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Abstract

Intrinsically disordered regions within human proteins play critical roles in cellular information
processing, including signaling, transcription, stress response, DNA repair, genome organization,
and RNA processing. Here, we summarize current challenges in the field and propose cutting-
edge approaches to address them in normal physiology and disease, with a focus on cancer.
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Abundant evidence supports that intrinsically disordered regions (IDRs) in proteins play critical
roles in normal cellular functions and many disease processes, including cancer [1]. Despite
tremendous progress in our understanding of how IDRs regulate a myriad of biological processes,
such as gene regulation and intracellular signaling, there are many open questions and
challenges. Further, IDRs are now widely recognized as drivers and modulators of biomolecular
condensates, which are membrane-less subcellular hubs that play important roles in the dynamic
compartmentalization of biochemical processes in living cells [1]. Mutations in IDRs have been
shown to result in aberrant behaviors of condensates, resulting in dysregulation of signaling
events in the cytoplasm as well as activation of oncogenic transcriptional programs in the nucleus
[2, 3]. Therefore, there is a pressing need to understand the mechanistic principles underlying the
biological functions of IDRs and leverage this knowledge to target their aberrant behaviors in
disease processes.

Recently, leading researchers in the intrinsically disordered protein (IDP) field gathered in
a symposium organized by the National Cancer Institute at the National Institutes of Health'. They
discussed the current state of the field, key open questions, and emerging new approaches critical
to furthering our understanding of how biological functions of IDRs and IDPs are encoded in their
primary sequences. Below we summarize these open questions and discuss integrative
approaches to address them (Fig. 1).

Understanding how sequence-encoded grammar governs IDR functions

IDRs differ from folded domains in that they lack a fixed three-dimensional structure, and
instead populate a collection of conformations referred to as conformational ensemble. As such,
IDRs do not conform to the classical sequence-structure paradigm, challenging existing
experimental, computational, and conceptual tools to understand how they function.

In some IDRs, the primary sequence exhibits low complexity, meaning the sequence
composition is biased in amino acid content, with enrichment of a few amino acids. For example,
prion-like low-complexity domains (PLCDs) display an overrepresentation of aromatic (Y/F) and
polar amino acids (G/S/Q/N) and depletion of charged residues. In contrast, other IDRs show
sequence complexities equivalent to folded domains, suggesting that complex chemical patterns
can be readily encoded. More broadly, IDRs from across the human proteome exhibit diverse
sequence features as quantified based on, for example, amino acid composition, residue
patterning, and the presence of linear motifs. A major question is how we can decipher IDR
sequence-specific grammars, which presumably encode their functions in cell signaling, gene
regulation, and other biological processes.
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Figure 1: Emerging paradigm and current challenges in sequence-ensemble-function relationships of
intrinisically disordered proteins.

A growing body of work suggests that IDR function can be viewed through a sequence-
ensemble-function paradigm [4] (Fig. 1). That is, IDR function depends on a combination of
sequence features and the emergent biophysical consequences those features have on an IDR’s
ensemble. While much work has focussed on mapping relationships between sequence and
ensemble, extending this mapping from sequence and ensemble to function is incomplete. Based
on extant results, IDR functions can be driven by different properties, including (i) conformational
plasticity, (ii) multivalent sequence-encoded molecular interactions and/or phase separation, (iii)
post-translational modifications that dynamically re-wire IDR-mediated interactions, and (iv) short
linear motifs that enable sequence-specific molecular recognition. However, in general, we lack
a holistic understanding of the mapping between IDR primary sequence and function. One route
to understanding sequence-ensemble-function relationships for specific proteins is to integrate
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systematic high-resolution in vitro biophysical measurements of IDRs and IDPs stretching from
single molecules to multi-component assemblies with measurements of IDR functions in live cells
and/or animal models.

Molecular co-evolution of IDP sequences

When assessed by sequence alignment-based metrics, IDRs often appear less well-
conserved than their folded counterparts, suggesting a lower level of evolutionary conservation.
However, conservation may operate in different ways for IDRs than folded domains [5].
Specifically, conservation can operate at the level of interactions with evolutionarily conserved
binding partners and ensemble properties, as opposed to alignable sequences. This realization
embraces the sequence-ensemble-function paradigm described above and offers a conceptual
framework through which disease-causing mutations can be interpreted. When regions in IDRs
are well-conserved in terms of primary sequence, this may be a signature of co-evolutionary
coupling between a region that folds upon binding and the partner it binds. Our emerging
understanding of the compensatory and labile evolutionary dynamics of IDRs offers a tremendous
opportunity to better understand sequence-ensemble-function relationships for IDRs as well as
their interaction networks. Given this potential, developing new computational tools to interpret
these relationships in an evolutionary context is an active area of investigation.

IDRs as drivers and modulators of intracellular phase transitions

Dynamic, membrane-free compartmentalization of subcellular processes via
macromolecular phase separation is ubiquitous in living systems. An intracellular phase transition
(e.g., phase separation) is a process in which a protein, and/or other biomolecules, assemble into
a condensed state [6]. While IDRs are (in general) neither necessary nor sufficient for phase
transitions or condensate formation, many of the proteins studied in vitro and in vivo that undergo
phase separation have been found to possess IDRs that are, in specific cases, necessary and
sufficient. With this in mind, there continues to be a great interest in understanding how and why
IDRs influence the formation, maintenance, and regulation of condensates.

