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A significant challenge in human—robot collaboration (HRC) is coordinating robot and
human motions. Discoordination can lead to production delays and human discomfort.
Prior works seek coordination by planning robot paths that consider humans or their antic-
ipated occupancy as static obstacles, making them nearsighted and prone to entrapment by
human motion. This work presents the spatio-temporal avoidance of predictions-prediction
and planning framework (STAP-PPF) to improve robot-human coordination in HRC.
STAP-PPF predicts multi-step human motion sequences based on the locations of objects
the human manipulates. STAP-PPF then proactively determines time-optimal robot paths
considering predicted human motion and robot speed restrictions anticipated according
to the ISO15066 speed and separation monitoring (SSM) mode. When executing robot
paths, STAP-PPF continuously updates human motion predictions. In real-time, STAP-
PPF warps the robot’s path to account for continuously updated human motion predictions
and updated SSM effects to mitigate delays and human discomfort. Results show the STAP-
PPF generates robot trajectories of shorter duration. STAP-PPF robot trajectories also
adapted better to real-time human motion deviation. STAP-PPF robot trajectories also
maintain greater robot/human separation throughout tasks requiring close human—robot
interaction. Tests with an assembly sequence demonstrate STAP-PPF’s ability to predict
multi-step human tasks and plan robot motions for the sequence. STAP-PPF also most accu-
rately estimates robot trajectory durations, within 30% of actual, which can be used to
adapt the robot sequencing to minimize disruption. [DOI: 10.1115/1.4063502]
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1 Introduction

A significant challenge in human-robot collaboration (HRC) in
manufacturing is coordinating robot and human motions for syner-
gistic operation. In an HRC workcell, humans and robots work
together in shared workspaces, requiring close proximity, to com-
plete tasks. The unique skills of the robot and of the human comple-
ment each other to accomplish tasks collaboratively [1]. The
Industry 4.0 (I4.0) revolution aims for smart factories of the
future to permit mass customization of products, requiring advance-
ments in HRC workecells, such as enhanced sensing and data pro-
cessing, to allow flexibility in manufacturing [2,3]. Prior HRC
workcells in industry still require mostly rigid design of tasks to
avoid unintended human contact. Industry 5.0 (I5.0) requires
further advancement to HRC by improving human-robot interac-
tions, requiring advancements in humans’ perception of safety
and human-machine work balance [4]. HRC workcells in the

!Corresponding author.
Manuscript received May 31, 2023; final manuscript received September 12, 2023;
published online October 17, 2023. Assoc. Editor: Pai Zheng.

Journal of Manufacturing Science and Engineering

smart factory envisioned by Society 5.0 (S5.0) must also improve
the quality of life for workers via improved human-robot relation-
ships [5]. The work, herein, contributes to the features of the HRC
workcell in the smart factory of the future described by 14.0, 15.0,
and S5.0 by developing the spatio-temporal avoidance of
predictions-prediction and planning framework (STAP-PPF).
STAP-PPF combines human motion prediction with proactive
robot path planning. The goal of STAP-PPF is to generate robot
paths that better coordinate with humans to improve robot effi-
ciency (permitting flexibility for 14.0) and improve human safety
and comfort (improving human-machine relationships for 15.0
and S5.0) in close human-robot collaboration.

The evolution of robot’s role in manufacturing can be described
in three stages [2]. The first stage, Robotics 1.0, occurred between
the 1960s and 1980s. It is characterized by industrial robots being
programmed to perform repetitive tasks due to minimal sensing
capability and no tolerance for sequence deviations. The second
stage of robot evolution, Robotics 2.0, occurred between the
1990s and 2000s. It is characterized by increased sensing capability,
data processing capability, and capability for communication with
other factory processes to enable more intelligent robots. During

DECEMBER 2023, Vol. 145 / 121011-1

Copyright © 2023 by ASME


mailto:jared.flowers@ufl.edu
mailto:gwiens@ufl.edu

robotics 2.0, the first collaborative robot was introduced to permit
robots and humans to share workspaces. The third stage of
robotic evolution, Robotics 3.0, began in the 2010s and is
ongoing. It is enabled by data sharing between machines, increased
computing power, new artificial intelligence (AI) for processing
data such as images and other signals from sensor suites. Robotics
4.0 is anticipated to start in this decade due to further increased
computing power, data communication capabilities, and more pow-
erful Al models.

Robotics 3.0 also coincides with I4.0. 14.0 is the fourth industrial
revolution which seeks on-demand manufacturing and greater
product customization (small-batch, high-mix products), production
flexibility, and greater use of collaborative robots to achieve those
goals [3]. I4.0 is also marked by technological developments such
as Internet of Things to improve data sharing and processing
among machines, including cloud computing [2]. The next indus-
trial revolution is I5.0. It is marked by improvements to human-
machine interactions and load balancing between humans and
machines [4]. 15.0 also aims to make manufacturing more sustain-
able and supply chains more resilient. S5.0 is a societal revolution
related to 15.0 which seeks to improve the quality of life through
fusion of the cyberspace and physical space [5]. Both 15.0 and
S5.0 are enabled by Al advancements and seek to improve the rela-
tionship between technology and humans.

STAP-PPF is motivated by the challenges of coordinating human
and robot motions in HRC workcells to permit goals of 14.0, 15.0,
and S5.0. If robot and human motions are not optimally coordi-
nated, then the robot may have to reduce speed or stop to avoid col-
lisions according to HRC safety standards [6]. Such reactive
behavior leads to production delays [7]. Another consequence of
uncoordinated robot and human motions is human discomfort.
Uncoordinated motions can lead to robot paths that take the robot
very close to the human and make the human feel less safe [8].
Therefore, a solution that coordinates robot and human motions
can improve productivity and humans’ sense of safety. Achieving
coordination in an HRC workcell presents a challenge because, tra-
ditionally, it requires nearly perfect workcell layout and robot and
human sequencing to maintain efficiency and human safety [9].
Perfect workcell design can be very time consuming as robot
motions must be carefully designed to avoid robot/human interfer-
ence while still permitting robot motions. This increases changeover
time when new processes are introduced to a workcell and dimin-
ishes the degree of transformable production [9]. The lack of flexi-
bility reduces manufactures’ capabilities for transformable
production with mass customization of parts [10]. To ease the
burden of precise HRC workcell design while seeking the goals
of flexibility and better robot-human interaction of Industry 4.0/
5.0, this work investigates proactive robot path planning. To plan
proactively, human motion must be predicted. Then a robot path
planner must account for the predicted human motions when deter-
mining trajectories for the robot. Human motions include time
dependency, requiring the robot path planner to perform additional
computations to account for timing. Additionally, robot motion
should be updated in real-time to accommodate human motion
that deviates from the predictions. This is a challenge since compu-
tation must be minimized to allow fast updates.

The STAP-PPF framework, herein, provides a solution to the
mentioned challenges of coordinating robot and human motion in
HRC. STAP-PPF extends the human trajectory prediction algorithm
in Ref. [11]. STAP-PPF uses that prediction algorithm to generate
multi-step and multi-arm predictions. STAP-PPF also extends the
STAP robot path planning method from Ref. [12]. STAP-PPF
encodes input human motion predictions in a spatio-temporal
avoidance model that indicates time intervals over which robot
passage is blocked by predicted human occupancy of 3D points.
STAP-PPF determines optimal robot paths and estimates robot
delay using a time-based cost function. Sources of robot delay are
the time intervals of occupancy and speed reduction enforced by
a safety controller. The safety controller employs the speed and
separation monitoring (SSM) robot control mode defined in
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Fig. 1 HRC workcell control scheme

ISO15066 to ensure human safety in HRC [6,13]. To improve per-
formance, STAP-PPF approximates the spatio-temporal avoidance
model with a neural network (NN), pre-samples robot configura-
tions for path planning, and utilizes batch sampling to take advan-
tage of computer hardware acceleration. STAP-PPF also adapts
the robot’s path in real-time based on continuously updated
human predictions and estimated SSM effect. Hence, STAP-PPF
accommodates deviations in real-time human motion.

The novelties of STAP-PPF are a framework that incorporates
multi-step human motion prediction, the planning method that
selects optimal robot paths based on human motion predictions
and anticipated SSM effect, and method to adapt the robot’s path
in real-time based on updated predictions. A goal of STAP-PPF is
to generate robot paths that allow the robot to maintain efficiency
amidst human proximity, contributing to the 4.0 goal of workcell
flexibility. Additionally, STAP-PPF seeks to generate robot paths
that improve human safety and comfort in an HRC workeell, con-
tributing to the I5.0 goal of improving human-machine interaction
and the S5.0 goal of improved human-technology relationships.
Figure 1 shows how STAP-PPF is incorporated into the control
loop for an HRC workcell. In offline planning, STAP-PPF can
pre-plan robot motions considering the robot and human sequences.
Online planning can consider updated human predictions to re-plan
the robot’s nominal motion for an upcoming robot motion segment.
The real-time block includes computation that can occur faster than
30 Hz. It includes the component of STAP-PPF that warps the
robot’s nominal path to account for continuously updated human
predictions. It also includes the SSM enabled safety controller
that ensures human safety. The rest of this work is organized as
follows. Section 2: literature review, Sec. 3: methods, Sec. 4: exper-
iments, Sec. 5: results and discussion, and Sec. 6: conclusions.

