipation and daily
reports of motivation and pleasure was taken as evidence that
differences observed in the scanner had explanatory power for
the differences observed in daily life behavior (9). While such
bivariate associations are suggestive, combining scanner and
smartphone data in this way remains correlative and should be

Scanners and Smartphones

interpreted cautiously when attempting to make mechanistic
rather than solely predictive claims. A less common approach
predicted scanner data from smartphone data (10,11). These
efforts highlighted the greater feasibility of intensively sampling
smartphone data than obtaining longitudinal scanner data and
the implications of this feasibility for tracking the course of
clinical outcomes. For example, keyboard dynamics emerged
as reliable measures that distinguished patients with multiple
sclerosis from control subjects, with the potential to be valid
surrogate markers for clinical disability in multiple sclerosis as
compared with less feasible but common neuroimaging as-
sessments (10).

The smartphone data in work estimating bivariate associa-
tions between scanners and smartphones generally consisted
of static indices: proportion of positive experiences with class-
mates (12), average subjective stress (13), and average
momentary subclinical psychosis (14). Thus, their inclusion, as
compared with less burdensome retrospective survey reports,
increased ecological validity and reduced retrospective biases
often introduced in questionnaires that ask participants to recall
and aggregate information about longer periods of time [e.g.,
previous 30 days (15)]. However, only a few studies made use of
one of the features unique to smartphone data over traditional
survey measures: the ability to capture dynamics. Through
repeated assessment of participants as they go about their daily
lives, smartphone data collection results in rich time series data
that can capture moment-to-moment or day-to-day fluctuations
in clinical symptoms (16), social experiences (17), and changes
in the environment (18,19). Biological psychiatry has a keen
understanding that it is not simply the presence or absence of
symptoms that characterize clinical disorders. Instead, the
temporal characteristics of symptoms across time are key
considerations. For example, affective lability (i.e., intense,
frequent, and reactive shifts in affect) is commonly observed in
borderline personality disorder (20), while a diagnostic marker of
depression is sustained depressed mood nearly every day (21).
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Figure 1. Existing approaches to combining scanners and smartphones emerging from systematic review of the literature combining scanners and

smartphones.
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Capturing this lability or lack of change requires the ability to
intensively sample affect over time, a task for which
smartphone-based approaches are exquisitely suited.

The use of dynamic indices from smartphone data, partic-
ularly of affective experiences, is beginning to emerge in
studies combining scanners and smartphones with bivariate
correlations or regression (22-24). Temporal scanner features
were even less common in the reviewed papers compared with
temporal smartphone features [see for exception (24)].
Although it is common to aggregate BOLD data across the
entire duration of a scanning session, the brain exhibits dy-
namics over many timescales, from the subsecond to the life
span (25,26). Just as biological psychiatry recognizes the
importance of dynamics in behavior and symptoms as
important for the understanding of psychopathology, the time-
varying organization of functional brain systems in depression
and schizophrenia deviates from healthy controls [see, for
example, (27,28)]. Attention can be directed to brain dynamics
by, for example, taking a sliding window approach, subdividing
data from a neuroimaging scan into smaller windows of time,
and computing functional connectivity indices within each
window (29). Alternative, model-based approaches are also
possible, computing the dynamics that a brain is capable of,
given its network structure and assumptions of how activity
travels along that structure (30).

Studying brain dynamics has advantages, capturing tem-
poral information about functional connectivity that predicts
psychiatric states and conditions, often above and beyond
status functional connectivity (31,32). However, in parallel to
these affordances to studying brain dynamics are several
limitations. For instance, the field lacks consistent analytical
approaches, resulting in inconsistent treatment of time and
consideration of temporal ordering in analytical pipelines.
Further, there is little consensus surrounding appropriate null
models for evaluating aspects of time-varying functional con-
nectivity. It also remains an open question what non-neural
factors drive changes in resting time-varying functional con-
nectivity [see (33) for a review on questions and controversies
in the study of time-varying functional connectivity].