Given that phase separation is a concentration-dependent phenomenon, a major
challenge is to characterize condensates under endogenous cellular protein levels. This can be
addressed by fixed cell imaging and live cell knock-in based-approaches probing condensates at
endogeneous protein levels. Further, quantitative concentration titrations in vitro and in living cells
can help characterizing how IDR sequence features enocde driving forces for phase separation.
However, a key challenge is relating in vitro and cell culture model conditions to the native cell-
specific microenvironment of the protein of interest.

An equally important task is determining where condensates (driven by phase separation
or otherwise) are functionally relevant vs. an epiphenomenon that unavoidably accompanies
multivalent molecular interactions, which themselves drive function. Separation of function
experiments offer one potential route; e.g., demonstrating that phase separation via several
chemically or physically distinct routes phenocopy one another in terms of a functional readout.
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Engineering stimuli-responsive pathways to induce or disrupt phase separation without changing
protein concentrations in live cells can further help dissect the role of phase separation in
biological functions [7]. Importantly, the physics of phase transitions [6, 8] (e.g., viscoelasticity,
distinct intra-condensate chemical microenvironments, liquid-liquid interfaces, efc.) encodes
emergent mesoscale properties that are not achievable via alternative modes of biomolecular
assembly (e.g., isodesmic polymerization). A common theme of these challenges is the need for
integrative, multifaceted approaches that combine molecular and cellular engineering, statistical
physics, and novel experimental approaches, including opto- and chemo-genetics, mass
photometry, and live-cell super-resolution nanoscopy to address these important questions.

IDRs in fusion oncoproteins

IDRs of signaling proteins have been extensively implicated in the formation and
regulation of phase-separated hubs in living cells. In the context of fusion oncoproteins that arise
via chromosomal translocations, phase separation has been implicated to be a major driver in
aberrant chromatin remodeling and transcriptional reprogramming in certain cases [3, 9]. A major
open question is what features of an IDR contribute to phase separation and modulate the
complex folding landscape of chromatin? Further, since the database of fusion genes linked to
cancer is rapidly growing?3, a key challenge is to create an effective platform that will allow
integratation of large-scale information from live-cell experiments with machine learning-based
approaches. Performing large-scale proteome-level characterization to identify phase separation
driven by IDRs, and subsequently, implementing machine learning to link IDR sequence features
with their functions will be a valuable approach, as has recently been demonstrated for 166 fusion
oncoproteins [10].

IDRs as therapeutic targets

Owing to the complex roles of IDRs in signaling events, transcriptional regulation, and
oncogenesis, IDRs have emerged as prime therapeutic targets [11]. A small molecule-based
approach to target an IDR’s conformational ensemble and molecular interactome presents
challenges, but recent studies have shown some promise. Further, anti-cancer drugs have been
observed to selectively enrich within certain nuclear condensates and may perturb aberrant phase
separation of transcription factors. Therefore, dissecting the interactions between small molecule
therapeutics and cancer-associated biomolecular condensates enriched in regulatory proteins
containing IDRs offers potential new directions for anti-cancer drug discovery.

Future Outlook

Although our discussion here narrowly focused on five key aspects of the biology and
biophysics of IDPs (Fig. 1), we acknowledge that the functional roles played by IDRs in human
proteins are much broader and more diverse (Box 1). The discussions at the NCI symposium
highlighted that no single research group could deploy all the techniques and expertise needed
to effectively address these questions. We envision that a multi-group collaborative effort
spanning chemical screening, biophysics, structural biology, cell biology, genetics, advanced
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microscopy, and data science methods is needed to make progress on these key challenges.
Such a multidisciplinary approach will enhance our broad understanding of relationships between
the dynamic conformational features of IDPs and their biochemical and biological functions. The
knowledge gained will provide a foundation for understanding how the biophysical properties and
functions of IDPs are altered in human diseases, including diverse cancers.
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Box 1: IDPs in circadian rhythms and biomaterials

Intrinsic protein disorder in circadian rhythms

Humans have circadian rhythms that allow us to organize our physiology and behavior such that
appropriate activities occur at biologically advantageous times within the day-night cycle. The
circadian rhythms are generated by a molecular oscillator, or clock, that comprises a transcription-
translation negative feedback loop (TTFL)[12, 13]. The conserved intrinsic structural disorder has
been suggested to be essential for the function of this molecular clock in post-transcriptional gene
regulation. Future studies dissecting how these “Fuzzy” complexes form and are timed would enable
the design of therapeutics to target these complexes as well as the development of
chronotherapeutics to treat cancer.

Intrinsically disordered proteins as programmable biomaterials

From a material science perspective, multivalent IDPs offer new avenues for controlled self-assembly
of soft biomaterials with programmable structure, mechanics, and desired function [14, 15]. IDP-
based self-assembled soft functional matters, such as phase-separated droplets, hydrogels, and
glassy materials that show controlled responses to environmental cues such as light, temperature,
pH, and concentration, hold great potential as artificial extracellular matrix (ECM) material in tissue
engineering, regenerative medicine, cell therapy, immunomodulation, and in the creation of artificial
cells and synthetic organelles.
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Resources

1. https://www.cancer.gov/about-nci/organization/dcb/news/idp-workshop
2. https://ccsm.uth.edu/FusionGDB/
3. https://www.kobic.re.kr/chimerdb/
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