2 Literature Review

This section will first review methods for human motion predic-
tion, which could serve as input to a proactive robot path planning
method. The review explores existing methods that predict human
arm motion in an HRC workcell and methods for predicting
general human motion not limited to manufacturing settings. Addi-
tionally, the review of human motion prediction is organized into
review of prediction methods that model the human with a
dynamic model first. Next, prediction methods that use sets of prob-
abilistic models to generate prediction of human motion are
reviewed. The final type of prediction methods reviewed estimate
probability of humans occupying workcell volumes at any point
in a task.

Next, this section reviews methods for planning robot paths con-
sidering human proximity to the robot in an HRC setting, referred to
as human-aware robot path planners. The review of path planning
methods considers two types of path planners for an HRC workcell.
The first type of planners are those that proactively consider pre-
dicted human motion to generate robot paths. The second type of
planners are those that react to real-time human poses. This type
either pre-plans a set of robot paths to switch between in real-time
as the human moves or plans robot motion considering the SSM
effect the current human pose would have on robot speed through-
out a path.
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2.1 Human Motion Prediction. Some prior works model
human motion using dynamic models. Liu and Wang predict a
human’s trajectory to reach a goal by estimating parameters of a
linear human dynamic model [14]. Wang et al. fit an autoregressive
integrated moving average model to recorded human arm motions
to predict a future sequence of human joint angles [15]. Liu and
Liu predict human motion using a recurrent neural network
(RNN), with a modified Kalman filter to adapt RNN weights as
motion is observed [16]. Martinez et al. utilized a sequence-to-
sequence RNN with gated recurrent units to predict a sequence of
human motion based on recently observed motion [17]. Li et al.
utilized an encoder/decoder network to predict human pose
sequences considering long- and short-term history of recent
motion as input [18]. Mao et al. modeled human motion with the
discrete Cosine transform (DCT) and predicted future DCT coeffi-
cients with a graph convolutional neural network, considering
recent sequences of DCT coefficients as input [19]. These
methods iteratively predict motion at a next time-step based on
the prediction for the current time-step. Therefore, error builds
exponentially as the prediction iterates farther into the future.
This limited many prior works to an error reporting horizon of up
to 1 s, due to the exponential growth of error [17-19].

Other prior works developed sets of human motion models.
Mainprice and Berenson used Gaussian mixture models (GMMs)
to predict human occupancy in the HRC workspace [20]. Kanazawa
et al. used GMMs to estimate the pose of humans in a workcell [21].
Then they used Gaussian mixture regression (GMR) to predict
human trajectories. Li et al. recorded human trajectories and
applied multi-step Gaussian process regression to the previous
observations to predict human reaching motions [22]. Callens
et al. applied probabilistic principal component analysis to
observe human motion to develop a database of human motion
models and detect motion onset and speed [23]. Each of these
methods generates a set of models based on previously observed
human motions. When predicting human motion, the model best
suited to the human’s current task, based on a sequence of recent
motion, must be determined from among the models in the set of
models. A disadvantage of these predictors is that many time-steps
of observed motion may be required before the most appropriate
model can be determined from the set of models.

Another strategy in prior works is to estimate the probability of
occupying points in the robot’s workcell. Pellegrinelli et al.
modeled the probability of human occupancy based on time spent
in workcell voxels throughout tasks and inferred likely human occu-
pancy volumes (HOVs) [24]. Hayne et al. also determined a work-
space voxel occupancy probability based on the number of
time-steps the voxel is occupied [25]. These models provide a
system with occupancy data so a robot can avoid the general area
where a human will work, but do not encode the timing of occu-
pancy. This can lead them to be too conservative in separating
robot and human activity and less effective in tight human-robot
collaboration.

Flowers and Wiens developed a generative neural network
(GNN) to predict a time-sequence of human poses based on the
human’s current pose and reaching the target [11]. This GNN is
the human motion predictor used in STAP-PPF. The inputs to the
GNN are the wrist target for completing a reaching motion com-
bined with the human’s current pose. The GNN predicts a multi-
step sequence of poses the human will take in going from the
current pose to a final pose at which the reaching wrist is at the
target.

2.2 Human-Aware Robot Path Planners. Recent works in
robot motion planning have developed path planner variations to
consider human proximity to the robot and find robot paths that
balance human safety and comfort with efficiency. Some of these
works consider human motion predictions in planning. Phillips
et al. considered anticipated intervals of robot passage among
humans, with application to a robotic vehicle considering humans
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as point obstacles [26]. Mainprice and Berenson used the human
prediction GMMs and the STOMP path optimizer to adapt the
robot’s goal and corresponding trajectory to avoid anticipated
human occupancy [20,27]. Zanchettin et al. used linear program-
ming to determine robot paths that minimize robot speed reduction
due to human proximity [28]. Hayne et al. determined robot and
human lane penetration costs based on probability of workspace
voxel occupancy and signed distance field (SDF) and used a trajec-
tory optimizer to minimize both robot and human costs [25]. Pelle-
grinelli et al. applied RRT with HOVs in Ref. [24]. Liu and
Tomizuka estimated a safety index for a predicted human trajectory
and determined optimal, safe robot control sets [29]. Wang et al.
generated robot trajectories that minimized time to reach a goal
such that a minimum distance between the robot and human arm
predictions is maintained [15]. Zhao and Pan developed a cost
map that also considered prior human occupancy, SDF, and
robot’s penetration into anticipated human occupied regions [30].
Kanazawa et al. generated robot trajectories that optimized reaching
the robot goal, avoiding collision with the predicted human trajec-
tories generated by GMR, and maintaining robot kinematic limits
[21].

Another strategy of recent works is to react to a human’s current
pose. Sisbot and Alami determined robot/human object transfer
points and robot paths to optimize a balance between human
safety and comfort and minimize the duration of robot—
human handovers [31]. Holmes et al. developed the autonomous
reachability-based manipulator trajectory design which used
trajectory optimization to switch between pre-generated trajectories
at run-time according to real-time obstacle positions [32]. Faroni
et al. developed the human-aware motion planner (HAMP) to
generate robot paths that minimize the SSM effect of human prox-
imity on robot speed reduction [7]. The SSM robot speed control
mode of ISO15066 dictates reduction in robot speed limit propor-
tional to the distance between robot and human [6]. Tonola et al.
developed a framework to use parallel processing to generate mul-
tiple paths via AnytimeRRT and switch paths during execution to
accommodate human activity in HRC [33]. Since these works
react to the human’s current pose without anticipating future
human poses, they can be nearsighted. They may react to a
current pose only to have their paths blocked again once the
human moves, possibly allowing the human to entrap the robot.
STAP-PPF considers human motion predictions, so it does not
suffer from this nearsighted behavior.

2.3 Human-Robot Collaboration Framework. Nicora et al.
developed a framework that allows planning of robot activity for an
HRC workcell at a motion segment level [34]. They defined a robot
motion segment as either restrictive or non-restrictive. A restrictive
segment only allows robot timing deviations, but not deviation in
robot pose from the planned path. This restriction is desired when
the robot is performing a short motion to place an object in its
gripper or release an object into a fixture. A non-restrictive
segment allows modifications in both robot pose and timing relative
to the nominal path. This is desired for relatively long motions in
which the robot is traversing workcell areas, either carrying a part
or going to get a part. Non-restrictive segments are defined with a
behavior dictating how the motion can be pre-planned and then
modified online. STAP-PPF provides a new, proactive behavior
type for non-restrictive segments in the framework started by
Nicora et al. STAP-PPF can be used to pre-plan segments offline,
re-plan segments online, or warp segments in real-time.

2.4 Novelties of STAP-PPF. One novelty of STAP-PPF is the
extension of the GNN-based human motion prediction method in
Ref. [11] into a framework permitting proactive robot path plan-
ning. The STAP-PPF human prediction GNN predicts all steps of
motion in one forward pass of the network so it does not suffer
from exponential increase in error as time horizon increases and
has no limit on the time horizon for prediction as prior works do.
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The STAP-PPF human prediction GNN can also update predictions
as fast as 500 Hz, permitting real-time updates to human predic-
tions, which is not possible for prior works using sets of models.
STAP-PPF also contains a novel, time-optimal, sampling-based
robot path planner. It estimates robot arrival time based on esti-
mated time intervals over which the predicted human blocks
robot passage and estimated SSM effect of predicted human prox-
imity on robot speed. Some prior works considered SSM effect of
current human poses, but not for human predictions as in
STAP-PPF. Prior path planners that considered human predictions
did not consider HRC safety standards such as the ISO15066
SSM robot control mode. The STAP-PPF planner is also novel in
its adaptation of RRT* which considers estimated robot connection
durations and propagates them along robot paths. This is in contrast
to prior human prediction-based path planners that used a robot path
optimizer instead of sampling-based planner. STAP-PPF also pre-
samples robot configurations along the human prediction and uses
batch-sampling to improve planner convergence. Finally,
STAP-PPF develops a method for real-time adaptation of the
robot’s path according to real-time updates to the human motion
prediction. Many prior methods do not include real-time updates
to human predictions or the robot’s path. STAP-PPF also considers
a more complex human prediction and higher degrees-of-freedom
robot than some other works.

3 Methods

The methods of STAP-PPF are divided into three parts. First,
STAP-PPF predicts nominal human motions with the multi-step
human motion prediction part of the framework. Then the proactive
robot path planner in STAP-PPF determines time-optimal, nominal
robot paths given spatio-temporal constraints imposed by the
human motion prediction. Next, STAP-PPF includes an algorithm
to warp the nominal robot path according to continuously updated
human motion predictions.

