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Abstract—Adversarial pruning compresses models while pre-
serving robustness. Current methods require access to adversarial
examples during pruning. This significantly hampers training
efficiency. Moreover, as new adversarial attacks and training
methods develop at a rapid rate, adversarial pruning methods
need to be modified accordingly to keep up. In this work, we
propose a novel framework to prune a previously trained robust
neural network while maintaining adversarial robustness, without
further generating adversarial examples. We leverage concurrent
self-distillation and pruning to preserve knowledge in the original
model as well as regularizing the pruned model via the Hilbert-
Schmidt Information Bottleneck. We comprehensively evaluate
our proposed framework and show its superior performance in
terms of both adversarial robustness and efficiency when pruning
architectures trained on the MNIST, CIFAR-10, and CIFAR-100
datasets against five state-of-the-art attacks.

Index Terms—

I. INTRODUCTION

The vulnerability of deep neural networks (DNNs) to ad-
versarial attacks has been the subject of extensive research
recently [1]–[3]. Such attacks are intentionally crafted to
mislead DNNs towards incorrect predictions, e.g., by adding
delicately but visually imperceptible perturbations to original,
natural examples [4]. Adversarial robustness, i.e., the ability
of a trained model to maintain its predictive power despite
such attacks, is an important property for many safety-critical
applications [5]–[7]. The most common and effective way
to attain adversarial robustness is via adversarial training
[8]–[10], i.e., training a model over adversarially generated
examples. Adversarial training has shown reliable robustness
performance against improved attack techniques such as pro-
jected gradient descent (PGD) [1], the Carlini & Wagner attack
(CW) [2] and AutoAttack (AA) [3]. Nevertheless, adversarial
training is computationally expensive [1], [11], usually 3×–
30× [12] longer than natural training, precisely due to the
additional cost of generating adversarial examples.

As noted by Madry et al. [1], achieving adversarial robust-
ness requires a significantly wider and larger architecture than
that for natural accuracy. The large network capacity required
by adversarial training may limit its deployment on resource-
constrained hardware or real-time applications. Weight prun-
ing is a prominent compression technique to reduce model
size without notable accuracy degradation [13]–[16]. While
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Fig. 1: (a) A DNN publicly released by researcher A, trained adver-
sarially at a large computational expense, is pruned by Researcher B
and made executable on a resource-constrained device. Using PwoA,
pruning by B is efficient, requiring only access to natural examples.
(b) Taking a pre-trained WRN34-10 pruned on CIFAR-100 as an
example, pruning an adversarially robust model in a naı̈ve fashion,
without generating any adversarial examples, completely obliterates
robustness against AutoAttack [3] even under a 2× pruning ratio.
In contrast, our proposed PwoA framework efficiently preserves
robustness for a broad range of pruning ratios, without any access
to adversarially generated examples. To achieve similar robustness,
SOTA adversarial pruning methods require 4×–7× more training
time (see Figure 2 in Section V-C).

researchers have extensively explored weight pruning, only
a few recent works have studied it jointly with adversarial
robustness. Ye et al. [17], Gui et al. [18], and Sehwag et
al. [19] apply active defense techniques with pruning in their
research. However, these works require access to adversarial
examples during pruning. Pruning is itself a laborious process,
as effective pruning techniques simultaneously finetune an
existing, pre-trained network; incorporating adversarial exam-
ples to this process significantly hampers training efficiency.
Moreover, adversarial pruning techniques tailored to specific
adversarial training methods need to be continually revised as
new methods develop apace.

In this paper, we study how take a dense, adversarially
robust DNN, that has already been trained over adversarial
examples, and prune it without any additional adversarial
training. As a motivating example illustrated in Figure 1(a), a
DNN publicly released by researchers or a company, trained



adversarially at a large computational expense, could be sub-
sequently pruned by other researchers to be made executable
on a resource-constrained device, like an FPGA. Using our
method, the latter could be done efficiently, without access to
the computational resources required for adversarial pruning.

Restricting pruning to access only natural examples poses a
significant challenge. As shown in Figure 1(b), naı̈vely pruning
a model without adversarial examples can be catastrophic,
obliterating all robustness against AutoAttack. In contrast, our
PwoA is notably robust under a broad range of pruning rates.