Bivariate Change

The second way of combining scanner and smartphone data
overcomes some of the limitations of cross-sectional, bivariate
combinations by collecting scanner and smartphone data at
multiple assessment periods and calculating bivariate change
(Figure 1B). For example, changes in keystroke dynamics were
associated with changes in disease activity as assessed by
scanners (34,35). The temporal precedence afforded by mul-
tiple time points of data provides stronger evidence that the
bivariate association between brain and smartphone index
represents a causal association. Perhaps surprisingly, given
the key role of dynamics in psychiatric disorders, collection of
even 2 time points of smartphone and scanner data was not
common in the reviewed papers. By combining longitudinal
scanners and smartphone data, researchers could determine
how fluctuations in behavior in real-world contexts both influ-
ence and are influenced by changes in brain function. In the
ideal case, these data would take the form of intensive sam-
pling of both brain and behavior, facilitating an examination of
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how naturalistic day-to-day fluctuations in experience (e.g.,
fluctuations in positive mood) are associated with fluctuations
in aspects of functional brain architecture [e.g., brain network
flexibility (36)]. Such intensive sampling (encompassing multi-
ple laboratory visits) could prove prohibitive, especially when
aiming to reduce burdens placed on individuals experiencing
psychopathology. However, creative approaches can be used.
One such example that emerged in the review captured
cognitive performance and neural correlates associated with
naturalistic fluctuations in daily stress (37). To reduce the
number of laboratory visits necessary to capture within-person
differences in stress, participants provided stress ratings 3
times per day for 2 weeks, allowing investigators to identify a
high-stress and a low-stress day, during which participants
were brought to the laboratory to undergo scanning.

Predictors of Clinical Outcomes

A third approach combined data from scanners and smart-
phones by treating them as features that could independently
predict clinically relevant outcomes (Figure 1C). For example,
the average feeling of peer connectedness across a 10-day
daily diary and the BOLD response to positive peer feedback
during an in-scanner social incentive delay task were used as
predictors of suicidal ideas in a regression analysis (38). These
efforts build on brain-as-predictor applications that show that
neuroimaging indices are often predictive of health-relevant
behaviors above and beyond self-reports, explaining variance
that was previously unaccounted for in behavioral outcomes
(39,40). In the examples of this approach in the reviewed
studies, smartphone data consisted of aggregated data across
the data collection period. Thus, although these smartphone
data are high in ecological validity, their predictive capacity
could be improved by creating dynamic features from the
intensive longitudinal data (41).

Brain as Mediator

A fourth approach treated data from scanners or smartphones
as mediators or explanatory variables in a causal chain
(Figure 1D). Two examples emerged. The first tested the extent
to which gender’s association with a greater proportion of
positive experiences with peers as assessed via smartphones
was mediated by greater nucleus accumbens—precuneus
functional connectivity (12). The second tested the extent to
which negative affect inertia mediated the association between
default mode system efficiency and depression (42). Although
both cross-sectional mediation analyses lack the longitudinal
data required to test the causal process unfolding over time
that mediation analyses implicitly endorse (43), combining
scanners and smartphones in this way revealed theoretical
positions whereby between-person differences in brain orga-
nization are thought to be causally implicated in between-
person differences in real-world behaviors associated with
psychopathology.

Brain as Moderator of Temporal Process

A fifth approach made use of the temporal richness of expe-
rience sampling data to examine dynamic processes and
tested the extent to which the brain might moderate these
processes (Figure 1E). For example, one study assessed
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repetitive negative thinking and sadness 10 times per day over
4 consecutive days (44). These dense repeated measures,
coupled with appropriate analytic techniques [see (45) for re-
view], facilitated a focus on between-person differences in how
moments of increased sadness at one moment led to in-
creases in repetitive negative thinking at the next moment.
Including functional connectivity indices associated with
cognitive flexibility as moderators of this sadness to repetitive
negative thinking links allowed tests for the role of large-scale
functional brain network activity as a moderator of real-world,
dynamic cognitive-affective processes.

Intervention Tools

A final approach treated scanners and smartphones as inter-
vention tools (Figure 1F). For example, one study delivered a
daily compassion meditation intervention to participants via a
smartphone over a 4-week period (46). By bookending this
smartphone intervention with functional brain scans, this
design facilitated testing the extent to which changes induced
by the smartphone intervention became codified in the brain. In
an example where the scanner was used as the intervention
tool, one study examined the ability of in-scanner neurofeed-
back to change the extent of affective instability, as assessed
by a smartphone before and after neurofeedback training in
patients with borderline personality disorder (47).