3.1 Human Motion Prediction. STAP-PPF utilizes the
human motion prediction method developed in Ref. [11]. It predicts
a sequence of human poses that a human will take in reaching
toward a Cartesian target. The input to that prediction method is a
feature vector consisting of the Cartesian reaching target and the
quaternion representation of the human’s current pose. This subsec-
tion will first describe the human pose represented as pelvis location
and human link quaternions. Then a summary of the prediction
method from Ref. [11] is provided. Finally, the inclusion of the pre-
diction method into STAP-PPF to provide multi-step sequences of
human trajectories is presented in this subsection.

3.1.1 Human Pose Representation. Herein, human pose is rep-
resented as a pelvis location and the set of quaternions relating each
human link to the world z-axis. The human pose is given by

T
h=[P,. 41, 4u. 4+ Gur- 411+ Gur- AR (1

The P, is the pelvis position (x, y, z) in the world coordinate frame in
meters. The g, - - g are the human link quaternions for the torso,
neck, shoulders, left upper arm, left forearm, right upper arm, and
right forearm. The quaternions in the human pose define a rotation
angle and vector that would align the world frame z-axis with the
vector along the human link. The quaternions are defined by unit-
less w, x, y, z parameters, where the w element determines the rota-
tion angle and the x, y, and z elements determine the rotation vector.
The quaternion elements are bounded between +1 and the quaterni-
ons must be unitized for representing rotations. Figure 2(a) shows
the pelvis location and human links of the upper body. The
human pose representation given by h combined with the human
link lengths provides the line segments for human links. Human
link radii are required to convert the link line segments to cylinders
for each link, which provide volumes for collision avoidance.
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Fig.2 (a) Human represented by pelvis position and link quater-
nions and (b) right wrist trace for a motion prediction

Nominal human link lengths are determined once a human is
present in the field of view of depth cameras that monitor the
HRC workcell, using the procedure in Ref. [35]. Once the
nominal link lengths are determined, they are held constant until
the human leaves the cameras’ field of view.

3.1.2 Human Motion Predictor. STAP-PPF uses the human
motion prediction GNN in Ref. [11] to predict a human’s trajectory
when reaching for a part or tool. The input to the predictor is the
stacked vector of the reach target (e.g., location of part to grab)
and current human pose in the format discussed in Sec. 3.1.1.
The reach target is the desired location of the reaching wrist when
the reach is complete. The input to the GNN is

T

Zy = [P[gla hs] 2)
where hg is the human’s pose at the start of the reach motion. The
P, is the Cartesian position of the human wrist at the end of the
reaching motion, known as the “reach target” herein, defined in
the world coordinate frame in meters. Examples of the P,,, are the
location of a part to pick up or the location of a workpiece to
place a part on. The hy has 31 elements as described in Sec.
3.1.1. Therefore, z, has 34 elements. While z;, has mixed units,
the GNN developed in Ref. [11] was tolerant to mixed unit input
and generated mixed unit outputs. This work assumes the reach
target is known based on objects the human will interact with in
the nominal sequence. Location of objects can be predefined for a
manufacturing sequence, or a computer vision algorithm can
segment images and identify locations of parts in the workcell,
such as that developed by Papadaki et al. [36].

The GNN in Ref. [11] is a sequence of convolution transpose layers
with the scaled exponential linear unit (SELU) nonlinear activation
function applied between layers [37]. Each convolution transpose
layer uses a convolution kernel in combination with stride and
padding to expand an input with relatively few elements into an
output with more elements. The GNN takes the z, vector as input
and outputs a matrix having 10 rows and 31 columns. Each row in
the output matrix is a phase step in the human motion prediction.
Each column corresponds to an element of the human pose. Phase
steps are evenly spaced on a scale of percent completion of the
motion, but not time. The GNN simultaneously estimates the
human poses when the human wrist is at the P,,, at the end of the pre-
diction, and estimates the sequence of poses the human will take when
traversing between the start pose and the estimated final pose. The
start pose (hs) would be either the human’s current pose, or the final
pose from a preceding prediction, as described in the next subsection.
The GNN outputs the most likely human pose sequence based on the
2800 recordings of human reaching motions used to train the GNN.

The method in Ref. [11] also developed a wrist speed versus
reach distance quadratic regression model to convert the phase
scale of poses to a time scale. The method predicts wrist speed,
Vesr» 1N meters per second as

Vet = —0.214d” + 0.659d — 0.0176 A3)
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where d is the distance between the starting wrist location and the
reaching target. The steps in the phase scale become evenly
spaced steps on a time scale ranging from zero to (d/v.,,) seconds.
Figure 2(b) shows the current human pose as cylinders and reaching
target as a circle at the right side. The line is the anticipated trace of
the wrist location as the human moves through the predicted
sequence of poses to reach the target with the right wrist. The pre-
diction is generated for the pose of the whole upper body, but for
clarity only the wrist trace is shown. The human pose sequence
generated by the GNN and then converted to a time scale by the
velocity model had an L2 joint error of 7.6cm and L2 link
roll-pitch-yaw error of 0.301 radians relative to actual motion, aver-
aged over all motions in the test set for validating the method. While
the prediction error was larger than desired, the STAP-PPF planner
creates a space buffer between the robot and the predicted human
when the planner considers SSM effect due to robot/human proxim-
ity. This reduces the effect of human prediction error on the
STAP-PPF generated robot path.

The human motion prediction GNN outputs a prediction of
human motion given a single target the human is anticipated to
reach for. When the human has multiple targets to choose from,
i.e., there are multiple copies of the same part on the table,
STAP-PPF can generate a human prediction and corresponding
robot path for each target in offline planning. Online, when the
human begins reaching for one of the parts, STAP-PPF can select
one of the pre-planned robot paths according to which part the
human reaches for, determined by an algorithm that estimates
human sequence like [38]. Then STAP-PPF can adapt the robot
path in real-time according to updated human predictions for the
observed target.

3.1.3  Prediction for Sequences of Human—Robot Actions. The
human motion predictor can be used in the STAP-PPF framework
to predict motions for a sequence of human motions. Details of
the human motions must be provided to the framework to know
how to connect each human motion, shown in Table 1. The reach
arm must be specified because the GNN uses separate networks
for left and right arm motion predictions to improve accuracy.
The “prior robot step” indicates a robot task number that must be
completed before the human can proceed. A sequence of human
motions can be planned sequentially until reaching a human
motion that depends on the completion of a robot task. An
example use case for this parameter is when the robot must place
a part before the human can install something on the part. When
generating a sequence of predicted human motions, the final step
of one prediction becomes the input pose for the next prediction.
The “start delay” parameter indicates a time delay between finishing
one human motion and starting the next motion. In between predict-
ing individual motions, the human pose would be held constant for
an amount of time equal to the start delay before predicting the next
motion. An example of when the start delay should be used is when
a person tightens a screw with a screwdriver. In between bringing
the screwdriver to the screw and removing the screwdriver from
the screw, the person’s hand will remain in the nearly the same posi-
tion while tightening the screw, so the start delay would indicate the
time the person is tightening the screw.

Table 1 Parameters for predicting a multi-step human motion
sequence
Parameter Description

Reach target
Reach arm
Start delay

Position of part/tool to grab

Arm performing the reach (left or right)

Seconds between the completion of previous predicted
motion and start of this prediction

Robot task that must be completed before starting this
human motion

Prior robot
step

Journal of Manufacturing Science and Engineering

In addition to specifying the human sequence, the robot’s
sequence parameters may also require an index of a human step
at which the robot must wait for human task completion before con-
tinuing. An example is when the human must move an assembly out
of its fixture so the robot can place a part in the fixture.

3.2 Proactive Robot Path Planning. This subsection first pre-
sents the spatio-temporal human avoidance model developed as part
of STAP in Ref. [12]. It determines intervals of time over which
robot passage through Cartesian points is blocked by anticipated
human poses. Then an NN approximation of the spatio-temporal
human avoidance model is developed to improve computation
time. Finally, the method for planning time-optimal robot paths
considering the spatio-temporal human avoidance model is pre-
sented in this subsection.

3.2.1 Ground Truth Spatio-Temporal Avoidance Model. The
original spatio-temporal avoidance model from our prior work
will be summarized first [12]. It will generate the training data for
the NN avoidance interval estimator. To generate the avoidance
model, the time sequence of human poses is first fit to a discretized
3D grid. Cylinders are generated for each link of the human for the
entire input human pose sequence based on the pose h at each time-
step and the link lengths and radii. Those link cylinders are then fit
into the discretized 3D grid. Figure 3 shows the steps to determine
the human’s 3D occupancy, showing the sensed pose at left, cylin-
ders in the middle, and point cloud at the right.

Next, the ith time interval of occupancy, known herein as an
avoidance interval, anticipated by the oth human for every 3D
point in the robot’s workspace (denoted W) is found by

[[sn,’ tfn,] If,, <lend

Ao (x, y, 2) = “

The 1;, and t;, are the start and end times, respectively, for the ith
interval of continuous occupancy for the oth human to occupy point
(x,y, z). A human could potentially occupy the same Cartesian point
over multiple intervals. For example, a human may occupy a
point while reaching for a part and then occupy the point a
second time when retrieving the part. The #;, is the last time the
oth human occupies point (x, y, z) and t,,, is the final time-step
of the predicted human sequence. Therefore, if the oth human occu-
pies point (x, y, z) at the end of the input predicted sequence, then it
must be assumed that the human occupies the point for the rest of

(a) (b) (c)

sensed
human

human as cylinders 2  human as point cloud
A -

@ (waypoint/time) point
__path between
" (waypoint/time) points

... blocked path between
dg " (waypoint/time) points

1o t'1 1 t'3 te tena A blocked (wpt/time) points

Fig.3 (a) Actual human, (b) human generalized to cylinders, (c)
human cylinders fit to 3D grid, and (d) robot path considering
avoidance intervals
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time. The intervals for each human are then combined

.A(x,y,z)=UUA,,,.(x,y,z) Vieco, YoeW (5

o

A time of last passage (1, ) for point (x, y, z) due to the oth human is
given by

0 Iy <lend

lp, (%, ¥, 2) = { ©)

ts(, t fo = lend
Then the time of last passage (z,) for point (x, y, z) due to all
humans is

tp(x, ¥, 2)= min fp(x, y, 2) 0]

While planning a robot path, a connection from an existing node,
denoted qp, to a new node, denoted ¢, inherits the avoidance inter-
vals of Cartesian points the robot passes through between qp, and q.
The avoidance intervals for a connection are denoted .A(qp, qc).
The connection also has a time of last passage, denoted 7;,(qp,
qc), which is the minimum time of last passage from any point
the robot passes through between q, and q.