Overall, we make the following contributions:

1) We propose PwoA, an end-to-end framework for pruning
a pre-trained adversarially robust model without gener-
ating adversarial examples, by (a) preserving robustness
from the original model via self-distillation [20] and (b)
enhancing robustness from natural examples via Hilbert-
Schmidt independence criterion (HSIC) as a regularizer
[21], [22]. Our code is publicly available. †

2) Our work is the first to study how an adversarially pre-
trained model can be efficiently pruned without access
to adversarial examples. This is an important, novel
challenge: prior to our study, it was unclear whether this
was even possible. Our approach is generic, and is nei-
ther tailored nor restricted to specific pre-trained robust
models, architectures, or adversarial training methods.

3) We comprehensively evaluate PwoA on pre-trained ad-
versarially robust models publicly released by other
researchers. In particular, we prune five publicly avail-
able models that were pre-trained with state-of-the-art
(SOTA) adversarial methods on the MNIST, CIFAR-
10, and CIFAR-100 datasets. Compared to SOTA adver-
sarial pruning methods, PwoA can prune a large frac-
tion of weights while attaining comparable–or better–
adversarial robustness, at a 4×–7× training speed up.

We omit related work and experimental details from this
short paper; both can be found in the extended version [23].

II. BACKGROUND

We use the following standard notation throughout the
paper. In the standard k-ary classification setting, we are given
a dataset D = {(xi, yi)}ni=1, where xi ∈ RdX , yi ∈ {0, 1}k
are i.i.d. samples drawn from joint distribution PXY . Given
an L-layer neural network hθ : RdX → Rk parameterized
by weights θ := {θl}Ll=1 ∈ Rdθl , where θl is the weight
corresponding to the l-th layer, for l = 1, . . . , L, we define
the standard learning objective as follows:

L(θ) = EXY [ℓ(hθ(X), Y )] ≈ 1

n

n∑
i=1

ℓ(hθ(xi), yi), (1)

where ℓ : Rk×Rk → R is a loss function, e.g., cross-entropy.

†https://github.com/neu-spiral/PwoA/

A. Adversarial Robustness

We call a network adversarially robust if it maintains
high prediction accuracy against a constrained adversary that
perturbs input samples. Formally, prior to submitting an input
sample x ∈ RdX , an adversary may perturb x by an arbitrary
δ ∈ Br, where Br ⊆ RdX is the ℓ∞-ball of radius r, i.e.,

Br = B(0, r) = {δ ∈ RdX : ∥δ∥∞ ≤ r}. (2)

The adversarial robustness [1] of a model hθ is measured by
the expected loss attained by such adversarial examples, i.e.,

L̃(θ) = EXY

[
max
δ∈Br

ℓ (hθ(X + δ), Y )

]
≈ 1

n

n∑
i=1

max
δ∈Br

ℓ(hθ(xi + δ), yi).

(3)

An adversarially robust neural network hθ can be obtained
via adversarial training, i.e., by minimizing the adversarial
robustness loss in (3) empirically over the training set D. In
practice, this amounts to stochastic gradient descent (SGD)
over adversarial examples xi+δ (see, e.g., [1]). In each epoch,
δ is generated on a per sample basis via an inner optimization
over Br, e.g., via projected gradient descent (PGD).

Adversarial pruning preserves robustness while pruning.
Current approaches combine adversarial training into their
pruning objective. In particular, AdvPrune [17] directly min-
imizes adversarial loss L̃(θ) constrained by sparsity require-
ments. HYDRA [19] also uses L̃(θ) to jointly learn a sparsity
mask along with θl. Both are combined with and tailored to
specific adversarial training methods, and require considerable
training time. This motivates us to propose our PwoA frame-
work, described in Section IV.