Advantages and Opportunities for Advancement

By reviewing existing approaches to combining scanners and
smartphones, we find that the field of biological psychiatry is
making use of several advantages that stem from the unique
combination of scanners and smartphones to provide insight
into clinical outcomes. These advantages include increasing
the ecological validity of behaviors being predicted by neuro-
imaging assessments, leveraging the different facets of human
functioning captured by scanners and smartphones to improve
prediction of clinical outcomes, and providing insights into
dynamic processes and their neural correlates. There remain
exciting opportunities for combining scanners and smart-
phones, especially by focusing on the unique opportunities
afforded by intensive repeated measures available through
both scanners and smartphones in the field of psychiatry. One
particularly difficult challenge revealed by this review is the
implicit assumption that fluctuations in behavior are more
substantial than fluctuations in brain function and organization.
This assumption can be seen in the intensive sampling of
behavior from moment-to-moment and day-to-day in most
smartphone studies reviewed as compared with the often
static, within-scanner assessments. Presumably, fluctuations
in behavior observed in smartphone assessments derive, at
least partially, from fluctuations in brain function, necessitating
methodologies capable of more directly matching fluctuations
in brain to fluctuations in behavior than is currently represented
in the literature combining scanners and smartphones. A key
methodological development to overcome this conceptual
limitation is leveraging emerging brain modalities that can now
more easily be deployed outside the laboratory [e.g., portable
eye-tracking, functional near-infrared spectroscopy, and mo-
bile electroencephalography (48-50)] and assess fluctuations
in brain function concurrent with fluctuations in behavior.
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One specific way forward that we highlight in the rest of this
article is a dynamic network approach that more directly
connects the combination of these data modalities with theo-
retical perspectives that highlight that humans are complex
systems made of many interacting components within and
across biological, psychological, and environmental systems.

WAYS FORWARD: NETWORKS AND BRINGING
TOGETHER FACETS OF HUMAN EXPERIENCE

Network science has emerged as a framework with the po-
tential to characterize the complex interactions occurring
across biological, psychological, and environmental systems
(51). Advances in neuroimaging (52,53) and the development of
appropriate tools to describe and model the parts and path-
ways for communication of the brain (54) have resulted in the
booming field of network neuroscience, a field mapping,
recording, analyzing, and modeling the elements and in-
teractions of neural systems (51). As the name suggests,
network neuroscience relies on formal representations of the
brain as a network to capture the parts (nodes) and in-
terrelationships of these parts (edges). From neuroimaging
data, one can construct a graph, a simple mathematical rep-
resentation of a network composed of nodes representing
system elements and edges representing element relations or
interactions. Nodes are typically parcels of gray matter voxels,
ranging from single voxels to larger clusters of voxels. Asso-
ciations among nodes (edges) are established in several ways,
taking the form of either structural or functional connectivity.
Structural connectivity describes anatomical or physical con-
nections between nodes or neural elements (55). With mag-
netic resonance imaging data, anatomical connections usually
refer to white matter fiber tracts that physically link brain re-
gions and are derived from applying tractography algorithms to
diffusion images. Functional connectivity, by contrast, repre-
sents communication or coordination between nodes, and
edges are defined based on statistical similarities in the time
series of nodes (56).