Figure 3(d) illustrates the concept of avoidance intervals. The ver-
tical axis is a sequence of robot configurations starting at ¢y and
ending at qg. The horizontal axis indicates the time each waypoint
in the sequence is reached, relative to the sequence start time. The
red rectangles indicate avoidance intervals when configurations are
blocked by human occupancy. The green circles and solid black
line indicate the (waypoint, timing) sequence connecting start to
goal. The orange triangles and dotted lines indicate connections
from q; to q3 occurring too soon and not permitting connection to
the goal due to avoidance intervals. The earliest timing for the con-
nections from q; to qs is indicated by the green circles. In
Fig. 3(d), red rectangles at the right side indicate avoidance intervals
that persist at the end of the human prediction, which lead to the time
of last passage for the q; to q3 connections (top of the Fig. 3(d)).

3.2.2 Approximation of the Spatio-Temporal Avoidance
Model. Now, the A(qp, qc) computed by Eq. (5) for a given
input human prediction (h) can be used to train an NN to estimate
avoidance intervals for a robot connection from qp and q.. The
network selected for this method estimates the probability of inter-
section, denoted P;,,;, between a robot along a path connection and a
single human pose. To evaluate the intersection of the robot for a
predicted human pose sequence, the network estimates probability
of intersection for all time-steps in the predicted human sequence
with batch processing. The input to the NN is the vector

Zai, = [@ps Qs he]” ®)

where hy is the human pose at time-step ¢ of the input predicted
sequence. For a robot having n,,, degrees-of-freedom (DOF), z,;,
has 2ng4,,+ 31 elements, since h¢ has 31 elements.

Through trial and error, an NN consisting of a sequence of five
fully connected layers having sizes 43x512, 512x512, 512x
256, 256 x 256, and 256 x 1 going from input to output was found
to work best for this application. Increasing the number of
network layers or the size of network layers beyond this point
reduced prediction error with diminishing returns and added com-
putation time. The avoidance interval NN architecture is depicted
in Fig. 4(a), with z,, at the left and the P;, in the middle.
Between each fully connected layer, the SELU non-linearity was
applied to each layer output [37]. The sigmoid non-linearity func-
tion was applied to the output of the final fully connected layer to
scale the output for probability of intersection between the robot
connection and a single human pose. Figure 4(a) shows the layers
as rectangles with number of neurons per layer and SELU activation
between layers below and above the rectangles, respectively. The
binary cross entropy (BCE) loss function determined the loss
between the output probability and the true probability of
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Fig. 4 (a) Architecture of the neural network that approximates
avoidance intervals and (b) example of interval start/end times
based on estimated avoid/clear flags

intersection (1 if avoid, O if clear). The BCE was used in training
network parameters, as it is commonly used for classification net-
works like herein this section. The Apam optimizer was used to
backpropagate the BCE loss via gradient descent to adjust
network parameters [39]. In NN training, a dropout rate of 0.5
was used between each SELU operation and the subsequent fully
connected layer to improve the robustness of the network.

A robot connection is flagged to be avoided at time ¢ if the P;,, output
by the network is greater than a user-set probability threshold, denoted
P,,iq herein, depicted by the left 2 blocks in Fig. 4(a). Otherwise, the
connection is clear at time ¢. To estimate the avoid/clear status for a
robot connection and all time-steps of the predicted human motion, a
batch of inputs is constructed from zy;, for all time-steps of the predicted
human sequence. Then the output of the network is a vector having a
probability of intersection (avoid) for each time-step, denoted Py (Z;).
Next, the probabilities are thresholded to get the avoid/clear flag for
each time-step, denoted f (Zai.) at time ¢. Finally, avoidance intervals
are determined based on the avoid/clear flags. Interval start times
(t,,) occur where f(zy,_,) is flagged as clear (0) and f(zy,) is
flagged as avoid (1), as depicted at the top of Fig. 4(). Interval end
times (z7,) occur where f (Zai.) is flagged as avoid (1) and f (zaim) is
flagged as clear (0), as depicted at the bottom of Fig. 4(b). If f(2a,)
at the final time-step of the human prediction is flagged as avoid,
then #, is the preceding 7, and infinity otherwise.

To generate data to train and test the avoidance interval NN,
STAP-PPF planned robot paths in a simulated workcell using the
ground-truth spatio-temporal avoidance model considering human
motion predicted by the GNN for a variety of targets. While plan-
ning a path, when STAP-PPF considers robot travel from g, to
g, the ground-truth spatio-temporal avoidance model generates
and saves the avoidance intervals for the connection (A(qp, qc))
considering the input human prediction. Each set of avoidance inter-
vals generated by a qp, g pair is used to generate a number of
feature vectors (Z,j,) for input to the NN equal to the number of
time-steps in the human motion prediction. Each of those zy;
would contain the qp, g, and human pose for a time-step (hy). If
the time-step of h was within an avoidance interval in A(qp, gc)
generated by the ground-truth spatio-temporal avoidance model,
then z,;, would be labeled with P, (zait) = 1. Otherwise, z;, was
labeled with Pj, (%) =0. The results of training the avoidance
interval NN are discussed in Sec. 5.1.

3.2.3  Planning Time-Optimal Robot Paths Considering Human
Predictions

Safety-Aware Time-Based Cost Function. The robot path
planner in STAP-PPF uses the same safety aware cost function
included in STAP [12]. When evaluating a connection from g, to
(¢, the cost function first determines the minimum time for the
robot to travel from qj, to qc

qc[i] — qpli]

— 9
ali ©

1(Qp, gc) = max

i€[1,n40]
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The q is the vector of maximum absolute joint velocities for the
robot. Each node in the planner’s node graph (denoted G) stores
the earliest time qp can be reached via the most optimal path,
denoted Larr,- The minimum time to reach node q. through the con-
nection from g, to g, is

fe =1, + 1(Qp, qc) (10)

where 1, is the time the robot would leave qp and . is the time the
robot would arrive at g via this connection. The #, is initially con-
sidered to be Larr, -

Next, the effect of the SSM speed limit enforced by the safety
controller is applied to the connection timing, according to
Ref. [13]. The safety controller enforces the speed limit

- ~a,T, = v+ [V} +(@T,7 +2a,D; Dy>D
Vmax (qa L] lh) = { . vt Vh * (as ) o / tl}’l _.
otherwise

an

The a, and T, are positive, non-zero parameters for maximum Car-
tesian deceleration of the robot and reaction time of the robot,
respectively. The v, is the velocity of the human in the direction
of the robot and the D is the minimum distance between robot
and human that permits robot motion. The vector from the jth
point on the robot at configuration q to the ith point on the
human at time 7, in the human prediction is denoted Vj;. Herein,
minimal sets of points (i and j) along the robot body and human
upper body are used to sufficiently represent each entity. The dis-
tance D;; is the Euclidean norm of vector Vj;. The robot’s speed
in the direction of the human for the connection from q, to q
based on the nominal time from Eq. (9) is

=% Vi, (12)
t(qpch) Dy

The Jj(q) is the robot’s translational Jacobian for point j on the body
of the robot at configuration q. The Jacobian is computed as

[M] where FK;(q) is the position of point j determined from

Vyobor (@ . J 1) = max (J,-(q)

aq ’
the robot forward kinematics. The SSM enabled safety controller

would enforce a speed reduction to a fraction of planned speed,
i.e., the vy, velocity ratio

Vmax (q’ i’j’ th) ]) (13)

Vii ,1,j, t,) =min
hm(q ! h) (Vrobot((L iaja th)
Equations (11)—(13) may cause robot speed to be reduced if the
robot is approaching the human, but don’t result in speed reduction
if the robot is moving away from the human. Next, the planner
updates #(qp, q.) by summing effects of SSM at configurations
between qp and g, as follows:

« Idq]i#(qp. qc)
Hqp, qc) = i J
(4. 9) !lgll;»n]’?xvzim(q’ i.j> tn) 19e = Gl

(14)

The connection from gy, to g, is interpolated to get intermediate con-
figurations spaced dq apart. The time to complete each intermediate
dq is summed to estimate the #(qp, q.) based on the speed reduction
the SSM safety controller would enforce.