B. Knowledge Distillation

In knowledge distillation [24], [25], a student model learns
to mimic the output of a teacher. Consider a well-trained
teacher model T , and a student model hθ that we wish to
train to match the teacher’s output. Let σ : Rk → [0, 1]k be
the softmax function, i.e., σ(z)j = ezj∑

j′ e
z
j′ , j = 1, . . . , k. Let

T τ (x) = σ

(
T (x)

τ

)
and hτ

θ(x) = σ

(
hθ(x)

τ

)
(4)

be the softmax outputs of the two models weighed by temper-
ature parameter τ > 0 [24]. Then, the knowledge distillation
penalty used to train θ is:

LKD(θ)=(1−λ)L(θ)+λτ2EX [KL(hτ
θ(X), T τ (X))], (5)

where L is the classification loss of the tempered student
network hτ

θ and KL is the Kullback–Leibler (KL) divergence.
Intuitively, the knowledge distillation loss LKD treats the output
of the teacher as soft labels to train the student, so that the
student exhibits some inherent properties of the teacher, such
as adversarial robustness.

https://github.com/neu-spiral/PwoA/


C. Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt Independence Criterion (HSIC) is
a statistical dependency measure introduced by Gretton et
al. [26]. HSIC is the Hilbert-Schmidt norm of the cross-
covariance operator between the distributions in Reproducing
Kernel Hilbert Space (RKHS). Similar to Mutual Information
(MI), HSIC captures non-linear dependencies between random
variables. HSIC is defined as:

HSIC(X,Y ) = EXYX′Y ′ [kX (X,X ′) kY ′ (Y, Y ′)]

+ EXX′ [kX (X,X ′)]EY Y ′ [kY (Y, Y ′)]

− 2EXY [EX′ [kX (X,X ′)]EY ′ [kY (Y, Y ′)]] ,

(6)

where X ′ and Y ′ are independent copies of X and Y
respectively, and kX and kY are kernel functions. In practice,
we often approximate HSIC empirically. Given n i.i.d. samples
{(xi, yi)}ni=1 drawn from PXY , we estimate HSIC via:

ĤSIC(X,Y ) = (n− 1)−2 tr (KXHKY H) , (7)

where KX and KY are kernel matrices with entries KXij
=

kX(xi, xj) and KYij
= kY (yi, yj), respectively, and H =

I − 1
n11

T is a centering matrix.

III. PROBLEM FORMULATION

Given an adversarially robust model hθ , we wish to ef-
ficiently prune non-important weights from this pre-trained
model while preserving adversarial robustness of the final
pruned model. We minimize the loss function subject to
constraints specifying sparsity requirements. More specifically,
the weight pruning problem can be formulated as:

Minimize:
θ

L(θ),

subject to θl ∈ Sl, l = 1, · · · , L,
(8)

where L(θ) is the loss function optimizing both the accuracy
and the robustness, and Sl ⊆ Rdθl is a weight sparsity
constraint set applied to layer l, defined as

Sl = {θl | ∥θl∥0 ≤ αl}, (9)

where ∥·∥0 is the size of θl’s support (i.e., the number of non-
zero elements), and αl ∈ N is a constant specified as sparsity
degree parameter.

IV. METHODOLOGY

We now describe PwoA, our unified framework for pruning
a robust network without additional adversarial training.

A. Robustness-Preserving Pruning

Given an adversarially pre-trained robust model, we aim to
preserve its robustness while sparsifying it via weight pruning.
In particular, we leverage soft labels generated by the robust
model and directly incorporate them into our pruning objective
with only access to natural examples. Formally, we denote the
well pre-trained model by T and its sparse counterpart by hθ .
The optimization objective is defined as follows:

Min.:
θ

LD(θ) = τ2EX [KL(hτ
θ(X), T τ (X))],

subj. to θl ∈ Sl, l = 1, · · · , L,
(10)

where τ is the temperature hyperparameter. Intuitively, our
distillation-based objective forces the sparse model hθ to
mimic the soft label produced by the original pre-trained
model T , while the constraint enforces that the learnt weights
are subject to the desired sparsity. This way, we preserve
adversarial robustness via distilling knowledge from soft la-
bels efficiently, without regenerating adversarial examples.
Departing from the original distillation loss in (5), we remove
the classification loss where labels are used, as we observed
that it did not contribute to adversarial robustness (see in
extended version [23]). Solving optimization problem (10) is
not straightforward; we describe how to deal with the combi-
natorial nature of the sparsity constraints in Section IV-C.