Seven studies in our review applied network neuroscience
approaches to scanner data (14,24,42,44,57-59). The benefits
of network science are not specific to data from scanners.
Although no studies in our review used networks to analyze
smartphone data, the network perspective so relevant for the
brain can be extended to behavior, emotion, cognitive, and
environmental systems more broadly. There is a burgeoning
literature, for example, that takes a network perspective of
mental disorders (60). This network perspective conceives of
mental disorders as a complex system of mutually reinforcing
and interacting symptoms (61,62). In these networks, symp-
toms make up nodes of the networks. Unlike structural brain
networks, there are no physical edges connecting emotions,
thoughts, or actions. Instead, the collection of multiple reports
of the intensity of certain emotions, thoughts, and actions via
smartphones facilitates the estimation of edges in a way
analogous to the construction of edges in functional networks
of the brain: inferring coordination or causal associations
among symptoms across time by estimating correlations,
partial correlations, or regression coefficients characterizing
both time-lagged and contemporaneous associations among
nodes (63).
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Extending this network perspective to smartphone data in
studies combining scanners and smartphones will align the
analytic treatment of smartphone data with theoretical notions
of humans as complex systems. It will also expand the feature
space used in existing work using smartphone data to predict
clinical outcomes (e.g., Figure 1C). But perhaps the most
exciting potentiality of constructing both brain and behavior
networks in work using scanners and smartphones is the av-
enues that would open for new ways of combining scanner
and smartphone data. Networks need not be limited to one
level or layer of the complex biological, psychological, and
environmental components implicated in psychopathology.
Instead, multilayer network approaches allow the combination
of scanner and smartphone networks (64-70). In multilayer
networks, each layer constitutes a different network. For
example, a network constructed from a different participant,
patient group, experimental condition, time point, or data
modality. A node can exist in all layers or in a subset of layers
and may be linked throughout layers by an edge representing
the node’s identity. Multiple types of edges can link nodes
within and between layers to represent different types of as-
sociations between network elements. Multilayer network ap-
proaches have successfully been applied to a diverse range of
fields, including neuroscience, ecology, public health, biology,
and political science, among others (64,71-74).

Recent multilayer applications provide insight into why they
may be useful for connecting scanner and smartphone net-
works. A recent study built a network of networks in which the
cognitive nodes were scores from multiple cognitive tasks,
including matrix reasoning and digit recall, and neural nodes
were region-based cortical volumes of several brain regions
and fractional anisotropy (proxy for white matter integrity) of
several brain regions (75). Partial correlation networks were
estimated such that the edges represented conditional de-
pendencies among the cognitive and neural variables. The
resulting network was a complex, multilayer structure of
interdependent facets of brain and behavior. There are several
benefits to this multilayer approach. First, the ability to
combine different layers of human systems within the same
overall multilayer network allows the application of network
statistics to be applied to one object. This directly addresses
the inherent dependency between biological, psychological,
and environmental layers of human systems. Second, multi-
layer frameworks open the ability to probe and predict how
perturbations at one node in one network layer (e.g., brain)
might impact another node in another network layer (e.g.,
behavior), helping to guide where it may be best to intervene.
Placing brain and behavior in the same analytic paradigm also
avoids a hierarchical prioritization of brain or behavior, as
observed in mediational approaches that posited a more
central role for neuroimaging facets as causes for clinical
outcomes than behavior (e.g., Figure 1D), which reflects a
reductionist thinking that does not reflect the interdependent
nature of biology, psychology, and environment (76). And,
perhaps most importantly, it provides a framework to test for
between-person differences in the interplay within and across
biological, psychological, and social levels of analysis which
may prove fruitful for understanding clinical disorders.

Although a variety of neuroimaging modalities were used in
the studies we reviewed (i.e., functional connectivity,
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structural, resting state, and lesion), in principle, graph theo-
retical network analysis can be used for any imaging modality.
In the typical application of network analysis, brain regions are
represented as nodes, and the connections between brain
regions are represented as edges. The nature of the edges
differs across imaging modalities. For example, in functional
networks, edges typically represent statistical similarities in the
BOLD time series of nodes, while in structural networks, edges
are often estimated by reconstructing the trajectory of axonal
tracts using indices of the diffusion of water molecules within
fibers (77,78). Despite each of these approaches resulting in a
network, each modality captures a different spatial and tem-
poral scale of the multilevel brain (25,51) such that the choice
of modality will be driven by the researcher’s specific question.
Where needed, for the question at hand, a multilayer
perspective allows multiple network layers from different mo-
dalities, capturing aspects of brain network organization at
various temporal and spatial levels, to be considered in tan-
dem, each modality making up a layer [e.g., (79,80)].