If v;,,, for a q in the summation of Eq. (14) is computed to be less
than a user set threshold, then a time window (Af) into the future
human motion prediction is considered to determine if the speed
reduction is temporary

max
tsEltn.th+AL]

Viin (G i, j» th) = Viin (9 i . 15) (15)
The new vy;,,,(q, i, j, t;,) computed by Eq. (15) is used to recompute
the summation element for q in Eq. (14). For implementation, the

At was set to 3 s because most human reaching motions observed
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in Ref. [11] were less than 3 s long. This means that if Eq. (13)
resulted in a low vy, due to human proximity at time #;,, then Eq.
(15) can consider enough time-steps to complete one predicted
human motion. Smaller #, could lead to STAP-PPF anticipating a
low vy, for some connections resulting in long path duration
when in reality the human obstruction is temporary. Longer 7,
leads to excessive computation time.

If the passage interval [z, f.] after consideration of avoidance
intervals and SSM effects intersects an avoidance interval in
A(qp, qc), then 7, is updated to be the end of that avoidance inter-
val. Then . is updated again according to Egs. (10)—(14) to account
for effect of SSM speed reduction and delay of #.. Then [z, 7] must
be checked for intersection with avoidance intervals again. After
iteratively checking time interval intersections and SSM effects, if
the resulting passage interval [z, t.] contains #;,(qp, qc), then the
connection from qp to g is considered blocked indefinitely and
cannot be a waypoint in the robot’s path. The cost of connection
from qp, to g, used to determine a time-optimal robot path is 7.

Spatio-Temporal Robot Path Planner. The STAP method from
our prior work included an adaptation of optimal rapidly exploring
random trees (RRT*) [12,40]. The adaptations in STAP permitted
consideration of the time-based cost function, which lends a more
complex implementation than the traditional shortest-path planning
problem. The STAP planner is intended for use with serial manip-
ulators having many DOF. Therefore, the STAP-PPF planner must
utilize random sampling, such as in RRT*, to ensure exploration of
the robot’s workspace. The optimality of RRT* is achieved via a
node rewiring step. In STAP-PPF, the cost of a connection from
qp to qc in the planner’s node graph (G) is . (robot time of
arrival at q) resulting from Eq. (10). When a new node (qpew) is
added to G via the lowest cost connection from (pear tO Qpnews the
rewiring step evaluates costs of connections from qpew to each
node (Qpear) in the neighborhood of qyueyw. In considering a connec-
tion from Qpew O Qnear> Qnew 1S considered qp and Qpear i consid-
ered q. for Egs. (9)—(15). If a connection from qpew tO Qpear has
lower cost than the current connection tO (uear, then rewiring
assigns (pew as the parent to Qyear-

In STAP, when a rewiring event occurs, then the time to reach
Qnear 1 reduced. STAP must also consider if timing for connections
for which qpear is the parent can be improved. The timing of a
number of connections stemming from qpear is checked, up to a
user set number of child connections, to see if timing has been
improved by rewiring. It is computationally intractable to check
for connection timing improvements all the way to the end of the
branches of G. When a new node is added to G, all (year in the
neighborhood of qyyw are also checked to see if any other node in
the neighborhood of yew could be a lower cost parent to Qpear-
This ensures that as planning iterations progress, each node in G
has an opportunity to improve its timing if possible while keeping
computation tractable.

To improve the performance of STAP-PPF path planning, herein,
two additional adaptations are made. First, a number of pre-samples
of robot configurations are added to the planner’s node graph
ahead of planning. The pre-sample configurations position the
end-effector near human points throughout the human motion pre-
diction. An artificial potential field (APF) like approach is used to
rapidly generate robot poses that place the end-effector near
desired points. Selection of a pre-sample starts at a default robot
pose (qo) and then iteratively changes the configuration according
to

An+1 =qn — aJee (qn)T(hi([h) — FK,. (qn))

The « is a user-set gain. The Jee(q.,) is the robot’s translational
Jacobian for the tip of the end-effector at configuration q,, after iter-
ation n. The h(t;,) is ith human point (e.g., wrist) on the human at
time-step #;, in the predicted human motion. The FK,, (qn) is the
position of the end-effector determined by robot forward kinematics
at configuration q, The pre-samples do not need a specific

(16)
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end-effector orientation since they will be seeds for future configu-
ration samples during planning iterations. In generating one pre-
sample, the configuration q,.; is updated for 200 iterations and
(200 1S taken as the pre-sample. Pre-samples are generated until a
user-set number of pre-samples (V) is reached.

The second adaptation for STAP-PPF is batch sampling. When
using a graphics processing unit (GPU) to accelerate NN inference,
as is the case with the avoidance intervals NN, time required to
transfer data between the GPU and CPU can be minimized by
moving larger volumes of data per transfer. Therefore, large
batches of input connection data for the avoidance intervals
network are used. In consideration of a single connection to a
new node (Qnew), a batch will include input vectors z,;, for all
steps of the human sequence, which will be denoted as the set Z..
Then to consider all connections between ey and neighboring
nodes (Qpear), @ batch would be a larger set containing all Z,. for
each node pair, denoted Z, . To construct an even larger batch,
within a single planner iteration a user-set number of random
Qnew are generated. Now a batch could be the set of Z, , for each
Qnew, denoted Z,,,;.

After the avoidance interval network infers avoidance intervals
and last pass times for all inputs in Z,,,;, best parent nodes for
each qpew can be determined using the STAP-PPF cost function.
Additionally, rewiring from each quew can seek to improve timing
to reach (pear in the neighborhood of each qpew. The time-optimal
sequence of waypoints, or path, is that which minimizes the 7. for
the connection in which q. is the path goal. The planner in
STAP-PPF is programmed as a Movelt! motion planning plugin
[41]. It uses Movelt!’s collision checking functions to ensure the
entire robot arm is free of collision with objects in the workcell
along every connection in G. The iterative parabolic time parameter-
ization (IPTP) in Movelt! is applied to the sequence of waypoints
output by STAP-PPF to assign times to reach each waypoint and
robot joint velocities while passing through each waypoint. This
ensures the path that is commanded of the robot will have a
smooth position profile and that robot velocities and accelerations
along the path stay within the robot’s limits. The two adaptations
to STAP included in STAP-PPF made it 15 times faster than the
original STAP method at generating robot paths. However,
STAP-PPF still requires 5 s of computation time using six cores
of an Intel 19 CPU and NVidia RTX-1070 GPU. Therefore,
STAP-PPF needs a faster component, defined in the next subsec-
tion, for real-time updates to the trajectories generated by the
robot path planner to account for deviations in human motion.

3.3 Real-Time Adaption of Robot Paths. STAP-PPF can
generate real-time updates to trajectories generated by the
STAP-PPF planner. Herein, real-time is defined as the frequency
new data that are generated by depth cameras in the workcell
sensor suite, which is 30 Hz. Since the STAP-PPF planner takes
multiple seconds to compute a path, it can’t generate an update in
real-time. APF like approaches can adapt robot poses with relatively
low computation time compared to sampling-based path planning.
Therefore, STAP-PPF uses an APF like approach to warp the
path generated by the planner according to updated human
motion predictions. The human motion predictor in STAP-PPF
can update as fast as 500 Hz, providing frequent input for
warping the robot path. Figure 5 illustrates STAP-PPF real-time
path warping. It shows the human’s current pose as green cylinders
and the pose predicted 5 s into the future as the red cylinders.

In the process of warping the nominal robot path, the path is first
interpolated into a number of intermediate robot configurations
between each path waypoint. The intermediate configurations
have the same spacing as in Eq. (14). In Fig. 5, the nominal path
and waypoints are the solid green line and red circles, respectively.
The intermediate configurations are iterated through from the
current pose to the goal node. The effect of the SSM safety control-
ler is estimated at each configuration based on the updated human
prediction, estimated by a repulsive torque that yields
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Fig.5 Warping of the nominal robot path according to predicted
human proximity and SSM effects

Vij
Adyy, =5, ) (1= vin(aw,. i 1) ta)" 51 (A7)

ij g

The Aq,,, is the repulsive effect after warping iteration n due to
the sum of SSM effects of all ith human points on all jth robot
points at the kth configuration along the path. The fg, is the
user-set repulsion gain. The vy;, (qk“, i, ] th) is the speed reduction
fraction computed according to Eq. (13), based on the location of
the ith human point at time-step #, of the updated human prediction
relative to the jth robot point. When warping the path, the updated
human motion prediction starts from the human’s current pose, so #;,
is zero for the current pose at k = 0. If a point along the nominal path
is repelled by Eq. (17), tests showed it is beneficial to repel a
number of proceeding points in the nominal path to generate a
new path that is smooth. Therefore, points following the point
repelled by Eq. (17) are repelled according to

maX(N_ymonth - (k - l)’ 0)>A T'(n) (1 8)

Aq, = (
s
b Nimootn

where [ is the index of the last point on the path that was repelled by
Eq. (17) and Ng,000 1S @ user-set parameter. Hence, points experi-
ence diminishing repulsion as they become farther from the point
originally repelled. Larger Ny,,,..» prevents sharp changes in path
direction, but may lead to a trajectory of longer duration.