B. Enhancing Robustness from Natural Examples

In addition to preserving adversarial robustness from the
pre-trained model, we can further enhance robustness directly
from natural examples. Inspired by the recent work that uses
information-bottleneck penalties, [21], [22], [27], [28], we
incorporate HSIC as a Regularizer (HBaR) into our robust
pruning framework. To the best of our knowledge, HBaR
has only been demonstrated effective under usual adversarial
learning scenarios; we are the first to extend it to the context
of weight pruning. Formally, we denote by Zl ∈ RdZl ,
l ∈ {1, . . . , L} the output of the l-th layer of hθ under input X
(i.e., the l-th latent representation). The HBaR learning penalty
[21], [22] is defined as follows:

LH(θ) =λx

L∑
l=1

HSIC(X,Zl)−λy

L∑
l=1

HSIC(Y,Zl), (11)

where λx, λy ∈ R+ are balancing hyperparameters.
Intuitively, since HSIC measures dependence between two

random variables, minimizing HSIC(X,Zl) corresponds to
removing redundant or noisy information from X . Hence,
this term also naturally reduces the influence of adversarial
attack, i.e. perturbation added on the input data. Meanwhile,
maximizing HSIC(Y,Zl) encourages this lack of sensitivity to
the input to happen while retaining the discriminative nature of
the classifier, captured by the dependence to useful information
w.r.t. the output label Y .

PwoA combines HBaR with self-distillation during weight
pruning. We formalize PwoA to solve the following problem:

Minimize:
θ

LPwoA(θ) = λLD(θ) + LH(θ),

subject to θl ∈ Sl, l = 1, · · · , L.
(12)

C. Solving PwoA via ADMM

Problem (12) has combinatorial constraints due to sparsity.
Thus, it cannot be solved using stochastic gradient descent as
in the standard CNN training. To deal with this, we follow
the ADMM-based pruning strategy by Zhang et al. [13] and
Ren et al. [14]. We describe the complete procedure detail in
[23]. In short, ADMM is a primal-dual algorithm designed
for constrained optimization problems with decoupled ob-
jectives (e.g., problem (12)). Through the definition of an
augmented Lagrangian, the algorithm alternates between two



Algorithm 1 PwoA Framework
Input: input samples {(xi, yi)}ni=1, a pre-trained robust neural
network T with L layers, mini-batch size m, sparsity param-
eter α, learning rate β, proximal parameters {ρl}Ll=1.
Output: parameter of classifier θ
while θ has not converged do

Sample a mini-batch of size m from input samples.
SGD step:
θ ← θ − β∇(LPwoA(θ) +

∑L
l=1

ρl

2 ∥θl − θ′
l + ul∥2F ).

Projection step:
θ′
l ← ΠSl

(
θl + ul

)
, for l = 1, . . . , L.

Dual variable update step:
u← u+ θ − θ′

end

TABLE I: Summary of the pre-trained models used for datasets.

Dataset Architecture Training Method Natural PGD20 CW AA

MNIST LeNet PGD [22] 98.66 96.44 95.10 91.57

CIFAR-10
ResNet-18 TRADES [22] 84.10 52.92 51.00 49.43
WRN34-10 TRADES [9] 84.96 55.44 53.92 52.34
WRN34-10 LBGAT [29] 88.24 54.89 54.47 52.61

CIFAR-100 WRN34-10 LBGAT [29] 60.66 34.69 30.78 28.93

primal steps that can be solved efficiently and separately.
The first subproblem optimizes objective LPwoA augmented
with a proximal penalty; this is an unconstrained optimization
solved by classic SGD. The second subproblem is solved by
performing Euclidean projections ΠSl

(·) to the constraint sets
Sl; even though the latter are not convex, these projections
can be computed in polynomial time. The overall PwoA
framework is summarized in Algorithm 1.

V. EXPERIMENTS

A. Experimental Setting

We conduct our experiments on three benchmark datasets,
MNIST, CIFAR-10, and CIFAR-100. To setup adversarially
robust pre-trained models for pruning, we consider five adver-
sarially trained models provided by open-source state-of-the-
art work, including Wang et al. [22], Zhang et al. [9], and Cui
et al. [29], summarized in Table I.