Thus, the groundwork has been laid to combine multimodal
data from scanners and smartphones into a multilayer human
system network (Figure 2) that is capable of integrating the
many facets of human experience (25,81-83). As might be
expected, incorporating multilayer networks into biological
psychiatry work combining scanners and smartphones will not
be without difficulty. An important challenge researchers are
currently tackling [see (84) for example] is precisely how to best
connect distinct layers with one another to form a multilayer
structure, especially in a way that maintains the within-person
temporal associations among facets of experience that can be
estimated from smartphone time series data in a way that
cannot be achieved using traditional, retrospective survey
measures.

Despite the strengths of multilayer network approaches,
namely the flexibility to integrate different types of high
dimensional data, there are some cautions that warrant further
discussion. On the side of feasibility, there is an inherent dif-
ficulty in collecting the types of high dimensional data ripe for
multiplex network analysis (e.g., electronic health records,
connected wearable gadgets, brain scanners, and smart-
phones). As the number of available measures increases, the
choices to examine similarities across the layers also in-
creases, and these indices may largely be based on what re-
searchers are interested in, which can have a large influence
on the results. For example, estimating the correlations in a
multilayer network requires estimating all the edges across
layers and not just the correlations among emotions in the one
layer (Figure 2). In this way, communities in multilayer networks
can occur within and between layers (70), nodes can have
relations (edges) within and across layers, and nodes can
communicate with one another even if they do not have direct
edges between them across layers (85). Some research
questions may necessitate collapsing multiple layers into a
single layer describing the clustering of patient health states
[e.g., cardiovascular disease, affective disorders, and cere-
brovascular disease (86)] whereas other questions may seek to
incorporate multiple layers to uncover the combined impacts
of genetics and lifestyle factors on a disease to build comor-
bidity clinical profiles (87). These example applications of
multilayer networks highlight the critical consideration that the
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Figure 2. Example of a multilayer human system network encoding infor-
mation about psychology (brain network), biology (body network), and envi-
ronment (social network) and the interlayer links between them [figure inspired
by Breedt et al. (88).. A multilayer network framework that incorporates
possible mechanisms beyond symptoms may offer additional explanatory
insight into biological psychiatry. For example, densely connected symptom
networks are associated with greater vulnerability to develop psychopathol-
ogy (89,90) than less-dense networks. Similarly, many psychiatric disorders
share brain network alterations in functional connectivity [e.g., altered func-
tional connectivity in the default mode network has been observed in Alz-
heimer’s disease, autism, schizophrenia, depression, and epilepsy (91,92)].
Considering the social network layer, living alone and away from family has
been observed in alcohol dependence (93), and low and high depressive
symptoms have been strongly correlated with such scores in friends and
neighbors (94). A multilayer network approach that integrates psychological,
biological, and environmental layers can offer insight into shared and distinct
features in each layer across psychiatric disorders. In this way, a multilayer
network framework can identify common targets for intervention, be it in brain,
body, or social networks, as well as offer insight into explanations for psy-
chiatric comorbidity.

relevant layers need to be measured with enough samples to
achieve statistical power, which may require extra effort,
especially when collecting multimodal data. Consequently,
researchers may seek to maximize efficiency by performing
many analyses on the data, making multiple corrections and
preregistration especially relevant when using multilayer net-
works. Confronting such challenges is inherent to multidi-
mensional systems modeling.
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CONCLUSIONS

Our review of recently published literature combining scanners
and smartphones indicates that the field of biological psychi-
atry is making use of several advantages that stem from the
unique combination of scanners and smartphones to provide
insight into clinical outcomes. There remains room to grow in
the ways scanners and smartphones are combined that will
more directly connect the combination of these data modalities
with theoretical perspectives that highlight that humans are
complex systems made of many interacting components
within and across biological, psychological, and environmental
systems. In particular, network perspectives, especially with
reference to smartphone data, were not represented in the
reviewed work, highlighting a key gap to be filled. We look
forward to continued work with scanners and smartphones
and the potential this work holds for characterizing how
between-person differences in the interplay within and across
biological, psychological, and environmental levels leads some
people to experience chronic difficulties in adaptively changing
their behavior to meet life’s changing demands.
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