An attractive torque also pulls points along the robot path toward
the direct path. The attractive torque yields

Aq,,, =$.(dd — ax,) (19)
where qgq is the robot configuration nearest qi, along the straight
line path between the current robot configuration and goal configu-
ration and f, is a gain. This attraction is necessary to pull a previ-
ously repelled robot configuration back toward an optimal
configuration if the human prediction no longer requires that it be
repelled. When this occurs, the human motion has deviated from
prediction so the nominal path computed by the planner is likely
no longer optimal. Therefore, the path is attracted to the straight-line
path instead as the best estimate of the current optimal path.
After computing repulsive and attractive effects, the configura-
tion at step k along the robot’s path is updated according to
Gk, = Qk, + Aqa(k.m - Aqr(k,,.) - Aqstk,l,n) (20
where subscript n indicates the iteration number. If Movelt! colli-
sion and joint limit checking functions find that qy,,, is outside
the robot’s joint limits or causes collision between any point on
the robot and any object in the workeell, then qy,,, is held at qy,
from the previous iteration [41]. During each path update, a
user-set number of warp iterations were performed, denoted
Nyyarp- At the end of each path update, configurations in the set of
all qi were selected to be waypoints for the resulting robot path if
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they met the following criteria:

|(qk — Qk-1) - (Qk-1 — GQx—2)| < crol 21

This prevents selection of intermediate q along a nearly straight
path which could be represented simply with two waypoints. The
selected waypoints must also be a user-set distance (dy,,,) away
from the current robot configuration and a user-set distance (d,,;)
away from the previously selected waypoint. These restrictions
prevent selection of a qy very close to the current robot pose,
which may require a significant speed reduction to pass through
qx- The d,,, prevents selection of qx so close together that the
robot must significantly reduce speed to pass through all selected
qx. After selecting the waypoints from the warped path, IPTP is
applied to the resulting waypoint sequence to assign timing and
robot velocities and accelerations to each waypoint so the updated
robot trajectory has a smooth position profile and does not violate
robot joint velocity and acceleration limits.

In Fig. 5, the intermediate configurations between waypoints
after repulsion and attraction are shown as the smaller pink
spheres. The new warped robot path is defined by the larger blue
circles, which were selected from the pink circles using the men-
tioned criteria. Figure 5 delineates part of the warped path caused
by smoothing after a repulsion. Equations (17)—(21) are performed
during real-time robot path execution at a user-set rate (F,,4,,,). Con-
tinuous warp updates cause intermediate robot path points to be
repelled by human predictions until the predictions no longer
cause anticipated robot speed reduction or until the robot passes
the point of repulsion. Higher values of N, can generate robot
paths with more waypoints and sharper turns.

4 Experiments

To validate the STAP-PPF, experiments were conducted in a real,
live HRC workcell, shown in Fig. 6. The cell has a 6DOF Comau
e.Do serial robot manipulator sitting on a table [42]. The table
has a workspace that is shared between a human and the robot, indi-
cated by the box labeled “Shared Workspace” at the bottom of
Fig. 6. The workcell sensor suite contains two ZED2 depth
cameras, which are circled in Fig. 6. The ZED skeleton tracking
was used to localize human joints [43]. The skeleton fusion
method in Ref. [35] combined the data from both cameras to
obtain the human pose.

Experiments were conducted using the STAP-PPF planner, with
and without the path warping feature, and with three baseline
human-aware planners. The STAP-PPF planner without path
warping is denoted “STAP-C” for “constant” in results. The STAP-
PPF using path warping is denoted “STAP-W” for “warping” in
results. Two baseline methods are based on the HAMP [7]. This
planner utilizes a similar time-based cost function as STAP-PPF,

Left Side Right Side
from from
Human' Human's

_ |Perspective

Fig. 6 Experimental HRC workcell for testing, showing robot,
two depth cameras, shared workspace, and targets for scenarios
A and B
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but considers human occupancy as static. In one version of
HAMP, denoted “HAMP-S” in results, the planner considers the
current, static pose of humans, making it reactive to current
human pose. During tests, HAMP-S replanned the robot’s trajectory
when the robot was either within 0.2 m of the human or the SSM
safety controller reduced robot speed to 35% of planned speed
due to robot/human proximity. When HAMP-S replanned, it only
considered the SSM effect on robot speed due to the current
human pose. The second version of HAMP, denoted “HAMP-P”
in results, proactively pre-plans robot motion by considering
HOVs. The HOVs estimate probability of human occupancy of
each workcell voxel based on observation of human occupied work-
cell voxels over task iterations. The human motion prediction gen-
erated by the method of Sec. 3.1 was used to pre-train the HOV
probabilities ahead of tests. During tests, HOV probabilities were
updated based on real-time human pose. The third baseline
method, denoted “STOMP” in results, uses the STOMP trajectory
optimizer as described in Ref. [20] to pre-plan robot motion by
warping the straight line robot path to minimize robot penetration
into the human motion prediction. It also used the human motion
prediction method from Sec. 3.1. Due to high computation time
of STOMP, it could only pre-plan robot motion before starting a
task. During the task, the robot stayed on the STOMP trajectory
while the SSM safety controller slowed or stopped the robot due
to human proximity.

In one set of tests, called “test case 1" herein, the human tried to
replicate the predicted human motion as closely as possible. This
allows comparison of the proactive planning capabilities of
STAP-PPF and baseline methods. In another set of tests, called
“test case 2” herein, the human started motion either 2 s ahead or
behind the predicted motion. These tests will show how
STAP-PPF can adapt the robot’s path in real-time to accommodate
human deviation. In these two sets of tests, the robot and human
perform one of three scenarios.

In scenario A, the human gets a part off a shelf at the left of the
workcell, indicated by the box labeled “A” in Fig. 6. Then, the
human puts the part down in the shared workspace. Meanwhile,
the robot moves a part from the right side of the cell to the left
side. In scenario B, the human reaches to the right side of the cell
to get a part from the table, indicated by the box labeled “B” in
Fig. 6. Then the human places the part in the shared workspace,
waits 5 s, and returns the part to the right side of the cell. The
robot moves a part from the left side of the cell to the right side
during scenario B. In scenario C, the human separates the right
arm up and left arm down to about 45 deg from horizontal and
then returns his/her arms to horizontal. This motion sequence
repeats twice, taking 5 s per motion. Meanwhile, the robot moves
a part from left to right across the cell. Scenarios A and B
emulate more realistic activities in an HRC workcell. Scenario C
is used to create a narrow time-varying window of passage
around the human’s arms. Figure 7 shows the start, end, and two
intermediate time-steps of scenarios A, B, and C.

In a third set of tests, called “test case 3” herein, the human and
robot collaborate to assemble two piston and connecting rod sets.
Figure 8 shows the layout of the test cell for test case 3. It shows
the location of the assembly pieces before assembly in the labeled
green boxes. It also shows the location of the fixture where the
pieces are assembled. The robot performs 26 motion segments and
the human performs 21 motions. The person picks up a connecting
rod, shown in Fig. 9(a), and brings it back near the assembly area
while the robot brings a piston to the assembly fixture, shown in
Figs. 9(b) and 9(c). When the piston is placed, the person puts
the connecting rod in the assembly fixture with the right hand,
picks up a pin with the left hand, and places the pin through the
piston and connecting rod. Then the person takes the piston/rod
assembly out of the fixture and places it on the table. The sequence
repeats again for the second assembly. After the robot places the
second piston in the fixture, the robot picks the crankshaft, as
shown in Fig. 9(d), and places it in the shared workspace to complete
the sequence.
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Fig. 7 Scenarios used for test cases 1 and 2

Test case 3 demonstrates prediction for a multi-step sequence of
human motions and further shows the benefit of coordinating robot
and anticipated human motion. Test case 3 is performed with
STAP-PPF with path warping (STAP-W), HAMP-S, and
HAMP-P. When using HAMP-S and HAMP-P, the robot re-planned
its path as necessary. Experiments with test case 2 showed the
STOMP based method is not suited for the complexity of test
case 3. When using STAP-PPF, human motion for the multi-step
human sequence is predicted first. Then STAP-PPF considers the
mutli-step prediction in pre-planning each robot motion. For each
robot motion, STAP-PPF estimates the robot path duration based
on the prediction. Then the next robot motion in the sequence is
planned considering the predicted human sequence starting from
the estimated completion time of the prior robot motion.
STAP-PPF and the HAMP methods were used for the eight non-
restrictive robot motions in the sequence, as defined in Sec. 2.3.
For the short, restrictive robot segments, such as going from a
perch position over the piston to having the gripper around the
piston, the motion was planned as linear in joint configuration space.

Throughout all tests, the safety controller in the robot control
system enforced speed reduction according to robot-human prox-
imity. The speed was reduced to a fraction of full speed according
to Egs. (11)—(13), but only considering the human’s current pose,
not the predicted pose. For the experimental workcell, the parame-
ters for comyuting the speed limit were D, T,, a; of 0.2 m, 0.15 s,
and 0.1 m/s”, respectively. The D was selected based on desired
human comfort and sensor suite inaccuracy and 7, are a, are
based on specifications of the robot. Parameters of STAP-PPF
were set at Ny, of 300 samples, d,,, of 0.8 radians, ¢, of 0.99,
dyo; of 0.3 radians, N0 Of 2, B, of 0.0001, B, of 0.0067, N,y

Assembly.
Fixture

Fig. 8 Layout of the HRC workcell for test case 3
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Fig. 9 (a) Person retrieves the connecting rod, (b) robot moves
piston to the fixture, (c) robot lowers piston into fixture, and (d)
robot moves crankshaft to shared workspace while human
removes assembly from fixture

of 2, selected through trial and error. Observations forming the
basis of these selections showed that lower values of dy,,s, Cop OF dyy;
caused the real-time path warping of STAP-PPF to place too
many waypoints in the robot’s path. This caused the robot to
reduce speed so as to pass through all waypoints. Higher values
of those parameters diminished the capability of STAP-PPF
warping. Smaller f, and f, led STAP-PPF to adjust the robot
path too slowly to accommodate human deviations. Larger values
led STAP-PPF to warp the robots path too severely, leading to
excessively long robot paths. Smaller Ny, led to sharper
corners in the warped robot path while larger Ny, minimized
robot acceleration changes at the expense of excessive robot path
duration. Higher values of N,,,,, allowed the path to be warped
around the human prediction more accurately, but increasing
Nyvarp beyond 2 did not result in better human avoidance. STAP-
PPF generated less than 300 pre-samples given most human predic-
tions. Hence, N,; was set at 300 to utilize as many pre-samples as
possible, but limited to prevent high computation time in case pre-
dictions permitted more pre-samples as they are dependent on the
duration the human spends in the robot’s workspace. The F,,,
was selected to be 30 Hz to permit robot path updates as fast as
the sensor suite cameras provided new data. The computer of the
experimental cell, which processed all camera data, generated pre-
dictions, and planned robot paths, has an Intel 19 CPU and NVidia
RTX-1070 GPU.