To understand the impact of each component of PwoA
to robustness, we examine combinations of the following
non-adversarial learning objectives for pruning: LCE, LH, and
LD. All of these objectives are optimized based on natural
examples. We also compare PwoA with three adversarially
pruning methods: APD [30], AdvPrune [17] and HYDRA [19].
Performance Metrics and Attacks. For all methods, we
evaluate the final pruned model via the following metrics.
We first measure (a) Natural accuracy (i.e., test accuracy over
natural examples). We then measure adversarial robustness via
test accuracy under (b) FGSM, the fast gradient sign attack
[31], (c) PGDm, the PGD attack with m steps used for the
internal PGD optimization [1], (d) CW (CW-loss within the
PGD framework) attack [2], and (e) AA, AutoAttack [3], which
is the strongest among all four attacks. All five metrics are

reported in percent (%) accuracy. Following prior adversarial
learning literature, we set step size to 0.01 and r = 0.3 for
MNIST, and step size to 2/255 and r = 8/255 for CIFAR-10
and CIFAR-100, optimizing over ℓ∞-norm balls in all cases.
All attacks happen during the test phase and have full access
to model parameters. Since there is always a trade-off between
natural accuracy and adversarial robustness, we report the best
model when it achieves the lowest average loss among the two,
as suggested by Ye et al. [17] and Zhang et al. [9]. We measure
and report the overall training time over a Tesla V100 GPU
with 32 GB memory and 5120 cores.

B. A Comprehensive Understanding of PwoA

Ablation Study and PwoA Robustness. We first examine
the synergy between PwoA terms in the objective in Eq.
(12) and show how these terms preserve and even improve
robustness while pruning. We studied multiple combinations
of LCE, LH, and LD in Table II. We report the natural test
accuracy and adversarial robustness under various attacks of
the pruned model under 3 pruning rates (4×, 8×, and 16×) on
MNIST, CIFAR-10, and CIFAR-100. For each result reported,
we explore hyperparameters λ , λx, and λy as described in
[23] and report here the best performing values.

Overall, Table II suggests that our method PwoA (namely,
LD+LH) prunes a large fraction of weights while attaining the
best adversarial robustness for all three datasets. In contrast,
a model pruned by LCE alone (i.e., with no effort to maintain
robustness) catastrophically fails under adversarial attacks on
all the datasets. The reason is that when the dataset is more
complicated and/or pruning rate is high, LCE is forced to
maintain natural accuracy during pruning, making it deviate
from the adversarial robustness of the pre-trained model. In
contrast, concurrent self-distillation (LD) and pruning is imper-
ative for preserving substantial robustness without generating
adversarial examples during pruning. We observe this for all
three datasets, taking AA under 4× pruning rate for example,
from 0.00% by LCE to 89.28%, 48.26%, and 25.52% by LD
on MNIST, CIFAR-10 and CIFAR-100, respectively.

We also observe that incorporating LH while pruning is
beneficial for maintaining high accuracy while improving
adversarial robustness against various attacks. By regulariz-
ing LCE with LH, we observe a sharp adversarial robustness
advantage on MNIST, taking AA for example from 0.00%
by LCE to 47.49%, 40.71%, and 13.04% by incorporating
LH under 4×, 8×, and 16× pruning rate, respectively; by
regularizing LD with LH, we again see that the regularization
improves adversarial robustness on all the cases, especially
w.r.t. the strongest attack (AA). We note that the robustness
improvement of incorporating LH with LD is not caused by a
trade-off between accuracy and robustness: in fact, LD + LH
consistently improves both natural accuracy and robustness
under all pruning rates on all datasets. Motivated by the above
observations, we further analyze how the two terms in HBaR
defined in Eq. (11) affect natural accuracy and robustness;
these can be found in the extended version [23].



TABLE II: Prune LeNet (PGD), WRN34-10 (LBGAT), and WRN34-10 (LBGAT) on MNIST, CIFAR-10, and CIFAR-100, respectively.
For all the non-adversarial learning objectives, we report natural test accuracy (in %) and adversarial robustness (in %) on FGSM, PGD,
CW, and AA attacked test examples under different pruning rates.

PR LCE LD LH

MNIST CIFAR-10 CIFAR-100
LeNet (PGD) WRN34-10 (LBGAT) WRN34-10 (LBGAT)

Natural FGSM PGD10 PGD20 CW AA Natural FGSM PGD10 PGD20 CW AA Natural FGSM PGD10 PGD20 CW AA

4×

✓ 99.18 35.73 0.07 0.00 0.00 0.00 93.59 48.47 2.47 0.74 0.21 0.00 71.55 20.92 7.21 5.64 3.93 0.00
✓ ✓ 98.54 91.86 89.78 78.32 79.16 47.49 93.68 46.52 8.45 1.69 0.25 0.00 71.83 23.45 7.57 5.95 4.07 0.00

✓ 98.67 95.42 97.08 95.61 95.19 89.28 88.69 62.72 52.86 50.96 50.29 48.26 60.91 36.21 32.69 31.87 27.74 25.52
✓ ✓ 98.66 95.89 97.35 96.16 96.15 90.00 88.51 63.44 53.54 51.51 50.89 49.03 60.92 36.70 33.08 32.59 28.40 26.44

8×

✓ 99.18 39.08 0.04 0.00 0.00 0.00 93.27 41.15 0.58 0.33 0.00 0.00 71.34 15.28 3.52 2.65 1.37 0.00
✓ ✓ 98.63 88.70 88.89 70.67 71.42 40.71 93.81 40.08 2.95 1.04 0.28 0.00 71.56 17.32 3.73 2.65 1.60 0.00

✓ 98.66 94.15 96.94 95.98 94.74 86.48 88.40 61.93 50.76 48.13 48.07 44.87 61.10 35.27 30.46 29.65 25.52 23.34
✓ ✓ 98.66 95.69 97.13 95.61 95.60 87.37 88.66 62.64 51.41 48.98 48.81 46.09 61.44 35.61 31.19 30.45 26.32 24.20

16×

✓ 98.96 79.09 0.06 0.00 0.00 0.00 92.87 20.95 0.00 0.00 0.00 0.00 69.89 14.56 3.04 2.46 1.68 0.00
✓ ✓ 98.70 81.24 83.70 50.82 54.31 13.04 93.14 29.88 0.84 0.11 0.04 0.00 70.54 16.88 3.56 2.72 1.62 0.00

✓ 98.33 94.51 95.89 93.15 93.14 76.00 88.30 60.77 48.80 46.32 45.76 42.01 62.34 34.65 28.48 27.19 23.30 20.11
✓ ✓ 98.59 95.03 96.34 94.43 94.48 77.21 88.51 61.52 49.68 47.19 47.01 43.33 62.53 35.15 29.05 27.88 24.08 21.43

Mix Ratio 
(%)

CIFAR-10 CIFAR-100

(a) ResNet-18 (TRADES) (b) WRN34-10 (TRADES) (c) WRN34-10 (LBGAT) (d) WRN34-10 (LBGAT) 
Fig. 2: Robustness comparison with AdvPrune and HYDRA across different pre-trained models and datasets, under a varying mix ratio, i.e.,
fraction (in %) of natural examples replaced by adversarial examples during training. We plot AA robustness v.s. training time as we modify
the mix ratio; boxes □ indicate PwoA with 0% mix ratio (no adversarial examples). We observe that, competitors are not robust without
access to adversarial examples; to achieve PwoA’s robustness at 0% mix ratio, AdvPrune and HYDRA require 4×–7× more training time.
On CIFAR-100, they never meet the performance attained by PwoA. We also observe that PwoA improves by partial access to adversarial
examples; overall, it attains a much more favorable trade-off between robustness and training efficiency than the two competitors. In fact, in
all cases except (b), PwoA consistently outperforms competitors at 100% mix ratio, w.r.t. both robustness and training time.