5 Results and Discussion

5.1 Avoidance Interval Neural Network Training. To train
and validate the avoidance interval NN, first, a set of over 58
million samples was generated from simulations in which
STAP-PPF used the ground-truth avoidance model to generate
samples using the procedure at the end of Sec. 3.2.2.

Once the dataset of samples was amassed, it was divided into an
80%/20% split for training and testing, respectively. The NN was fit
to the samples in the training set. In training, 100 epochs were per-
formed. In each epoch, every training sample was evaluated by the
network. Then the BCE loss was evaluated and backpropagated
through the network layers to adjust network parameters, using
the ApAM optimizer with a learning rate of 0.0005.

The samples from the test set were evaluated to show that the
network inferred avoid/clear status with an accuracy of 95.5%
with a probability threshold (P,,,s) of 0.5. Accuracy mean and
standard deviation from five-fold cross-validation were 95.4%
and 0.11%, respectively, showing consistency of network training
with varying train/test data. The network accuracy was also evalu-
ated at other P,,,;; over the range [0.1, 0.9], shown in Fig. 10(a).
The duration of robot trajectories while the human-robot team per-
formed test scenario B was averaged over 10 samples at each of the
P, 0ia levels, shown in Fig. 10(b). These figures show a P,,,,;; of 0.5
generates the most accurate avoid/clear status and shortest duration
robot trajectories. Larger P,,,;; make STAP-PPF less conservative
in avoiding human predictions, leading to less coordinated human—
robot interaction (HRI). Smaller P,,,; make STAP-PPF
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Fig. 10 (a) Accuracy of the avoidance interval neural network
and (b) duration of robot trajectories using a range of probability
thresholds

excessively conservative in avoiding humans, leading to longer path
duration. Therefore, selection of P,,,,;; of 0.5 was substantiated.

The mentioned computer took less than 4 h to generate train/test
samples and train the avoidance interval NN. Therefore, when the
STAP-PPF is applied to a new workcell, less than 4 hours of prep-
aration are needed for STAP-PPF to be operational.

5.2 STAP-PPF Benchmarking. To validate STAP-PPF, its
performance was compared with the performance of the competing
benchmarking methods while performing test cases 1 and 2. Test
case 1 demonstrates each planner’s ability to plan for the human
performing the nominal human motion. Test case 2 demonstrates
each planner’s robustness to deviations in real-time human
motion relative to the prediction. One metric for comparison is
the duration of the robot’s trajectory to go from the start pose to
the goal pose for each test while the human performed the corre-
sponding motions. Another metric discussed is the robot/human
separation distance averaged over each test.

5.2.1 Robot Trajectory Durations. Figure 11 shows the trajec-
tory durations averaged over 20 repetitions each of test case 1
(nominal human timing) and test case 2 (perturbed human timing)
with each scenario. The larger bars in Fig. 11 and the upper
numbers over the bars indicate the sample mean durations. The
hatched bars correspond to STAP-W and STAP-C. The solid bars
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Fig. 11 Robot trajectory durations from test cases 1 and 2 with
test scenarios A-C. Large bars indicate mean and small bars
indicate standard deviation.
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correspond to the other methods. The thin bars at the top of the
large bars and the number in parenthesis over the bars indicate
the sample standard deviation. The column for nominal human
timing in Fig. 11 shows STAP-W and STAP-C generated robot tra-
jectories that required less execution time than the other methods,
all subject to the dynamic experimental scenarios. STAP-PPF
path warping enabled the shortest robot trajectory durations for
test scenarios B and C with nominal human timing. Even when
the human attempted to closely follow nominal timing, slight devia-
tion occurred in the live tests. Path warping allowed STAP-PPF to
accommodate these deviations and reduce robot path duration,
reducing duration by at least 8% relative to STAP-C and at least
14% relative to others.

When human timing was perturbed, Fig. 11 shows STAP-W and
STAP-C still generate shorter robot trajectory durations than other
methods. STAP-W generated the lowest robot trajectory durations
for all three scenarios. Additionally, the STAP-W robot trajectory
duration results were closest to those with nominal human timing.
These observations indicate path warping in STAP-PPF mitigated
the effect of human timing deviations. Figure 11 also shows that
STAP-W and STAP-C robot trajectories resulted in smaller stan-
dard deviation in duration, meaning STAP-PPF results in more con-
sistent robot trajectories.

Independent sample #-tests were used to generate 95% confi-
dence intervals (ClIs) for difference in population mean robot tra-
jectory durations among pairs of methods. The r-tests show if
the conclusions made on the collected samples also apply to the
population or only to collected samples. The collected samples
may be too few in number or have too great a standard deviation
to show significant differences among methods considering the
population of samples. In Fig. 12, the bars indicate the lower
and upper limits of the CIs for difference in population mean tra-
jectory durations in seconds. Hatched bars and solid bars corre-
spond to the comparisons between STAP-W and STAP-C and
comparison of STAP-PPF (STAP-W or STAP-C) to the bench-
marking methods, respectively. The thin lines in the middle of
each CI bar indicate the sample mean difference in trajectory dura-
tions. The dotted horizontal lines at zero are shown for reference.

Figure 12 shows STAP-W and STAP-C result in shorter popula-
tion robot trajectory durations than the benchmarking methods at
95% confidence, based on the collected samples. This is indicated
by all CIs being entirely below zero. The Cls permit the claim
that STAP-PPF (STAP-W and STAP-C) generates robot trajec-
tories of shorter duration relative to the benchmarking methods.
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Fig. 12 Confidence intervals for STAP-PPF reduction in robot
trajectory durations relative to other methods. Thin lines show
difference in sample means and bars show upper and lower
limits of confidence intervals.

DECEMBER 2023, Vol. 145 / 121011-11



Figure 12 also shows that the difference in robot trajectory durations
with nominal human timing between STAP-W and STAP-C is
insignificant at 95% confidence. This is expected since the human
follows the prediction and STAP-W and STAP-C generate similar
plans to avoid the nominal human prediction. However, when the
real-time human timing is perturbed, STAP-W decreases robot tra-
jectory durations at 95% significance relative to STAP-C.

The experiments also permit comparison of the error in trajectory
duration estimates generated by each planning method. STAP-PPF
robot trajectories took 30% more time to execute than estimated by
the STAP-PPF planner. HAMP-S, HAMP-P, and STOMP gener-
ated robot trajectories that took 485%, 287%, and 248% more
time to complete than each planner’s estimate, respectively. These
results show STAP-PPF estimates robot trajectory with much
greater accuracy due to consideration of predicted human motion.
The robot trajectory duration estimates generated by STAP-PPF
could be used in task sequence optimization to select the next
robot action that would minimize robot delay.

5.2.2 Robot-Human Separation Distance. The minimum
robot-human separation distance was recorded at 30 Hz during
experiments. It is the minimum distance between the robot shape
and the real-time human pose generalized to cylinders. The separa-
tion distance metric is assumed to be directly proportional to the
level of human comfort and safety in prior works
[6,7,13,15,20,21,28,29]. Figure 13 shows the average separation
distance for STAP-PPF and the benchmarking methods throughout
all iterations of test cases 1 and 2. This figure shows STAP-W and
STAP-C maintained at least 14% higher average separation
between the robot and human than the benchmarking methods
when the human closely followed nominal timing. When the
human timing deviated significantly from nominal, STAP-W main-
tained at least 17% greater average robot/human separation distance
than the other methods.

T-tests were also applied to the difference in robot/human sample
separation distance between STAP-PPF and other methods, with
CIs shown in Fig. 14. In Fig. 14, if a CI is entirely above zero
meters, then the STAP-PPF method generates greater population
mean robot/human separation distance than the comparison
method with 95% confidence, based on the collected samples.
The figure shows STAP-W maintained greater separation distance
than other methods when the human timing was either nominal or
perturbed.

5.2.3 Assembly Tests. The duration and robot-human separa-
tion distance were recorded for 20 iterations of test case 3, which
was the multi-step assembly sequence, with the STAP-W
(STAP-PPF), HAMP-S, and HAMP-P methods. The top left plot
in Fig. 15 shows the sample mean and standard deviation of task
durations with each method. The top right plot shows the 95%
CIs for the difference in population mean task duration of
STAP-W relative to the HAMP methods. These plots show
STAP-W resulted in durations at least 17% shorter for the assembly
task, relative to other methods, indicating other methods could not
anticipate when a human would reach into the workspace.
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Fig. 13 Robot-human separation distances from test cases 1
and 2. Large bars indicate mean and small bars indicate standard
deviation.
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Fig. 14 Confidence intervals for STAP-PPF increase in robot/
human separation distance relative to other methods. Thin
lines show difference in sample means and bars show upper
and lower limits of confidence intervals.

The bottom left plot in Fig. 15 shows the average robot/human
separation distance throughout the assembly task for each method.
The bottom right plot shows the 95% Cls for the difference in pop-
ulation mean separation distance of STAP-W relative to the HAMP
methods. The sample mean separation differences were almost the
same, within 4 cm, for the three methods and all greater than
49 cm. The CIs show separation distance was less with STAP-W rel-
ative to HAMP-P. However, since all three methods resulted in
average separation of 49 cm, which is large relative to the workcell
size, the CI showing difference between STAP-W and HAMP-P is
not relevant. The separation distances with test cases 1 and 2 were
smaller because they challenged the methods using less realistic
motions. However, test case 3 is designed to demonstrate each plan-
ner’s effectiveness in a realistic scenario.

5.3 Discussion. When conducting experiments, other observa-
tions became apparent that may have contributed to the differences
in robot path durations and robot/human separation. It appeared
that the human predictions for the three test scenarios were too
complex for the STOMP based planner and HAMP-P planner
because those planners generate a path directly through the pre-
dicted human poses. Inspection of the STOMP based method
revealed complex human motions could prevent STOMP from
finding an equilibrium robot path that avoided predictions. For
example, a predicted human pose at one time-step repelled the
robot up and then the predicted human pose at a later time-step
repelled the robot downward, counteracting avoidance of the previ-
ous pose. Complexity of human motion for scenarios B and C led
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Fig. 15 Test case 3 task durations, robot-human separation dis-
tances, and 95% Cls for population mean of each. In the left plots,
height of large bars indicates sample mean and the size of the
thinner bars indicate standard deviation. In the right plots, thin
lines show the sample means and bars indicate upper and
lower Cl limits.
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HAMP-P to estimate high probability of occupancy for much of the
workcell between the robot and human for the entire task. This led
the cost function of HAMP-P to estimate that a direct trajectory
through the human prediction was optimal since the human predic-
tion couldn’t be avoided. The HAMP-S method often reacted to a
current human pose with a trajectory that deviated far from the
human. If HAMP-S re-planned the robot path to avoid a real-time
human pose and then the human backed away, HAMP-S would
remain on the avoidance path rather than return to a more direct
path. This led to a delay in robot trajectory completion with
HAMP-S. Since STAP-PPF considered the timing of the human
prediction in generating nominal robot trajectories, it was able to
find paths around the human prediction that STOMP and
HAMP-P could not find. STAP-PPF planned robot paths that
accounted for times when the human approached the robot and
times when the human backed away to find optimal paths, unlike
HAMP-S.

For durations of robot path generated for scenario A compared to
scenarios B and C, STAP-PPF yields greater improvements in
reducing robot duration times as the human motion complexity
within the task(s) increases. In other words, scenario A involved
human motion of lower complexity compared to scenarios B
and C. Scenarios B and C required the human to cross the robot’s
path multiple times while scenario A only had the human cross
the robot’s path once. The robot duration results showed that the
reduction in path duration by using STAP-PPF with path warping
relative to other methods was less with scenario A compared to sce-
narios B and C. Comparison of robot/human separation distance
from test case 3 relative to test cases 1 and 2 also indicate that com-
plexity of the HRC task may affect the utility of STAP-PPF for
maintaining robot/human separation. The average robot/human
separation for test case 3 was much higher than for test cases 1
and 2. This is because the sequence in test case 3 had more steps
and took more time to complete. Additionally, not all actions in
test case 3 required close robot/human interaction. Alternatively,
if close robot/human interaction is not anticipated, then a different
planning method with lower computation time could be used.
Therefore, future research will develop a framework for selecting
a path planner for each robot motion based on factors such as antic-
ipated level of HRI and overlap of robot/human motions.

A limitation of STAP-PPF is computation time required to plan
robot paths considering predicted human motion. Even though
STAP-PPF computes 15 times faster than its predecessor, STAP, it
still required 5 s of planning time to generate time-optimal paths.
This necessitated the path warping feature of STAP-PPF, since the
trajectory could not be regenerated at real-time speeds. In other
words, STAP-PPF could update human predictions and warp the
nominal path in real-time, considered to be at least the camera
update rate of 30 Hz. However, time-optimality of the warped path
could not be guaranteed. Computation time limits the amount of
human deviation STAP-PPF can tolerate. Still, STAP-PPF can
warp the robot path to accommodate deviations in human pose or
timing in reaching for a target. But, if the human changes his/her
sequence and reaches for a target not close to the anticipated target,
then STAP-PPF path warping can’t accommodate the large difference
between real and anticipated human motion and the STAP-PPF
planner can’t re-plan before the human finishes the motion.

Ideally, STAP-PPF would regenerate the entire robot path at a
real-time speed so the time-optimality of the robot path could be
maintained. This would also allow STAP-PPF to handle a wider
range of human variations. Future work can explore approximation
of the SSM effect on robot speed with a neural network as well to
reduce path planner computation time. Another improvement for
future work would be consideration of the probability of robot/
human intersection (P;,;), output from the avoidance interval NN
from Sec. 3.2.2, in determining cost of robot connections when
planning. A challenge with including probability in STAP-PPF’s
planner is relating the probability of robot/human intersection to a
time delay in the planner’s cost function so STAP-PPF’s estimate
of path duration is not distorted.
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6 Conclusions

This work presented the STAP-PPF framework for human
motion prediction and robot path planning. STAP-PPF can be
used in an HRC workeell to predict motions of humans reaching
for objects, pre-plan nominal robot paths offline, re-plan upcoming
robot motion segments as STAP-PPF updates human predictions,
and warp robot paths in real-time to avoid updated human predic-
tions. STAP-PPF pre-plans time-optimal robot paths considering
the spatio-temporal constraints imposed by the human predictions
and SSM enabled safety controller. Results show that STAP-PPF
generated robot trajectories of at least 14% shorter duration relative
to others, meaning less interrupted by real-time human activity.
STAP-PPF also maintained at least 17% greater robot—human
separation distance relative to others in tests designed to challenge
the planners. Additionally, STAP-PPF estimated robot path execu-
tion times more accurately than other methods. Hence, STAP-PPF
can be applied in an HRC workcell requiring close human-robot
collaboration to mitigate production interruption and human dis-
comfort. STAP-PPF robot execution time estimates can also be
used to generate optimal robot sequences. Future work will investi-
gate using STAP-PPF outputs in HRC sequence optimization.
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Nomenclature

D = min robot-human separation distance to permit
robot motion

dot product tolerance for connecting waypoints
in the STAP-PPF warped path
Ngor = number of robot degrees-of-freedom

hy = human pose at the start of a reach motion
(qq = robot configuration nearest q along the linear
path in joint config. space

Crol

qk, = kthrobot configuration in the nominal path after
the nth iteration of path warping
qn = robot configuration after the nth iteration of
pre-sample adjustment
Qnear = configuration in G in the neighborhood of qyew
Quew = a New robot configuration sample

a,, T, = max abs. robot Cartesian deceleration and robot
reaction time, respectively
A(x, y,z) = set of all avoidance intervals due to human
occupancy of point (x, y, z)
Ao, (x, y, z) = ith avoidance intervals due to the oth human
occupying point (x, y, z)
A(qp, qc) = set of all avoidance intervals for the robot
connection from q, to q
dq = spacing of intermediate q between q and g, for
checking SSM effects
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FK,.(q) = position of the robot’s end-effector found via
forward kinematics at configuration q
G = robot path planner’s node graph
Ji(@), Jee(q) = translational Jacobian of the jth point or end-
effector of the robot, respectively, at cfg. q
Nymoorn = num. points to be smoothed by warping
Py, qx, h = human pelvis location, quaternion for link x,
and pose vector for the upper body
Py, = human wrist target location for a reach
q = vector of max speed for each robot joint
gp, ¢ = robot configurations at the ends of a connection
for travel from qp, (parent) to g, (child)
At = time horizon for anticipating SSM effect due to
future human poses
#(qp, qc) = estimated duration for robot travel from qp, to g,

Larr, = earliest time of robot arrival for qp
1;p(x, y, 7) = last time robot passage is not blocked at point
(¥, 2)

tip, (x, ¥, z) = last time robot passage is not blocked by the oth
human occupying point (x, y, z)
15(Qp, 9c) = last time robot passage is not blocked for the
robot connection from qp to e
t,, I, = time when the robot should leave qp, and arrive
at q,, respectively
s, Iy, = start and end time, respectively, of the ith
avoidance interval for the oth human
Vesr» d = estimated velocity of the human wrist for a
reaching motion and distance between P,,, and
the initial wrist position, respectively
v, = velocity of human toward the robot
Vij» D;j = vector between the ith human point and jth
robot point, and the distance between those
points given by the Euclidean norm of Vj;
Vim(Q, 1, j, 1) = robot speed reduction factor due to the velocity
of the jth robot point at configuration q relative
to the ith human point at time #, of the human
prediction

) = maximum speed permitted by SSM considering

the jth point on the robot at config. q and ith
point on the human at time ¢,

VioboQs 1, J, ;) = velocity of the jth robot point at config. q
relative to the ith human point at time #, of the
human prediction

W = robot’s workspace
Z,i, = input vector for the avoidance interval NN
considering step ¢ of the human prediction
7, = input vector for the human motion predictor
a = pre-sample adjustment gain
P, P. = gains for repulsive and attractive warping
Aq,,, = attraction for the kth config. along the robot’s
path after the nth iteration
Aq,,, = repulsion due to robot and human proximity at
the kth robot config. after the nth iteration
Agy,,, = smoothing repulsion for the kth config. along
the robot’s path due to repulsion on the /th
config. after the nth iteration
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