C. Comparison to Adversarial Pruning (AP) Methods

Robustness with Partial Access to Adversarial Examples.
We compare PwoA with two state-of-the art AP baselines,
i.e., AdvPrune and HYDRA, in terms of adversarial robust-
ness and training efficiency on the CIFAR-10 and CIFAR-
100 datasets. Both AdvPrune and HYDRA require access to
adversarial examples. To make a fair comparison, we generate
adversarial examples progressively for all methods, including
PwoA: in Figure 2, we change the mix ratio, i.e., the fraction
of total natural examples replaced by adversarial examples
generated by PGD10. We plot AA robustness vs. training
time, under a 4× pruning rate. We observe that, without
access to adversarial examples (mix ratio 0%), both competing
methods fail catastrofically, exhibiting no robustness what-
soever. Moreover, to achieve the same robustness as PwoA,
they require between 4× and 7× more training time; on
CIFAR-100, they actually never meet the performance attained
by PwoA. We also observe that PwoA improves by partial
access to adversarial examples; overall, it attains a much more

favorable trade-off between robustness and training efficiency
than the two competitors. Interestingly, with the exception of
the case shown in Figure 2(b) (WRN34-10 over CIFAR-10),
PwoA consistently outperforms competitors at 100% mix ratio,
w.r.t. both robustness and training time.
Impact of Pre-training Method. We also observe that HY-
DRA performs well when pruning models pre-trained with
TRADES, but gets worse when dealing with model pre-trained
with LBGAT. This is because HYDRA prunes the model using
TRADES as adversarial loss, and is thus tailored to such
pre-training. When models are pre-trained via LBGAT, this
change of loss hampers performance. In contrast, PwoA can
successfully prune an arbitrary pre-trained model, irrespective
of the architecture or pre-training method.
Pruning Rate Impact. We further measure the performance
of our PwoA and SOTA methods against all five attacks
under 4×, 8×, and 16× pruning rate. We report these at
20% mix ratio, so that training times are roughly equal across
methods, in Table III for CIFAR-100. Overall, we can clearly
see that PwoA consistently outperforms other SOTA methods



TABLE III: Prune WRN34-10 (LBGAT) on CIFAR-100: Compar-
ison of PwoA with SOTA methods w.r.t various attacks and training
time (TT, in h) under different pruning rates at 20% mix ratio.

PR Methods Natural FGSM PGD10 PGD20 CW AA TT

4×
AdvPrune 68.39 40.77 24.71 22.42 21.45 14.95 12.14
HYDRA 60.61 29.54 25.88 25.21 24.22 22.81 18.69

PwoA (ours) 60.93 36.92 33.62 33.30 29.10 27.31 17.03

8×
AdvPrune 68.33 40.73 24.34 22.03 20.97 12.73 12.31
HYDRA 61.04 29.90 25.55 25.04 24.11 22.36 18.73

PwoA (ours) 61.58 36.39 33.09 32.50 28.29 26.46 17.05

16×
AdvPrune 68.24 38.98 23.20 20.50 19.13 8.40 12.08
HYDRA 61.35 29.14 25.53 24.85 23.92 21.95 18.77

PwoA (ours) 61.84 35.78 32.24 31.34 27.31 25.28 17.09

against all five attacks, under similar (or lower) training time.
Specifically, PwoA maintains high robustness against AA with
only 1.62% drop (under 4× PR) from the pre-trained model
by LBGAT (see Table I), while the AA robustness achieved by
HYDRA and AdvPrune drop by 6.12% and 13.98%, respec-
tively. This again verifies that, when pruning a robust model
pre-trained with different adversarial training methods, PwoA
is more stable in preserving robustness. Improvements are also
pronounced while increasing pruning rate: PwoA outperforms
HYDRA against AA by 4.50%, 4.10%, and 3.33% under 4×,
8×, and 16× pruning rates, respectively. For completeness,
we also report performance at 0% mix ratio on CIFAR-100
in [23]; in contrast to PwoA, competitors exhibit virtually
negligible robustness in this case.

VI. CONCLUSIONS AND FUTURE WORK

We proposed PwoA, a unified framework for pruning ad-
versarially robust networks without adversarial examples. Our
method leverages pre-trained adversarially robust models, pre-
serves adversarial robustness via self-distillation and enhances
it via the Hilbert-Schmidt independence criterion as a regular-
izer. Comprehensive experiments on MNIST, CIFAR-10, and
CIFAR-100 datasets demonstrate that PwoA prunes a large
fraction of weights while attaining comparable adversarial
robustness with up to 7× training speed up. Future directions
include extending PwoA framework to structured pruning and
weight quantization. Another interesting future direction is
to use distillation and novel penalties to prune a pre-trained
robust model even without access to natural examples.
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